Afficher la notice abrégée
dc.contributor.author |
Azeri, Nabila |
|
dc.date.accessioned |
2025-03-17T09:24:44Z |
|
dc.date.available |
2025-03-17T09:24:44Z |
|
dc.date.issued |
2024 |
|
dc.identifier.uri |
http://depot.umc.edu.dz/handle/123456789/14521 |
|
dc.description.abstract |
Diabetes is a growing global health concern, with a significant rise in prevalence
over the past few decades. Traditional machine learning approaches for diabetes
prediction often involve centralizing sensitive patient data, which poses
significant privacy and security risks |
fr_FR |
dc.title |
Federated Learning Techniques for Secure and Accurate Diabetes |
fr_FR |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée