Dépôt institutionnel de l'universite Freres Mentouri Constantine 1

Electricity Consumption Prediction: Impact of Seasonal Variations with Linear Regression and Neural Networks

Afficher la notice abrégée

dc.contributor.author Farah, Rania
dc.contributor.author Farou, Farou Brahim 2.; Kouahla, Zineddine
dc.contributor.author Seridi, Hamid
dc.date.accessioned 2025-05-20T08:46:50Z
dc.date.available 2025-05-20T08:46:50Z
dc.date.issued 2024-10-25
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/14633
dc.description.abstract Meteorological factors, particularly temperature, have a considerable influence on the energy consumption of the Algerian population. Using two real databases, one on temperatures and the other on electricity consumption, covering more than eight consecutive years, the study examines seasonal variations and the impact of temperature on energy demand. Before turning to prediction, a visual analysis is performed to identify trends, using heat maps and time-series graphs. The methodology relies on linear regression and artificial neural network (ANN) models to predict electricity consumption, using temperature and previous day's consumption as the main factors. The results highlight the effects of weather fluctuations on energy demand, providing a basis for energy management strategies and future research into demand forecasting fr_FR
dc.language.iso en fr_FR
dc.publisher Université Frères Mentouri - Constantine 1 fr_FR
dc.subject Linear Regression fr_FR
dc.title Electricity Consumption Prediction: Impact of Seasonal Variations with Linear Regression and Neural Networks fr_FR
dc.type Presentation fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte