عرض سجل المادة البسيط

dc.contributor.author Laala, Barkahoum
dc.contributor.author Belaloui, Sohier
dc.date.accessioned 2025-01-13T08:44:28Z
dc.date.available 2025-01-13T08:44:28Z
dc.date.issued 2022-12-22
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/14484
dc.description.abstract Gaussian process (GP) is a stochastic process that has been successfully applied in finance, black-box modeling of biosystems, machine learning, geostatistics, multitask learning or robotics and reinforcement learning. Effectively estimating the spectral density function (SDF) and degree of memory (DOM) of a long-memory stationary GP (LMSGP) is a significant hard problem investigators may face. {This paper gives some new sufficient conditions (NSCs) for improving the lag window estimators (LWEs) of the SDF and DOM for LMSGPs. A comparison study among the behavior of the LWEs under the NSCs, the LWEs without the NSCs and the existing widely used periodogram estimators (PEs) is given. The theoretical and computational justifications show that: the LWEs under the NSCs are better than the LWEs without the NSCs; the LWEs under the NSCs are better than the PEs; the LWEs under the NSCs are asymptotically unbiased and consistent; the asymptotic distributions of the LWEs under the NSCs of the SDF and DOM under the NSCs are chi-square and normal, respectively; the LWE of the DOM under the NSCs has a fast vanishing variance under the regression method; and the LWEs under the NSCs improve the finite sample properties for the regression and local Whittle estimation methods. fr_FR
dc.language.iso en fr_FR
dc.publisher Université Frères Mentouri - Constantine 1 fr_FR
dc.subject Mathematiques: Probabilités et Statistique fr_FR
dc.subject Gaussian process fr_FR
dc.subject spectral density fr_FR
dc.subject degree of memory fr_FR
dc.subject lag window fr_FR
dc.subject periodogram fr_FR
dc.subject local Whittle method fr_FR
dc.subject regression method fr_FR
dc.subject Processus Gaussien fr_FR
dc.subject densité spectrale fr_FR
dc.subject dégrée de mémoire fr_FR
dc.subject fenêtre de décalage fr_FR
dc.subject periodogramme fr_FR
dc.subject méthode de Whittle locale fr_FR
dc.subject méthode de régression fr_FR
dc.subject نموذج قوس fr_FR
dc.subject الكثافة الطيفية fr_FR
dc.subject درجة الذاكرة fr_FR
dc.subject التقدير الدوري fr_FR
dc.subject نافذة التأخر fr_FR
dc.subject طريقة لانحدار fr_FR
dc.subject طريقة Whittle المحلية fr_FR
dc.title Inférence statistique asymptotique dans les processus ARMA fractionnaire. fr_FR
dc.type Thesis fr_FR


الملفات في هذه المادة

هذه المادة تظهر في الحاويات التالية

عرض سجل المادة البسيط

بحث دي سبيس


استعرض

حسابي