Show simple item record

dc.contributor.authorErredir, Chahrazad
dc.contributor.authorRiabi, Mohamed Lahdi
dc.date.accessioned2019-05-14T09:34:52Z
dc.date.available2019-05-14T09:34:52Z
dc.date.issued2018-11-07
dc.identifier.urihttp://hdl.handle.net/123456789/136564
dc.description.abstractIn this work, a new strategy of neural networks (NN) is proposed to modeling microwave waveguide structures (Pseudo-Elliptic filter, Broad-band E-plane filters and Hplane waveguide filters considering rounded corners). In order to enhance the capacities of the NN, we trained NN by the hybrids algorithms based on combining between back propagation (BP) algorithm and swarm intelligence algorithms (Social-Spider optimization SSO, spider monkey optimization SMO and Teaching–Learning-Based Optimization TLBO). To validate the training of neural networks using the proposed algorithms, we compared the results of convergence and modeling obtained with the results obtained using basic algorithms (SSO, SMO and TLBO) and also compared with population based algorithm, which is widely used in training NN namely particle swarm optimization (PSO). The results prove that the proposed hybrids algorithms have given better results.fr_FR
dc.language.isofrfr_FR
dc.publisherجامعة الإخوة منتوري قسنطينةfr_FR
dc.subjectRéseaux de neuronesfr_FR
dc.subjectStructures hyperfréquencesfr_FR
dc.subjectModélisationfr_FR
dc.subjectAlgorithmes des essaims d'intelligentsfr_FR
dc.subjectNeural Networksfr_FR
dc.subjectMicrowave Structuresfr_FR
dc.subjectModelingfr_FR
dc.subjectSwarm Intelligence Algorithmsfr_FR
dc.subjectالشبكات العصبٌةfr_FR
dc.subjectهياكل الميكروويفfr_FR
dc.subjectالنمذجةfr_FR
dc.subjectخوارزميات الأسراب الذكيةfr_FR
dc.titleContribution à la modélisation et à l’optimisation de structures et dispositifs microondes en utilisant divers types de réseaux de neurones.fr_FR
dc.typeThesisfr_FR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record