المستودع الرقمي في جامعة الإخوة منتوري قسنطينة 1

Commande et identification par les ondelettes floues et optimisation par les algorithmes evolutionnaires.

عرض سجل المادة البسيط

dc.contributor.author Titel, Faouzi
dc.contributor.author Belarbi, Khaled
dc.date.accessioned 2022-05-24T09:50:11Z
dc.date.available 2022-05-24T09:50:11Z
dc.date.issued 2018-02-07
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/5729
dc.description.abstract In this work, two approaches for designing fuzzy inference systems from data are developed. These approaches are characterized by their ability to automatically extract and improve knowledge from numerical data and to preserve interpretability of fuzzy rules during the optimization process. In the first approach, a Neuro-Fuzzy Controller network, called NFC that implements a Mamdani fuzzy inference system is proposed. This network includes neurons able to perform fundamental fuzzy operations. Connections between neurons are weighted through binary and real weights. Then a new algorithm called mixed Binary-Real Non dominated Sorting Genetic Algorithm II (MBR-NSGA II) is developed to perform both accuracy and interpretability of the NFC by minimizing two objective functions. In order to preserve interpretability of fuzzy rules during the optimization process, some constraints are imposed. The approach is tested on two control examples: the pole and cart system and a helicopter simulator model. In the second approach, a genetic algorithm based method for designing fuzzy wavelet neural network (FWNN) is presented. The proposed framework combines several soft computing techniques such as fuzzy inference system, wavelet neural network and genetic algorithm. Thus, the structure of the proposed FWNN consists of combination of two network structures, one containing the fuzzy reasoning mechanism and the other containing Wavelet neural networks. Then a genetic algorithm based method is used to find optimal values of the parameters of the both network structures. The ability of the technique in identifying non linear dynamical systems is demonstrated on two examples. Also, this approach is tested for the control of two dynamic plants commonly used in the literature.
dc.language.iso fr
dc.publisher Université Frères Mentouri - Constantine 1
dc.subject Système d’inférence flou
dc.subject Les algorithmes évolutionnaires
dc.subject Réseaux de neurone flou
dc.subject Optimisation multiobjectif
dc.subject NSGAII
dc.subject Contrôleur neuro-flou
dc.subject Réseaux d’ondelettes
dc.subject Réseaux d’ondelettes floues
dc.subject Identification et Contrôle
dc.subject Fuzzy inference system
dc.subject Evolutionary algorithms
dc.subject Fuzzy neural network
dc.subject Multiobjective optimization
dc.subject Neuro-Fuzzy Controller
dc.subject Wavelet neural network
dc.subject Fuzzy wavelet network
dc.subject Identification and Control
dc.subject أنظمة المنطق الغامض
dc.subject الخواريزمات المتطورة
dc.subject الأنظمة العصبية الغامضة
dc.subject ميكانيزمات البحث المتعددة الأهداف
dc.subject المراقب العصبي الغامض
dc.subject الشبكة المويجية الغامضة
dc.subject التعريف و المراقبة
dc.title Commande et identification par les ondelettes floues et optimisation par les algorithmes evolutionnaires.
dc.type Thesis


الملفات في هذه المادة

هذه المادة تظهر في الحاويات التالية

عرض سجل المادة البسيط

بحث دي سبيس


استعرض

حسابي