Afficher la notice abrégée
dc.contributor.author |
Mezhoud Kenza Assia |
|
dc.contributor.author |
Mohdeb Zaher |
|
dc.date.accessioned |
2022-05-25T08:44:48Z |
|
dc.date.available |
2022-05-25T08:44:48Z |
|
dc.date.issued |
2017-01-01 |
|
dc.identifier.uri |
http://depot.umc.edu.dz/handle/123456789/8827 |
|
dc.description |
119 f. |
|
dc.description.abstract |
We have choosen to investigate the statistic inference in nonpara- metric regression models by studying kernel densities and regres- sion estimators under different assumptions .
This work is organised in two parts :
The asymptotic properties of density and regression estimators are studied first under independence assumption, particulary, conver- gence, normality and the choice of the smoothing window.
In the second part, we go the generalized notion of weak depen- dence established by Doukhan and Louhichi (1999) to extend conver- gence and normality properties. This allows to deal with time se-
ries, we show after, our result on a recursive kernel estimator under weak dependence, convergence in mean square error, and normality are obtained. Simulation study is done on weak dependent models. |
|
dc.format |
30 cm. |
|
dc.language.iso |
fre |
|
dc.publisher |
Université Frères Mentouri - Constantine 1 |
|
dc.subject |
Mathématiques |
|
dc.title |
Inférence statistique dans les modèles de régression non paramétriques |
|
dc.coverage |
2 copies imprimées disponibles |
|
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée