Afficher la notice abrégée

dc.contributor.author Boukeloua, Mohamed
dc.contributor.author Messaci, Fatiha
dc.contributor.author Keziou, Amor
dc.date.accessioned 2022-05-25T08:45:18Z
dc.date.available 2022-05-25T08:45:18Z
dc.date.issued 2017-04-17
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/8858
dc.description.abstract In this dissertation, we are interested in kernel estimation of the density and the failure rate for c ensored data. There exist seve ral kinds of censorship and we fo cus on right, doubly and twi ce censored data mo de ls. We consider a general framework of censorship, including all these mo dels, and we prove a result on the asymptotic normality of a kernel de nsi ty estimator that we intro duce. This result allows us to deduce the asymptotic normality of the density and failure rate e sti mates for the ab ove-mentioned censorship mo dels. We also establish the mean square convergence, with rates, of the same estimators in the case of twice censored data. In a second part of the dissertation, we study semiparametric mo dels which verify linear constraints involving an unknown parameter. We assume that the variable of interest is right c ensored and we use the theory of divergences to construct estimates for the pa ram eter of interest. Simulation studies are presented in order to illustrate the p erformances of the di erent studied estim ators.
dc.language.iso fr
dc.publisher Université Frères Mentouri - Constantine 1
dc.subject Mathématiques: Modélisation Stochastique
dc.subject Données censurées
dc.subject Estimateurs à noyau
dc.subject Densité
dc.subject Taux de hasard
dc.subject Modèles de contraintes linéaires
dc.subject Divergences
dc.subject Censored data
dc.subject Kernel estimators
dc.subject Density
dc.subject Failure rate
dc.subject Linear constraints models
dc.subject معطيات محجوبة
dc.subject المقدر ذو النواة
dc.subject الكثافة
dc.subject نسبة المجازفة
dc.subject نماذج المعادلات الخطية
dc.subject التباعدات
dc.title Etude de modèles semi et non paramétriques pour des données censurées.
dc.type Thesis


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte