dc.contributor.author |
Belmouloud, Imane |
|
dc.contributor.author |
Memou, Ameur |
|
dc.date.accessioned |
2022-05-25T08:46:02Z |
|
dc.date.available |
2022-05-25T08:46:02Z |
|
dc.date.issued |
2020-10-15 |
|
dc.identifier.uri |
http://depot.umc.edu.dz/handle/123456789/8888 |
|
dc.description.abstract |
This work is devoted to the solvability, the existence and the uniqueness of the solution of certain classes of boundary problems for partial differential equations of the parabolic type, combining non-local boundary conditions; integral type with classical conditions; Dirichlet - Newmann. The proposed method is based on the construction of suitable spaces, a priori estimates and the density of the image set of the operator generated by the problem considered. The results obtained can be seen as an improvement of the energy inequality method |
|
dc.language.iso |
fr |
|
dc.publisher |
Université Frères Mentouri - Constantine 1 |
|
dc.subject |
Mathématiques: Equations aux Dérivées Partielles |
|
dc.subject |
inégalité énergétique |
|
dc.subject |
conditions intégrale |
|
dc.subject |
d’équation parabolique |
|
dc.subject |
energy inequality |
|
dc.subject |
integral boundary conditions |
|
dc.subject |
parabolic equation |
|
dc.subject |
المتراجحة الطاقوية |
|
dc.subject |
شروط حد ية تكاملية |
|
dc.subject |
معادلات قطع مكافئ |
|
dc.title |
Sur une classe de problèmes aux limites pour équations aux dérivées partielles. |
|
dc.type |
Thesis |
|