DSpace Repository

Commande adaptative neuronale par retour de sortie des systèmes non linéaires

Show simple item record

dc.contributor.author Guitani Issam
dc.contributor.author Belarbi K.
dc.date.accessioned 2022-05-24T09:55:46Z
dc.date.available 2022-05-24T09:55:46Z
dc.date.issued 2007-01-01
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/5882
dc.description 41 f.
dc.description.abstract In this work we have analyzed an output feedback adaptive neural control allowing direct update of neural network weights. This algorithm is based on control error minimization. The ideal control signal cannot be calculated, so the error control is estimated by a fuzzy inference system. The estimate having the correct sign, it influences only the leaning rate. A simulation study is carried out for two cases: a state feedback control and output feedback control based on a nonlinear high gain observer. We applied this approach to two nonlinear systems the inverted pendulum and a CSTR (Continuously Stirred Tank Reactor). The results of simulation showed the performances of the strategy in the two cases.
dc.language.iso fre
dc.publisher Université Frères Mentouri - Constantine 1
dc.subject Electronique
dc.subject Contrôle des systèmes
dc.subject Systèmes non linéaires
dc.subject Commande adaptative neuronale
dc.title Commande adaptative neuronale par retour de sortie des systèmes non linéaires
dc.type Thesis
dc.coverage 01 Disponible à la salle de recherche 02 Disponibles au magazin de la B.U.C. 01 CD


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account