المستودع الرقمي في جامعة الإخوة منتوري قسنطينة 1

Segmentation d’images de résonance magnétique de diffusion pour l’aide au diagnostic des pathologies cérébrales fœtales.

عرض سجل المادة البسيط

dc.contributor.author Abderrezak, Mohamed Zaki
dc.contributor.author Mansour, Karim
dc.date.accessioned 2022-05-24T09:50:49Z
dc.date.available 2022-05-24T09:50:49Z
dc.date.issued 2018-07-04
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/5742
dc.description.abstract Fetal MRI is a complementary modality to ultrasound examination. The segmentation of fetal MRIs is a recent method, quickly becoming an essential step in many clinical applications for antenatal monitoring of maturation or brain malformation. However, the artifacts inherent in this type of image and the low resolution of these images are at the origin of the difficulties encountered in the segmentation of these images. To overcome these, we propose in this memory, two methods of segmentation: (i) the first one is based on the geodesic active contours applied to adult MRIs for the automatic detection of the brain lesions, (ii) the second one is based on the modification of the fuzzy segmentation to achieve the classification of fetal brain MRIs. The first method is a combination of the geodesic active contours function and the Gradient Vector Convolution (GVC) in order to improve the detection of the boundaries of the objects to be segmented. The model has been tested on adult MRIs that contain brain tumors or multiple sclerosis lesions. This model has been satisfactory in adults but not in the fetal case. This led us to use an unsupervised classification especially with fuzzy segmentation models. We have therefore, integrated the local and non-local distance in the term of attachment to the data of the RFCM (Robust Fuzzy C-Means) energy function, and integrate non-local means in the regularization term. An algorithm based on layer-bylayer segmentation of fetal brain regions, has been developed. Quantitative and qualitative results on real cerebral fetal images showed the efficacy and robustness of the proposed method compared to the methods described in the literature.
dc.language.iso fr
dc.publisher Université Frères Mentouri - Constantine 1
dc.subject IRM fœtale
dc.subject Segmentation
dc.subject Artefacts
dc.subject Contour Active Géodésique
dc.subject Gradient GVC
dc.subject Tumeur
dc.subject Sclérose En Plaque
dc.subject Classification Non Supervisée
dc.subject Segmentation Floue
dc.subject Distance Local et Non Local
dc.subject Moyenne Non Local
dc.subject Fetal MRI
dc.subject Geodesic Active Contour
dc.subject Tumor
dc.subject Multiple Sclerosis
dc.subject Classification Unsupervised
dc.subject Fuzzy Segmentation
dc.subject Local and Non-Local Distance
dc.subject Non-Local Means
dc.subject الصور بالرنين المغناطيسي للجنين
dc.subject التقطيع
dc.subject الاعطاب
dc.subject الخطوط الجيوديسية النشطة
dc.subject تحويل متجه التدرج (GVC)
dc.subject ورم
dc.subject التصلب المتعدد
dc.subject تصنيف غير خاضع للرقابة
dc.subject التجزئة غير واضحة
dc.subject المسافة المحلية وغير المحلية
dc.subject المتوسط غير محلي
dc.title Segmentation d’images de résonance magnétique de diffusion pour l’aide au diagnostic des pathologies cérébrales fœtales.
dc.type Thesis


الملفات في هذه المادة

هذه المادة تظهر في الحاويات التالية

عرض سجل المادة البسيط

بحث دي سبيس


استعرض

حسابي