DSpace Repository

Commande prédictive approximante.

Show simple item record

dc.contributor.author Boumaza, Hamza
dc.contributor.author Belarbi, Khaled
dc.date.accessioned 2022-05-24T09:57:52Z
dc.date.available 2022-05-24T09:57:52Z
dc.date.issued 2013-11-21
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/5990
dc.description 52 f.
dc.description.abstract Predictive control is by far the best known method in industry for its tolerance towards different types of systems and the constraints imposed. Nevertheless, it is these limitations upwind speed systems. We propose in this work an approach that is based on the approximate predictive control by fuzzy learning. The optimal predictive control law obtained off line using simulation model is used as data base for training the fuzzy system. Simulations were performed to illustrate the interest of our approach and its validation.
dc.format 30 cm.
dc.language.iso fr
dc.publisher Université Frères Mentouri - Constantine 1
dc.subject Electronique
dc.subject Electronique: Contrôle des systèmes
dc.subject Commande prédictive
dc.subject Commande prédictive explicite
dc.subject Commande Prédictive Approximante
dc.subject Apprentissage flou
dc.subject Model Predictive Control
dc.subject Explicit MPC
dc.subject Approximate Predictive Control
dc.subject Takagi Sugeno Fuzzy learning
dc.subject التحكم التنبؤي
dc.subject التحكم التنبؤي المقرب
dc.subject التدریب النظام الضبابي
dc.title Commande prédictive approximante.
dc.type Thesis
dc.coverage 2 copies imprimées disponibles


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account