dc.contributor.author |
Djafri, Houria |
|
dc.contributor.author |
Kharfouchi, S. |
|
dc.date.accessioned |
2022-05-25T08:46:19Z |
|
dc.date.available |
2022-05-25T08:46:19Z |
|
dc.date.issued |
2021-04-05 |
|
dc.identifier.uri |
http://depot.umc.edu.dz/handle/123456789/8901 |
|
dc.description.abstract |
This thesis deals with the problem of loss of important information and features in spatial data modeling by building a causal spatial model that can capture the various main characteristics of these data. After a through discussion, a two-step strategy has been proposed : Örst, a 2D Markov Random Field (MRF) is generated where imposed causation allows to establish an analogy between this 2D MRF and a Markov chain representation ; secondly, based on the proposed 2D MRF, 2D MS-AR is deÖned according to some essential assumptions and useful symbols. Finally, estimation of model parameters is discussed, which opens the way for broad perspectives to exploit the proposed 2D MS-AR processes to e¢ ciently model several phenomena that present a structural discontinuity in the spatial dependence of the data. |
|
dc.language.iso |
fr |
|
dc.publisher |
Université Frères Mentouri - Constantine 1 |
|
dc.subject |
Mathematiques: Probabilités et Statistique |
|
dc.subject |
2D-AR |
|
dc.subject |
Traitement d'image |
|
dc.subject |
Modèles spatiaux |
|
dc.subject |
Processus autorégressifs unilatéraux spatiaux |
|
dc.subject |
MRF causal |
|
dc.subject |
2D MS-AR |
|
dc.subject |
AR-2D Models |
|
dc.subject |
Image Processing |
|
dc.subject |
Spacial Models |
|
dc.subject |
Spatial unilateral autoregressive processes |
|
dc.subject |
نموذج الانحدار الذاتي |
|
dc.subject |
عمليات الانحدار الذاتي المكان من جانب واحد |
|
dc.subject |
النماذج المكانية |
|
dc.subject |
الانحدار التلقائي المكانی |
|
dc.subject |
حقل ماركوف العشوائي السببیي |
|
dc.subject |
معالجة الصور |
|
dc.title |
Modélisation spatiale à changements de régimes Markoviens. |
|
dc.type |
Thesis |
|