عرض سجل المادة البسيط

dc.contributor.author Mezhoud Kenza Assia
dc.contributor.author Mohdeb Zaher
dc.date.accessioned 2022-05-25T08:44:48Z
dc.date.available 2022-05-25T08:44:48Z
dc.date.issued 2017-01-01
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/8827
dc.description 119 f.
dc.description.abstract We have choosen to investigate the statistic inference in nonpara- metric regression models by studying kernel densities and regres- sion estimators under different assumptions . This work is organised in two parts : The asymptotic properties of density and regression estimators are studied first under independence assumption, particulary, conver- gence, normality and the choice of the smoothing window. In the second part, we go the generalized notion of weak depen- dence established by Doukhan and Louhichi (1999) to extend conver- gence and normality properties. This allows to deal with time se- ries, we show after, our result on a recursive kernel estimator under weak dependence, convergence in mean square error, and normality are obtained. Simulation study is done on weak dependent models.
dc.format 30 cm.
dc.language.iso fre
dc.publisher Université Frères Mentouri - Constantine 1
dc.subject Mathématiques
dc.title Inférence statistique dans les modèles de régression non paramétriques
dc.coverage 2 copies imprimées disponibles


الملفات في هذه المادة

هذه المادة تظهر في الحاويات التالية

عرض سجل المادة البسيط

بحث دي سبيس


استعرض

حسابي