DSpace Repository

Réseaux de neurones appliqués à la modélisation et à la compression du signal ECG.

Show simple item record

dc.contributor.author Belghobsi, Abdelaziz
dc.contributor.author Bennia, Abdelhak
dc.date.accessioned 2022-05-24T09:55:36Z
dc.date.available 2022-05-24T09:55:36Z
dc.date.issued 2006
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/5874
dc.description 61 f.
dc.description.abstract The electrocardiogram (ECG) is the signal that represents time variations of the electric activity of the heart. It constitutes an effective tool for diagnostic of heart anomalies, for this reason we are in need for long recordings of ECG that reflect the state of the heart but this will cause problems of storing or transmission of the ECG to a distant interpretation center, this has motivated research works towards compression Recently, Neural Networks have occupied a great place in signal processing, specifically Recurrent Neural Networks because they are capable to adapt to time variations of non linear and non stationary signals such as the ECG signal. In this regard, a compression algorithm via parameters extraction using Recurrent Neural Networks has been developed and tested on electrocardiography signals of the “MIT-BIH Arrythmia Data Base” and results obtained are presented, discussed and compared with those of some most recent algorithms of ECG compression.
dc.language.iso fr
dc.publisher Université Frères Mentouri - Constantine 1
dc.subject Electronique
dc.subject Electronique: Traitement du Signal
dc.subject Modélisation
dc.subject Réseaux de Neurones
dc.subject Compression
dc.subject Signal ECG
dc.title Réseaux de neurones appliqués à la modélisation et à la compression du signal ECG.
dc.type Thesis
dc.coverage 01 Disponible à la salle de recherche 02 Disponibles au magazin de la B.U.C. 01 CD


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account