المستودع الرقمي في جامعة الإخوة منتوري قسنطينة 1

From Data to Prediction: Comparative Analysis of Machine Learning Classifiers for Type 2 Diabetes

عرض سجل المادة البسيط

dc.contributor.author Samet, Sarra
dc.date.accessioned 2025-03-19T10:55:05Z
dc.date.available 2025-03-19T10:55:05Z
dc.date.issued 2024
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/14581
dc.description.abstract imely identification and diagnosis of medical conditions hold paramount im- portance in averting severe health complications and optimizing healthcare effica-cy. Machine Learning, an offshoot of Artificial Intelligence, possesses considera-ble potential in anticipatory analysis through the integration of Data Mining. The objective of our investigation is to establish a streamlined mechanism for the prompt and precise identification of Type 2 diabetes by utilizing the widely rec-ognized Pima dataset, which encompasses eight clinical parameters. To ensure equitable consideration of all features, we employ the "Standard scaler" technique for feature scaling fr_FR
dc.title From Data to Prediction: Comparative Analysis of Machine Learning Classifiers for Type 2 Diabetes fr_FR
dc.type Presentation fr_FR


الملفات في هذه المادة

هذه المادة تظهر في الحاويات التالية

عرض سجل المادة البسيط

بحث دي سبيس


استعرض

حسابي