Afficher la notice abrégée

dc.contributor.author Djafri, Houria
dc.contributor.author Kharfouchi, S.
dc.date.accessioned 2022-05-25T08:46:19Z
dc.date.available 2022-05-25T08:46:19Z
dc.date.issued 2021-04-05
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/8901
dc.description.abstract This thesis deals with the problem of loss of important information and features in spatial data modeling by building a causal spatial model that can capture the various main characteristics of these data. After a through discussion, a two-step strategy has been proposed : Örst, a 2D Markov Random Field (MRF) is generated where imposed causation allows to establish an analogy between this 2D MRF and a Markov chain representation ; secondly, based on the proposed 2D MRF, 2D MS-AR is deÖned according to some essential assumptions and useful symbols. Finally, estimation of model parameters is discussed, which opens the way for broad perspectives to exploit the proposed 2D MS-AR processes to e¢ ciently model several phenomena that present a structural discontinuity in the spatial dependence of the data.
dc.language.iso fr
dc.publisher Université Frères Mentouri - Constantine 1
dc.subject Mathematiques: Probabilités et Statistique
dc.subject 2D-AR
dc.subject Traitement d'image
dc.subject Modèles spatiaux
dc.subject Processus autorégressifs unilatéraux spatiaux
dc.subject MRF causal
dc.subject 2D MS-AR
dc.subject AR-2D Models
dc.subject Image Processing
dc.subject Spacial Models
dc.subject Spatial unilateral autoregressive processes
dc.subject نموذج الانحدار الذاتي
dc.subject عمليات الانحدار الذاتي المكان من جانب واحد
dc.subject النماذج المكانية
dc.subject الانحدار التلقائي المكانی
dc.subject حقل ماركوف العشوائي السببیي
dc.subject معالجة الصور
dc.title Modélisation spatiale à changements de régimes Markoviens.
dc.type Thesis


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte