Afficher la notice abrégée

dc.contributor.author Azeri, Nabila
dc.date.accessioned 2025-03-17T09:24:44Z
dc.date.available 2025-03-17T09:24:44Z
dc.date.issued 2024
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/14521
dc.description.abstract Diabetes is a growing global health concern, with a significant rise in prevalence over the past few decades. Traditional machine learning approaches for diabetes prediction often involve centralizing sensitive patient data, which poses significant privacy and security risks fr_FR
dc.title Federated Learning Techniques for Secure and Accurate Diabetes fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte