| dc.contributor.author | Beghriche, Hanane | |
| dc.contributor.author | Kharfouchi, Soumia | |
| dc.date.accessioned | 2022-05-25T08:46:14Z | |
| dc.date.available | 2022-05-25T08:46:14Z | |
| dc.date.issued | 2021-04-09 | |
| dc.identifier.uri | http://depot.umc.edu.dz/handle/123456789/8897 | |
| dc.description.abstract | Several fields of application such as: astronomy, acoustics, image and signal processing, etc., have used of higher order statistics. They played a crucial role in the identification of a non-minimal phase linear system. Thus, the object of this thesis is the identification of the parameters of a non-minimal phase 2D MA models using higher order cumulants. First, the almost-sure convergence properties of sample estimates of higher order spatial statistics are derived. As a practical framework, we address the problem of identification of 2D moving average (MA) models with non-Gaussian errors based on cumulants alone under a nonminimum phase assumption first and on a generalized method of moments approach after. A simulation study verifies the performance of the proposed methods. | |
| dc.language.iso | fr | |
| dc.subject | Mathematiques: Mathématiques Appliquée | |
| dc.subject | Statistiques spatiales d'ordre supérieur | |
| dc.subject | phase non minimale | |
| dc.subject | 2D FIR | |
| dc.subject | almost sure convergence | |
| dc.subject | الإحصائيات المكانية ذات الدرجة العليا | |
| dc.subject | المرحلة غير الدنيا | |
| dc.subject | التقارب المؤكد تقريبا | |
| dc.title | Les modèles 2D MA à réponse impulsionnelle finie et à phase non minimale. | |
| dc.title | 2D FIR | |
| dc.title | convergence presque sûre | |
| dc.title | Higher-order spatial statistics | |
| dc.title | No minimum phase | |
| dc.title | 2DFR | |
| dc.title | almost sure convergence | |
| dc.title | الإحصائيات المكانية ذات الدرجة العليا | |
| dc.title | المرحلة غير الدنيا | |
| dc.title | التقارب المؤكد تقريبا | |
| dc.type | Thesis |