dc.contributor.author |
Bendebane, Lamia |
|
dc.contributor.author |
|
|
dc.contributor.author |
Laboudi, Zakaria; Saighi, Asma |
|
dc.date.accessioned |
2025-03-17T09:49:51Z |
|
dc.date.available |
2025-03-17T09:49:51Z |
|
dc.date.issued |
25/10/2024 |
|
dc.identifier.uri |
http://depot.umc.edu.dz/handle/123456789/14525 |
|
dc.description.abstract |
The World Health Organization (WHO) and various researchers have recently
highlighted the global rise in mental disorders, emphasizing the serious
implications for individuals’ mental health. This study focuses on predicting
depression and anxiety disorders using textual data from social media |
fr_FR |
dc.publisher |
Université Frères Mentouri - Constantine 1 |
|
dc.title |
The Optimal Dataset Size Related to Epochs Number to Predict Depression and Anxiety from the Twitter Datase |
fr_FR |
dc.type |
Article |
fr_FR |