Dépôt institutionnel de l'universite Freres Mentouri Constantine 1

Contribution aux stratégies avancées de contrôle prédictif et adaptatif des machines asynchrones.

Afficher la notice abrégée

dc.contributor.author Nemouchi, Besma
dc.contributor.author Benalla, Hocine
dc.date.accessioned 2025-03-20T12:08:13Z
dc.date.available 2025-03-20T12:08:13Z
dc.date.issued 2025-02-26
dc.identifier.citation 135 f. fr_FR
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/14587
dc.description.abstract The aim of this thesis was aimed at developing several advanced control strategies that will be applied to the rotor flux oriented vector control (IFOC) of the asynchronous machine (MAS). This work first presents an advanced control that combines adaptive control with fractional order PI (FOIP) regulators. The strategy uses the MIT and LYAPUNOV rule theory to adjust the control law of the reference model adaptive controller (MRAC), and then integrate it into the control law equations of the FOPI regulator. Secondly, we will present a new model of the RST polynomial corrector using a fractional calculus approach. The proposed controller will be applied to the IFOC for the speed control of the MAS which will be powered by a photovoltaic (PV) generator equipped with a maximum power point tracking (MPPT) algorithm. This model uses two fractional order controllers: the fractional order proportional-integral (FOPI) controller and the fractional order integralproportional (FOIP) controller, these controllers are combined with the generalized predictive control (GPC) technique. The GPC technique converts the continuous-time FOPI (and FOIP) controller into a discrete-time version, this conversion aims to ensure a fast response and efficient rejection of disturbances. Simulation tests are carried out to analyze the rotor speed and stator current ripples in order to evaluate the performance of the proposed method. The effectiveness of the proposed technique will be demonstrated through Matlab/Simulink. Finally, a new control strategy based on the combination of optimal model predictive control (OMPC) with fractional iterative learning control (F-ILC) for the speed regulation of MAS with application to electric vehicles is presented. MPC Optimal control uses predictive models to optimize speed control actions by considering the dynamic behavior of the MAS, when integrated with fractional order ILC, the system learns and refines speed control iteratively based on previous iterations, adapting to the specific characteristics of the MAS and improving performance over time. fr_FR
dc.language.iso fr fr_FR
dc.publisher Université Frères Mentouri Constantine 1 fr_FR
dc.subject Electro-technique: Commande électrique fr_FR
dc.subject Commande adaptative à modèle de référence (MRAC) fr_FR
dc.subject PI d’ordre fractionnaire (FOPI) fr_FR
dc.subject Contrôle prédictif généralisé (GPC) fr_FR
dc.subject Contrôle prédictif à modèle optimal (OMPC) fr_FR
dc.subject Contrôle par apprentissage itératif (ILC) fr_FR
dc.subject Commande vectorielle (IFOC) fr_FR
dc.subject Machine asynchrone (MAS) fr_FR
dc.subject Reference model adaptive control (MRAC) fr_FR
dc.subject Fractional order PI (FOPI) fr_FR
dc.subject Generalized predictive control (GPC) fr_FR
dc.subject Optimal model predictive control (OMPC) fr_FR
dc.subject Iterative learning control (ILC) fr_FR
dc.subject Vector control (IFOC) fr_FR
dc.subject Induction machine (MAS) fr_FR
dc.subject التحكم التكيفي للنموذج المرجعي (MRAC) fr_FR
dc.subject النظام الكسري PI (FOPI) fr_FR
dc.subject التحكم التنبؤي المعمم (GPC) fr_FR
dc.subject التحكم التنبؤي الأمثل للنموذج (OMPC) fr_FR
dc.subject التحكم في التعلم التكراري (ILC) fr_FR
dc.subject التحكم في المتجهات (IFOC) fr_FR
dc.subject الآلة غير المتزامن (MAS) fr_FR
dc.title Contribution aux stratégies avancées de contrôle prédictif et adaptatif des machines asynchrones. fr_FR
dc.type Thesis fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte