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Introduction

The integral inequalities play a fundamental role in the theory of differential and integral equations.

There are a necessary tool in the study of various classes of equations. In the past few years,

many authors have established several linear integral inequalities, non linear integral inequalities,

integrodifferential inequalities and delay integral inequalities and presented some of its applications

to the qualitative study of differential equations, we refer the reader to literatures [4, 29, 34, 40].

With the development of science and technology, an important type of inequalities, such as the

Gronwall Bellman type inequality, the Gronwall type inequality, the Henry-Bihari type inequality,

the Henry-Gronwall type inequality, occupies a great place in the research works of the modelling

of engineering and science problems as well as the qualitative analysis of the solutions to differential

equations. Nowadays, after the development that have seen the fractional differential equations,

integral inequalities with weakly singular kernels has become greater [16, 28, 32, 33, 48, 50]. Henry

[16] suggested a recent method to search solutions and to prove some results about linear integral

inequalities with a weakly singular kernel. Ye et al. in [48] have worked with a generalized

inequality to investigate the dependence of the solution for a fractional differential equation.

The inequalities are inadequate and it is necessary to seek some new integral inequalities,

delay integral inequalities, in the case of the functions with one and several variables for used as

tools to study the existence, uniqueness, stability, Ulam stability and continuous dependence of

the solution for some classes of partial differential equations, delay partial differential equations,

integral equations. Let us give the review of each chapter of the thesis.

In chapter 1 we present a number of classical facts in the domain of Gronwall inequalities and

some non-linear inequalities in one variable and in several variables, in the last section we present

some linear and non-linear fractional integral inequalities.

In the chapter 2 We will study the same non-linear integral inequalities for two-variable func-

tions, which are studied by [12] with the term delay.

in chapter 3 we establish some non-linear retarded integral inequalities for functions of n in-

dependent variables which can be used as handy tools in the theory of partial differential and

integral equations. These new inequalities represent a generalization of the results obtained in

[17]. Some applications of our results are also given.
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In the first section of chapter 4 we give some necessary concepts on the generalized fractional

and conformable fractional calculus. In the second section of chapter 4, the main contribution,

using the method introduced by Zhu [50] novel weakly singular integral inequalities are established.

In the third section of of chapter 4, we study the following inequalities type

u (t) ≤ a (t) + b (t)

∫ t

a

f (s)u (s) dαs+

∫ t

a

f (t)W

(∫ s

a

k (s, τ) Φ (u (τ)) dατ

)
dαs,

u (t) ≤ a (t) + b (t)

∫ t

a

f (s) g (u (s)) dαs+

∫ t

a

f (t)W

(∫ s

a

k (s, τ) Φ (u (τ)) dατ

)
dαs.

Where a (.) , b (.) , f (.) ,W (.) ,Φ (.) and k (., .) are given functions satisfied some conditions sup-

posed later. This section is based on Rui A. C. Ferreira and Delfim F. M. Torres [14], we generalised

the results in conformable fractional version integral inequalities with the help of the Katugampola

conformable fractional calculus. In the fourth section of of chapter 4, we give an appliction for

the second and third section to illustrate the usefulness of our results, such that we present the

existence, uniqueness and Ulam stability for the solution of the following problem{
CDβ,χ

0+ x (t) = f (t, x (t)) ,

x (0) = x0,
(1)

where CDβ,χ
a+ is the Caputo derivatives with respect to χ, β ∈ (0, 1) and the continuous function

f : J × R → R satisfying some conditions will be specified later for the second section, and we

gives a bound on the solution of the following integral equation

u (t) = k +

∫ λ(t)

0

F

(
s, u (s) ,

∫ s

0

K (τ , u (τ)) dατ

)
dαs, t ∈ [0, b] ,

for the third section.



Chapter 1

Classical Gronwall Inequalities
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This chapter is presenting a number of classical facts in the domain of Gronwall inequalities,

some non-linear inequalities in one variable and in several variables, in the last section we present

some linear and non-linear fractional integral inequalities.

1.1 Some Linear Gronwall Inequalities

In 1919, Gronwall in [15] proved the following linear Gronwall’s inequality.

Theorem 1.1. Let u (t), a (t) and k (t) be real continuous functions defined in [a, b] , a (t) ≥ 0,

for t ∈ [a, b] . Assume that

u (t) ≤ a (t) +

∫ t

a

k (s)u (s) ds, t ∈ [a, b] . (1.1)

Then

u (t) ≤ a (t) +

∫ t

a

a (s) k (s) exp

(∫ t

s

k (τ) dτ

)
ds, t ∈ [a, b] . (1.2)

Proof. Define the function

y (t) =

∫ t

a

k (s)u (s) ds

for t ∈ [a, b] . Then we have y (a) = 0, and

y′ (t) = k (t)u (t)

≤ a (t) k (t) + y (t) k (t) , t ∈ [a, b] .

By multiplication with exp
(
−
∫ t
a
k (τ) dτ

)
, we obtain

d

dt

(
y (t) exp

(
−
∫ t

a

k (τ) dτ

))
≤ a (t) k (t) exp

(
−
∫ t

a

k (τ) dτ

)
,

By integration on [a, t] , one gets

y (t) exp

(
−
∫ t

a

k (τ) dτ

)
≤
∫ t

a

a (s) k (s) exp

(
−
∫ s

a

k (τ) dτ

)
ds,

then

y (t) ≤
∫ t

a

a (s) k (s) exp

(∫ t

s

k (τ) dτ

)
ds.

Since

u (t) ≤ a (t) + y (t) ,

we find

u (t) ≤ a (t) +

∫ t

a

a (s) k (s) exp

(∫ t

s

k (τ) dτ

)
ds.
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Corollary 1.1. If a is a constant in (1.1) then (1.2) become

u (t) ≤ a exp

(∫ t

a

b (s) ds

)
.

Giuliano, Kharlamov,Willet, and Beesack in [7] investigated the following integral inequalities

Theorem 1.2. Let u(t) and k(t) be continuous functions in [a, b] , and let a (t) and b (t) be Rie-

mann integrable functions in [a, b] , with k (t) and b (t) are non-negative in [a, b] .

i) If

u (t) ≤ a (t) + b (t)

∫ t

a

k (s)u (s) ds, t ∈ [a, b] . (1.3)

Then

u (t) ≤ a (t) + b (t)

∫ t

a

a (s) k (s) exp

(∫ t

s

b (τ) k (τ) dτ

)
ds, t ∈ [a, b] . (1.4)

ii) If ≤ is replaced by ≥ in both (1.3) and (1.4), the result remain valid.

iii) Both i) and ii) remain valid if
∫ t
a

is replaced by
∫ b
t

and
∫ t
s

by
∫ s
t

throughout.

Theorem 1.2 can be generalized as follows

Corollary 1.2. [5] Let u(t) and ki(t) (i = 1, 2, ..., n) be continuous functions in [a, b] , and let

a (t) and bi (t) be Riemann integrable functions in [a, b] , with ki (t) and bi (t) (i = 1, 2, ..., n) be

non-negative in [a, b] . Assume that

u (t) ≤ a (t) +
n∑
i=1

bi (t)

∫ t

a

ki (s)u (s) ds, t ∈ [a, b] .

Then

u (t) ≤ a (t) + b (t)

∫ t

a

a (s)
n∑
i=1

ki (s) exp

(∫ t

s

b (τ)
n∑
i=1

ki (τ) dτ

)
ds, t ∈ [a, b] .

1.2 Some non-linear integral inequalities in one variable

We present the definition of subadditive and submultiplicative functions:

Definition 1.1. A function f : R+ → R+, is said to be

i) subadditive if f (x+ y) ≤ f (x) + f (y) , for x, y ∈ R+.

ii) submiltiplicative if f (xy) ≤ f (x) f (y) .

Pachpatte in [41] have presented the following integral inequalities
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Theorem 1.3. Let u (t) , f (t) , g (t) and h (t) be non-negative continuous functions defined on

R+. Let w (u) be a continuous non-decreasing and submultiplicative function defined on R+ and

w (u) > 0 on R+. If

u (t) ≤ u0 + g (t)

∫ t

0

f (s)u (s) ds+

∫ t

0

h (s)w (u (s)) ds,

for all t ∈ R+, where u0 is a positive constant, then for 0 ≤ t ≤ t1, we have

u (t) ≤ a (t)G−1

[
G (u0) +

∫ t

0

h (s)w (u (s)) ds

]
,

where

a (t) = 1 + g (t)

∫ t

0

f (s) exp

(∫ t

0

g (τ) f (τ) dτ

)
ds, (1.5)

for t ∈ R+, and

G (r) =

∫ r

r0

ds

w (s)
, r > 0, r0 > 0,

and G−1 is the inverse function of G, and t1 ∈ R+ is chosen so that

G (u0) +

∫ t

0

h (s)w (u (s)) ds ∈ Don
(
G−1

)
,

for all t ∈ R+ lying in the interval [0, t1] .

Pachpatte in [41] also proved the following new generalization of the past theorem.

Theorem 1.4. Let u (t) , f (t) , g (t) and h (t) be non-negative continuous functions defined on

R+. Let w (u) be a continuous non-decreasing and submultiplicative function defined on R+ and

w (u) > 0 on R+. Let p (t) > 0, φ (t) ≥ 0 be continuous and non-decreasing functions defined on

R+, and φ (0) = 0. If

u (t) ≤ p (t) + g (t)

∫ t

0

f (s)u (s) ds+ φ

(∫ t

0

h (s)w (u (s)) ds

)
,

for all t ∈ R+, then for 0 ≤ t ≤ t2,

u (t) ≤ a (t)

[
p (t) + φ−1

(
F−1

[
F (A (t)) +

∫ t

0

h (s)w (u (s)) ds

])]
,

where a (t) is defined by (1.5) and

A (t) =

∫ t

0

h (s)w (a (s) p (s)) ds,
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for t ∈ R+, and

F (r) =

∫ r

r0

ds

w (φ (s))
, r > 0, r0 > 0,

and F−1 is the inverse function of F , and t2 ∈ R+ is chosen so that -1

F (A (t)) +

∫ t

0

h (s)w (u (s)) ds ∈ Don
(
F−1

)
,

for all t ∈ R+ lying in the interval [0, t2] .

Remark 1.1. Theorem 1.4, become Theorem 1.3, for p(t) is a constant and φ is the identity

function.

1.3 Some non-linear integral inequalities in Several Vari-

ables

During the past few years, the discovery and the application of the new generalizations of the

Gronwall-Bellman inequality in more than one independent variables have attracted the interest

of many authors. In [37], Pachpatte considered the finite difference inequality in two independent

variables. Integral inequalities of the Gollwitzer type in n independent variables are established

by Yang in [13] .

Throughout this section, we assume that I = ]a, b[ in any bounded open set in the dimen-

sional Euclidean space and that our integrals are on Rn (n ≥ 1), where a = (a1, a2, ..., an) , b =

(b1, b2, ..., bn) ∈ Rn
+. For x = (x1, x2, ..., xn) , t = (t1, t2, ..., tn) ∈ I, we shall denote the integral∫ x

a

=

∫ x1

a1

∫ x2

a2

....

∫ xn

an

...dtn...dt1

Furthermore, for x, t ∈ Rn, we shall write t ≤ x whenever ti ≤ xi, i = 1, 2, ..., n and 0 ≤ a ≤ x ≤ b,

for x ∈ I and D = D1D2...Dn,where D1 = ∂
∂xi
, for i = 1, 2, ..., n Let C (I,R+) denote the class

of continuous functions from I to R+. The following theorem deals with n-independent variables

versions of the inequalities established in Pachpatte [36]

Theorem 1.5. Let u (x) , f (x) , a (x) ∈ C (I,R+) and let K (x, t) , DiK (x, t) be in C (I × I,R+)

for all i = 1, 2, ..., n and c be a non-negative constant.

1) If

u (t) ≤ c+

∫ x

a

f (s)

[
u (s) +

∫ s

a

k (s, τ)u (τ) dτ

]
ds, (1.6)

For x ∈ I and a ≤ τ ≤ s ≤ b, then

u (x) ≤ c

[
1 +

∫ x

a

f (t) exp

(∫ t

a

f (s) + k (b, s) ds

)
dt

]
. (1.7)



CHAPTER 1. CLASSICAL GRONWALL INEQUALITIES 11

2) If

u (t) ≤ a (x) +

∫ x

a

f (s)

[
u (s) +

∫ s

a

k (s, τ)u (τ) dτ

]
ds, (1.8)

For x ∈ I and a ≤ τ ≤ s ≤ b, then

u (x) ≤ a (x) + e (x)

[
1 +

∫ x

a

f (t) exp

(∫ t

a

f (s) + k (b, s) ds

)
dt

]
, (1.9)

Where

e (x) =

∫ x

a

f (s)

[
a (s) +

∫ s

a

k (s, τ) a (τ) dτ

]
ds. (1.10)

Theorem 1.6. Let u (x) , f (x) a (x) and k (x, t) be as defined in Theorem 1.5. Let Φ (u (x)) be real-

valued, positive, continuous, strictly non-decreasing, subadditive, and submultiplicative function for

u (x) ≥ 0 and let W (u (x)) be real-valued, positive, continuous,and non-decreasing function defined

for x ∈ I. Assume that a (x) is positive continuous function and non-decreasing for x ∈ I.
If

u (x) ≤ a (x) +

∫ x

a

f (t) g (u (t)) dt+

∫ x

a

f (t)W

(∫ t

a

k (t, s) Φ (u (s)) ds

)
dt,

For a ≤ s ≤ t ≤ x ≤ b, then for a ≤ x ≤ x∗,

u (x) ≤ β (x)

{
a (x) +

∫ x

a

f (t)W

[
Ψ−1

(
Ψ (η) +

∫ t

a

k (b, s) Φ

[
β (s)

∫ s

a

f (τ) dτ

]
ds

)]
dt

}
,

Where

β (x) = G−1

(
G (1) +

∫ x

a

f (s) ds

)
,

η =

∫ b

a

k (b, s) Φ (β (s) a (s)) ds,

G (u) =

∫ u

u0

1

g (z)
dz, u > 0 (u0 > 0) ,

Ψ (x) =

∫ x

x0

ds

Φ (W (s))
, x ≥ x0 > 0.

where G−1 is the inverse function of G, and Ψ is the inverse function of Ψ−1, x∗ is chosen so that

G (1) +
∫ x
a
ft (s) ds is in the domain of G−1, and

Ψ (η) +

∫ t

a

k (b, s) Φ

[
β (s)

∫ s

a

f (τ) dτ

]
ds,

is in the domain of Ψ−1.

Remark 1.2. Theorem 1.6, become Theorem 1.5, for a is a constant, f ≡ 1 and g, W and Φ are

the identity functions
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1.4 Some fractional integral inequalities

1.4.1 Some definitions

We introduce some important functions and some necessary concepts on the fractional calculus,

namely the Gamma function, the Riemann-Liouville integral and derivative, the Caputo derivative.

Definition 1.2. [20] The Gamma function Γ (.) is defined by the integral

Γ (z) =

∫ +∞

0

e−ttz−1dt,

which converges in the right half of the complex plane, that is, Re (z) > 0.

The Gamma function satisfies

Γ (z + 1) = zΓ (z) , Re (z) > 0

and for any integer n ≥ 0, we have

Γ (n+ 1) = n!.

Definition 1.3. [20] The Riemann-Liouville fractional integral of order α > 0 of a function

f : (a,+∞)→ R is given by

Iα0+f (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 f (s) ds

provided that the right side is pointwise defined on (a,+∞).

Definition 1.4. [20] The Riemann-Liouville fractional derivative of order α > 0 of a function

f : (a,+∞)→ R is given by

Dα
a+f (t) =

1

Γ (n− α)

(
d

ds

)n ∫ x

a

f (s)

(t− s)α−n+1ds =

(
d

ds

)n
In−αa+ f (s) ,

provided that the right side is pointwise defined on (a,+∞), where n = [α] + 1, [α] denotes the

integer part of α.

Definition 1.5. [20] Let α > 0 and n = [α] + 1, for a function f ∈ ACn ([a, b] ,R) the Caputo

fractional derivative of order α of f is defined by

(
CDα

a+f
)

(t) = In−αD(n)f (t)

=
1

Γ (n− α)

∫ x

a

(t− s)n−α−1 f (n) (s) ds.

where D = d
dt

denotes the classical derivative and ACn [a, b] = {f ∈ Cn−1 [a, b] , f (n−1) absolutely

continuous function}.
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Lemma 1.1. [20] Let α > 0, n = [α] + 1 and f : [a, b] → R be a given fonction. Assume that

Dα
a+f and CDα

a+f exist. Then

CDα
a+f (t) = Dα

a+f (t)−
n−1∑
k=0

f (k) (a)

Γ (k − α + 1)
(t− a)k−α .

Lemma 1.2. [20] Let α > 0, n = [α] + 1. If f ∈ L1 [a, b] and fn−α ∈ ACn [a, b], then the equality

(Iαa+D
α
a+f) (t) = f (t)−

n∑
j=1

f
(n−j)
n−α (a)

Γ (α− j + 1)
(t− a)α−j .

holds almost everywhere on [a, b]. In particular, if 0 < α < 1, then

(Iαa+D
α
a+f) (t) = f (t)− f1−α (a)

Γ (α)
(t− a)α−1 ,

where fn−α = In−αa+ f and f1−α = I1−α
a+ f .

Let α > 0, then we have

(
IαCa+ D

α
a+f
)

(t) = f (t)−
n−1∑
k=0

f (k) (a)

k!
(t− a)k .

1.4.2 Some Classical fractional integral inequalities

The following theorem given the generalized singular Gronwall inequality (see [48]).

Theorem 1.7. Suppose β > 0, f (t) is a non-negative function locally integrable on [a, b), b ≤ ∞
and g (t) is a non-negative, non-decreasing continuous function defined on g (t) ≤ M , t ∈ [a, b),

and suppose u (t) is non-negative and locally integrable on [a, b) with

u (t) ≤ f (t) + g (t)

∫ t

0

(t− s)β−1 u (s) ds, t ∈ [a, b) .

Then

u (t) ≤ f (t) +

∫ t

0

[
∞∑
n=1

(g (t) Γ (β))n

Γ (nβ)
(t− s)nβ−1 f (s) ds

]
, t ∈ [a, b) .

If f (t) = 0 for all t ∈ [a, b)we find u (t) = 0 for all t ∈ [a, b) .

Proof. Let Bφ (t) = g (t)
∫ t

0
(t− s)β−1 φ (s) ds, t ≥ 0 for locally integrable functions φ. Then

u (t) ≤ f (t) +Bu (t)

Implies

u (t) ≤
n−1∑
k=0

Bkf (t) +Bnu (t)
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Let us prove that

Bnu (t) ≤
∫ t

0

(g (t) Γ (β))n

Γ (nβ)
(t− s)nβ−1 u (s) ds (1.11)

And Bnu (t) −→ 0 as n −→∞ for each t in 0 ≤ t ≤ T.

We know this relation (1.11) is true for n = 1. Assume that it is true for some n = k. If n = k+ 1,

then the induction hephotessis implies

Bk+1u (t) = B
(
Bku (t)

)
≤ g (t)

∫ t

0

(t− s)β−1

(∫ s

0

(g (s) Γ (β))k

Γ (kβ)
(s− τ)

kβ−1

u (τ) dτ

)
ds.

Since g (t) is nondecreasing, it follows that

Bk+1u (t) ≤ (g (t))k+1

∫ t

0

(t− s)β−1

(∫ s

0

(Γ (β))k

Γ (kβ)
(s− τ)

kβ−1

u (τ) dτ

)
ds.

this implies that

Bk+1u (t) ≤ (g (t))k+1

∫ t

0

(∫ t

τ

(Γ (β))k

Γ (kβ)
(t− s)β−1 (s− τ)

kβ−1

ds

)
u (τ) dτ

=

∫ t

0

(g (t) Γ (β))k+1

Γ ((k + 1) β)
(t− s)(k+1)β−1 u (s) ds,

where the integral∫ t

τ

(t− s)β−1 (s− τ)
kβ−1

ds = (t− τ)kβ+β−1

∫ 1

0

(1− z)β−1 zkβ−1dz

= (t− τ)(k+1)β−1B (kβ, β)

=
Γ (β) Γ (kβ)

Γ ((k + 1) β)
(t− τ)(k+1)β−1 ,

is evaluated with the help of the substitution s = τ + z (t− τ) and the definition of the beta

function see [42]. The relation (1.11) is proved.

Since Bnu (T ) ≤
∫ t

0
(MΓ(β))n

Γ(nβ)
(t− s)nβ−1 u (s) ds −→ 0 as n −→ +∞ for t ∈ [0, T ) , the Theorem is

proved.

Corollary 1.3. Under the hypothesis of Theorem 1.7, let f (t) be a non-decreasing function on

[a, b). Then we have

u (t) ≤ f (t)Eβ
(
g (t) Γ (β) tβ

)
,

where Eβ (t) is the Mittag-Leffler function defined by Eβ (t) =
∑∞

n=1
tn

Γ(nβ+1)
for t > 0.

The following new type of Gronwall-Bellman fractional integral inequality is proved by Wu,

Qiong in [43].
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Theorem 1.8. Suppose 0 < β < 1,and consider the interval I = [0, b) where b ≤ ∞. Suppose f (t)

is a non-negative function, which is locally integrable on I and h (t) and g (t) are non-negative,

non-decreasing continuous function defined on I, with both bounded by a positive constant M. If

u (t) is non-negative, and locally integrable on I and satisfies

u (t) ≤ f (t) + h (t)

∫ t

0

u (s) ds+ g (t)

∫ t

0

(t− s)β−1 u (s) ds, t ∈ I.

Then

u (t) ≤ f (t) +
∞∑
n=1

n∑
i=1

[
Cn
i h

n−i (t) gi (t)
(Γ (β))n

Γ (iβ + n− i)

∫ t

0

(t− s)iβ−(i+1−n) f (s) ds

]
, t ∈ I.

Proof. Let φ be a locally integrable function and define an operator B on φ as follows

Bφ (t) = B (t)

∫ t

0

B (s) ds+ g (t)

∫ t

0

(t− s)α−1 u (s) ds, t ≥ 0 (1.12)

From the inequality, 1.12 we obtain

u (t) ≤ a (t) +Bu (t) .

This implies

u (t) ≤
n−1∑
k=0

Bka (t) +Bnu (t) . (1.13)

As a similar proof of Theorem 1.7 we find

Bnu (t) ≤
n∑
i=0

Cn
i b

n−i (t) gi (t)
(Γ (α))n

Γ (iα + n− i)

∫ t

0

(t− s)(iα−(i+1−n)) a (s) ds,

and Bnu (t) −→ 0 as n −→∞ for each t in 0 ≤ t ≤ T, thus we get the desired inequality.

Remark 1.3. Theorem 1.8, become Theorem 1.7, for h ≡ 0 and 0 < β < 1.

Corollary 1.4. Suppose the conditions in Theorem 1.8 are satisfied and furthermore, f (t) is

non-decreasing on 0 ≤ t < T.

u (t) ≤ f (t)Eβ
(
g (t) Γ (β) tβ

)
exp

(
1

β
h (t) t

)
.

Proof. From the proof of Theorem 1.8,

u (t) ≤ a (t) +
∞∑
n=1

n∑
i=0

Cn
i b

n−i (t) gi (t)
(Γ (α)) i

Γ (iα + n− i)

∫ t

0

(t− s)(iα−(i+1−n)) a (s) ds
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Since a(t) is nondecreasing,

u (t) ≤ a (t)
∞∑
n=1

n∑
i=0

Cn
i b

n−i (t) gi (t)
(Γ (α)) i

Γ (iα + n− i)

∫ t

0

(t− s)(iα−(i+1−n)) a (s) ds

≤ a (t) +
∞∑
n=1

n∑
i=0

Cn
i b

n−i (t) gi (t)
(Γ (α)) i

Γ (iα + n− i+ 1)
tiα+n−i

≤ a (t)Eα (g (t) Γ (α) tα) exp

(
1

α
b (t) t

)
.

This completes the proof.

Medved, in [33] investigated the following fractional Integral Inequalities of Henry type

Definition 1.6. Let q > 0, be a real number and 0 < T ≤ ∞, we say that a function w : R+ → R
satisfies a condition (q), if

exp (−qt) [w (u)]q ≤ R (t)w (exp (−qt)uq) , for all u ∈ R+, t ∈ [0, T ) . (1.14)

where R (t) is a continuous, non-negative function.

Example 1.1. If w (u) = um, m > 0 then e−qt (w (u))q = e(m−1)qtw (e−qtuq) for any q > 1, i.e.,

the condition 1.14 is satisfied with R (t) = e(m−1)qt.

Theorem 1.9. Let f (t) be a non-decreasing, non-negative C1−function on [0, T ) , g (t) be a con-

tinuous, non-negative function on [0, T ) , w : R+ → R be a continuous, non-decreasing function,

w (0) = 0, w (u) > 0, on [0, T ) and u (t) be a continuous, non-negative function on [0, T ) , with

u (t) ≤ f (t) +

∫ t

0

(t− s)β−1 g (s)w (u (s)) ds, t ∈ [0, T ) ,

where β > 0, Then the following assertions hold:

i) Suppose β > 1
2

and w satisfies the condition (1.14) with q = 2. Then

u (t) ≤ exp (t)
{

Ω−1
[
Ω
(
2f (t)2)+ g1 (t)

]} 1
2 , t ∈ (0, T1) ,

where

g1 (t) =
Γ (2β − 1)

4β−1

∫ t

0

R (s) g (s)2 ds,

Ω (r) =
∫ r
r0

ds
w(s)

, r0 > 0, Ω−1 is the inverse of Ω−1 and T1 ∈ R+ such that Ω
(
2f (t)2) + g1 (t) ∈

Dom (Ω−1) for all t ∈ (0, T1) .

ii) Let β ∈
(
0, 1

2

)
, and w satisfies the condition (1.14) with q = z + 2, where z = 1−β

β
. Then

u (t) ≤ exp (t)
{

Ω−1
[
Ω
(
2q−1f (t)q

)
+ g2 (t)

]} 1
q , t ∈ (0, T2) ,
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where

g2 (t) = 2q−1Kq
z

∫ t

0

R (s) g (s)q ds,

Kz =
Γ (1− αq)

1− αq
, α =

z

z + 1
, q =

z + 2

z + 1
. (1.15)

T2 ∈ R+ such that Ω (2q−1f (t)q) + g2 (t) ∈ Dom (Ω−1) for all t ∈ (0, T2) .

Theorem 1.10. Suppose f (t) , h (t) are non-negative, integrable functions on [0, T ) and g (t) , u (t)

are integrable, non-negative functions on [0, T ) with

u (t) ≤ f (t) + h (t)

∫ t

0

(t− s)β−1 g (s)u (s) ds, a.e .on [0, T ) .

then the following assertions hold :

i) If β ≥ 1
2

then

u (t) ≤ exp (t) Φ (t)
1
2 , a.e .on [0, T )

Where

Φ (t) = 2f (t)2 + 2Kh (t)2

∫ t

0

f (s)2 g (s)2 exp

[
K

∫ t

s

h (r)2 g (r)2 dr

]
ds,

K =
Γ (2β − 1)

4β−1

ii) β = 1
z+1

for some z ≥ 1 then

u (t) ≤ exp (t) Ψ (t)
1
q , a.e .on [0, T ) ,

where

Ψ (t) = 2q−1f (t)q + 2q−1Kq
zh (t)q

∫ t

0

f (s)q g (s)q exp

[
2q−1Kq

z

∫ t

s

h (r)q g (r)q dr

]
ds,

q = z + 2, and Kz is defined by (1.15).

1.5 Some applications

We present three examples of application to study respectively the boundless, uniqueness and

Ulam stability of the solution of the following fractional Cauchy problem{
CDαu (t) + λu (t) = f (t, u (t)) , t ∈ J = [0, T ] ,

u (0) = u0,
(1.16)

where CDα is the Caputo fractional derivative of order α ∈ (0, 1) , and f : J×R→ R is a continous

function. Next, we introduce the following assumptions
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H1) there exists ϕ, ψ ∈ C (J,R+) , such that

|f (t, u)| ≤ ϕ (t) |u|+ ψ (t) for allt ∈ J, and all u ∈ R.

H2) There exists Lf > 0, such that

|f (t, u1)− f (t, u2)| ≤ Lf |u1 − u2| for allt ∈ J and all u1, u2 ∈ R.

Clearly that if H1) is satisfied. Then there exist at least one solution of ( 1.16) note u (t) , such

that u (t) is a solution of the following integrel equation

u (t) = u0Eα (−λtα)−
∫ t

0

(t− s)α−1Eα,α (−λ (t− s)α) f (s, u (s)) ds.

We consider the following inequality

∣∣CDαu (t) + λu (t)− f (t, u (t))
∣∣ < ε, for ε > 0. (1.17)

Theorem 1.11. Suppose that H1) is satisfied. Then

|u (t)| ≤
(
|u0|+

ψ∗

Γ (α + 1)
Tα
)
Eα (ϕ∗tα) .

where ϕ∗ = supt∈J ϕ (t) , ψ∗ = supt∈J ψ (t) .

Proof. We have

u (t) = u0Eα (−λtα)−
∫ t

0

(t− s)α−1Eα,α (−λ (t− s)α) f (s, u (s)) ds,

From H1) and by the fact of Eα (−λtα) ≤ 1, Eα,α (−λtα) ≤ 1
Γ(α)

, for any λ > 0, and t ∈ J. we find

|u (t)| = |u0Eα (−λtα)|+
∫ t

0

(t− s)α−1 |Eα,α (−λ (t− s)α)| |f (s, u (s))| ds

≤ |u0|+
1

Γ (α)

∫ t

0

(t− s)α−1 ψ (s) ds+
1

Γ (α)

∫ t

0

(t− s)α−1 ϕ (s) |u (s)| ds

≤ |u0|+
ψ∗

Γ (α + 1)
Tα +

ϕ∗

Γ (α)

∫ t

0

(t− s)α−1 |u (s)| ds.

Using Corollary 1.3, we get

|u (t)| ≤
(
|u0|+

ψ∗

Γ (α + 1)
Tα
)
Eα (ϕ∗tα) .
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Theorem 1.12. Suppose that H2) is satisfied. Then Eq. (1.16) has a unique solution on J.

Proof. we suppose that u1 (t) , u2 (t) are two solutions of Eq (1.1). Then

|u1 (t)− u2 (t)| =

∣∣∣∣∫ t

0

(t− s)α−1Eα,α (−λ (t− s)α) (f (s, u1 (s))− f (s, u2 (s))) ds

∣∣∣∣
≤ Lf

Γ (α)

∫ t

0

(t− s)α−1 |u1 (s)− u2 (s)| ds.

Using Theorem 1.7, we obtain u1 = u2.

Definition 1.7. Eq. (1.16) is Ulam-Hyers stable if there exists c > 0, such that for every ε > 0,

and for every solution v of (1.17) there is a solution u of Eq. (1.16) with

|u (t)− v (t)| ≤ εEα (Lf t
α) c, for all t ∈ J.

Remark 1.4. If v is a solution of (1.17) then v is a solution of∣∣∣∣v (t)− v (0)Eα (−λtα)−
∫ t

0

(t− s)α−1Eα,α (−λ (t− s)α) f (s, v (s)) ds

∣∣∣∣ ≤ ε

Γ (α + 1)
Tα.

Theorem 1.13. [18] Suppose that H2) is satisfied. Then,the solution of (1.16) is Ulam-Hyers

stable.

Proof. Let v be a solution of (1.17) and u the unique solution of the following problem{
CDαu (t) + λu (t) = f (t, u (t)) , α ∈ (0, 1) , t ∈ J,
u (0) = v (0) ,

then

u (t) = v (0)Eα (−λtα)−
∫ t

0

(t− s)α−1Eα,α (−λ (t− s)α) f (s, u (s)) ds.
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From Remark 1.4, we find

|v (t)− u (t)|

≤
∣∣∣∣v (t)− v (0)Eα (−λtα)−

∫ t

0

(t− s)α−1Eα,α (−λ (t− s)α) f (s, u (s)) ds

∣∣∣∣
≤

∣∣∣∣y (t)− v (0)Eα (−λtα)−
∫ t

0

(t− s)α−1Eα,α (−λ (t− s)α) f (s, v (s)) ds

+

∫ t

0

(t− s)α−1Eα,α (−λ (t− s)α) f (s, v (s)) ds

−
∫ t

0

(t− s)α−1Eα,α (−λ (t− s)α) f (s, u (s)) ds

∣∣∣∣
≤ ε

Γ (α + 1)
Tα +

1

Γ (α)

∫ t

0

(t− s)α−1 |f (s, v (s))− f (s, u (s))| ds

≤ ε

Γ (α + 1)
Tα +

Lf
Γ (α)

∫ t

0

(t− s)α−1 |v (s)− u (s)| .

Using Corollary 1.3, we get

|v (t)− u (t)| ≤ ε

Γ (α + 1)
TαEα (Lf t

α) .

Thus, Eq. (1.16) is Ulam-Hyers stable.
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Dragomir and Kim ([12], Theorem 2.3) have presented the following type of integral inequalities

for functions with two variables without term of delay

u (x, y) ≤ a (x, y) + f (x, y)H

(∫ x

0

∫ ∞
y

d (s, t)W (u (s, t)) dtds

)
+b (x, y)

∫ x

α

c (s, y)u (s, y) ds.

In this chapter we present some non-linear delay Integral Inequalities for two variable functions

with a term of delay, secondly we establish some further delay Integral inequalities. Finally,

applications to typical are presented to show the efficiency of the proposed approach. we present

three examples of application to study respectively the boundless, uniqueness and stability of

the solution for a problem of differential equations with delay. The preset results in press are a

generalisation of some inequalities proved in [12].

2.1 Certain Non-Linear Integral Inequalities with a term

of delay

We start by proving some lemmas, which we use in this chapter

Lemma 2.1. Let u (t), k (t), a (t) and b (t) be Riemann integrable functions on [0,∞) with

u (t) , k (t) and b (t) non-negative on [0,∞), and α, β ∈ C1 ([0,∞) , [0,∞)) are non-decreasing

functions, with α (t) ≤ t, β (t) ≥ t for t > 0,

1. If

u (t) ≤ a (t) + b (t)

∫ α(t)

α(t0)

k (s)u (s) ds, for t0 ≤ t, t0, t ∈ [0,∞) ,

then

u (t) ≤ a (t) + b (t)

∫ α(t)

α(t0)

a (s) k (s) exp

(∫ α(t)

α(s)

b (r) k (r) dr

)
ds, t ∈ [0,∞) . (2.1)

2. If

u (t) ≤ a (t) + b (t)

∫ ∞
β(t)

k (s)u (s) ds, for t ∈ [0,∞) ,

then

u (t) ≤ a (t) + b (t)

∫ ∞
β(t)

a (s) k (s) exp

(∫ β(s)

β(t)

b (r) k (r) dr

)
ds, t ∈ [0,∞) . (2.2)

Proof. 1. Define a function v (t) by

v (t) =

∫ α(t)

α(t0)

k (s)u (s) ds, (2.3)
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then v (t0) = 0 and

u (t) ≤ a (t) + b (t) v (t) , (2.4)

by integrating (2.3) and using (2.4), we get

v′ (t) ≤ a (α (t)) k (α (t))α′ (t) + b (α (t)) k (α (t)) v (α (t))α′ (t) ,

we multiply the last inquality by the integrating factor exp
(
−
∫ α(t)

α(t0)
b (r) k (r) dr

)
, we get

[v′ (t)− b (α (t)) k (α (t)) v (t)α′ (t)] exp

(
−
∫ α(t)

α(t0)

b (r) k (r) dr

)

≤ a (α (t)) k (α (t))α′ (t) exp

(
−
∫ α(t)

α(t0)

b (r) k (r) dr

)
.

It follows that

d

dt

[
v (t) exp

(
−
∫ α(t)

α(t0)

b (r) k (r) dr

)]
≤ a (α (t)) k (α (t))α′ (t) exp

(
−
∫ α(t)

α(t0)

b (r) k (r) dr

)
.

By integrating the lasting inequality from t0 to t, with the chang of variable we obtain

v (t) exp

(
−
∫ α(t)

α(t0)

b (r) k (r) dr

)
≤
∫ α(t)

α(t0)

a (s) k (s) exp

(
−
∫ s

α(t0)

b (r) k (r) dr

)
ds.

Thus

v (t) ≤
∫ α(t)

α(t0)

a (s) k (s) exp

(
−
∫ s

α(t0)

b (r) k (r) dr

)
exp

(∫ α(t)

α(t0)

b (r) k (r) dr

)
ds.

i.e.

v (t) ≤
∫ α(t)

α(t0)

a (s) k (s) exp

(∫ α(t)

s

b (r) k (r) dr

)
ds.

Since α (t) ≤ t, we get

v (t) ≤
∫ α(t)

α(t0)

a (s) k (s) exp

(∫ α(t)

α(s)

b (r) k (r) dr

)
ds.

Using the bound of v (t) in u (t) ≤ a (t) + b (t) v (t) , we get the required inequality in (2.1).

2. Dfine a function v (t) by

v (t) =

∫ ∞
β(t)

k (s)u (s) ds, (2.5)
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then v (∞) = 0 and

u (t) ≤ a (t) + b (t) v (t) . (2.6)

By integrating (2.5) and using (2.6), we get

v′ (t) = −β′ (t) k (β (t))u (β (t)) ,

and

v′ (t) ≥ −k (β (t)) [a (β (t)) + b (β (t)) v (β (t))] β′ (t)

≥ −b (β (t)) k (β (t)) v (t) β′ (t)− a (β (t)) k (β (t)) β′ (t) ,

i.e.

v′ (t) + b (β (t)) k (β (t)) v (t) β′ (t) ≥ −a (β (t)) k (β (t)) β′ (t) ,

we multiply the last inquality by the integrating factor exp
(
−
∫∞
β(t)

b (r) k (r) dr
)

, we have

[v′ (t) + b (β (t)) k (β (t)) v (t) β′ (t)] exp

(
−
∫ ∞
β(t)

b (r) k (r) dr

)
≥ −a (β (t)) k (β (t)) β′ (t) exp

(
−
∫ ∞
β(t)

b (r) k (r) dr

)
.

Thus

d

dt

[
v (t) exp

(
−
∫ ∞
β(t)

b (r) k (r) dr

)]
≥ −a (β (t)) k (β (t)) β′ (t) exp

(
−
∫ ∞
β(t)

b (r) k (r) dr

)
.

By integrating the lasting inequality from t to ∞, with the chang of variable we obtain

v (t) ≤
∫ ∞
β(t)

a (s) k (s) exp

(∫ s

β(t)

b (r) k (r) dr

)
ds.

Since β (t) ≥ t, we get

v (t) ≤
∫ ∞
β(t)

a (s) k (s) exp

(∫ β(s)

β(t)

b (r) k (r) dr

)
ds,

Using the bound of v (t) in u (t) ≤ a (t) + b (t) v (t) , we get the required inequality in (2.2).

Lemma 2.2. Let u (x, y) , a (x, y) , b (x, y) be non-negative continuous functions defined for x, y ∈
R+ and α, β ∈ C1 ([0,∞) , [0,∞)) are non-decreasing functions.

1. Assume that a (x, y) is non-decreasing in x and non-increasing in y and α (t) ≤ t, β (t) ≥ t
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for t ≥ 0, and α (0) = 0. If

u (x, y) ≤ a (x, y) +

∫ α(x)

0

∫ ∞
β(y)

b (s, t)u (s, t) dtds for all x, y ∈ R+,

then

u (x, y) ≤ a (x, y) exp

(∫ α(x)

0

∫ ∞
β(y)

b (s, t) dtds

)
. (2.7)

2. Assume that a (x, y) is non-increasing in each of the variables x, y ∈ R+ and α (t) ≥ t, β (t) ≥ t

for t ≥ 0, and α (∞) = β (∞) =∞. If

u (x, y) ≤ a (x, y) +

∫ ∞
α(x)

∫ ∞
β(y)

b (s, t)u (s, t) dtds for all x, y ∈ R+,

then

u (x, y) ≤ a (x, y) exp

(∫ ∞
α(x)

∫ ∞
β(y)

b (s, t) dtds

)
. (2.8)

Proof. Fix any X, Y ∈ R+. Then for 0 ≤ x ≤ X and Y ≤ y we have

u (x, y) ≤ v (x, y) ,

where

v (x, y) = a (X, Y ) +

∫ α(x)

0

∫ ∞
β(y)

b (s, t)u (s, t) dtds.

Clearly, v (x, y) is non-decreasing in x and non-increasing in y and

v (0, y) = a (X, Y ) , (2.9)

∂

∂x
v (x, y) = α′ (x)

∫ ∞
β(y)

b (α (x) , t)u (α (x) , t) dt

≤ α′ (x) v (x, y)

∫ ∞
β(y)

b (α (x) , t) dt.

i.e.
∂
∂x
v (x, y)

v (x, y)
≤ α′ (x)

∫ ∞
β(y)

b (α (x) , t) dt.

By keeping y fixed in the above inequality, setting x = s and integrating from 0 to x, and the

change of variable, and using

v (x, y) ≤ a (X, Y ) exp

(∫ α(x)

0

∫ ∞
β(y)

b (s, t) dtds

)
.

By setting x = X and y = Y and using the fact that u (x, y) ≤ v (x, y) we get the inequality in
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(2.7).

2.Fix any X, Y. Then, for X ≤ x Y ≤ y we have

u (x, y) ≤ v (x, y) ,

where

v (x, y) = a (X, Y ) +

∫ ∞
α(x)

∫ ∞
β(y)

b (s, t)u (s, t) dtds.

Clearly, v (x, y) is non-increasing in each variable x, y ∈ R+ and

v (∞, y) = v (x,∞) = a (X, Y ) ,
∂

∂x
v (x,∞) =

∂

∂y
v (∞, y) = 0, (2.10)

and

∂

∂x

∂

∂y
v (x, y) = α′ (x) β′ (y) b (α (x) , β (x))u (α (x) , β (x))

≤ α′ (x) β′ (y) b (α (x) , β (x)) v (α (x) , β (x)) .

Since α (x) ≥ x, β (y) ≥ y and v (x, y) is non-increasing in each variable x, y ∈ R+ we have

∂

∂y

[
∂
∂x
v (x, y)

v (x, x)

]
≤ α′ (x) β′ (y) b (α (x) , β (x)) .

By keeping x fixed in above inequality, setting y = t integrating from y to ∞ and using (2.10),

and again by keeping y fixed, setting x = s, integrating from x to ∞ in the resulting inequality

and using (2.10) with the change of variable we obtain

v (x, y) ≤ a (X, Y ) exp

(∫ ∞
α(x)

∫ ∞
β(y)

b (s, t) dtds

)
.

By setting x = X and y = Y and using the fact that u (x, y) ≤ v (x, y) we get the inequality in

(2.8).

The following theorems deals some non-linear integral inequalities for two variable functions

with a term of delay, which are important in the qualitative theory of differential equations.

Theorem 2.1. Let u (x, y) , a (x, y) , b (x, y) , c (x, y) , d (x, y) , f (x, y) be real valued non-negative

continuous functions defined for x, y ∈ R+, and α, β ∈ C1 ([0,∞) , [0,∞)) are non-decreasing

functions with α (x) ≤ x, β (y) ≥ y on [0,∞) and α (0) = 0. Let W (u (x, y)) be real valued, posi-

tive, continuous, strictly non-decreasing, subdditive, and submultiplicative function for u (x, y) ≥ 0

and let H (u (x, y)) be a real valued, continuous, positive, and non-decreasing function defined for

x, y ∈ R+. Assume that a (x, y) and f (x, y) are non-decreasing in x for x ∈ R+. If
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u (x, y) ≤ a (x, y) + f (x, y)H

(∫ α(x)

0

∫ ∞
β(y)

d (s, t)W (u (s, t)) dtds

)

+b (x, y)

∫ α(x)

α(x0)

c (s, y)u (s, y) ds, (2.11)

for x, y ∈ R+ then

u (x, y)

≤ p (x, y) {a (x, y) +

f (x, y)H

[
G−1

(
G (A) +

(∫ α(x)

0

∫ ∞
β(y)

d (s, t)W (p (s, t) f (s, t)) dtds

))]}
, (2.12)

for x, y ∈ R+ where

p (x, y) = 1 + b (x, y)

∫ α(x)

α(x0)

c (s, y) exp

(∫ α(x)

α(s)

b (r, y) c (r, y) dr

)
ds, (2.13)

A =

∫ ∞
0

∫ ∞
0

d (s, t)W (p (s, y) a (s, y)) dtds, (2.14)

G (r) =

∫ r

r0

ds

W (H (s))
r ≥ r0 > 0. (2.15)

Proof. Define a function z (x, y) by

z (x, y) = a (x, y) + f (x, y)H

(∫ α(x)

0

∫ ∞
β(y)

d (s, t)W (u (s, t)) dtds

)
, (2.16)

from (2.11) we get

u (x, y) ≤ z (x, y) + b (x, y)

∫ α(x)

α(x0)

c (s, y)u (s, y) ds, (2.17)

Clearly, z (x, y) is a non-negative and continuous in x, setting y fixed in (2.17) and using Lemma

2.1, we obtain

u (x, y) ≤ z (x, y) + b (x, y)

∫ α(x)

α(x0)

z (s, y) c (s, y) exp

(∫ α(x)

α(s)

b (r, y) c (r, y) dr

)
ds.

Moreover, the non-decreasing of the function z (x, y) yields

u (x, y) ≤ z (x, y) p (x, y) , (2.18)
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where p (x, y) is defined by (2.13). From (2.16) we find

u (x, y) ≤ p (x, y) (a (x, y) + f (x, y)H (v (x, y))) , (2.19)

where v (x, y) is defined by

v (x, y) =

∫ α(x)

0

∫ ∞
β(y)

d (s, t)W (u (s, t)) dtds.

Using (2.19) we obtain

v (x, y) ≤
∫ ∞

0

∫ ∞
0

d (s, t)W (p (s, t) a (s, t)) dtds

+

∫ α(x)

0

∫ ∞
β(y)

d (s, t)W (p (s, t) f (s, t))W (H (v (s, t))) dtds, (2.20)

since W is subadutive and submultiplicative. Define r (x, y) as the right side of the last above

inequality, then

r (0, y) =

∫ ∞
0

∫ ∞
0

d (s, t)W (p (s, y) a (s, y)) dtds = A, (2.21)

v (x, y) ≤ r (x, y) ,

r (x, y) is non-decreasing in x and non-increasing in y and

rx (x, y) = α′ (x)

∫ ∞
β(y)

d (α (x) , t)W (p (α (x) , t) f (α (x) , t))W (H (v (α (x) , t))) dt

≤ α′ (x)

∫ ∞
β(y)

d (α (x) , t)W (p (α (x) , t) f (α (x) , t))W (H (r (x, t))) dt

≤ W (H (r (x, y)))α′ (x)

∫ ∞
β(y)

d (α (x) , t)W (p (α (x) , t) f (α (x) , t)) dt. (2.22)

Dividing both sides of (2.22) by W (H (r (x, y))) we obtain

rx (x, y)

W (H (r (x, y)))
≤ α′ (x)

∫ ∞
β(y)

d (α (x) , t)W (p (α (x) , t) f (α (x) , t)) dt. (2.23)

Using (2.15) and (2.23) we find

Gx (r (x, y)) ≤ α′ (x)

∫ ∞
β(y)

d (α (x) , t)W (p (α (x) , t) f (α (x) , t)) dt. (2.24)

Now setting x = σ in (2.24) and the integrating with respect to σ from 0 to x, and making the
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change of variable s = α (σ) we obtain

G (r (x, y))

≤ G (r (0, y)) +

∫ x

0

(∫ ∞
β(y)

α′ (s) d (α (s) , t)W (p (α (s) , t) f (α (s) , t)) dt

)
ds

: = G (r (0, y)) +

∫ α(x)

0

∫ ∞
β(y)

d (s, t)W (p (s, t) f (s, t)) dtds, (2.25)

the last inequality imply that

r (x, y) ≤ G−1

(
G (r (0, y)) +

(∫ α(x)

0

∫ ∞
β(y)

d (s, t)W (p (s, t) f (s, t)) dtds

))
. (2.26)

In view of (2.19), (2.21) and (2.26) and by the fact of v (x, y) ≤ r (x, y), we obtain the inequality

(2.12).

Next, we shall present some important remark and corollaries resulting from the above Theorem.

Remark 2.1. If α (x) = x and β (y) = y in theorem 2.1 we get theorem 2.3 in [12].

Corollary 2.1. If W (x) = H (x) = x, and r0 = 1 in Theorem 2.1 we get

r (0, y) =

∫ ∞
0

∫ ∞
0

d (s, t) p (s, y) a (s, y) dtds = A,

and

u (x, y) ≤ p (x, y) {a (x, y) +

Af (x, y)

[
exp

(∫ α(x)

0

∫ ∞
β(y)

d (s, t) p (s, t) f (s, t) dtds

)]}
.

Corollary 2.2. If W (x) = xp with 0 < p < 1, H (s) = s, and r0 = 0 in Theorem 2.1 we get

r (0, y) =

∫ ∞
0

∫ ∞
0

d (s, t) p (s, y) a (s, y) dtds = A,

and

u (x, y) ≤ p (x, y) {a (x, y) +

(1− p)
1

1−p f (x, y)

(
A1−p

1− p
+

(∫ α(x)

0

∫ ∞
β(y)

d (s, t) p (s, t) f (s, t) dtds

)) 1
1−p
 .

By the same proof of Theorem 2.1, with using (2) of Lemma 2.1, we obtain the following

theorem
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Theorem 2.2. Let u (x, y) , a (x, y) , b (x, y) , c (x, y) , d (x, y) , f (x, y) ,W (u (x, y)) and H (u (x, y))

be as defined in theorem 2.1 and α, β ∈ C1 ([0,∞) , [0,∞)) be non-decreasing function with

α (x) ≥ x, β (y) ≥ y on [0,∞) and β (∞) = ∞. Assume that a (x, y) , b (x, y) , and f (x, y) are

non-increasing in x for x ∈ R+. If

u (x, y) ≤ a (x, y) + f (x, y)H

(∫ ∞
α(x)

∫ ∞
β(y)

d (s, t)W (u (s, t)) dtds

)
+b (x, y)

∫ ∞
β(x)

c (s, y)u (s, y) ds,

for x, y ∈ R+ then

u (x, y) ≤ p (x, y) {a (x, y) +

f (x, y)H

[
G−1

(
G (A) +

(∫ ∞
α(x)

∫ ∞
β(y)

d (s, t)W (p (s, t) f (s, t)) dtds

))]}
,

for x, y ∈ R+ where

p (x, y) = 1 + b (x, y)

∫ ∞
β(x)

c (s, y) exp

(∫ α(x)

α(s)

b (r, y) c (r, y) dr

)
ds,

A =

∫ ∞
0

∫ ∞
0

d (s, t)W (p (s, y) a (s, y)) dtds,

G (r) =

∫ r

r0

ds

W (H (s))
r ≥ r0 > 0.

Theorem 2.3. Let u (x, y) , a (x, y) , b (x, y) , c (x, y) , f (x, y) be real valuer non-nagative continu-

ous functions defined for x, y ∈ R+ and L : R3
+ → R be a continuous function and L (x, y, u) is

non-decreasing in u and satisfies the condition

0 ≤ L (x, y, u)− L (x, y, v) ≤M (x, y, v)φ−1 (u− v) ,

for u ≥ v ≥ 0, where M (x, y, v) is a real valued non-negative continuous function defined for

x, y, v ∈ R+, and α, β ∈ C1 ([0,∞) , [0,∞)) be non-decreasing function with α (x) ≤ x, β (y) ≥ y

on [0,∞) . Assume that φ : R+ −→ R+ be a continuous and strictly increasing function with

φ (0) = 0, φ−1 is the inverse function of φ and

φ−1 (uv) ≤ φ−1 (u)φ−1 (v) ,
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for u, v ∈ R+. Assume that a (x, y) , f (x, y) are non-decreasing in x. If

u (x, y) ≤ a (x, y) + f (x, y)φ

(∫ α(x)

0

∫ ∞
β(y)

L (s, t, u (s, t)) dtds

)

+b (x, y)

∫ α(x)

α(x0)

c (s, y)u (s, y) ds, (2.27)

for x, y ∈ R+, then

u (x, y) ≤ p (x, y) {a (x, y) + f (x, y)φ [e (x, y)

× exp

(∫ α(x)

0

∫ ∞
β(y)

M (s, t, p (s, t) a (s, t))φ−1 (p (s, t) f (s, t)) dtds

)]}
, (2.28)

for x, y ∈ R+, where

p (x, y) = 1 + b (x, y)

∫ α(x)

∞
c (s, y) exp

(∫ α(x)

α(s)

b (r, y) c (r, y) dr

)
ds, (2.29)

e (x, y) =

∫ α(x)

0

∫ ∞
β(y)

L (s, t, p (s, t) a (s, t)) dtds. (2.30)

Proof. Define a function z (x, y) by

z (x, y) = a (x, y) + f (x, y)φ

(∫ α(x)

0

∫ ∞
β(y)

L (s, t, u (s, t)) dtds

)
, (2.31)

then from (2.27) we find

u (x, y) ≤ z (x, y) + b (x, y)

∫ α(x)

α(x0)

c (s, y)u (s, y) ds. (2.32)

Clearly that, z (x, y) is a non-negative and continuous in x. Setting y fixed in (2.32) and using (1)

of Lemma 2.1 to (2.32), we get

u (x, y) ≤ z (x, y) + b (x, y)

∫ α(x)

α(x0)

z (s, y) c (s, y) exp

(∫ α(x)

α(s)

b (r, y) c (r, y) dr

)
ds.

Moreover, the non-decreasing of the function z (x, y) yields

u (x, y) ≤ z (x, y) p (x, y) , (2.33)
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where p (x, y) is defined by (2.29). From (2.31) and ( 2.33) we have

u (x, y) ≤ p (x, y) (a (x, y) + f (x, y)φ (v (x, y))) , (2.34)

where v (s, y) is defined by

v (x, y) =

∫ α(x)

0

∫ ∞
β(y)

L (s, t, u (s, t)) dtds.

The hypotheses on L and φ, and (2.34) yields

v (x, y) ≤
∫ α(x)

0

∫ ∞
β(y)

(L (s, t, p (s, t) [a (s, t) + f (s, t)φ (v (s, t))])

−L (s, t, p (s, t) a (s, t)) + L (s, t, p (s, t) a (s, t))) dtds

≤
∫ α(x)

0

∫ ∞
β(y)

L (s, t, p (s, t) a (s, t)) dtds

+

∫ α(x)

0

∫ ∞
β(y)

M (s, t, p (s, t) a (s, t))φ−1 (p (s, t) f (s, t)φ (v (s, t))) dtds

≤ e (x, y) +

∫ α(x)

0

∫ ∞
β(y)

M (s, t, p (s, t) a (s, t))φ−1 (p (s, t) f (s, t)) v (s, t) dtds, (2.35)

where e (x, y) is defined by (2.30). Clearly that the function e (x, y) is non-negative, continuous

non-decreasing in x and non-increasing in y. Using (1) of Lemma 2.2 we find

v (s, y) ≤ e (x, y)

∫ α(x)

0

∫ ∞
β(y)

M (s, t, p (s, t) a (s, t))φ−1 (p (s, t) f (s, t)) dtds. (2.36)

In view of (2.34) and (2.36) we conclude the inequality (2.28).

Corollary 2.3. If L (s, t, u (s, t)) = u (s, t) and Φ (x) = x in Theorem 2.3 we get

e (x, y) =

∫ α(x)

0

∫ ∞
β(y)

p (s, t) a (s, t) dtds

M (x, y, v) = 1

and

u (x, y) ≤ p (x, y) {a (x, y) +

f (x, y)

[
e (x, y)× exp

(∫ α(x)

0

∫ ∞
β(y)

p (s, t) f (s, t) dtds

)]}
.

By the same proof of Theorem 2.3, with using (2) of Lemma 2.2 we obtain the following

theorem
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Theorem 2.4. Let u (x, y) , a (x, y) , b (x, y) , c (x, y) , f (x, y) , L,M,Φ and Φ−1be as defined in

Theorem 2.3. and α, β ∈ C1 ([0,∞) , [0,∞)) be non-decreasing function with α (x) ≥ x, β (y) ≥ y

on [0,∞) and α (∞) = β (∞) = ∞. Assume that a (x, y) , f (x, y) are non-increasing in x for

x ∈ R+ If

u (x, y) ≤ a (x, y) + f (x, y) Φ

(∫ ∞
α(x)

∫ ∞
β(y)

L (s, t, u (s, t)) dtds

)
+b (x, y)

∫ ∞
α(x)

c (s, y)u (s, y) ds

for β, x, y ∈ R+, then

u (x, y) ≤ p (x, y) {a (x, y) + f (x, y) Φ [e (x, y)

× exp

(∫ ∞
α(x)

∫ ∞
β(y)

M (s, t, p (s, t) a (s, t)) Φ−1 (p (s, t) f (s, t) dtds) dtds

)]}
for x, y ∈ R+ where

p (x, y) = 1 + b (x, y)

∫ ∞
α(x)

c (s, y) exp

(∫ α(x)

α(s)

b (r, y) c (r, y) dr

)
ds

e (x, y) =

∫ ∞
α(x)

∫ ∞
β(y)

L (s, t, p (s, t) a (s, t)) dtds (2.37)

Remark 2.2. If α (x) = x and β (y) = y in theorem 2.4 we get theorem 2.5 in [12]

2.2 Further delay inequalities

In this section we use the following class of function (see [7]).

Definition 2.1. A function g : [0,∞)→ [0,∞) is said to belong to the class S if

(i) g (u) is positive, non-decreasing and continuous for u ≥ 0,

(ii) 1
v
g (u) ≤ g

(
u
v

)
, u > 0, v ≥ 1.

Example 2.1. If g (u) = um, 0 < m < 1, then 1
v
um ≤

(
u
v

)m
, for any u > 0, v ≥ 1.

Theorem 2.5. Let u (x, y) , a (x, y) , b (x, y) , c (x, y) , f (x, y) be real valued non-negative continu-

ous function defined for x, y ∈ R+ and let g ∈ S. and α, β ∈ C1 ([0,∞) , [0,∞)) be non-decreasing

function with α (x) ≤ x, β (y) ≥ y on [0,∞) and α (0) = 0. Also let W (u (x, y)) be real val-

ued, positive, continuous, strictly non-decreasing subadditive and submultiplicative function for

u (x, y) ≥ 0 and let H (u (x, y)) be a real valued, continuous, positive, and non-decreasing function

defined for x, y ∈ R+. Assume that a function m (x, y) is a non-decreasing in x and m (x, y) ≥ 1,
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which is defined by

m (x, y) = a (x, y) + f (x, y)H

(∫ α(x)

0

∫ ∞
β(y)

c (s, t)W (u (s, t)) dtds

)
for x, y ∈ R+.

If

u (x, y) ≤ m (x, y) +

∫ α(x)

α(x0)

b (s, y) g (u (s, y)) ds, (2.38)

for x, y ∈ R+ then

u (x, y) ≤ F (x, y) {a (x, y) + f (x, y)×

H

[
G−1

(
G (B) +

∫ α(x)

0

∫ ∞
β(y)

c (s, t)W (F (s, t) f (s, t)) dtds

)]}
, (2.39)

where

F (x, y) = Ω−1

(
Ω (1) +

∫ α(x)

α(x0)

b (s, y) ds

)
, (2.40)

B =

∫ ∞
0

∫ ∞
0

c (s, t)W (F (s, t) a (s, t)) dtds, (2.41)

Ω (u) =

∫ u

u0

ds

g (s)
u ≥ u0 > 0, (2.42)

where Ω−1 is the inverse function of Ω; G,G−1 are defined in theorem 2.1, Ω (1) +
∫ α(x)

α(x0)
b (s, y) ds

is in the domain of Ω−1 and

G (B) +

∫ α(x)

0

∫ ∞
β(y)

b (s, t)W (F (s, t) f (s, t)) dtds,

is in the domain of G−1 for x, y ∈ R+

Proof. Clearly that, m (x, y) be a positive, continuous, non-decreasing.In view of (2.38) it yields

u (x, y)

m (x, y)
≤ 1 +

∫ α(x)

α(x0)

b (s, y) g

(
u (s, y)

m (s, y)

)
ds, (2.43)

since g ∈ S. The inequality (2.43) may be treated as a one dimensionel Bihari inequality [5], for

any fixed y ∈ R+, it implies that

u (x, y) ≤ m (x, y)F (x, y) ,

where F (x, y) is defined by (2.40). Now by the same proof of Theorem 2.1 we obtain the inequality

(2.39).

Now, we can give the following remark and corollary that are obvious consequences of the
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above theorem.

Remark 2.3. If α (x) = x and β (y) = y in Theorem 2.1 we get Theorem 3.1 in [11]

Corollary 2.4. If W (x) = H (x) = g (x) = α (x) = x, x0 = 0, u = 1 and b (x, y) = y in Theorem

2.5 we get

F (x, y) = exp (xy) ,

B =

∫ ∞
0

∫ ∞
0

exp (st) c (s, t) a (s, t) dtds,

and

u (x, y) ≤ exp (xy) {a (x, y) +Bf (x, y)×(
exp

∫ α(x)

0

∫ ∞
β(y)

exp (st) c (s, t) f (s, t) dtds

)}
.

Theorem 2.6. Let u (x, y) , a (x, y) , b (x, y) , c (x, y) , f (x, y) ,W (u (x, y)) , and H (u (x, y)) be as

defined in Theorem 2.5 and g ∈ S, and α, β ∈ C1 ([0,∞) , [0,∞)) be non-decreasing function with

α (x) ≥ x, β (y) ≥ y on [0,∞) and α (∞) =∞. Assume that a function m (x, y) is non-increasing

in x and m (x, y) ≥ 1,which is defined by

m (x, y) = a (x, y) + f (x, y)H

(∫ ∞
α(x)

∫ ∞
β(y)

c (s, y)W (u (s, t)) dtds

)
,

for x, y ∈ R+. If

u (x, y) ≤ m (x, y) +

∫ ∞
α(x)

b (s, t) g (u (s, y)) ds, (2.44)

for x, y ∈ R+ then

u (x, y) ≤ F (x, y) [a (x, y) + f (x, y) ×

H

[
G−1

(
G (B) +

∫ ∞
α(x)

∫ ∞
β(y)

c (s, t)W (F (s, t) f (s, t)) dtds

)]
, (2.45)

for x, y ∈ R+, where

F (x, y) = Ω−1

(
Ω (1) +

∫ ∞
α(x)

b (s, y) ds

)
, (2.46)

Where B is defined in (2.41), and Ω is defined in (2.42), Ω−1 is the inverse function of Ω; G,G−1

are defined in Theorem 2.1, Ω (1) +
∫ α(x)

α(x0)
b (s, y) ds is in the domain of Ω−1, and

G (B) +

∫ ∞
α(x)

∫ ∞
β(y)

b (s, t)W (F (s, t) f (s, t)) dtds,

is in the domain of G−1, for x, y ∈ R+.
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Proof. Clearly that, m (x, y) is a positive, continuous, non-decreasing in x. In view of 2.44 it yields

u (x, y)

m (x, y)
≤ 1 +

∫ x

α

b (s, y) g

(
u (s, y)

m (s, y)

)
ds,

since g ∈ S. The inequality (2.44) may be treated as a onedimensional Bihari inequality [5] for

any fixed y, y ∈ R+, which implies that

u (x, y) ≤ F (x, y)m (x, y) ,

where F (x, y) is defined by (2.46). Now, by the same proof of Theorem 2.2, we obtain the

inequality (2.45).

Remark 2.4. If α (x) = x and β (y) = y in Theorem 2.1 we get Theorem 3.2 in [12].

Theorem 2.7. Let u (x, y) , a (x, y) , b (x, y) , f (x, y) , L,M,Φ,and Φ−1 be as defined in Theorem

2.3, and let g ∈ S, and α, β ∈ C1 ([0,∞) , [0,∞)) be non-decreasing function with α (x) ≤ x,

β (y) ≥ y on [0,∞) and α (0) = 0. Assume that a function n (x, y) is non-decreasing in x and

n (x, y) ≥ 1,which is defined by

n (x, y) = a (x, y) + f (x, y) Φ

(∫ α(x)

0

∫ ∞
β(y)

L (s, t, u (s, t)) dtds

)
for x, y ∈ R+.

If

u (x, y) ≤ n (x, y) +

∫ α(x)

α(x0)

b (s, y) g (u (s, y)) ds for x, y ∈ R+, (2.47)

then

u (x, y) ≤ F (x, y) {a (x, y) + f (x, y) Φ [e (x, y)×

exp

(∫ α(x)

0

∫ ∞
β(y)

M (s, t, F (s, t) a (s, t)) Φ−1 (F (s, t) f (s, t)) dtds

)]}
. (2.48)

for x, y ∈ R+, where F is defined in (2.40), e (x, y) is defined in (2.30), Ω is defined in (2.42),

Ω−1 is the inverse function of Ω, and Ω (1) +
∫ α(x)

α(x0)
b (s, y) ds is in the domain of Ω−1

Proof. Clearly that, n (x, y) is a positive, continuous, non-decreasing in x. In view of (2.47) it

yields
u (x, y)

n (x, y)
≤ 1 +

∫ α(x)

α(x0)

b (s, y) g

(
u (s, y)

n (s, y)

)
ds, (2.49)

since g ∈ S. The inequality (2.49) may be treated as a one-dimensional Bihari inequality [5] for

any fixed y, y ∈ R+, it implies that

u (x, y) ≤ F (x, y)n (x, y) .
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New , by the same proof of Theorem 2.3, we obtain the inequality (2.48).

Remark 2.5. If α (x) = x and β (y) = y in Theorem 2.1 we get Theorem 3.3 in [11]

Theorem 2.8. Let u (x, y) , a (x, y) , b (x, y) , f (x, y) , L,M,Φ and Φ−1 be as defined in Theorem

(2.3), and let g ∈ S, and α, β ∈ C1 ([0,∞) , [0,∞)) be non-decreasing function with α (x) ≥ x,

β (y) ≥ y on [0,∞) . Assume that a functions n (x, y) is nonincreasing in x and n (x, y) ≥ 1, which

is defined by

n (x, y) = a (x, y) + f (x, y) Φ

(∫ ∞
α(x)

∫ ∞
β(y)

L (s, t, u (s, t)) dtds

)
,

for x, y ∈ R+. If

u (x, y) ≤ n (x, y) +

∫ ∞
α(x)

b (s, y) b (u (s, y)) ds,

for x, y ∈ R+ then

u (x, y) ≤ F (x, y) {a (x, y) + f (x, y) Φ [e (x, y)

× exp

(∫ ∞
α(x)

∫ ∞
β(y)

M (s, t, F (s, t) a (s, t)) Φ−1 (F (s, t) f (s, t)) dtds

)]}
,

for x, y ∈ R+, where F is defined in (2.46), e (x, y) is defined in (2.37), Ω is defined in (2.42),

Ω−1 is the inverse function of Ω, and Ω (1) +
∫∞
α(x)

b (x, y) ds is the domain of Ω−1. The proof of

this theorem follow by an argument similar to that in Theorem ( 2.7) with suitable changes. We

omit the details

Remark 2.6. If α (x) = x and β (y) = y in Theorem 2.1 we get Theorem 3.4 in [11]

2.3 Some Applications

Using [12] and [29] we study certain properties of solutions of the following terminal-value problem

for the partial differential equation

uxy (x, y) = α′ (x) β′ (y)h (α (x) , β (y) , u (α (x) , β (y))) + r (α (x) , β (y)) , (2.50)

u (x,∞) = σ∞ (x) , u (0, y) = τ (y) , u (0,∞) = k, (2.51)

where h : R2
+ × R → R, r : R2

+ → R, σ∞, τ : R+ → R are continuous functions and k is a real

constant.

We present three examples of application to study respectively the boundless, uniqueness and

stability of the solution of (2.50)-(2.51).

Example 01: gives the bound of the solution of (2.50),(2.51).

Assume that all functions of problem (2.50)- (2.51) are defined and continuous on their respective

domains of definitions,

|h (x, y, u)| ≤ d (x, y)W (|u|) , (2.52)
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and∣∣∣∣∣σ∞ (x) + τ (y)− k −
∫ α(x)

0

∫ ∞
β(y)

r (s, t) dtds

∣∣∣∣∣ ≤ a (x, y) + b (x, y)

∫ α(x)

α(x0)

c (s, y)u (s, y) ds, (2.53)

where α (x) , β (y) , a (x, y) , b (x, y) , c (x, y) and W (u) are as defined in Theorem 2.1. If u (x, y) is

a solution of ( 2.50)-(2.51), then

u (x, y) = σ∞ (x) + τ (y)− k

−
∫ x

0

∫ ∞
y

α′ (s) β′ (t) [h (α (s) , β (t) , u (α (s) , β (t))) + r (α (s) , β (t))] dtds

= σ∞ (x) + τ (y)− k −
∫ α(x)

0

∫ ∞
β(y)

h (s, t, u (s, t)) + r (s, t) dtds,

for x, y ∈ R+. From (2.52),(2.53) we get

|u (x, y)| ≤ a (x, y) +

∫ α(x)

0

∫ ∞
β(y)

d (s, t)W (|u (s, t)|) + b (x, y)

∫ α(x)

α(x0)

c (s, y)u (s, y) ds, (2.54)

Now, a suitable application of Theorem 2.1 with f (x, y) = 1 and H (u) = u to (2.54) we get

|u (x, y)| ≤ p (x, y)

{
a (x, y) +G−1

(
G (A) +

∫ α(x)

0

∫ ∞
β(y)

d (s, t)W (p (s, t)) dtds

)}
,

for x, y ∈ R+, where p (x, y) , G, and G−1 are defined in theorem 2.1.

example 02: gives the uniqueness of the solution of (2.50)-(2.51).

Let u(x, y) and v (x, y) tow solutions of problem (2.50)-( 2.51). Such that

|h (x, y, u)− h (x, y, v)| ≤ εd (x, y)W (|u− v|) (0 < ε < 1) , (2.55)

where d (x, y) and W (u) are as defined in theorem 2.1. Then

u (x, y)− v (x, y)

= −
∫ x

0

∫ ∞
y

α′ (s) β′ (t) [h (α (s) , β (t) , u (α (s) , β (t))) + r (α (s) , β (t))] dtds

+

∫ x

0

∫ ∞
y

α′ (s) β′ (t) [h (α (s) , β (t) , v (α (s) , β (t))) + r (α (s) , β (t))] dtds

= −
∫ α(x)

0

∫ ∞
β(y)

(h (s, t, u (s, t))− h (s, t, v (s, t))) dtds,

for x, y ∈ R+.From (2.55) we get

|u (x, y)− v (x, y)| ≤ ε

∫ α(x)

0

∫ ∞
β(y)

d (s, t)W (|u (s, t)− v (s, t)|) dtds. (2.56)
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Now, a suitable application of Theorem 2.1 with f (x, y) = ε, H (u) = u, and a (x, y) = b (x, y) = 0

to (2.56) we get

|u (x, y)− v (x, y)| ≤ εG−1

(
G (A) +

∫ α(x)

0

∫ ∞
β(y)

d (s, t)W (ε) dtds

)

For ε→ 0 we obtain u (x, y) = v (x, y) .

example 03: gives the stability of the solution of (2.50)-(2.51).

Let u(x, y) and v (x, y) tow solutions of (2.50) with the given initial boundary data

u (x,∞) = σ∞ (x) , u (0, y) = τ (y) , u (0,∞) = k, (2.57)

v (x,∞) = σ′∞ (x) , v (0, y) = τ ′ (y) , v (0,∞) = k′. (2.58)

such that the condition (2.55) is holds, and

|σ∞ (x)− σ′∞ (x) + τ (y)− τ (y)− k + k′|

≤ εa (x, y) + b (x, y)

∫ α(x)

α(x0)

c (s, y) (u (s, y)− v (s, y)) ds, (0 < ε < 1) , (2.59)

where α (x) , β (y) , a (x, y) , b (x, y) , c (x, y) and W (u) are as defined in Theorem 2.1, and

α (0) = 0. Then

u (x, y)− v (x, y) = σ∞ (x)− σ′∞ (x) + τ (y)− τ (y)− k + k′

−
∫ α(x)

0

∫ ∞
β(y)

(h (s, t, u (s, t))− h (s, t, v (s, t))) dtds,

for x, y ∈ R+. From (2.55),(2.59) we get

|u (x, y)− v (x, y)| ≤ εa (x, y) + ε

∫ α(x)

0

∫ ∞
β(y)

d (s, t)W (|u (s, t)− v (x, y)|)

+b (x, y)

∫ α(x)

α(x0)

c (s, y) (u (s, y)− v (x, y)) ds (2.60)

Now, a suitable application of Theorem 2.1 with f (x, y) = ε, H (u) = u, to (2.60) yields the

required estimate, therefore

|u (x, y)− v (x, y)| ≤ εp (x, y)

{
a (x, y) +G−1

[
G (A) +

∫ x

0

∫ ∞
0

d (s, t)W (εp (s, t)) dtds

]}
for x, y ∈ R+, where p, G and G−1 are as defined in Theorem 2.1. Then the solution of problem

(2.50) is stable.
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Pachpatte in [35] has presented the following integral inequalities

up (x, y) = k +

∫ x

x0

∫ y

y0

a (s, t) g1 (u (s, t)) dtds

+

∫ α(x)

α(x0)

∫ β(y)

β(y0)

b (s, t) g2 (u (s, t)) dtds.

Khallaf and Smakdji [11] have studied the following type of integral inequality

up (x) ≤ c (x) +

n1∑
j=1

∫ α̃(x)

α̃(x0)

aj (x, t)u (t) dt

+

n2∑
k=1

∫ β̃(x)

β̃(x0)

bk (x, t)u (t) dt.

where x = (x1, x2, ..., xn) , t = (t1, t2, ..., tn) , x0 = (x0
1, x

0
2, ..., x

0
n), and∫ α̃(x)

α̃(x0)

dt =

∫ αj1(x)

αj1(x01)

∫ αj2(x)

αj2(x02)
...

∫ αjn(x)

αjn(x0n)

dtn...dt1, j = 1, 2, ..., n1.

∫ β̃(x)

β̃(x0)

dt =

∫ βk1(x)

βk1(x01)

∫ βk2(x)

βk2(x02)
...

∫ βkn(x)

βkn(x0n)

dtn...dt1, k = 1, 2, ..., n2.

In this chapter we establish some non-linear retarded integral inequalities for functions of n in-

dependent variables, which can be used as handy tools in the theory of partial differential and

integral equations. These new inequalities represent a generalization of the results obtained in

[17]. Some applications of our results are also given.

3.1 Some non-linear Generalized Integral Inequalities With

a term of Delay

Throughout, we define Ii = [xi, Xi) i = 1, 2, ..., n and ∆ = I1×I2× ...×In, n ∈ N, and n ≥ 3. The

first-order partial derivative of a function Z (x1, x2, ..., xn) for xi ∈ R with respect to xi is denoted

as usual by DiZ (x1, x2, ..., xn). For x = (x1, x2, ..., xn) , t = (t1, t2, ..., tn) , x0 = (x0
1, x

0
2, ..., x

0
n) , we
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shall denote: ∫ α̃j1 (x)

α̃j1 (x0)

=

∫ αj11(x1)

αj11(x01)

∫ αj12(x2)

αj12(x02)
...

∫ αj1n(xn)

αj1n(x0n)

dtn...dt1, j1 = 1, ...,m1,∫ α̃j2 (x)

α̃j2 (x0)

=

∫ αj21(x1)

αj21(x01)

∫ αj22(x2)

αj22(x02)
...

∫ αj2n(xn)

αj2n(x0n)

dtn...dt1, j2 = 1, ...,m2,

.

.

.∫ α̃jn (x)

α̃jn (x0)

=

∫ αjn1(x1)

αjn1(x01)

∫ αjn2(x2)

αjn2(x02)
...

∫ αjnn(xn)

αjnn(x0n)

dtn...dt1, jn = 1, ...,mn.

with m1,m2, ...,mn ∈ {1, 2, ...} . For x, t ∈ Rn, we shall write t ≤ x whenever ti ≤ xi, i =

1, 2, ..., n. We denote D = D1D2...Dn, where Di = ∂
∂xi
, i = 1, 2, ..., n.

α̃j1 (t) = (αj11 (t1) , αj12 (t2) , ..., αj1n (tn)) , for j1 = 1, 2, ...,m1,

α̃j2 (t) = (αj21 (t1) , αj22 (t2) , ..., αj2n (tn)) , for j2 = 1, 2, ...,m2,

.

.

.

α̃jn (t) = (αjn1 (t1) , αjn2 (t2) , ..., αjnn (tn)) , for jn = 1, 2, ...,mn.

We denote α̃jk (t) ≤ t for k = 1, 2, ..., n, jk = 1, 2, ...,mk whenever α̃jki (ti) ≤ ti, for i = 1, 2, ..., n.

The following theorems deals some versions of non-linear integral inequalities, for functions of

n independent variables with a term of delay

Theorem 3.1. let aj1 , aj2 , ..., ajn ∈ C (∆,R+), αjki ∈ C (Ii, Ii) be non-decreasing functions for

jk = 1, 2, ...,mk, k = 1, 2, ..., n, i = 1, 2, ..., n. with α̃jk (x) ≤ x, and wj ∈ C (R,R+) for j =

1, 2, ..., n, be a non-decreasing functions with wj (u) > 0 for u > 0, p > q ≥ 0 and k ≥ 0 be

constants. If u ∈ C (∆,R+) , and

up (x) ≤ k +

m1∑
j1=1

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s)uq (s)w1 (u (s)) ds

+

m2∑
j2=1

∫ α̃j2 (x)

α̃j2 (x0)

aj2 (s)uq (s)w2 (u (s)) ds

+...+
mn∑
jn=1

∫ α̃jn (x)

α̃jn (x0)

ajn (s)uq (s)wn (u (s)) ds, (3.1)
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for any x ∈ ∆. Then

u (x) ≤

{
G−1

[
G
(
k
p−q
p

)
+
p− q
p

m1∑
j1=1

A1j1 (x) +

p− q
p

m2∑
j2=1

A2j2 (x) + ...+
p− q
p

mn∑
jn=1

Anjn (x)

]} 1
p−q

. (3.2)

For x0 ≤ x ≤ x1 where x1 = (x1
1, x

1
2, ..., x

1
n) and

A1j1 (x) =

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s) ds,

A2j2 (x) =

∫ α̃j2 (x)

α̃j2 (x0)

aj2 (s) ds,

.

.

.

Anjn (x) =

∫ α̃jn (x)

α̃jn (x0)

ajn (s) ds. (3.3)

G (r) =

∫ r

r0

1

w1

(
s

1
p−q

)
+ w2

(
s

1
p−q

)
+ ....+ wn

(
s

1
p−q

)ds r ≥ r0 > 0. (3.4)

G−1 denotes the inverse function of G, and real numbers x1
i ∈ Ii for any i = 1, 2, ..., n. are chosen

so that the quantity in the square brackets of (3.2) is in the range of G.

Proof. Let k > 0, define r (x) as the right side of (3.1), i.e

r (x) = k +

m1∑
j1=1

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s)uq (s)w1 (u (s)) ds

+

m2∑
j2=1

∫ α̃j2 (x)

α̃j2 (x0)

aj2 (s)uq (s)w2 (u (s)) ds

+...+
mn∑
jn=1

∫ α̃jn (x)

α̃jn (x0)

ajn (s)uq (s)wn (u (s)) ds.

For x ∈ ∆, clearly that, r (x) is a positive non-decreasing function. From (3.1) we find

u (x) ≤ r
1
p (x) , (3.5)
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and

D1r (x) =

m1∑
j1=1

α′j11 (x1)

∫ αj12(x2)

αj12(x02)
...

∫ αj1n(xn)

αj1n(x0n)

aj1 (αj11 (x1) , s2, ..., sn)×

uq (αj11 (x1) , s2, ..., sn)w1 (u (αj11 (x1) , s2, ..., sn)) dsn...ds2

+

m2∑
j2=1

α′j21 (x1)

∫ αj22(x2)

αj22(x02)
...

∫ αj2n(xn)

αj2n(x0n)

aj2 (αj21 (x1) , s2, ..., sn)×

uq (αj21 (x1) , s2, ..., sn)w2 (u (αj21 (x1) , s2, ..., sn)) dsn...ds2

+...+
mn∑
jn=1

α′jn1 (x1)

∫ αjn2(x2)

αjn2(x02)
...

∫ αjnn(xn)

αjnn(x0n)

ajn (αjn1 (x1) , s2, ..., sn)×

uq (αjn1 (x1) , s2, ..., sn)wn (u (αjn1 (x1) , s2, ..., sn)) dsn...ds2

≤
m1∑
j1=1

α′j11 (x1)

∫ αj12(x2)

αj12(x02)
...

∫ αj1n(xn)

αj1n(x0n)

aj1 (αj11 (x1) , s2, ..., sn)×

r
q
p (αj11 (x1) , s2, ..., sn)w1

(
r

1
p (αj11 (x1) , s2, ..., sn)

)
ds2...dsn

+

m2∑
j2=1

α′j21 (x1)

∫ αj22(x2)

αj22(x02)
...

∫ αj2n(xn)

αj2n(x0n)

aj2 (αj21 (x1) , s2, ..., sn)×

r
q
p (αj21 (x1) , s2, ..., sn)w2

(
r

1
p (αj21 (x1) , s2, ..., sn)

)
ds2...dsn

+...+
mn∑
jn=1

α′jn1 (x1)

∫ αjn2(x2)

αjn2(x02)
...

∫ αjnn(xn)

αjnn(x0n)

aj1 (αjn1 (x1) , s2, ..., sn)×

r
q
p (αjn1 (x1) , s2, ..., sn)wn

(
r

1
p (αjn1 (x1) , s2, ..., sn)

)
ds2...dsn

we have

Dx1r1 (x)

r
q
p (x)

≤
m1∑
j1=1

α′j11 (x1)

∫ αj12(x2)

αj12(x02)
...

∫ αj1n(xn)

αj1n(x0n)

aj1 (αj11 (x1) , s2, ..., sn)×

w1

(
r

1
p (αj11 (x1) , s2, ..., sn)

)
dsn...ds2

+

m2∑
j2=1

α′j21 (x1)

∫ αj22(x2)

αj22(x02)
...

∫ αj2n(xn)

αj2n(x0n)

aj2 (αj21 (x1) , s2, ..., sn)×

w2

(
r

1
p (αj21 (x1) , s2, ..., sn)

)
dsn...ds2

+...+
mn∑
jn=1

α′jn1 (x1)

∫ αjn2(x2)

αjn2(x02)
...

∫ αjnn(xn)

αjnn(x0n)

ajn (αjn1 (x1) , s2, ..., sn)×

wn

(
r

1
p (αjn1 (x1) , s2, ..., sn)

)
dsn...ds2. (3.6)

Keeping x2, x3, ..., xn fixed in (3.6), and integrating from x0
1 to x1

1 with making the change of
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variable we get

p

p− q
r
p−q
p (x) ≤ p

p− q
k
p−q
p +

m1∑
j1=1

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s)w1

(
r

1
p (s)

)
ds

+

m2∑
j2=1

∫ α̃j2 (x)

α̃j2 (x0)

aj2 (s)w2

(
r

1
p (s)

)
ds

+...+
mn∑
jn=1

∫ α̃jn (x)

α̃jn (x0)

ajn (s)wn

(
r

1
p (s)

)
ds,

it imply that

r
p−q
p (x) ≤ k

p−q
p +

p− q
p

m1∑
j1=1

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s)w1

(
r

1
p (s)

)
ds

+
p− q
p

m2∑
j2=1

∫ α̃j2 (x)

α̃j2 (x0)

aj2 (s)w2

(
r

1
p (s)

)
ds

+...+
p− q
p

mn∑
jn=1

∫ α̃jn (x)

α̃jn (x0)

aj1 (s)wn

(
r

1
p (s)

)
ds.

Let v (x) = r
p−q
p (x) we find

v (x) ≤ k
p−q
p +

p− q
p

m1∑
j1=1

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s)w1

(
v

1
p−q (s)

)
ds

+
p− q
p

m2∑
j2=1

∫ α̃j2 (x)

α̃j2 (x0)

aj2 (s)w2

(
v

1
p−q (s)

)
ds

+...+
p− q
p

mn∑
jn=1

∫ α̃jn (x)

α̃jn (x0)

aj1 (s)wn

(
v

1
p−q (s)

)
ds. (3.7)

Setting r (x) as the right-hand side of (3.7), then we have r (x0
1, x2, ..., xn) = k

p−q
p

v (x) ≤ r (x) , (3.8)
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and

Dx1r (x)

w1

(
r

1
p−q (x)

)
+ ...+ wn

(
r

1
p−q (x)

)
≤

p−q
p

∑m1

j1=1 α
′
j11 (x1)

∫ αj12(x2)

αj12(x02)
...
∫ αj1n(xn)

αj1n(x0n) aj1 (αj11 (x1) , s2, ..., sn)

w1

(
r

1
p−q (x)

)
+ ...+ wn

(
r

1
p−q (x)

) ×

w1

(
v

1
p−q (αj11 (x1) , s2, ..., sn)

)
dsn...ds2

+

p−q
p

∑m2

j2=1 α
′
j21 (x1)

∫ αj22(x2)

αj22(x02)
...
∫ αj2n(xn)

αj2n(x0n) aj2 (αj21 (x1) , s2, ..., sn)

w1

(
r

1
p−q (x)

)
+ ...+ wn

(
r

1
p−q (x)

) ×

w2

(
v

1
p−q (α1j2 (x1) , s2, ..., sn)

)
dsn...ds2

+...+

p−q
p

∑mn
jn=1 α

′
jn1 (x1)

∫ αjn2(x2)

αjn2(x02)
...
∫ αjnn(xn)

αjnn(x0n)
ajn (αjn1 (x1) , s2, ..., sn)

w1

(
r

1
p−q (x)

)
+ ...+ wn

(
r

1
p−q (x)

) ×

wn

(
v

1
p−q (α1jn (x1) , s2, ..., sn)

)
dsn...ds2

≤
p−q
p
w1

(
v

1
p−q (x)

)∑m1

j1=1 α
′
j11 (x1)

w1

(
r

1
p−q (x)

)
+ ...+ wn

(
r

1
p−q (x)

) ×
∫ αj12(x2)

αj12(x02)
...

∫ αj1n(xn)

αj1n(x0n)

aj1 (αj11 (x1) , s2, ..., sn) dsn...ds2

+

p−q
p
w2

(
v

1
p−q (x)

)∑m2

j2=1 α
′
j21 (x1)

w1

(
r

1
p−q (x)

)
+ ...+ wn

(
r

1
p−q (x)

) ×
∫ αj22(x2)

αj22(x02)
...

∫ αj2n(xn)

αj2n(x0n)

aj2 (αj21 (x1) , s2, ..., sn) dsn...ds2

+...+

p−q
p
wn

(
v

1
p−q (x)

)∑mn
jn=1 α

′
jn1 (x1)

w1

(
r

1
p−q (x)

)
+ ...+ wn

(
r

1
p−q (x)

) ×
∫ αjn2(x2)

αjn2(x02)
...

∫ αjnn(xn)

αjnn(x0n)

ajn (αjn1 (x1) , s2, ..., sn) dsn...ds2
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≤ p− q
p

m1∑
j1=1

α′j11 (x1)

∫ αj12(x2)

αj12(x02)
...

∫ αj1n(xn)

αj1n(x0n)

aj1 (αj11 (x1) , s2, ..., sn) dsn...ds2

p− q
p

m2∑
j2=1

α′j21 (x1)

∫ αj22(x2)

αj22(x02)
...

∫ αj2n(xn)

αj2n(x0n)

aj2 (αj21 (x1) , s2, ..., sn) dsn...ds2

+...+
p− q
p

mn∑
jn=1

α′jn1 (x1)

∫ αjn2(x2)

αjn2(x02)
...

∫ αjnn(xn)

αjnn(x0n)

ajn (αjn1 (x1) , s2, ..., sn) dsn...ds2.

By the definition of G we observe that from the last inequality

Dx1G (r (x)) ≤ p− q
p

m1∑
j1=1

α′j11 (x1)

∫ αj12(x2)

αj12(x02)
...

∫ αj1n(xn)

αj1n(x0n)

aj1 (αj11 (x1) , s2, ..., sn) dsn...ds2

+
p− q
p

m2∑
j2=1

α′j21 (x1)

∫ αj22(x2)

αj22(x02)
...

∫ αj2n(xn)

αj2n(x0n)

aj2 (αj21 (x1) , s2, ..., sn) dsn...ds2

+...+
p− q
p

mn∑
jn=1

α′jn1 (x1)

∫ αjn2(x2)

αjn2(x02)
...

∫ αjnn(xn)

αjnn(x0n)

ajn (αjn1 (x1) , s2, ..., sn) dsn...ds2.

Keeping x2, x3, ..., xn fixed, and integrating from x0
1 to x1

1 with making the change of variable we

get

G (r (x)) ≤ G
(
r
(
x0

1, x2, ..., xn
))

+
p− q
p

m1∑
j1=1

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s) ds+
p− q
p

m2∑
j2=1

∫ α̃j2 (x)

α̃j2 (x0)

aj2 (s) ds

+...+
p− q
p

mn∑
jn=1

∫ α̃jn (x)

α̃jn (x0)

ajn (s) ds

then

G (r (x)) ≤ G
(
k
p−q
p

)
+
p− q
p

m1∑
j1=1

A1j1 (x)

+
p− q
p

m2∑
j2=1

A2j2 (x) + ...+
p− q
p

mn∑
jn=1

Anjn (x) , (3.9)

from the last above inequality we show that

r (x) ≤ G−1

[
G
(
k
p−q
p

)
+
p− q
p

m1∑
j1=1

A1j1 (x)

+
p− q
p

m2∑
j2=1

A2j2 (x) + ...+
p− q
p

mn∑
jn=1

Anjn (x)

]
, (3.10)
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for x0 ≤ x ≤ x1. In view of (3.5), (3.8) and (3.10) and by the fact v (x) = r
p−q
p (x) , we conclud

the inequality (3.2). By continuity, (3.2) also holds for any k ≥ 0.

Next, we give remarks and corollaries, from the above Theorem.

Remark 3.1. If n = 2 and w1 = w2 in Theorem 3.1 we get theorem 2.2 in [17].

Corollary 3.1. Let the function aj1 , aj2 , ..., ajn, αjki (k = 1, 2, ..., n), (i = 1, 2, ..., n), (jk =

1, 2, ...,mk), and the constants p, q and k be defined as in Theorem (3.1), and wj ∈ C (R,R+)

(j = l + 1, ..., n, 0 ≤ l ≤ n) be a non-decreasing functions with wj (u) > 0 for u > 0 and

up (x) ≤ k +

m1∑
j1=1

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s)uq (s) ds+

m2∑
j2=1

∫ α̃j2 (x)

α̃j2 (x0)

aj2 (s)uq (s) ds+ ...+

ml∑
jl=1

∫ α̃jl (x)

α̃jl (x
0)

ajl (s)uq (s) ds

ml+1∑
jl+1=1

∫ α̃jl+1
(x)

α̃jl+1
(x0)

ajl+1
(s)uq (s)wl+1 (u (s)) ds+ ...+

mn∑
jn=1

∫ α̃j1 (x)

α̃j1 (x0)

ajn (s)uq (s)wn (u (s)) ds,

for any x ∈ ∆. Then

u (x) ≤

{
G−1

1

[
G1

(
k
p−q
p +

p− q
p

m1∑
j1=1

A1j1 (x) +

p− q
p

m2∑
j2=1

A2j2 (x) + ...+
p− q
p

ml∑
jl=1

Aljl (x)

)
+

p− q
p

ml+1∑
jl+1=1

Al+1jl+1
(x) + ...+

p− q
p

mn∑
jn=1

Anjn (x)


1
p−q

.

For x0 ≤ x ≤ x2, where x2 = (x2
1, x

2
2, ..., x

2
n) and Akjk (x) where (jk = 1, 2, ...,mk), (k = 1, 2, ..., n)

are defined as in (3.3) and

G1 (r) =

∫ r

r0

1

wl+1

(
s

1
p−q

)
+ wl+2

(
s

1
p−q

)
+ ....+ wn

(
s

1
p−q

)ds r ≥ r0 > 0. (3.11)

Remark 3.2. If n = 2 and l = 1 in corollary 3.1 we get Theorem 2.1 in [17]

Corollary 3.2. Let the function aj1 , aj2 , ..., ajn , αjki, (jk = 1, 2, ...,mk), (k = 1, 2, ..., n),and (i =
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1, 2, ..., n), wj (j = 1, 2, ..., n) and the constants p, q and k be defined as in Theorem (3.1) and

up (x) ≤ k +

m1∑
j1=1

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s)up−1 (s)w1 (u (s)) ds

+

m2∑
j2=1

∫ α̃j2 (x)

α̃j2 (x0)

aj2 (s)up−1 (s)w2 (u (s)) ds

+...+
mn∑
jn=1

∫ α̃jn (x)

α̃jn (x0)

ajn (s)up−1 (s)wn (u (s)) ds,

for any x ∈ ∆. Then

u (x) ≤ G−1

[
G
(
k

1
p

)
+

1

p

m1∑
j1=1

A1j1 (x) +

1

p

m2∑
j2=1

A2j2 (x) + ...+
1

p

mn∑
jn=1

Anjn (x)

]
.

For x0 ≤ x ≤ x3, where x3 = (x3
1, x

3
2, ..., x

3
n) , and Akjk (x) , where (k = 1, 2, ..., n) , (jk = 1, 2, ...,mk)

are defined as in (3.3) and G is defined as in (3.4).

Corollary 3.3. Let the function aj1 , aj2 , ..., ajn , αjki (jk = 1, 2, ...,mk), (k = 1, 2, ..., n) and (i =

1, 2, ..., n),. and the constants p, q and k be defined as in Theorem (3.1), and wj ∈ C (R,R+)

(j = l + 1, ..., n) , where 0 ≤ l ≤ n, be a non-decreasing functions with wj (u) > 0, for u > 0, and

up (x) ≤ k +

m1∑
j1=1

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s)up−1 (s) ds

+

m2∑
j2=1

∫ α̃j2 (x)

α̃j2 (x0)

aj2 (s)up−1 (s) ds+ ...+

ml∑
jl=1

∫ α̃jl (x)

α̃jl (x
0)

ajl (s)up−1 (s) ds

+

ml+1∑
jl+1=1

∫ α̃jl+1
(x)

α̃jl+1
(x0)

ajl+1
(s)up−1 (s)wl+1 (u (s)) ds

+...+
mn∑
jn=1

∫ α̃jn (x)

α̃jn (x0)

ajn (s)up−1 (s)wn (u (s)) ds,
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for any x ∈ ∆. Then

u (x) ≤ G−1
1

[
G1

(
k

1
p +

1

p

m1∑
j1=1

A1j1 (x) +

1

p

m2∑
j2=1

A2j2 (x) + ...+
1

p

ml∑
jl=1

Aljl (x)

)
+

1

p

ml+1∑
jl+1=1

Al+1jl+1
(x) + ...+

1

p

mn∑
jn=1

Anjn (x)

 .
For x0 ≤ x ≤ x4, where x4 = (x4

1, x
4
2, ..., x

4
n) , and Akjk (x) , where (jk = 1, 2, ...,mk), (k = 1, 2, ..., n) ,

are defined as in (3.3) and G1 is defined as in (3.11).

Remark 3.3. If n = 2 and l = 1 in corollary 3.3 we get corollary 2.1 in [17].

Corollary 3.4. Let the function aj1 , aj2 , ..., ajn, αijk (jk = 1, 2, ...,mk), (k = 1, 2, ..., n) and (i =

1, 2, ..., n), and the constants p, q and k be defined an in theorem (3.1), and

up (x) ≤ k +

m1∑
j1=1

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s)up−1 (s) ds

+

m2∑
j2=1

∫ α̃j2 (x)

α̃j2 (x0)

aj2 (s)up−1 (s) ds+ ...+

ml∑
jl=1

∫ α̃jl (x)

α̃jl (x
0)

ajl (s)up−1 (s) ds

+

ml+1∑
jl+1=1

∫ α̃jl+1
(x)

α̃jl+1
(x0)

ajl+1
(s)up (s) ds+ ...+

mn∑
jn=1

∫ α̃jn (x)

α̃jn (x0)

ajn (s)up (s) ds,

for any x ∈ ∆. and 0 ≤ l ≤ n. Then

u (x) ≤

(
k

1
p +

1

p

m1∑
j1=1

A1j1 (x) +

1

p

m2∑
j1=1

A2j2 (x) + ...+
1

p

ml∑
jl=1

Aljl (x)

)

×

exp

1

p

ml+1∑
jl+1=1

Al+1jl+1
(x) + ...+

1

p

mn∑
jn=1

Anjn (x)

n−l−1

.

For x0 ≤ x ≤ x5, where x5 = (x5
1, x

5
2, ..., x

5
n) , and Ajkk (x1, x2, ..., xn) (k = 1, 2, ..., n) , are defined

as in (3.3).

Corollary 3.5. Let the function aj1 , aj2 , ..., ajn, αjki (jk = 1, 2, ...,mk), (k = 1, 2, ..., n) and (i =
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1, 2, ..., n), and the constants p, q and k be defined an in theorem (3.1), and

up (x) ≤ k +

m1∑
j1=1

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s)up (s) ds

+

m2∑
j2=1

∫ α̃j2 (x)

α̃j2 (x0)

aj2 (s)up (s) ds+ ...+
mn∑
jn=1

∫ α̃jn (x)

α̃jn (x0)

ajn (s)up (s) ds,

for any x ∈ ∆. and 0 ≤ l ≤ n. Then

u (x) ≤ k
1
p

[
exp

(
1

p

m1∑
j1=1

A1j1 (x) + ...+
1

p

mn∑
jn=1

Anjn (x)

)]n
.

For x0 ≤ x ≤ x6, where x6 = (x6
1, x

6
2, ..., x

6
n) , and Ajkk (k = 1, 2, ..., n) , are defined as in (3.3).

Remark 3.4. for special cases to the functions of some inequalities of chapter 2 we find some

inequalities of chapter 3 for n = 1.

3.2 Some Apllications

we present three results of application to study respectively the boundless, uniqueness and stability

of the solution of the following initial boundary value problem. We denote

u (x− hi (x)) = u
(
x1 − h1

1i (x1) , x2 − h2
1i (x2) , ..., xn − hn1i (xn)

)
,

..., u
(
x1 − h1

mii
(x1) , x2 − h2

mii
(x2) , ..., xn − hnmii (xn)

)
,

where i = 1, 2, ..., n. Consider the initial boundary value problem

D (x) = F (x, u (x− h1 (x)) , u (x− h2 (x)) , ..., u (x− hn (x))) . (3.12)

With the given initial boundary conditions

u (x0
1, x2, ..., xn) = c1 (x2, x3, ..., xn) ,

u (x1, x
0
2, ..., xn) = c2 (x1, x3, ..., xn) ,

.

.

.

u (x1, x2, ..., x
0
n) = cn (x1, x3, ..., xn−1) ,

(3.13)

u
(
x1, ..., x

0
i1
, ..., x0

i2
, ..., x0

ik
, ..., xn

)
= 0, for 1 ≤ i1 < i2 <, ..., < ik ≤ n. (3.14)

where p is a constant, F ∈ C (∆,Rm1+m2+...+mn ,R) ,

cj ∈ C1 ( I1 × I2 × ...× Ij−1 × Ij+1 × ...× In,R) , hijkk ∈ C1 (Ii,R) are non-increasing functions,
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xi − hijkk (xi) ≥ 0, xi − hijkk (xi) ∈ C1 (Ii, Ii) ,
(
hijkk

)′
(xi) < 1, hijkk (x0

i ) = 0, and

M i
jkk

=
1

1−
(
hijkk

)′
(xi)

,

for 1 ≤ i, k ≤ n, 1 ≤ jk ≤ mk, xi ∈ Ii.
Our first result gives the bound on the solution of the problem (3.12)-(3.14).

Theorem 3.2. Suppose that

|F (x, u11, ..., um11, u12, ..., um22, ..., u1n, ..., umnn)|

≤
m1∑
j1=1

aj1 (x) |uj11|p−1 +

m2∑
j2=1

aj2 (x) |uj22|p−1 + ....+

ml∑
jl=1

ajl (x) |ujll|
p−1

+

ml+1∑
jl+1=1

ajl+1
(x)
∣∣ujl+1l+1

∣∣p + ...+
mn∑
jn=1

ajn (x) |ujnn|
p , (3.15)

|c1 (x2, x3, ..., xn) + c2 (x1, x3, ..., xn) + ...+ cn (x1, x3, ..., xn−1)| ≤ k, (3.16)

where aj1 (x) , aj2 (x) , ..., ajn (x) , and k are defined as in theorem 3.1. If u (x) is any solution of

(3.12)-(3.14), then

|u (x)| ≤

(
k

1
p +

1

p

m1∑
j1=1

A1j1 (x) +

1

p

m2∑
j2=1

A2j2 (x) + ...+
1

p

ml∑
jl=1

Aljl (x)

)

×

exp

1

p

ml+1∑
jl+1=1

Al+1jl+1
(x) + ...+

1

p

mn∑
j1=1

Anjn (x)

n−l−1

. (3.17)

where

A1j1 (x) =

∫ α̃j11(x)

α̃j11(x0)

aj1 (s) ds,

A2j2 (x) =

∫ α̃j22(x)

α̃j22(x0)

aj2 (s) ds,

.

.

.

Anjn (x) =

∫ α̃jnn(x)

α̃jnn(x0)

ajn (s) ds, (3.18)
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and
aj1 (x) = aj1

((
β1
j11

)−1
(x1) ,

(
β2
j11

)−1
(x2) , ...,

(
βnj11

)−1
(xn)

)∏n
i=1 M

i
j11,

aj2 (x) = aj2

((
β1
j22

)−1
(x1) ,

(
β2
j22

)−1
(x2) , ...,

(
βnj22

)−1
(xn)

)∏n
i=1 M

i
j22,

.

.

.

ajn (x) = ajn

((
β1
jnn

)−1
(x1) ,

(
β2
jnn

)−1
(x2) , ...,

(
βnjnn

)−1
(xn)

)∏n
i=1M

i
jnn.

(3.19)

Where
(
βijkk

)
(xi) = xi − hijkk (xi) and β̃jkk (t) =

(
β1
jkk

(t1) , β2
jkk

(t2) , ..., βnjkk (tn)
)
,

for k = 1, 2, ..., n, jk = 1, 2, ...,mk, and i = 1, 2, ..., n.

Proof. It is ease to observe that every solution u (x) of (3.12)-(3.14) satisfies that equivalent

integral equation

up (x) = c1 (x2, x3, ..., xn) + c2 (x1, x3, ..., xn) + ...+ cn (x1, x3, ..., xn−1) +

+

∫ x1

x01

∫ x2

x02

...

∫ xn

x0n

F (s, u (s− h1 (s)) , u (s− h2 (s)) , ..., u (s− hn (s))) ds. (3.20)

Appling (3.15), (3.16) to (3.20) and changing the variables we obtain

|u (x)|
p

≤ k +

m1∑
j1=1

∫ β̃j11(x)

β̃j11(x0)

aj1 (s) |u (s)|p−1 ds

+

m2∑
j2=1

∫ β̃j22(x)

β̃j22(x0)

aj2 (s) |u (s)|p−1 ds+ ...+

ml∑
jl=1

∫ β̃jll
(x)

β̃jll
(x0)

ajl (s) |u (s)|p−1 ds

+

ml+1∑
jl+1=1

∫ β̃jl+1l+1(x)

β̃jl+1l+1(x0)

ajl (s) |u (s)|p ds+ ...+
mn∑
jn=1

∫ β̃jnjn(x)

β̃jnjn(x0)

ajn (s) |u (s)|p ds.(3.21)

An application of corollary 3.4 to (3.21) yields (3.17).

Our second result gives the uniqueness of the solution of the problem (3.12 )-(3.14).

Theorem 3.3. Let M i
jkk
, βijkk, aj1 , aj2 , ..., ajn , aj1 , aj2 , ..., ajn (i = 1, 2, ...n) , (j = 1, 2, ..., n) ,

(k = 1, 2, ..., n) , and (jk = 1, 2, ...,mk) , be as in Theorem (3.2). Suppose that the function F in

(3.12) satisfies the condition

|F (x, u11, ..., um11, u12, ..., um22, ..., u1n, ..., umnn)

− F (x, v11, ..., vm11, v12, ..., vm22, ..., v1n, ..., vmnn)|

≤
m1∑
j1=1

aj1 (x) |uj11 − vj11|p +

m2∑
j2=1

aj2 (x) |uj22 − vj22|p

+...+
mn∑
jn=1

ajn (x) |ujnn − vjnn|
p . (3.22)
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Then the problem (3.12)-(3.14) has at most one solution on ∆.

Proof. Let u (x) and v (x) be tow solutions of (3.12)-(3.14), then we have

up (x)− vp (x)

=

∫ x1

x01

∫ x2

x02

...

∫ xn

x0n

F (s, u (s− h1 (s1)) , u (s− h2 (s2)) , ..., u (s− hn (sn)))

−F (v (s− h1 (s1)) , v (s− h2 (s2)) , ..., v (s− hn (sn))) ds. (3.23)

From (3.22),(3.23) making the changing of variables we get

|up (x)− vp (x)| ≤
m1∑
j1=1

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s) |up (s)− vp (s)| ds

+...+
mn∑
jn=1

∫ α̃jn (x)

α̃jn (x0)

ajn (s) |up (s)− vp (s)| ds.

An application of Corollary 3.5 to the function |up (x)− vp (x)|
1
p show that

|up (x)− vp (x)|
1
p ≤ 0,

for any x ∈ ∆. hance u (x) = v (x) .

Our third result gives the stability of the solution of the problem (3.12 )-(3.14).

Theorem 3.4. Let M i
jkk
, βijkk, aj1 , aj2 , ..., ajn , aj1 , aj2 , ..., ajn (i = 1, 2, ...n) , (j = 1, 2, ..., n) ,

(k = 1, 2, ..., n) , and (jk = 1, 2, ...,mk) , be as in Theorem (3.2) and let u (x) and v (x) be the

solutions of (3.12) with the given initial boundary data

u (x0
1, x2, ..., xn) = c1 (x2, x3, ..., xn) ,

u (x1, x
0
2, ..., xn) = c2 (x1, x3, ..., xn) ,

.

.

.

u (x1, x2, ..., x
0
n) = cn (x1, x3, ..., xn−1) ,

(3.24)

and
v (x0

1, x2, ..., xn) = d1 (x2, x3, ..., xn) ,

v (x1, x
0
2, ..., xn) = d2 (x1, x3, ..., xn) ,

.

.

.

v (x1, x2, ..., x
0
n) = dn (x1, x3, ..., xn−1) ,

(3.25)
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where cj, dj ∈ C1 ( I1 × I2 × ...× Ij−1 × Ij+1 × ...× In,R) . Suppose that the fonction F satisfies

the condition (3.22), and

|c1 (x2, x3, ..., xn)− d1 (x2, x3, ..., xn) +

c2 (x1, x3, ..., xn)− d2 (x1, x3, ..., xn) + ...+

cn (x2, x3, ..., xn−1)− dn (x2, x3, ..., xn−1)| < εp.

(3.26)

Where ε is an arbitrary positive number. Then

|up (x)− vp (x)| ≤ ε

[
exp

(
1

p

m1∑
j1=1

A1j1 (x) +
1

p

m2∑
j2=1

A2j2 (x) + ...+
1

p

mn∑
jn=1

Anjn (x)

)]n
, (3.27)

for x ∈ ∆, where A1j1 (x) , A2j2 (x) , ..., Anjn (x) are defined as in (3.18).

Proof. we have u (x) and v (x) be solutions of (3.12),(3.24) and (3.12),(3.25) respectively. then we

have

up (x)− vp (x) = c1 (x2, x3, ..., xn)− d1 (x2, x3, ..., xn) +

c2 (x2, x3, ..., xn)− d2 (x2, x3, ..., xn) + ...+

+

∫ x1

x01

∫ x2

x02

...

∫ xn

x0n

[F (s, u (s− h1 (s1)) , u (s− h (s)) , ..., u (s− hn (s)))

−F (s, v (s− h1 (s1)) , v (s− h (s)) , ..., v (s− hn (s)))] ds, (3.28)

for x ∈ ∆. From (3.22), (3.26) and (3.28), making change of variables we get

|up (x)− vp (x)| ≤ εp +

m1∑
j1=1

∫ α̃j1 (x)

α̃j1 (x0)

aj1 (s) |up (s)− vp (s)| ds

+...+
mn∑
jn=1

∫ α̃jn (x)

α̃jn (x0)

ajn (s) |up (s)− vp (s)| ds.

An application of corollary 3.5 to the function |up (x)− vp (x)|
1
p we obtain (3.27). Hence up

dependents continuously on c1, c2, ..., cn.

Remark 3.5. If n = 2 and l = 1 in Theorem 3.2, Theorem 3.3 and Theorem 3.4 we get Theorem

3.1, Theorem 3.2 and Theorem 3.3 respectively in [17].



Chapter 4

Some New fractional integral

inequalities

56



CHAPTER 4. SOME NEW FRACTIONAL INTEGRAL INEQUALITIES 57

The literature on Gronwall type integral inequalities and their applications is vast; see [5, 24]

and the references given therein. Usually, the integrals concerning this type inequalities have

regular or continuous kernels, but some problems of theory and practicality require us to solve

integral inequalities with singular kernels. For example, D. Henry [16] used this type integral

inequalities to prove a global existence and an exponential decay result for a parabolic Cauchy

problem.

In the first section of this chapter we give some necessary concepts of the generalized fractional

and conformable fractional calculus. In the second section the main contribution using the method

introduced by Zhu [50], novel weakly singular integral inequalities are established. In the third

section, we study the following inequalities type

u (t) ≤ a (t) + b (t)

∫ t

a

f (s)u (s) dαs+

∫ t

a

f (t)W

(∫ s

a

k (s, τ) Φ (u (τ)) dατ

)
dαs,

u (t) ≤ a (t) + b (t)

∫ t

a

f (s) g (u (s)) dαs+

∫ t

a

f (t)W

(∫ s

a

k (s, τ) Φ (u (τ)) dατ

)
dαs.

Where a (.) , b (.) , f (.) ,W (.) ,Φ (.) and k (., .) are given functions satisfied some conditions sup-

posed later. This section is based on Rui A. C. Ferreira and Delfim F. M. Torres [14], we generalized

the results in conformable fractional version integral inequalities with the help of the Katugam-

pola conformable fractional calculus. In the fourth section, we give an application for the second

and third section to illustrate the usefulness of our results, such that we present the existence,

uniqueness and Ulam stability for the solution of the following problem{
CDβ,χ

0+ x (t) = f (t, x (t)) ,

x (0) = x0,
(4.1)

where CDβ,χ
a+ is the Caputo derivatives with respect to χ, β ∈ (0, 1) and the continuous function

f : J × R → R, for the second section. And we gives a bound on the solution of the following

integral equation

u (t) = k +

∫ λ(t)

0

F

(
s, u (s) ,

∫ s

0

K (τ , u (τ)) dατ

)
dαs, t ∈ [0, b] ,

for the third section.

4.1 Some necessary concepts of the generalized fractional

and conformable fractional calculus

4.1.1 Some definitions

Let us introduce some preliminaries on fractional calculus (see [1, 2, 3]).
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Definition 4.1. Given β > 0 and χ ∈ C1[a1, a2] such that χ′(t) > 0 for every t ∈ [a1, a2]. The

χ-Riemann– Liouville fractional integral of order β of a function g ∈ L1[a1, a2] is defined by

Iβ,χa1
g (x) =

1

Γ (β)

∫ x

a1

χ′ (t) (χ (x)− χ (t))β−1 g (t) dt.

Definition 4.2. Given 0 < β < 1 and χ ∈ C1[a1, a2] such that χ′(t) > 0 for every t ∈ [a1, a2].

The χ-Riemann–Liouville fractional derivative of order β of a function g is defined by

Dβ,χ
a1
g (x) =

1

χ′ (x)

d

dx
I1−β,χ
a1

g (x) .

Definition 4.3. Given 0 < β < 1 and χ ∈ C1[a1, a2] such that χ′(t) > 0 for every t ∈ [a1, a2].

The χ-Caputo fractional derivative of order β of a function g is defined by

CDβ,χ
a1
g(x) = Dβ,χ

a1
(g(x)− g(a1)) .

Remark 4.1. For certain special cases of CDβ,χ
a1

, we get the Caputo-Hadamard derivative [9], the

Caputo derivative [20, 44] and the Caputo-Erdélyi-Kober derivative [47].

Lemma 4.1. For η > 0, we have

Iβ,χa1
(χ (x)− χ (a1))η =

1

Γ (β)

∫ x

a1

χ′ (t) (χ (x)− χ (t))β−1 (χ (t)− χ (a1))η dt

=
Γ (η + 1)

Γ (η + β + 1)
(χ (x)− χ (a1))η+β .

4.1.2 Katugampola conformable fractional integrals and derivatives

Katugampola conformable derivatives for α ∈ (0, 1] and t ∈ [0,∞) given by

Dα (f) (t) = lim
ε→0

f
(
teεt

−α
)
− f (t)

ε
, (4.2)

provided the limits exist (for detail see, [19]). If f is fully dierentiable at t; then

Dα (f) (t) = t1−α
df

dt
(t) . (4.3)

If the limit in (4.2) exists and is finit then A function f is α−differentiable at a point t ≥ 0.

Theorem 4.1. [19]Let α ∈ (0, 1] and f, g be α− differentiable at a point t > 0. then

1. Dα (af + bg) = aDα (f) + bDα (g) , for all a, b ∈ R,
2. Dα (λ), for all constant functions f (t) = λ,

3. Dα (fg) = fDα (g) + gDα (f) ,

4. Dα
(
f
g

)
= fDα(g)−gDα(f)

g2
,
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5. Dα (tn) = ntn−α for all n ∈ R,
6. Dα (f ◦ g) = f ′ (g (t))Dα (g) (t) for f is differentiable at g (t) .

Definition 4.4. [19](conformable fractional integral). Let α ∈ (0, 1] and 0 ≤ a < b. A function

f : [a, b]→ R is α-fractional integrale on [a, b] if the integral∫ b

a

f (s) dαs =

∫ b

a

f (s) sα−1ds,

exists and is finite. All α-fractional integrable on [a, b] is indicated by L1
α ([a, b]) .

Remark 4.2. [19]

Iαa (f) (t) = I1
a

(
tα−1f

)
=

∫ t

a

f (s) sα−1ds,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1] .

4.2 Some new fractional integral inequalities with respect

to another function

In this section, we present a new version of non-linear integral inequalities of fractional type with

respect to another function

Theorem 4.2. [8] Let β ∈ (0, 1) , 0 < T ≤ ∞, χ ∈ C1[0, T ) such that χ′(t) > 0 for every

t ∈ [0, T ), a, v ∈ C ([0, T ) , R+), and u ∈ C ([0, T ) , R+) with

u (t) ≤ a (t) +
1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 v (s)u (s) ds. (4.4)

Then

u (t) ≤
(
A (t) +

∫ t

0

G (s)A (s) e
∫ t
s G(τ)dτds

)δ
. (4.5)

If a is non-decreasing on [0, T ) , thus

u (t) ≤
(
A (t) e

∫ t
0 G(s)ds

)δ
.

In the case when a (t) = 0 for every t ∈ [0, T ) , we find

u (t) ≡ 0,

where A (t) = 2
1
δ
−1a

1
δ (t) ,

G (t) = 2
1
δ
−1

Γ
1
δ (β)

(
Γ
(
β−δ
1−δ

)
Γ
(

1−β
1−δ

)) 1−δ
δ (χ (t)− χ (0))

β−δ
δ χ′ (t) v

1
δ (t) , and 0 < δ < β < 1.
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Proof. Based on inequality (4.4), Lemma 4.1 and Holder inequality, we get

u (t) ≤ a (t) +
1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 v (s)u (s) ds

≤ a (t) +
1

Γ (β)

∫ t

0

(χ′ (s))
1−δ

(χ (t)− χ (s))β−1 (χ (s)− χ (0))δ−β

× (χ′ (s))
δ

(χ (s)− χ (0))β−δ v (s)u (s) ds

≤ a (t) +
1

Γ (β)

(∫ t

0

[
(χ′ (s))

1−δ
(χ (t)− χ (s))β−1 (χ (s)− χ (0))δ−β

] 1
1−δ

ds

)1−δ

×
(∫ t

0

[
(χ (s)− χ (0))β−δ (χ′ (s))

δ
v (s)u (s)

] 1
δ
ds

)δ
≤ a (t) +

1

Γ (β)

(∫ t

0

[
χ′ (s) (χ (t)− χ (s))

β−δ
1−δ−1 (χ (s)− χ (0))

δ−β
1−δ

]
ds

)1−δ

×
(∫ t

0

(χ (s)− χ (0))
β−δ
δ χ′ (s) v

1
δ (s)u

1
δ (s) ds

)δ
≤ a (t) +

1

Γ (β)

(
Γ

(
β − δ
1− δ

)
Γ

(
1− β
1− δ

))1−δ

×
(∫ t

0

(χ (s)− χ (0))
β−δ
δ χ′ (s) v

1
δ (s)u

1
δ (s) ds

)δ
.

In the fact of (x1 + x2)p ≤ 2p−1 (xp1 + xp2) for all (x1, x2) ∈ R2
+ and p ≥ 1, we get

u
1
δ (t) ≤ 2

1
δ
−1

(
a

1
δ (t) +

1

Γ
1
δ (β)

(
Γ

(
β − δ
1− δ

)
Γ

(
1− β
1− δ

)) 1−δ
δ

×
∫ t

0

(χ (s)− χ (0))
β−δ
δ χ′ (s) v

1
δ (s)u

1
δ (s) ds

)
.

By taking w (t) = u
1
δ (t) , A (t) = 2

1
δ
−1a

1
δ (t) ,

G (t) = 2
1
δ
−1

Γ
1
δ (β)

(
Γ
(
β−δ
1−δ

)
Γ
(

1−β
1−δ

)) 1−δ
δ (χ (t)− χ (0))

β−δ
δ χ′ (t) v

1
δ (t) , the above inequality becomes

w (t) ≤ A (t) +

∫ t

0

G (s)w (s) ds.

Using Lemma 2.2 in [50], we get inequality 4.5. The rest of the proof is obviously.

Theorem 4.3. Let β > 0, 0 < T ≤ ∞, χ ∈ C1[0, T ) such that χ′(t) > 0 for every t ∈ [0, T ),

a, b, v ∈ C ([0, T ) , R+) and u ∈ C ([0, T ) , R+) such that

u (t) ≤ a (t) +
b (t)

Γ (δ)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 v (s)u (s) ds. (4.6)
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Then

u (t) ≤ a (t) + B (t)

(∫ t
0
G (s) E (s)Ap (s) ds

) 1
p

1− [1− E (t)]
1
p

, (4.7)

with E (t) = exp
(
−
∫ t

0
G (s)Bp (s) ds

)
, A (t) = a (t) ,

B (t) = b(t)

Γ(β)(q(β−1)+1)
1
q

(χ (t)− χ (0))β−1+ 1
q , G (t) = χ′ (t) vp (t) , and p, q ∈ (1,∞) with 1

q
+ β > 1

and 1
q

+ 1
p

= 1.

Proof. Choosing q, p ∈ (1,∞) with β + 1
q
> 1 and 1

q
+ 1

p
= 1. Using Cauchy-Schwartz inequality,

we obtain

u (t) ≤ a (t) +
b (t)

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 v (s)u (s) ds

≤ a (t) +
b (t)

Γ (β)

(∫ t

0

χ′ (s) (χ (t)− χ (s))(β−1)q ds

) 1
q

×
(∫ t

0

χ′ (s) (v (s)u (s))p ds

) 1
p

≤ a (t) +
b (t)

Γ (β) (q (β − 1) + 1)
1
q

(χ (t)− χ (0))β−1+ 1
q

×
(∫ t

0

χ′ (s) vp (s)up (s) ds

) 1
p

.

By taking A (t) = a (t) , B (t) = b(t)

Γ(β)(q(β−1)+1)
1
q

(χ (t)− χ (0))β−1+ 1
q , and G (t) = χ′ (t) vp (t) . We

get

u (t) ≤ A (t) + B (t)

(∫ t

0

G (s)up (s) ds

) 1
p

.

Using Lemma 2.3 in [50] we get inequality (4.7).

Theorem 4.4. Let β > 0, 0 < T ≤ ∞, χ ∈ C1[0, T ) such that χ′(t) > 0 for every t ∈ [0, T ),

a, b, v ∈ C ([0, T ) , R+) and u ∈ C ([0, T ) , R+) such that

u (t) ≤ a (t) +
b (t)

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 v (s)u (s) ds. (4.8)

Then

u (t) ≤
(
A (t) + B (t)

∫ t

0

G (s)A (s) exp

(∫ t

s

G (τ)B (τ) dτ

)
ds

) 1
p

, (4.9)

where A (t) = 2p−1ap (t) ,B (t) = 2p−1

(
b(t)

Γ(β)(q(β−1)+1)
1
q

(χ (t)− χ (0))β−1+ 1
q

)p
,

G (t) = χ′ (t) vp (t) and p, q ∈ (0,∞) with 1
q

+ β > 1 and 1
p

+ 1
q

= 1.
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Proof. From the above Theorem 4.3 we have

u (t) ≤ a (t) +
b (t)

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 v (s)u (s) ds

≤ a (t) +
b (t)

Γ (β) (q (β − 1) + 1)
1
q

(χ (t)− χ (0))β−1+ 1
q

(∫ t

0

χ′ (s) vp (s)up (s) ds

) 1
p

.

Then

up (t) ≤ 2p−1

(
ap (t) +

(
b (t)

Γ (β) (q (β − 1) + 1)
1
q

(χ (t)− χ (0))β−1+ 1
q

)p

×
∫ t

0

χ′ (s) vp (s)up (s) ds

)
.

Let w (t) = up (t) , A (t) = 2p−1ap (t) , B (t) = 2p−1

(
b(t)

Γ(β)(q(β−1)+1)
1
q

(χ (t)− χ (0))β−1+ 1
q

)p
, and

G (t) = χ′ (t) vp (t) . We have

w (t) ≤ A (t) + B (t)

∫ t

0

G (s)w (s) ds.

From Martyniuk and al. [31], we obtain inequality (4.9).

Theorem 4.5. Given β ∈ (0, 1) , 0 < T ≤ ∞, χ ∈ C1[0, T ) such that χ′(t) > 0 for every

t ∈ [0, T ), a (t) be a non-negative, non-decreasing C1-function on [0, T ) , v, u ∈ C ([0, T ) , R+) and

w : [0,∞)→ [0,∞) be a non-decreasing, continuous function with

u (t) ≤ a (t) +
1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 v (s)w (u (s)) ds, t ∈ [0, T ) . (4.10)

Then

u (t) ≤
(

Ω−1

(
Ω (A (t)) +

∫ t

0

G (s) ds

))δ
, t ∈ [0, T1) , (4.11)

where 0 < δ < β < 1, A (t) = 2
1
δ
−1a

1
δ (t) ,

G (t) = 2
1
δ
−1

Γ
1
δ (β)

(
Γ
(
β−δ
1−δ

)
Γ
(

1−β
1−δ

)) 1−δ
δ (χ (t)− χ (0))

β−δ
δ χ′ (t) v

1
δ (t) , Ω (x) =

∫ x
t0

1
µ(t)

dt, µ (t) = w
1
δ

(
tδ
)
,

t0 > 0, Ω−1 is the inverse function of Ω, such that Ω (A (t)) +
∫ t

0
G (s) ds ∈ Dom (Ω−1) for all

t ∈ [0, T1] , and for T1 ∈ (0, T ) .
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Proof. From (4.10) and Holder inequality we get

u (t) ≤ a (t) +
1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 v (s)w (u (s)) ds

≤ a (t) +
1

Γ (β)

∫ t

0

(χ′ (s))
1−δ

(χ (t)− χ (s))β−1 (χ (s)− χ (0))δ−β

× (χ′ (s))
δ

(χ (s)− χ (0))β−δ v (s)w (u (s)) ds

≤ a (t) +
1

Γ (β)

(
Γ

(
β − δ
1− δ

)
Γ

(
1− β
1− δ

))1−δ

×
(∫ t

0

χ′ (s)
[
(χ (s)− χ (0))β−δ v (s)w (u (s))

] 1
δ
ds

)δ
.

Then

u
1
δ (t) ≤ 2

1
δ
−1

(
a

1
δ (t) +

1

Γ
1
δ (β)

(
Γ

(
β − δ
1− δ

)
Γ

(
1− β
1− δ

)) 1−δ
δ

×
∫ t

0

χ′ (s) (χ (s)− χ (0))
β−δ
δ v

1
δ (s)w

1
δ (u (s)) ds

)
.

By taking g (t) = u
1
δ (t) , A (t) = 2

1
δ
−1a

1
δ (t) ,

G (t) = 2
1
δ
−1

Γ
1
δ (β)

(
Γ
(
β−δ
1−δ

)
Γ
(

1−β
1−δ

)) 1−δ
δ (χ (t)− χ (0))

β−δ
δ χ′ (t) v

1
δ (t) , we find

g (t) ≤ A (t) +

∫ t

0

G (s)µ (g (s)) ds.

Consider V (t) be the right-hand side of above inequality. Therefore,

µ (g (t)) [µ (V (t))]−1 ≤ 1,

and
V ′ (t)

µ (V (t))
=
A′ (t) + G (t)µ (g (t))

µ (V (t))
≤ A′ (t)
µ (A (t))

+ G (t) ,

or
d

dt
Ω (V (t)) ≤ d

dt
Ω (A (t)) + G (t) .

By integrating both sides of last inequality from 0 to t, we get

Ω (V (t)) ≤ Ω (A (t)) +

∫ t

0

G (s) ds,

and since Ω is an increasing function we get

g (t) ≤ V (t) ≤ Ω−1

(
Ω (A (t)) +

∫ t

0

G (s) ds

)
.
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This achieves the proof.

4.3 Some new conformable fractional integral inequalities

In this section, we present a new version of non-linear integral inequalities of conformable fractional

type. We start by proving the following lemma, which we use in this section

Lemma 4.2. suppose that λ (.) ∈ C1 ([a, b] ,R) is a non-decreasing function with a ≤ λ (t) ≤
t, for all t ∈ [a, b] . asumme that u (.) , a (.) , b (.) ∈ C

(
[a, b] ,R+

0

)
and let (t, s) → f (t, s) ∈

C
(
[a, b]× [a, λ (b)]R+

0

)
be non-decreasing in t for every s fixed. If

u (t) ≤ a (t) + b (t)

∫ λ(t)

a

f (t, s)u (s) dαs,

then

u (t) ≤ a (t) + b (t)

∫ λ(t)

a

exp

(∫ λ(t)

s

b (τ) f (t, τ) dατ

)
f (t, s) a (s) dαs.

Proof. The result is obvious for t = a. Let t0 be an arbitrary number in (a, b] and detine the

function z (.) as

z (t) =

∫ λ(t)

a

f (t0, s)u (s) dαs, t ∈ [a, t0] .

Then u (t) ≤ a (t) + b (t) z (t) for all t ∈ [a, t0] , and z (.) is non-decreasing. Hence

z
′
(t) = f (t0, λ (t))u (λ (t))λα−1 (t)λ′ (t)

≤ f (t0, λ (t)) [a (λ (t)) + b (λ (t)) z (λ (t))]λα−1 (t)λ
′
(t)

≤ f (t0, λ (t)) [a (λ (t)) + b (λ (t)) z (t)]λα−1 (t)λ
′
(t) .

The last inequality can be rearranged as

z
′
(t)− f (t0, λ (t)) b ((t)) z (t)λα−1 (t)λ

′
(t) ≤ f (t0, λ (t)) a (λ (t))λα−1 (t)λ

′
(t) . (4.12)

Multiplying both sides of inequality (4.12) by exp
(
−
∫ λ(t)

a
b (s) f (t0,s) dαs

)
, we get

[
z (t) exp

(
−
∫ λ(t)

a

b (s) f (t0, s) dαs

)]′

≤ exp

(
−
∫ λ(t)

a

b (s) f (t0,s) dαs

)
f (t0, λ (t)) a (λ (t))λα−1 (t)λ

′
(t) .
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Integrating from a to t and noting that z (a) = 0, we obtain

z (t) ≤ exp

(∫ λ(t)

a

b (s) f (t0, s) dαs

)
.

∫ t

a

exp

(
−
∫ λ(s)

a

b (τ) f (t0, τ) dατ

)
×f (t0,λ (s)) a (λ (s))λα−1 (s)λ

′
(s) ds

=

∫ t

a

exp

(∫ λ(t)

λ(s)

b (τ) f (t0, τ) dατ

)
f (t0, λ (s)) a (λ (s))λα−1 (s)λ

′
(s) ds

=

∫ λ(t)

a

exp

(∫ λ(t)

s

b (τ) f (t0, τ) dατ

)
f (t0, s) a (s) dαs.

Since u (t) ≤ a (t) + b (t) z (t) , we have for t = t0 that

u (t0) ≤ a (t0) + b (t0)

∫ λ(t0)

a

exp

(∫ λ(t0)

s

b (τ) f (t0, τ) dατ

)
f (t0, s) a (s) dαs.

The intended conclusion follows from the arbitrariness of t0.

Remark 4.3. If f(t, s) = f(s) we get ([45] Theoreme 2.3).

Remark 4.4. If α = 1, b (t) = 1, λ (t) = t and f (t, s) = f (s) we get([11] Lemma 1.1).

Theorem 4.6. Suppose that λ (.) , β (.) ∈ C1 ([a, b] ,R) are non-decreasing functions with λ (t) , β (t) ∈
[a, t] for all t ∈ [a, b] . Assumme that u (.) , a (.) , b (.) ∈ C

(
[a, b] ,R+

0

)
, (t, s)→ f (t, s) ∈ C

(
[a, b]× [a, λ (b)] ,R+

0

)
is non-decreasing in t for every s fixed, g (., .) ∈ C

(
[a, b]× [a, β (b)] ,R+

0

)
, and (s, τ)→ k (s, τ) ∈

C
(
[a, β (b)]× [a, β (b)] ,R+

0

)
is non-decreasing in s for every τ fixed. Let W (.) ,Φ (.) ∈ C

(
R+

0 ,R+
0

)
be non-decreasing functions,Φ (.) submultiplicative with Φ (x) > 0 for x ≥ 1. define

G (x) =

∫ x

0

ds

Φ (1 +W (s))
, x ≥ 0,

η (τ) = max

{
a (τ) ,

∫ β(τ)

a

g (τ , θ) dαθ

}
, τ ∈ [a,max {λ (b) , β (b)}] ,

and

p (s) =

∫ s

a

k (s, τ) Φ

(
η (τ) + b (τ)

∫ λ(τ)

a

exp

(∫ λ(τ)

ξ

b (θ) f (τ , θ) dαθ

)
f (τ , ξ) η (ξ) dαξ

)
dατ .

If for t ∈ [a, b]

u (t) ≤ a (t) + b (t)

∫ λ(t)

a

f (t, s)u (s) dαs+

∫ β(t)

a

g (t, s)W

(∫ s

a

k (s, τ) Φ (u (τ)) dατ

)
dαs, (4.13)

then there exists t∗ ∈ (a, β (b)] such that p (t) ∈ Dom (G−1) for all t ∈ [a, t∗] , G
−1 (.) the inverse
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function of G (.) , and

u (t) ≤ q (t) + b (t)

∫ λ(t)

a

exp

(∫ λ(t)

s

b (τ) f (t, τ) dατ

)
f (t, s) q (s) dαs,

where

q (t) = a (t) +

∫ β(t)

a

g (t, s)W
(
G−1 (p (s))

)
dαs.

Proof. Let

z (t) = a (t) +

∫ β(t)

a

g (t, s)W

(∫ s

a

k (s, τ) Φ (u (τ)) dατ

)
dαs, t ∈ [a, b] .

From (4.13) we get

u (t) ≤ z (t) + b (t)

∫ λ(t)

a

f (t, s)u (s) dαs. (4.14)

Applying Lemma 4.2 to (4.14), we obtain

u (t) ≤ z (t) + b (t)

∫ λ(t)

a

exp

(∫ λ(t)

s

b (τ) f (t, τ) dατ

)
f (t, s) z (s) dαs. (4.15)

In order to istimate z (t) , we define the function v (.) by

v (s) =

∫ s

a

k (s, τ) Φ (u (τ)) dατ

therefore z (t) = a (x) +
∫ β(t)

a
g (t, θ)W (v (θ)) dαθ, and

v (s) ≤
∫ s

a

k (s, τ) Φ

(
z (τ) + b (τ)

∫ λ(τ)

a

exp

(∫ λ(τ)

ξ

b (θ) f (τ , θ) dαθ

)
f (τ , ξ) z (ξ) dαξ

)
dατ

≤
∫ s

a

k (s, τ) Φ [η (τ) (1 + w (v (τ)))

+b (τ)

∫ λ(τ)

a

exp

(∫ λ(τ)

ξ

b (θ) f (τ , θ) dαθ

)
f (τ , ξ) η (ξ) dαξ (1 + w (v (τ)))

]
dατ

≤
∫ s

a

k (s, τ) Φ [η (τ)

+b (τ)

∫ λ(τ)

a

exp

(∫ λ(τ)

ξ

b (θ) f (τ , θ) dαθ

)
f (τ , ξ) η (ξ) dαξ

]
Φ (1 + w (v (τ))) dατ

Let a < t∗ ≤ β (t) be a number such that p (t) ∈ Dom (G−1) for all t ∈ [a, t∗]. Definre r (.) on
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[a, s0] , where a ≤ s0 ≤ t∗ is an arbitrary fixed number, by

r (s) =

∫ s

a

k (s0, τ) Φ [η (τ)

+b (τ)

∫ λ(τ)

a

exp

(∫ λ(τ)

ξ

b (θ) f (τ , θ) dαθ

)
f (τ , ξ) η (ξ) dαξ

]
Φ (1 + w (v (τ))) dατ .

Then

r′ (s) = k (s0, s) Φ [η (s)

+b (s)

∫ λ(s)

a

exp

(∫ λ(s)

ξ

b (θ) f (τ , θ) dαθ

)
f (s, ξ) η (ξ) dαξ

]
Φ (1 + w (v (s))) sα−1

≤ k (s0, s) Φ [η (s)

+b (s)

∫ λ(s)

a

exp

(∫ λ(s)

ξ

b (θ) f (τ , θ) dαθ

)
f (s, ξ) η (ξ) dαξ

]
Φ (1 + w (r (s))) sα−1.

That is

r′ (s)

Φ (1 + w (r (s)))
≤ k (s0, s) Φ [η (s)

+b (s)

∫ λ(s)

a

exp

(∫ λ(s)

ξ

b (θ) f (s, θ) dαθ

)
f (s, ξ) η (ξ) dαξ

]
sα−1.

by integrating the last inequality from a to s and using G (r (a)) = 0, we get∫ s

a

r′ (s)

Φ (1 + w (r (s)))
ds ≤

∫ s

a

k (s0, τ) Φ [η (τ)

+b (τ)

∫ λ(τ)

a

exp

(∫ λ(τ)

ξ

b (θ) f (τ , θ) dαθ

)
f (τ , ξ) η (ξ) dαξ

]
τα−1dτ ,

therefore

G (r (s)) ≤
∫ s

a

k (s0, τ) Φ [η (τ)

+b (τ)

∫ λ(τ)

a

exp

(∫ λ(τ)

ξ

b (θ) f (τ , θ) dαθ

)
f (τ , ξ) η (ξ) dαξ

]
dατ .

The choice of t∗ permits us to write r (s0) ≤ G−1 (p (s0)). Since s0 is arbitrary, we conclude that

r (s) ≤ G−1 (p (s)) , s ∈ [a, t∗] . (4.16)

To complete the proof, we observe that for a ≤ s0 ≤ t∗ the inequality β (λ (s)) ≤ t∗ holds. Hence,

we can insert inequality (4.16) into inequality (4.15).
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We present the definition of class H functions

Definition 4.5. A functions g (.) ∈ C
(
R+

0 ,R+
0

)
is said to belong to the class H if

(1) x→ g (x) is non-decreasing for x ≥ 0 and positive for x > 0;

(2) There exists a continuous function Ψ (.) on R+
0 with g (αx) ≤ Ψ (α) g (x) for α > 0, x ≥ 0.

Example 4.1. If g (x) = xm, for m > 0 then g(αx) ≤ Ψ(α)g(x) for any α > 0, x > 0. then the

function g is the class H, for ψ = g

Lemma 4.3. Suppose that λ (.) ∈ C1 ([a, b] ,R+) is a non-decreasing function with a ≤ λ (t) ≤ t

for all t ∈ [a, b] . Assume that u (.) , a (.) ∈ C
(
[a, b] ,R+

0

)
with a (.) apositive and non-decreasing

function, and (t, s)→ f (t, s) ∈ C
(
[a, b]× [a;λ (b)] ,R+

0

)
non-decreasing in t for every s fixed. If

g (.) ∈ H and

u (t) ≤ a (t) +

∫ λ(t)

a

f (t, s) g (u (s)) dαs, (4.17)

Then there exists a function Ψ (.) and a number t∗ ∈ (a, b] that depends on Ψ (.) such that

G (1) +

∫ λ(t)

a

f (t, s)
Ψ (a (s))

a (s)
dαs ∈ Dom

(
G−1

)
, t ∈ [a, t∗] , (4.18)

and

u (t) ≤ a (t)G−1

(
G (1) +

∫ λ(t)

a

f (t, s)
Ψ (a (s))

a (s)
dαs

)
, t ∈ [a, t∗] ,

where

G (x) =

∫ x

x0

ds

g (s)
, x > 0, x0 > 0.

and, as usual, G−1 (.) represents the inverse function of G (.) .

Proof. Since a (.) is positive and non-decreasing and g (.) ∈ H, we obtain from (4.17) that

u (t)

a (t)
≤ 1 +

∫ λ(t)

a

f (t, s) g (u (s))

a (s)
dαs ≤ 1 +

∫ λ(t)

a

f (t, s)
Ψ (a (s))

a (s)
g

(
u (s)

a (s)

)
dαs

for some function Ψ (.) as in the Definition 4.5. Let us now choose a number a < t∗ ≤ b such that

(4.18) holds, and define function z (.) by

z (t) = 1 +

∫ λ(t)

a

f (t0, s)
Ψ (a (s))

a (s)
g

(
u (s)

a (s)

)
dαs, t ∈ [a; t0]

Where t0 ∈ (a, t∗] is an arbitrary fixed number. Then, with x (t) = u(t)
a(t)

, we have

z′ (t) = f (t0, λ (t))
Ψ (a (λ (t)))

a (λ (t))
g (x (λ (t)))λ1−α (t)λ′ (t)

≤ f (t0, λ (t))
Ψ (a (λ (t)))

a (λ (t))
g (z (t))λ1−α (t)λ′ (t) ,
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because x (t) ≤ z (t) and z (t) is non-decreasing. Sinse z (t) is positive, we can divide both sides

of the last inequality by g (z (t)) and, after integrating both sides on [a, t] , we get

G (z (t)) ≤ G (1) +

∫ λ(t)

a

f (t0, s)
Ψ (a (s))

a (s)
dαs.

Hence,

z (t0) ≤ G−1

(
G (1) +

∫ λ(t0)

a

f (t0, s)
Ψ (a (s))

a (s)
dαs

)
.

Since x (t0) = u(t0)
a(t0)
≤ z (t0) and t0 is arbitrary, the result follows for all t ∈ (a, t∗] . The case when

t = a is obvious.

Theorem 4.7. Let functions u (.) , f (.) , g (.) ,W (.) ,Φ (.) , λ (.) , β (.) , p (.) , and G (.) be as in The-

orem 4.6, and a (.) be as in lemma 4.3. If h (.) ∈ H,

Ω (x) =

∫ x

x0

ds

h (s)
, x > 0, x0 > 0,

and

u (t) ≤ a (t) +

∫ λ(t)

a

f (t, s)h (u (s)) dαs+

∫ β(t)

a

g (t, s)W

(∫ s

a

k (s, τ) Φ (u (τ)) dατ

)
dαs,

then there exists a function Ψ (.) and a number t′∗ ∈ (a, β (t)] depending on Ψ (.) such that, for all

t ∈ [a, t′∗],

Ω (1) +

∫ λ(t)

a

f (t, s)
Ψ (a (s))

a (s)
dαs ∈ Dom

(
Ω−1

)
,

p (t) ∈ Dom
(
G−1

)
,

and

u (t) ≤

[
a (t) +

∫ β(t)

a

g (t, s)W
(
G−1 (p (s))

)
dαs

]
q (t) ,

where

q (t) = Ω−1

(
Ω (1) +

∫ λ(t)

a

f (t, s)
Ψ (a (s))

a (s)
dαs

)
.

Proof. Define function z (.) by

z (t) = a (t) +

∫ β(t)

a

g (t, s)W

(∫ s

a

k (s, τ) Φ (u (τ)) dατ

)
dαs, t ∈ [a, b] .

Clearly z (.) is a positive and non-decreasing function. Hence, we can apply Lemma 2.2 to the

inequality

u (t) ≤ z (t) +

∫ λ(t)

a

f (t, s)h (u (s)) dαs,
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to obtain

u (t) ≤ z (t) Ω−1

(
Ω (1) +

∫ λ(t)

a

f (t, s)
Ψ (a (s))

a (s)
dαs

)
, t ∈ [a, t∗] ,

for some function Ψ (.) and some number t0 ∈ (a, b] . An estimation of z (t) can be obtained

following the same procedure as in the proof of Theorem 4.6. After that, we obtain

z (t) ≤ a (t) +

∫ β(t)

a

g (t, s)W
(
G−1 (p (s))

)
dαs, t ∈ [a, t′∗] ,

where G (.) and p (.) are defined as in Theorem 4.6.

4.4 Some Applications

We present two examples of application to study the existence and uniqueness and Ulam stability

of the solution of Eq. (4.1).

Let 0 < T <∞. We consider the following assumptions:

(H1) f ∈ C ([0, T ]×R,R) and there exist l, k ∈ (C [0, T ] , R+) such that

|f (t, x)| ≤ l (t) |x|+ k (t) , ∀t ∈ [0, T ] , ∀x ∈ R. (4.19)

(H2) There exists h ∈ C ([0, T ] ,R) with

|f (t, x)− f (t, y)| ≤ h (t) |x− y| , ∀t ∈ [0, T ] ,∀x, y ∈ R.

The following theorem study the existence and uniqueness of the solution of Eq. (4.1).

Theorem 4.8. Suppose that (H1) is satisfied. Then there exist at least one solution for Eq. (4.1).

Furthermore, if (H2) is satisfied. Therefore Eq. (4.1) has a unique solution on [0, T ] .

Proof. Let consider the operator H : C ([0, T ] ,R)→ C ([0, T ] ,R) given by

(Hx) (t) = x0 +
1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 f (s, x (s)) ds.

According to condition (4.19) and the continuity f , it is clear that H is continuous and completely

continuous. It remains to show that the set

F = {x ∈ C ([0, T ] ,R) , x = (λH) (x) , for λ ∈ (0, 1)}

is bounded, taking
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A (t) = 2
1
δ
−1

(
|x0|+

( 1−δ
β−δ )

1−δ

Γ(β)
(χ (t)− χ (0))β−δ

(∫ t
0
χ′ (s) k

1
δ (s) ds

)δ) 1
δ

,

G (t) = 2
1
δ
−1

Γ
1
δ (β)

(
Γ
(
β−δ
1−δ

)
Γ
(

1−β
1−δ

)) 1−δ
δ (χ (t)− χ (0))

β−δ
δ χ′ (t) l

1
δ (t)

where 0 < δ < β < 1. Let x ∈ F , then for λ ∈ (0, 1) and t ∈ [0, T ] , we have

x (t) = λ

(
x0 +

1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 f (s, x (s)) ds

)
.

So

|x (t)| ≤ |x0|+
∣∣∣∣ 1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 f (s, x (s)) ds

∣∣∣∣
≤ |x0|+

1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 l (s) |x (s)| ds+

1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 k (s) ds

≤ |x0|+

(
1−δ
β−δ

)1−δ

Γ (β)
(χ (t)− χ (0))β−δ

(∫ t

0

χ′ (s) k
1
δ (s) ds

)δ
+

1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 l (s) |x (s)| ds.

Using Theorem 4.2, we obtain

|x (t)| ≤
(
A (t) +

∫ T

0

G (s)A (s) exp

(∫ T

s

G (τ) dτ

)
ds

)δ
,

for all t ∈ [0, T ] . From Schaefer fixed point theorem we deduce that the operator H has at least

one fixed point in C ([0, T ] ,R) which is the solution Eq. (4.1).

If (H2) is satisfied, we suppose that x1 (t) , x2 (t) are two solutions of Eq (4.1). Then

|x1 (t)− x2 (t)| =

∣∣∣∣ 1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 (f (s, x1 (s))− f (s, x2 (s))) ds

∣∣∣∣
≤ 1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 h (s) |x1 (s)− x2 (s)| ds.

Using Theorem 4.2, we obtain x1 = x2.

We consider the following inequality∣∣∣CDβ,χ
a+ y (t)− f (t, y (t))

∣∣∣ ≤ ε, for t ∈ [0, T ] and ε > 0. (4.20)

Definition 4.6. Eq. (4.1) is χ−Ulam-Hyers stable if there exists c > 0, such that for every ε > 0,
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and for every solution y of (4.20) there is a solution x of Eq. (4.1) with

|x (t)− y (t)| ≤ cε (χ (t)− χ (0))β .

Remark 4.5. If y is a solution of (4.20) then y is a solution of∣∣∣∣y (t)− y (0)− 1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 f (s, y (s)) ds

∣∣∣∣
≤ ε

Γ (β + 1)
(χ (t)− χ (0))β .

The following theorem study the χ−Ulam stability of the solution of Eq. (4.1).

Theorem 4.9. Suppose that (H2) is satisfied. Then, Eq. (4.1) is χ−Ulam-Hyers stable.

Proof. Let y be a solution of (4.20) and x the unique solution of the following problem{
CDβ,χ

0+ x (t) = f (t, x (t)) , β ∈ (0, 1) , t ∈ [0, T ] ,

x (0) = y (0) ,

then

x (t) = y (0) +
1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 f (s, x (s)) ds.

From Remark 4.5, we find

|y (t)− x (t)|

≤
∣∣∣∣y (t)− y (0)− 1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 f (s, x (s)) ds

∣∣∣∣
≤

∣∣∣∣y (t)− y (0)− 1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 f (s, y (s)) ds

+
1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 f (s, y (s)) ds

− 1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 f (s, x (s)) ds

∣∣∣∣
≤ ε

Γ (β + 1)
(χ (t)− χ (0))β

+
1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 |f (s, y (s))− f (s, x (s))| ds

≤ ε

Γ (β + 1)
(χ (t)− χ (0))β

+
1

Γ (β)

∫ t

0

χ′ (s) (χ (t)− χ (s))β−1 h (s) |y (s)− x (s)| .
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Using theorem 4.2, we get

|y (t)− x (t)| ≤ 21−δ
(

ε

Γ (β + 1)
(χ (t)− χ (0))β

)(
exp

(∫ T

0

G (s) ds

))δ
,

where G (t) = 2
1
δ
−1

Γ
1
δ (β)

(
Γ
(
β−δ
1−δ

)
Γ
(

1−β
1−δ

)) 1−δ
δ (χ (t)− χ (0))

β−δ
δ χ′ (t)h

1
δ (t) ,

and 0 < δ < β < 1, the proof is complete.

Example 4.2. Let consider the following problem{
D

1
2
,exp(t)x (t) = t arctanx (t) + sin t, t ∈

[
0, π

4

]
,

x (0) = x0.
(4.21)

Let

f (t, x (t)) = t arctanx (t) + sin t.

For all x, y ∈ R and t ∈
[
0, π

4

]
, we have

|f (t, x)− f (t, y)| ≤ t |arctanx− arctan y|

≤ t |x− y| .

Hence, the assumptions (H2) is satisfied. It follows from Theorem 4.8 that the Eq. (4.21) has a

unique solution on
[
0, π

4

]
.

In the second application we present an examples of application to gives a bound on the

solution of the following retarded integral equation:

u (t) = k +

∫ λ(t)

0

F

(
s, u (s) ,

∫ s

0

K (τ , u (τ)) dατ

)
dαs, t ∈ [0, b] , (4.22)

where k > 0, b > 0, λ (.) ∈ C1 ([0, b] ,R) is a non-decreasing function with 0 ≤ λ (t) ≤ t, u (.) ∈
C ([0, b] ,R) , F ∈ C ([0, b]× R× R,R) and K ∈ C ([0, b]× R,R) . The following theorem gives a

bound on the solution of integral equation (4.22).

Theorem 4.10. Assume that functions F (., ., .) and K (., .) in (4.22) satisfy

|K (t, u)| ≤ k (t) Φ (|u|) , (4.23)

|F (t, u, v)| ≤ t |u|+ |v| , (4.24)

with k (.) and Φ (.) defined as in Theorem 4.6. If u (.) is a solution of (4.22), then

|u (t)| ≤ q (t) + t

∫ λ(t)

0

exp (t (α (t)− s)) q (s) dαs, t ∈ [0, t∗] ,
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for some t∗ ∈ (0, λ (b)] such that

p (t) ∈ Dom
(
G−1

)
, t ∈ [0, t∗] ,

Here

q (t) = k +

∫ λ(t)

0

G−1 (p (s)) dαs,

G (x) =

∫ x

0

ds

Φ (1 + s)
, x ≥ 0,

p (s) =

∫ s

0

k (τ) Φ

[
η (τ) + τ

∫ λ(τ)

0

exp
( τ
α

(λα (τ)− ζα)
)
η (ζ) dαζ

]
dατ ,

η (τ) = max

{
k,
λα (τ)

α

}
, τ ∈ [0, λ (b)] ,

with G−1 (.) representing the inverse function of G (.) .

Proof. Let u (.) be a solution of equation (4.22). In view of (4.23) and (4.24), we get

|u (t)| ≤ k +

∫ λ(t)

0

(
t |u (s)|+

∫ s

0

k (τ) Φ (|u (τ)|) dατ
)
dαs.

An application of Theorem 4.6 with a (t) = k, λ (t) = β (t) , f (t, s) = t, b (t) = g (t, s) = 1, and

W (u) = u, gives the desired conclution:

|u (t)| ≤ q (t) + t

∫ λ(t)

0

exp

(
t

α
(λα (t)− sα)

)
q (s) ds.



Conclusion

This thesis is devoted to some integral inequalities and applications for certain classes of partial

differential equations. The important notion in this thesis is the study some non-linear integral

inequalities for two-variable and n independent variables functions, finally some new fractional

integral inequalities with singular kernels and using this type integral inequalities to prove the

existence, uniqueness and Ulam stability for the solution of fractional Cauchy problem with respect

to another function. This studies can be extend to more integral inequalities involving other types

of Gronwall inequalities.
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Abstract

The aim of the present work is to give an exposition of the classical results about integral inequal-

ities appeared in the mathematical researchs in recent years, and to establish some new integral

inequalities, integrals inequalities for functions of several independent variables with a term of

delay and also some new fractional integral inequalities.

Moreover we give some applications to certain classes of partial and fractional differential equations

to illustrate the truth of our results.

80



Résumé

Le but de ce travail est de donner une exposition des résultats classiques de certaines inégalités

intégrales apparues dans la recherché mathématique dans ces dernières années, et d’ établir

quelques nouvelles inégalités intégrales, inégalités intégrales pour des fonctions de plusieurs vari-

ables indépendantes avec un terme de retard et aussi des nouvelles inégalités intégrales fraction-

naires.

De plus nous donnons quelque applications à certaines classes des equations aux dérivées partielles

et fractionnaires pour illustrer fiabilité de nos résultats.
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  ملخص

  

  

 الهدف من هذا العمل هو تقدیم عرض حول بعض النتائج الكلاسیكیة لبعض المتراجحات

 إیجاد بعض المتراجحات التكاملیة و الأخیرة سنواتي دخلت مجال الریاضیات في التالتكاملیة  ال

أیضا بعض و  تكاملیة لدوال بعدة متغیرات مستقلة ذات حد متأخرالجدیدة، المتراجحات ال

 .الكسریةالمتراجحات التكاملیة 

 والكسریة الجزئیة التفاضلیة المعادلات من معینة لفئات التطبیقات بعض نقدم ،ذلك على علاوة 

  .نتائجنا صحة لتوضیح
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