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Chapter 1

Introduction

The standard model (SM) of particle physics is one of the biggest achieve-
ment of modern physics, together with the theory of general relativity it can
explain almost all physical phenomenons from the subatomic level to the
universe as a whole. The last missing piece of the SM, the Higgs boson was
finally discovered in 2012 by the Atlas and CMS collaboration at the LHC
[1, 2], which complete the SM picture as finalized in the 1970s. Despite the
great success of the SM, there remain unanswered questions coming from
some cosmological observations and inconsistencies within the model itself.
Among them the hierarchy problem which includes the disparities between
the masses of fermions, the weakness of gravity compared to other fundamen-
tal forces and the instability of the Higgs mass under radiative corrections,
which requires unnatural fine tuning to be compatible with the data. Fur-
thermore, astronomical observations made in the 20th century show that a
big chunk of the matter of universe, necessary to explain the formation and
the stability of galaxies, is constituted by invisible stuff called dark matter.
Another discovery that surprised the physics community in the late 1990 is
the accelerated expansion of the universe explained by the existence of mys-
terious energy density that act as anti gravity force expanding space and
pulling galaxies apart from each other. All these observations proved the
need for new theoretical framework that goes beyond the SM, models based
on extra particles or extended symmetries or even extra dimension, like string
theory, supersymmetry ext, were suggested to account for the short coming
of the SM. An interesting class of physics beyond the standard model (BSM)
is the hidden sector proposal, which describes undetectable fields interacting
with SM weakly via a mediator. Our work is based on one such model, the
unparticle model, proposed in 2007 by Georgi[3]. This model is formulated
as an effective theory describing the interaction of a scale invariant hidden
sector, unparticles, with the SM particles through contact terms. The unpar-
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Chapter 1 – Introduction

ticle model was not initially conceived to solve any of the challenges facing
the SM. However, a lot of work have been devoted to tackle some of them,
for example Kikuchi Et al in [4] formulated a model based on parity odd
unparticle fields that serve as a candidate for dark matter. In the first pro-
posal, unparticle fields were considered to be singlet under the SM gauge
group SU(3)C ×SU(2)L×U(1)Y , since then, Cacciapaglia Et al in [5] intro-
duced unparticles that carrie quantum numbers dubbed gauged unparticle.
Our work is based on that model. In this thesis we compute the unparti-
cle contribution to electroweak observables. To reach this goal we consider
unparticle fields embedded in the SM electroweak group SU(2)L × U(1)Y .
These fields would induce loop effects on electroweak precision tests repre-
sented as contribution to the oblique parameters S and T . In the course of
this thesis we also tackle the problem of the muon anomalous magnetic mo-
ment(AMM) which represent a promising signal for physics beyond the SM.
Recently, experiment conducted at the muon g − 2 collaboration at Fermi
Lab [6] has increased the discrepancy between the SM prediction for AMM
and experimental value from 3σ deviation to 4.2σ, which is not enough to
declare a discovery but it represent a strong hint for physics beyond the SM.
In our work we used the spectrum of the left right symmetric model (LRSM)
coming from the extra gauge bosons of the extended group SU(2)R and the
Higgs sector to decrease the deviation from 2.6σ, measured at the time, to
2.5σ.

This thesis is organized as follows
The second chapter is dedicated to a review of the SM focusing on the

electroweak sector relevant to our work, then we touch upon spontaneous
symmetry breaking and the Higgs mechanism. Next we introduce oblique pa-
rameters which are a set of constants that parametrize the radiative oblique
corrections coming from any new physics in the form of virtual particles cir-
culating in the loops of electroweak SM gauges bosons self-energy diagrams.
We present the extended version of these parameters based on the work in [7].
Finally, we give some of the challenges to the SM which motivated physicists
to seek new approaches.

In chapter three we give a brief review of conformal field theory which
constitutes the theoretical framework of the unparticle model

In chapter four we introduce the unparticle model as initially formulated
by Georgi. Subsequent works treating conformal symmetry breaking in the
unparticle sector are also examined. Next, we give a brief description of an
alternative formulation to Georgi model based on spectral representation.
In the last section we comment on the relation between unparticles and the

2



Chapter 1 – Introduction

Ads/CFT correspondence.

Chapter five constitutes our original contribution. We begin by exploring
the general formulation of unparticle gauged model as discussed in the liter-
ature [5, 8, 9] Then, we introduce the gauged electroweak unparticle model.
We derive the vertices describing the unparticle interactions with the SM
gauge bosons γ, Z and W and then we derive their asymptotic forms in the
large momentum limit. Next, we use these results to compute the unparticle
contribution in the scalar and fermionic cases to polarization functions of
γ, Z and W , which allows us to calculate the oblique parameters S and T .
The result are then used to find the region of parameter space of unparticle
compatible with electroweak precision measurements. In the last section of
this chapter, we estimate the scalar unparticle effects on the running of SM
gauge coupling and the grand unification scale.

In chapter six we calculate the contribution of the LRSM to the muon
anomalous magnetic moment which may provides an explanation for the
deviation between theory and experiment.

In the last chapter we give a summary of our work and a conclusion.

Finally, we attach four appendices. In Appendix A, we present general
formulas and detailed calculation of the loop integrals encountered in this
manuscript. In appendix B we give an explicit computation of some constants
related to unparticle vertices. In Appendix C we present the article published
in mod.phys.lett A and in appendix D we present a conference paper which
summerise our calculations of the muon AMM in the LRSM

3



Chapter 2

The standard model

The standard model (SM) is the unified theory of electromagnetism, weak
and strong interactions based on three principles: gauge invariance, renor-
malizability and spontaneous symmetry breaking via the Higgs mechanism;
We begin this review of the model by introducing the notion of gauge invari-
ance in quantum electrodynamic.

2.1 Gauge symmetry

The first use of the concept of gauge invariance date back to the 19 century
with the introduction of Maxwell equations and in the modern era it began
with an observation concerning the wave equation of quantum mechanics .
It has been noticed that the Schrodinger wave equation is invariant, up to a
scale, under phase transformation of the type:

ψ −→ eα(x)ψ (2.1)

α(x) is a time independent local parameter and the transformation (2.1)
belongs to the abelian group U(1). This kind of invariance is called gauge
symmetry. In quantum electrodynamic, the theory must also be invariant
under space time transformations to be consistent with special relativity.
We must construct a lagrangian which is a Lorentz scalar as follows

L = iψγµ∂
µψ − 1

4
F µνFµν (2.2)

this lagrangian describes Free particle theory which satisfies the global sym-
metry of the transformation 2.1(α is a constant), but if we try to promote
this global symmetry to a local one, at every point of space-time, the gauge
symmetry of lagrangian (2.2) breaks down . To restore gauge invariance in

4



Chapter 2 – The standard model

this case we have to introduce a photon field Aµ with the following transfor-
mation propriety

Aµ −→ Aµ + ∂µα(x) (2.3)

in order for the theory to become locally gauge invariant we replace the
derivative ∂µ in the lagrangian density (2.2) with the covariant derivative
defined as

Dµ = ∂µ + ieAµ (2.4)

where e is the electric charge of the electron.

2.2 Weak interaction and gauge bosons

The first theory of the weak interaction was introduced by Fermi in 1932
[10]. It is based on contact interactions between a hadronic current and a
leptonic current described by the following lagrangian

LFermi = −GF√
2

(pγµn)(eγµνe) (2.5)

GF is the Fermi constant, n and p are the neutron and proton fields respec-
tively . e is the electron field and νe is the associated neutrino field. Although,
the Fermi model was successful in describing the weak interactions in β de-
cay at the time, it can not be considered a complete theory because its not
renormalizable. Moreover, the four point interaction lagrangian (2.5) violate
gauge invariance. A more complete description has been proposed later by
Glashow, Salam , and Weinberg [11, 12, 13] and in the process electroweak
unification was discovered. This new model is based on the gauge group
SU(2) × U(1). In this model the left handed components of leptons and
quarks participating in the weak interaction are organized in multiplets of
the group SU(2) as follow

lL =

(
νL
eL

)
(2.6)

we concentrate for simplicity on one lepton family the electron and its asso-
ciated neutrino. The right handed fermions eR and νL are charged under the
hyper charge group U(1)Y but remain singlet under SU(2). In this case the
leptonic currents participating in the weak interactions are the followings

5



Chapter 2 – The standard model

Jµ = 2lLγµT
+lL

J†µ = 2lLγµT
−lL

J3
µ = 2lLγµT

3lL (2.7)

where T+ = (T1 + iT2)/
√

2, T− = T+ = (T1 − iT2)/
√

2, and T 1 T 2, T 3 are
the generators of the SU(2) defined by its algebra

[
T i, T j

]
= iεijkT k, (2.8)

with the levi-civita symbol εijk. According to Neother theorem, the three
currents (2.7) define three conserved charges I1,I2 and I3. where I3 is the
weak isospin charge which takes different values for left handed and right
handed components of the same fermionic field. For example I3 = 1

2
for eL

and I3 = 0 for right handed electron eR. Let us now gauge the weak theory,
which means promoting SU(2)L to a local symmetry. For this purpose we
replace, as we done in section 2.1, the field derivatives by the corresponding
covariant derivatives. The weak derivative fields reads

Dµ = ∂µ − igT iWi

where Wi are three SU(2)L weak bosons and g is the coupling constant of
the SU(2L) group. The lagrangian density (2.5) is replaced by

L = L0 + Lc + Ln (2.9)

with the kinetic term

L0 = ilLγ
µ∂µlL + ieRγ

µ∂µeR + iνRγ
µ∂µνR

and the charged interactions term

Lc = gW µ
1 lLγ

µT 1lL + gW µ
2 lLγ

µT 2lL

Lc is usually expressed in terms of the charged complex fieldsW±
µ =

(
W 1
µ ±W 2

µ

)
/
√

2.
The last term in the lagrangian (2.9) is

Ln = gW µ
3 lLγ

µT 3lL

this term corresponds to a neutral interaction which does not exist in the
classical Fermi theory, at the same time it can’t be identified with the elec-
tromagnetic interaction because parity is conserved in this interaction, left

6



Chapter 2 – The standard model

handed and right handed component of a fermionic field participate equally
in the electromagnetic interaction, which is not the case for weak interac-
tions. The simplest solution to include electromagnetic interaction in this
construct is to extend the gauge group SU(2)L to include the abelien group
U(1)Y .The lagrangian density must be invariant under U(1)Y gauge trans-
formations of the types(2.1), introduced in section 2.1. In this case however,
the generator of this transformation is the hypercharge operator Y related
to the charge operator Q through the Gellman-Nishijima formula

T 3 +
Y

2
= Q

in this case a gauge field Bµ corresponding to the hypercharge group U(1)Y
must be introduced and the covariant derivative of the extended group SU(2)L×
U(1)Y takes the form

Dµ = ∂µ − igT iWi − ig′
Y

2
Bµ (2.10)

g′ is the coupling constant of the group U(1)Y . Replacing Dµ from eq(2.10)
in the lagrangian density (2.9) we find the neutral interaction term

Ln = gW µ
3 lLγ

µT 3lL + g′

2
Bµ
(
lLγ

µY lL + Y (eR)eRγ
µeR + Y (νR)νRγ

µνR
)

(2.11)
where Y is the hypercharge operator in the doublet representations of the
SU(2) group, Y (eR) is the hypercharge number of the right handed electron
and Y (νR) is the hypercharge number for right handed neutrino. Now we
define the column vector

ψ =

(
νL + νR
eL + eR

)
(2.12)

we can rewrite the eq(2.11) as follows

Ln = ψγµ
(
gT 3W µ

3 + g′
Y

2
Bµ

)
ψ (2.13)

to identify the part responsible for electromagnetic interactions and the part
involved in neutral weak interactions, we perform a rotation in the internal
isospin space that transform the weak eigenstates W µ

3 and Bµ to (physical)
eigenstates Zµ and Aµ as follow

(
W µ

3

Bµ

)
=

(
cos(θW ) sin(θW )
− sin(θW ) cos(θW )

)(
Zµ

Aµ

)
(2.14)

7



Chapter 2 – The standard model

where the angle θW is the Weinberg (electroweak) mixing angle defined as

sin2(θW ) =
g′2

g2 + g′2
' 0.23

Now substituting the vector fields W µ
3 and Bµ in eq(2.13) by the mixed states

(2.14) we find

Ln =ψγµ
(
g cos(θW )T3 −

Y

2
g′ sin(θW )

)
ψZµ

+ ψγµ
(
g sin(θW )T3 +

Y

2
g′ cos(θW )

)
ψAµ (2.15)

with the appropriate choices of hypercharge numbers for left and right handed
leptons, Y (lL),Y (eR) and Y (νR), we can make the identification

eQ = g sin(θW )T3 +
Y

2
g′ cos(θW ) (2.16)

by comparing this expression with the Gellman formula Q = T3 + Y
2

we
deduce the following relation

g sin(θW ) = g′ sin(θW ) = e

The first term in eq(2.15) defines the weak neutral current interaction with
the weak neutral vector boson Zµ, by comparison to (2.16) we can deduce
the corresponding charge operator for weak neutral interactions

QZ =
1

sin(θW ) cos(θW )

(
T3 −Q sin2(θW )

)

So far we have constructed a gauge invariant theory of weak and electromag-
netic interactions. These interactions are carried out by four massless vector
gauge bosons. In reality however, there is only one massless vector bosons,
the photon, associated with the infinite range of electromagnetic interaction.
To make the standard model consistent with observation we must introduce
mass terms for the other weak gauge bosons in a subtle way, without de-
stroying the gauge symmetry of the theory. This task has been achieved by
Petter Higgs and Other with the Higgs mechanism.

2.3 The Higgs mechanism

Spontaneous symmetry breaking is the process in which a symmetry exhib-
ited by a theory is not manifested in the solutions of that theory. Applying

8
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this process to local gauge theories, like the electroweak standard model, al-
low as to give masses to particles without spoiling the gauge invariance of
the model necessary for the renormalizability of the theory. This method
is called the Higgs mechanism. In this mechanism massless fermions and
bosons of the SM acquire mass via the interaction with universal scalar field
called the Higgs field. The fluctuation of this field around a minimum ground
state behave like a particle of well defined mass called the Higgs boson. To
apply the Higgs mechanism [14, 15] to the SM we introduce a scalar doublet
of the SU(2) group

Φ =

(
Φ+

Φ0

)
(2.17)

where the upper component is a charged complex field and the lower com-
ponent is a neutral complex field. The lagrangian for this scalar field is the
following

L = DµΦ†DµΦ + V (Φ)

Dµ is the covariant derivative defined in eq(2.10) and the Higgs potential V
is chosen to be of the form

V (Φ†Φ) = λ(Φ†Φ)2 − µ2Φ†Φ (2.18)

λ is a positive parameter. If µ2 < 0, then V accept a trivial minimum at
Φ = 0. If in the other hand µ2 > 0, V has a minimum at

| Φ |=
√
µ2

2λ
=

v√
2

(2.19)

so we have a degenerate minimum as depicted in Fig 2.1. Now we break the
symmetry by choosing a particular direction in the internal SU(2) space for
the minimum (2.19)

Φ =
1√
2

(
0
v

)
(2.20)

this particular choice leaves the residual U(1)em invariance intact because
the transformations generated by the charge operator Q = T 3 + Y leave the
vacuum expectation value (2.19) invariant

QΦ = 0

So we have three broken generators (T1,T2,T3) and one unbroken generator
Q. According to Goldstone theorem [16, 17], for each broken generator of the

9
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SU(2) group Ti, there is a massless gauge boson θi(x) called the Goldstone
boson. Therefore, the fluctuating field around the minimum 2.19 takes the
following form

Φ = exp
(
iTiθ

i(x)
) 1√

2

(
0

v + h

)
(2.21)

h is real scalar field called the Higgs boson. To get read off the unphysical
Goldstone bosons we perform a gauge transformation in the internal SU(2)
space as follow

Φ→ U(θ)Φ (2.22)

T iW µ
i → UT iW µ

i U
−1 +

i

g
(∂µU)U−1 (2.23)

Substituting the new field Φ′ = U(θ)Φ in L with the usual covariant deriva-
tive Dµ = ∂µ − igT iW µ

i − ig′Bµ Y
2

, we find

L =
(
∂µ + igT iW µ

i − ig′Bµ Y
2

)
Φ†
(
∂µ − igT iW µ

i − ig′Bµ Y
2

)
Φ

+µ2(v + h)2 − λ((v + h)2)2 (2.24)

Figure 2.1: Higgs potential.

10
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Expanding the lagrangian we can extract the term quadratic in the vector
boson fields

LM =
v2

8

[(
gW 3

µ − g′Bµ

) (
gW 3µ − g′Bµ

)
+ 2g2W−

µ W
+µ
]

the last term is the mass term of the charged vector bosons W+,W− with

MW =
v

2
g

to find the mass term for the neutral vector boson Z we perform the same
rotation (2.14) done in the last section from weak eigenstates W 3

µ ,Bµ to
mass eigenstates Zµ and Aµ. After this rotation the quadratic term in vector
bosons fields become

LM =
g2v2

4
W−
µ W

+µ +
(g2 + g′2)v2

8
ZµZ

µ

we find that the Z boson has acquired mass given by

MZ =
v
√
g2 + g′2

2

Using the relation g sin(θW ) = g′ cos(θW ) we find

MZ =
MW

cos(θW )

the absence of a mass term for Aµ means that the photon remain massless
as expected. The three massless Goldstone bosons have been eaten up to
generate masses for the vector bosons. There remains one scalar boson the
Higgs particle. To find its mass we examine the Higgs potential(2.18), after
spontaneous symmetry breaking, we find the following result

mh =
√

2µ =
√

2λv

until 2012 the Higgs mass remained a free parameter of the SM. After the
discovery of the Higgs boson at Atlas and CMS collaborations [1, 2] the Higgs
mass was found to be

Mh ' 125 Gev

2.4 Yukawa terms

In the previews section, we used the Higgs mechanism to generate masses for
vector gauge bosons without destroying the symmetry of the lagrangian,

11
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but fermions remain massless. The introduction of a mass term in the
fermionic lagrangian is not allowed in electroweak theory because the mass
term mψLψR violate electroweak gauge invariance(left handed fermions and
right handed fermions have different hypercharge numbers). Fortunately,
we can use the same mechanism, spontaneous symmetry breaking, to give
masses to fermions via the interaction with the Higgs field as follows

LY ukawa = −YelLφeR − YdQφdR − YuQiT2φ
∗uR

here we have written Yukawa terms for the first family of leptons and quarks
for simplicity. When the Higgs field acquires non vanishing expectation value
(vev), the fermions gain masses. Then, the Yukawa lagrangian becomes

LY ukawa = −
(
Yev√

2

)
ee−

(
Ydv√

2

)
dd−

(
Yuv√

2

)
uu

−
(
Ye√

2

)
ehe−

(
Yd√

2

)
dhd−

(
Yu√

2

)
uhu (2.25)

from the first line we can deduce the masses of the fermions

me =
Yev√

2

mu =
Yuv√

2

md =
Ydv√

2
(2.26)

the second line in eq(2.25) corresponds to the Higgs-fermions couplings. We
notice that the coupling of Higgs bosons to fermions is proportional to their
masses

gf,h =

√
2

v
mf

2.5 Oblique parameters

Despite the success of the SM there remains unsolved puzzles like the hier-
archy problem, related to the instability of the Higgs mass under radiative
corrections, or the unknown nature of dark matter, which constitutes 75% of
the matter of the universe. A lot of new physics models, which involve new
particles or extended symmetries, have been proposed to solve these puzzles.
However, so far there is no direct evidence of physics beyond the SM. So, we
have to rely on all sources of indirect informations that current measurements

12
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provide. The most important of these measurements are precision study of
electroweak observables. These are the study of radiative corrections to scat-
tering amplitudes of light fermions involved in electroweak interactions like
for example ee→ qq mediated by a photon or a Z boson. The most signifi-
cant of these radiative corrections are self-energy corrections to gauge bosons
propagators known as oblique corrections (see Fig (2.2)). Since the internal
states running in the loops can be arbitrarily heavy, new models can be tested
by computing their contributions to electroweak observables via oblique cor-
rections and comparing the new results to experimental constraints on these
observables, which allow theorists to constraint their models. The effects of
oblique corrections on fermions scattering can be determined by examining
how the vacuum polarization functions

Πµν
ab = Πab(q

2)gµν + (qµqνterm)

with a, b = γ, Z,W appear in the new physics contribution to electroweak
observables. Since the most precisely measured quantities are probed at
specific momentum transfer scales, namely at low energy experiments q2 = 0
and at the Z resonance q2 = MZ , and q2 = MW , all oblique corrections
can be parametrized by a limited number of independent parameters. The
first three S, T , and U were introduced by Peskin and Takeuchi [18, 19]
under the assumptions that the new physics states are mush heavier than
the gauge bosons masses MZ

M
� 1. In this case the polarization functions can

be expended to first order as follows

Πab = Aab + q2Bab (2.27)

where Aab = Πab(0) and Bab = Π′ab =
dΠab(q

2)

dq2
. Since we have four polar-

ization functions Πγγ, ΠZZ , ΠZγ, and ΠWW , the expansion Eq(2.27) defines
eight unknown quantities. Because of electromagnetic gauge invariance we
have

Πγγ(0) = ΠγZ(0) = 0

thus, we are left with six independent parameters. We can eliminate an-
other three parameters by using the most precisely measured electroweak
observables and fitting them with three SM parameters, those are the fine
structure constant α, measured from low energy scattering experiments, and
GF as measured from muon decay, and MZ . So, we have finally three in-
dependent linear combinations of the Πabs functions which are S, T , and U
defined as

S =
4s2

wc
2
w

α

(
ΠZZ(m2

Z)− ΠZZ(0)

M2
Z

− c2
w − s2

w

swcw
Π
′
Zγ(0)− Π

′
γγ(0)

)
(2.28)

13
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T =
1

α

[
ΠWW (0)

M2
W

− ΠZZ(0)

M2
Z

]
(2.29)

and

U =
4s2

w

α

(
ΠWW (M2

WW )− ΠWW (0)

M2
WW

− c2
w

(
ΠZZ(M2

ZZ)− ΠZZ(0)

M2
ZZ

)

−s2
wΠ

′
γγ(0)− 2swcwΠ

′
Zγ(0)

)
(2.30)

W Z

γ Z

W

ν

e

e

e

e

e

H0H0

W Z

Z

W

Z

Figure 2.2: Examples of Feynman diagrams contributing to oblique correc-
tions.

each of the these three quantities has physical meaning. S quantifies the
difference in mixing between the hypercharge and the third weak isospin cur-
rent at q2 = M2

Z and q2 = 0. T describes the amount of custodial symmetry
breaking at q2 = 0. On the other hand U measure the contribution of the
W,Z mass non-degeneracy to weak isospin breaking. As mentioned above,
the STU formalism is based on the assumptions that BSM physics enter at
a scale far above the weak scale (M >= 1Tev). However, when the new
physics scale is not large in comparison to electroweak breaking scale, the
linear approximation (2.27) becomes inaccurate. In ref [7], the authors ex-
tend the approximation (2.27) to include quadratic terms in q2. This extra
term necessitates the introduction of another 3 oblique parameters called V ,
W and X that vanish in the linear approximation

αV = Π
′
ZZ(M2

Z)−
(

Π
′
ZZ(M2

Z)− Π
′
ZZ(0)

M2
Z

)

14
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Expressions for observables
ΓZ = (ΓZ)SM0.00961S + 0.0263T + 0.0194V 0.0207X(GeV )
Γbb = (Γbb)SM0.00171S + 0.00416T + 0.00295V 0.00369X(GeV )
Γl+l− = (Γl+l−)SM0.000192S + 0.000790T + 0.000653V 0.000416X(GeV )
Γhad = (Γhad)SM0.00901S + 0.0200T + 0.0136V 0.0195X(GeV )
AFB(µ) = (AFB(µ))SM0.00677S + 0.00479T0.0146X
Apol(τ) = (Apol(τ))SM0.0284S + 0.0201T0.0613X
Ae(Pτ ) = (Ae(Pτ ))SM0.0284S + 0.0201T0.0613X
AFB(b) = (AFB(b)SM0.0188S + 0.0131T0.0406X
AFB(c) = (AFB(c)SM0.0147S + 0.0104T0.03175X
ALR = (ALR)SM0.0284S + 0.0201T0.0613X
M2

W = (M2
W )SM (1− 0.00723S + 0.0111T + 0.00849U)

ΓW = (ΓW )SM (10.00723S − 0.0333T + 0.0849U0.0781W (GeV )
g2
L = (g2

L)SM − 0.00269S + 0.00663T
g2
R = (g2

R)SM + 0.00937S − 0.000192T
geV (νe→ νe) = (geV )SM + 0.00723S − 0.00541T
geA(νe→ νe) = (geA)SM +−0.00395T
QW (133

55Cs) = QW (Cs)SM − 0.795S − 0.0116T

Table 2.1: Summary of the dependence of electroweak observables on
S,T,U,V,W and X.

αW = Π
′
WW (M2

W )−
(

Π
′
WW (M2

W )− Π
′
WW (0)

M2
W

)

αX = −swcw
(

Π
′
Zγ(M

2
Z)

M2
Z

− Π
′
Zγ(0)

)

to obtain bounds on new physics contribution, we have first to calculate
oblique corrections in the SM to various electroweak observables and then
express the same observables in terms of the oblique parameters S through
X, an example is given in Table 2.1. Extracting the SM model predictions
for the most precisely measured quantities from experimental results allow
us to make a global fit and find constraints on oblique parameters. After the
discovery of the Higgs boson with mass mh ' 125, the reference point for SM
calculations has shifted. For the oblique parameters S, T , and U the best
bounds found so far are the following [20]

∆S = S − SSM = 0.05± 0.11

∆T = T − TSM = 0.09± 0.13

∆U = U − USM = 0.09± 0.094 (2.31)
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2.6 SM challenges

Despite the great success of the SM in describing almost all experimental
data, it fails to explain some phenomenons which indicates the need for new
physics above the electroweak scale. In this section we give a short summery
of some of the challenges facing the SM today

2.6.1 The hierarchy problem

The discovery of the SM at LHC with mass Mh ' 125 completed the SM pic-
ture. However, there is a big discrepancy between the effective value (exper-
imental value) and the theoretical prediction of the Higgs mass if we include
radiative corrections, of the type depicted in fig 2.3, quadratic corrections
contribute a term proportional to the ultraviolet energy scale Λ

H0

t

t

H0

Figure 2.3: top quark contribution to Higgs self energy.

∆mH = −
λ2
f

8π2

[
Λ2
UV + . . .

]
(2.32)

If we suppose that the SM is a valid description of nature up to the plank
scale, the Higgs mass will gain an enormous contribution from Λ, which con-
tradict experiment, In order to solve this problem we have to add a counter
term to the lagrangian fine tuned to 10−30 which is in contradiction with the
principle of naturalness. This problem find solutions in new physics proposal
like supersymmetry [21], where for each fermion there is bosonic partner
contributing to the Higgs mass with similar term like (2.32), but with the
opposite sign (see Fig(2.4))

∆mH =
λ2
S

8π2

[
Λ2
UV + . . .

]

this make the total contribution, from radiative corrections, to the Higgs
mass equal to zero if we include both the fermionic and bosonic particles
(here we take λS = λf ).
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H0

t̃

t̃

H0

Figure 2.4: top super-partner contribution to the Higgs self energy.

2.6.2 Dark matter and Dark energy

Astronomical observations since the 1930th have found that 75% of the mat-
ter in the universe [22], responsible for holding galaxies together is not com-
posed of ordinary matter, that is to say, it is not composed by particles
predicted by the SM. A lot of proposed models including supersymmetry
have candidate particles to explain the nature of dark mature. The most
popular ones are the so called WIMP particles proposals which mean weakly
interacting matter particles. In addition to dark matter the discovery of
the accelerated expansion of the universe in the late 1990 [23] indicates the
existence of a mysterious energy with constant density, identified with the
cosmological constant of Einstein theory of general relativity. This so called
dark energy does not have any explanation in the SM.

2.6.3 Neutrino oscillations

Experiments performed at the Super-Kamiokade Observatory in Japan [24]
and others have shown that solar neutrino change flavour while travelling
from the sun to particle detectors at Earth. This phenomenon known as
neutrino oscillations indicates that neutrino have a non vanishing mass which
contradict the SM. We can solve this problem by adding right handed neutri-
nos in the model or by allowing a Majorana mass term for neutrinos. These
proposals do not explain the disparity between the measured neutrino mass
which is very tiny in comparison to other leptons, which means that this
problem does not yet have a complete solution.
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Conformal field theory

3.1 Conformal transformations

Consider a spacetime of dimension D endowed with the metric tensor
ηµν(−1, 1, ..., 1). A conformal transformation is the subgroup of coordinate
transformations that leave the metric invariant up to a scale

η
′
µν = Ω(x)ηµν

a subset of this transformation with Ω(x) = 1 is the Poincaré group which
preserves distances. Conformal transformations (CT) leave the angles be-
tween two arbitrary vectors or curves invariant but change distances. To
determine the set of parameters of the conformal group, we consider the
infinitesimal transformation

x
′
µ = xµ + εµ (3.1)

under a general coordinate transformation the metric tensor takes the form

η
′
µν =

∂x
′
µ

∂xρ

∂x
′
ν

∂xσ
ηρσ (3.2)

substituting (3.1) in (3.2) and using a first order approximation we find

η
′
µν = ηµν − (∂µεν + ∂νεµ) + o(ε2)

the requirement that the transformation be conformal implies that

∂µεν + ∂νεµ = f(x)ηµν (3.3)

where f(x) is some function. If we take the trace on both sides of (3.3) we
find

f(x) =
2

D
∂ρε

ρ (3.4)
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By applying an extra derivatives on eq (3.3), permuting the indices, con-
tracting with ηµν we arrive at the following equation

(D − 1) ∂2f = 0

If D = 1 there is no constraints on the function f which is not surprising
since in one dimension there is no angles. The case D = 2 is a special case
that we will not consider in this thesis. For D ≥ 3, we see that f(x) is at
most linear in x, It follows from eq(3.3) that εµ is at most quadratic in x.
So this set of transformations involves a finite dimensional conformal group
which takes the general form

εµ = aµ +Mµνxν − λxµ + bν
(
2xµxν − ηµνx2

)

each parameter of this equation corresponds to an infinitesimal transforma-
tion as follows

Translations x
′µ = xµ + aµ

dilation: x
′µ = λxµ

rotation: x
′µ = Mµ

ν x
ν

SCT x
′µ =

xµ − bµx2

1− 2b.x+ b2x2

the generators corresponding to translation and rotations are the momentum
vector P µ and the angular momentum tensor Lµν respectively. The dilata-
tions parametrized by λ is generated by the operator D, the special conformal
transformation (SCT) is represented by Kµ. These generators obey the fol-
lowing commutation relations, which define the conformal algebra

[ D, P µ ] =iP µ

[ D, Kµ ] = iKµ

[ Kµ, P ν ] =2i (ηµνD − Lµν)
[ Kρ, Lµν ] =i (ηρµKν − ηρνKµ) (3.5)

in addition to the familiar Poincaré algebra

[ P ρ, Lµν ] =i (ηρµP ν − ηρνP µ)

[ Lµν , Lρσ ] =i (ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLνρ)
[ P µ, P ν ] =0. (3.6)

From the generators mentioned above we can count the number of generators
of the conformal group explicitly as

1 dilatation+D translations+
D(D − 1)

2
rotations

=
(D + 1) (D + 2)

2
generators (3.7)
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This is exactly the number of generators of the SO(D, 2) group. To make
this point more explicitly let us redefine the operators of eq(3.5) and eq(3.6)
as follows

Jµ,ν = Lµν , J−1,µ =
1

2
(Pµ −Kµ) , J0,µ =

1

2
(Pµ +Kµ) , j−1,0 = D

for Jab = −Jba and a, b ∈ {−1,−1, ..., D} (3.8)

Then the generators Jab can be shown to obey the SO(D, 2) commutation
relations

[ Jab, Jcd ] = i (ηadJbc + ηbcJad − ηacJbd − ηbdJac) (3.9)

with the metric η (−1, 1, ..., 1)

3.2 Representations of the conformal group

In order to find the representations of the conformal group in D dimension,
we have to show how classical fields are affected by conformal transforma-
tions. For this purpose we consider an infinitesimal conformal transforma-
tions parametrized by ωg. Our goal is to find a matrix representations such
that the field φ(x) transform as

φ′(x′) = (1− iωgTg)φ(x)

the method used in this case is to consider the action of the little group, which
is the subgroup that leaves the origin (x = 0) invariant. For the Poincaré
group the little group is identified as the Lorentz group. To find matrix
representations for the Lorentz group we use the following transformation
formula

L
′
µν(x)φ(x) = e−iP

λxλLµν(0)eiP
λxλ

Using the Haudssauf formula

e−ABeA = B + [ B,A ] + ...

and the commutation relations (5.56) of the Poincaré group we find

L
′
µν(x)φ(x) = e−iP

λxλLµν(0)eiP
λxλ = Lµν(0) + xµPν − xνPµ

which gives the following

L
′
µν(x)φ(x) = i (xν∂µ − xµ∂ν) + Sµνφ(x)

where Sµν is the spin matrix of the field φ(x) and i∂µ is the familiar momen-
tum operator in configuration space. Now in the same manner we consider
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the full conformal group. We consider the groups of rotations, dilatations
and SCT which leave x = 0 invariant. We denote them by Sµν , 4̃ and κµ
respectively . These matrix representation must satisfy the reduced algebra
of the conformal group

[ 4̃, Sµν ] = 0

[ 4̃, κµ ] = −iκµ
[ κµ, κν ] = 0

[ κρ, Sµν ] = i (ηρµκν − ηρνκµ)

[ Sµν , Sρσ ] = i (ηνρSµσ + ηµσSνρ − ηµρSνσ − ηνσSµρ) (3.10)

Following similar steps as before, we find

eiPλx
λ

De−iP
λxλ = D + xµPµ

eiPλx
λ

Kµe
−iPλxλ = Kµ + 2xµD − 2xνLµν + 2xµ

(
xλPλ

)
− x2Pµ (3.11)

Now if we consider a classical field φ that belongs to the irreducible repre-
sentation of the Lorentz group, according to Shur lemma, an operator that
commute with all the generators Sµν is proportional to the identity matrix.
So, 4̃ = i4 where4 is a number which is called the scaling dimension of the
field φ(x). The inclusion of imaginary number i is due to the fact that the
representation of the dilatation group on classical fields are non unitary. In
a classically scale invariant theory( for example a free field theory) the scale
dimension coincide with the canonical dimension dO = 4[O] of an operator
O. However, in a renormalized quantum field theory, renormalization effects,
introduce a scale into the theory which spoil scale invariance. In this case
dO 6= 4[O], the difference γ = d −4 is called the anomalous dimension of
the operator O. Finally, since 4̃ is proportional to the identity, using the
commutations rules (3.10)we conclude that the κ matrices vanish. This gives
us the following transformations rules for the field φ

Pµφ(x) = −i∂µφ(x)

Lµνφ(x) = i (xµ∂ν − xν∂µ)φ(x) + Sµνφ(x)

Dφ(x) = −i (xµ∂µ +4)φ(x)

Kµφ(x) =
(
−2i4xµ − xνSµν − 2ixµx

ν∂ν + ix2∂µ
)
φ(x) (3.12)

From the above results, we can in principle derive the transformation rules
for φ(x) under a finite conformal transformation. We will only consider the
result for spineless fields(Sµν = 0). The transformations rule is given by

φ(x)→ φ′(x′) =

∣∣∣∣
∂x′

∂x

∣∣∣∣
−4/D

φ(x) (3.13)

Fields transforming in this manner are called quasi-primary fields
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3.3 Primary and descendant operators

In section 3.6 we will compute the general form of correlation functions for
primary operators using their transformation proprieties under the conformal
group. In this section, we will present these transformations determined by
the representation theory of the conformal group.

Following Mack and Salam [25], by restricting our study to operators
inserted at x = 0, we can find proprieties of operators inserted in other
locations by applying a translation

O(x) = ex.pO(0)e−x.p (3.14)

we will take O(0) = Oi
∆,r(0) to be the finite dimensional irreducible repre-

sentation r of the rotation group. These operators are characterized by their
scaling dimension ∆ which is the eigenvalue of the dilatation operator D:

[D,Oi
∆,r(0) ] = ∆Oi

∆,r(0)

[Lµν , O
i
∆,r(0) ] = (Rµν)

i
j O

i
∆,r(0) (3.15)

where Rµν are the generators of the representation r of the SO(D) group.
The operators P µ and Kµ act on D as raising and lowering operators respec-
tively, which allow us to construct the eigen-fields (spectrum) of the dilation
operator. However, in any physically interesting theory, the spectrum of
the dilation operator is real and bounded from below. So, the conformal
multiplet must contain an operator of lowest dimension:

[Kµ, Oi
∆,r(0) ] = 0 (3.16)

operators satisfying this condition are called primary operators. The other
operators of the conformal spectrum are called descendants and they are
obtained from primary operators by acting on them with P µ, in other words,
the descendent operators are derivatives of the primary operators.

The Operator O(0) is characterized by two main quantum numbers, its
scaling dimension ∆ and its irreducible representation under the rotation
group. It is important to know the transformation proprieties of any operator
O(x) under general conformal transformation which can be achieved using
equations (3.14.3.15) here we will give its the explicit form

O′∆,r
i(x′) = F ijOi

∆,r(x), F =
1

(Ω(x))∆
R(Mµ

ν (x)) (3.17)

where R(Mµ
ν (x)) is the matrix representation of the finite rotation Mµ

ν in the
representation r.

22



Chapter 3 – Conformal field theory

3.4 The Energy-Momentum Tensor

According to Neother theorem every continuous symmetry implies the exis-
tence of a conserved current and a conserved charge. Under translation the
associated current is the energy-momentum tensor defined by

T µνC = −ηµνL+
∂L

∂ (∂µφ)
(3.18)

T µνC is the canonical energy-momentum tensor. The general expression for
a conserved current associated with the infinitesimal coordinate transforma-
tions x

′µ = xµ+εµ and the corresponding field transformation φ
′
(x
′
) = Fφ(x)

is

Jµ =

[
∂L

∂ (∂µφ)
∂νφ− δµνL

]
δxν

δε
− ∂L
∂ (∂µφ)

δF
δε

(3.19)

Using eq(3.18) Jµ can be rewritten as

Jµ = T µC,ν
δxν

δε
− ∂L
∂ (∂µφ)

δF
δε
. (3.20)

To determine the conserved current associated with dilatations we consider
the infinitesimal transformation

x
′µ = xµ + λ, Fφ = (1− dλ)φ (3.21)

Here d = 4 is the scale dimension of the field φ. Using the definition (3.20)
we find the conserved current of the scale symmetry

Dµ = xνT
µν
C − d

∂L
∂ (∂µφ)

(3.22)

Using the same procedure we find the current associated with SCT as follows

Kµν = 2xνxρT
µρ
C − x2T µνC −

∂L
∂ (∂µφ)

(2dxν + 2ixρS
ρν) (3.23)

The energy momentum-tensor (3.18) is not symmetric. However, it is possible
to obtain a symmetric energy- momentum tensor by adding the divergence of
an antisymmetric tensor in its first two indices, which does not spoil the con-
servation of the currents J . This new symmetrized tensor is called Belinfante
energy momentum tensor and it is given by

T µνB = T µνC + ∂ρB
µρν (3.24)
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Where

Bµρν =
i

2

(
∂L

∂ (∂µφ)
Sρνφ+

∂L
∂ (∂ρφ)

Sµνφ+
∂L

∂ (∂νφ)
Sρµφ

)
(3.25)

Since Sµν = −Sνµ we can show that the Belinfante tensor is symmetric.
With the new tensor T µνB the dilatation and SCT currents takes a remarkably
simple formulas

Dµ = xνT
µν
B (3.26)

Kµν = xνDµ − x2T µνB (3.27)

which gives the conserved charges

D =

∫
d3xνT

0ν
B (3.28)

Kµ =

∫
d3x

(
x0Dµ − x2T 0µ

B

)
(3.29)

From eq(3.27) we see that if the divergence of Dµ vanishes so does the diver-
gence of Kµν which implies that scale invariance of a theory (expressed by
∂µDµ = 0) guarantee its conformal invariance. From both eq(3.26) and eq
(3.27) it is evident that the conservation of the dilatations and SCT currents
are satisfied only if the energy-momentum tensor has no divergence and is
also traceless

∂µT
µν
B = 0, : ηµνT

µν
B = 0 (3.30)

3.5 Conformal invariance for quantum field

theory

Up to now, we have seen conformal transformations and their representations
in classical field theory. We saw that conformal invariance is satisfied if the
energy momentum tensor is traceless, T νν = 0. However, in a quantum theory
this condition is not satisfied because renormalization effects introduce a scale
µ, called the renormalization scale, which breaks conformal invariance. So,
in order to find the condition under which scale invariance is preserved in the
quantum theory, we must take into account the variation of gauge coupling
under scale transformations. This can be done using the beta function which
governs coupling evolution according to the following equation

β =
∂g

∂ log(µ)
(3.31)
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If we perform a scale transformation we get

xν → (1 + ε)xν

gi(µ)→ gi

(
µ

1 + ε

)
≈ gi(µ− εµ) ≈ gi(µ)− εβi (3.32)

where βi is defined as

βi = β(gi) =
∂gi

∂ log(µ)
(3.33)

Now, If we take the classical action S =
∫
dDL(Φ, ∂νΦ), which depends on

some fields Φ and their derivatives, we can use Noether theorem to write the
variation of the action under some transformation in the form

δS =

∫
dD∂νJ

ν
aω

a (3.34)

where Jν is the conserved current associated with some transformation parametrized
by ωa , in our case the scale transformation. According to Noether theorem,
in order for the classical theory to be invariant under such transformation,
we must have δS = 0, but the evolution of gauge coupling in the quantum
theory induced by the renormalization procedure add a quantum term to
equation (3.34)

δS = δSclass + δSquant

=

∫
dD∂νJ

ν
aω

a +

∫
dD

∂L
∂gi

δgi

=

∫
dD∂νJ

ν
aω

a −
∫
dD

∂L
∂gi

εβi (3.35)

where the δgi is replaced form eq(3.32). Setting δS = 0 we find

∂νJ
ν =

∂L
∂gi

βi (3.36)

Using the fact that the current for a scale transformation is Jν = Dν = T νλx
λ

we find

T νν =
∂L
∂gi

βi (3.37)

So, scale invariance for a quantum field theory is directly related to the an-
nihilation of the beta function βi = 0. It is worth mentioning that conformal
invariance in quantum theory is inferred from scale invariance because no
example so far have been found of a theory that satisfies scale invariance and
at the same time violates conformal invariance.
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3.6 Correlation functions

To perform calculations in a quantum field theory, we need to compute cor-
relation functions because the S matrix is not a useful tool in conformal field
theory. Due to scale invariance, the concept of a particle being far away is
equivalent to a particle being very close to the centre of the event. Con-
formal invariance imposes a severe restrictions on the form of correlation
functions, especially two point function, which we calculate in the following
for a quasi-primary scalar field φ.

The expression of two point function is the following

〈
φj1(x

′
1)φj2(x

′
2)
〉

=
1

Z

∫
D[φ]φj1 (x1)φj2 (x2) e−S(φ) (3.38)

where the partition function Z is defined by

Z =

∫
D[φ]e−S[φ] (3.39)

Since the action S and the integration measure D[φ] must both be invariant
Under CT, we can deduce from (3.38) the transformation rules for two point
correlation function

〈
φj1 (x1)φj2 (x2)

〉
=

∣∣∣∣
∂x′

∂x

∣∣∣∣
d1/D

x=x1

∣∣∣∣
∂x′

∂x

∣∣∣∣
d2/D

x=x2

〈
φj1(x

′
1)φj2x

′
2)
〉

(3.40)

di is the scaling dimension of the field φj and j its spin. We consider here
spineless fields for simplicity and we drop the upper-case j. From eq (3.13)
we found that the jacobian of a conformal transformation is given by

∣∣∣∣
∂x′

∂x

∣∣∣∣ =
1√

det η′µν

= Ω(x)−D/2 (3.41)

In the case of dilatation Ω(x)=λ. then, the transformation rule (3.40) be-
comes

〈φ (x1)φ (x2)〉 = λd1+d2 〈φ(λx1)φλx2)〉 (3.42)

Invariance under translations and rotations means that the correlations func-
tions must only depends on the distances |x1 − x2|. In this case, the two point
function takes the general form

〈φ (x1)φ (x2)〉 = f (|x1 − x2|) (3.43)

26



Chapter 3 – Conformal field theory

Combing the conditions (3.42) and (3.43), the two point function takes the
form

〈φ (x1)φ (x2)〉 =
C12

|x1 − x2|d1+d2
(3.44)

where C12 is a normalization factor. The SCT imposes a further restriction
on the two point function as follows

C12

|x1 − x2|d1+d2
=

C12

γd1
1 γ

d2
2

(γ1γ2)(d1+d2)/2

|x1 − x2|d1+d2
(3.45)

with γi = (1− bxi + b2x2
i ). This constraint is satisfied only if d1 = d2 oth-

erwise, the two point function vanishes. In other word, quasi-primary fields
are correlated only if they have the same scaling dimension

〈φ (x1)φ (x2)〉 =





C12

|x1 − x2|2d
, if d1 = d2

0, if d1 6= d2

(3.46)

A similar analysis can be carried out for fermionic fields (j = 1/2) ψ with
scaling dimension df , vector fields(j = 1) V µ with scaling dimension dV and
tensor fields (j = 2) T µν with scaling dimension dT . Here we just give the
final results for the two points functions for each case. We take x1 = x and
x2 = 0

〈
φj1(x)φj2(0)

〉
= Cs

δj1j2
(2π)2

1

(x2)dS
(3.47)

〈
ψj1(x)ψ̄j2(0)

〉
= Cf

δj1j2
(2π)2

xµγ
µ

(x2)df+1/2
(3.48)

and 〈
V j1
µ (x)V j2

ν (0)
〉

= Cv
δj1j2
(2π)2

Iµν

(x2)dv
(3.49)

and

〈
T j1µν(x)T j2ρσ(0)

〉
= Ct

δj1j2
(2π)2

Iµρ(x)Iνσ(x)− 1
D
ηµνηρσ ± µ↔ ν

(x2)dt
(3.50)

with Iµν = ηµν − 2xµxν which is fixed by demanding invariance under the
SCT.
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3.7 Unitarity constraints

The unitarity condition imposed on conformal fields allow us to find a lower
bound on the scale dimension d for each type of field, scalar, fermionic,
vector, or tensor. This condition entails that the normalization constants of
the correlation functions (3.47,3.48,3.49,3.50) must be positive , Ci > 0 [26],
this condition leads to the following constraint

d ≥ j1 + j2 + 2− δj1,j2 (3.51)

where j1, j2 are the spins of the corresponding fields. So, for scalar fields
φ, fermionic fields ψ, vectorial fields V µ and tensorial fields T µν we get the
following restrictions on their scale dimension

ds ≥ 1

df ≥
3

2
dV ≥ 3

dT ≥ 4 (3.52)

In addition to the unitarity constraint, if the vector and tensor fields obey the
conservation requirements ∂µVµ = 0 and ∂µTµν = 0, their scale dimensions
dV and dT take the canonical values d = 3 and d = 4 respectively.

3.8 Ward Identities

Ward identities allow us to restate the conservations laws, expressed by
Noethers theorem, in the form of operator equations. The general identity
for a conserved current J is the following

∂

∂xµ
〈Jµ(x)φ(x1) . . . φ(xn)〉 = −i

∑

i

δ(x− xi) 〈φ(x1) . . . Gφ(xi) . . . φ(xn)〉

(3.53)
where G is the generator of the conformal transformation associated with J .
We use the notation X to denote the product of n operators

X = φ(x1) . . . φ(xn)

The ward identity associated with translation invariance can be written by
identifying the current J with the modified energy momentum tensor T µνB

and the generator G with the momentum operator P µ =
∂

∂xµ
as follows

∂

∂xµ
〈T µν (x)X〉 = −i

∑

i

δ(x− xi)
〈
∂X

∂xν

〉
(3.54)
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Now, we use eq(3.12), which defines the generators of the conformal group
and the set of eq(3.42) and eq(3.27) to deduce ward identities for rota-
tions(Lorentz transformations) and dilatations. For rotations the modified
angular momentum currents is

Mµν,ρ = (T µνxρ − T µρxν)

and the generator of Lorentz transformation is given in eq(3.12). Therefore,
the ward identity is

∂µ 〈T µνxρ − T µρxν X〉 = i
∑

i

δ(x− xi) (xνi ∂
ρ
i − xρi ∂νi − iSνρi ) 〈X〉

using the first ward identity (3.54), we can rewrite the previews equation as

〈T ρν − T νρ X〉 =
∑

i

δ(x− xi)Sνρi (3.56)

where Sνρi is the spin matrix for the i-th field of X. Applying the same pro-
cedure using the dilatation currents Dµ = T µν x

ν and the associated generator

D = −i (xµ∂µ + d)

the ward identity for dilatation is

∂µ 〈T µν xν X〉 = −
∑

i

δ(x− xi) (xνi ∂i,ν + di) 〈X〉 (3.57)

Using (3.54) again, we find

〈
T µµX

〉
= −

∑

i

δ(x− xi)di 〈X〉 (3.58)

where di is the scaling dimension of the i-th field of the productX. Eqs (3.54),
(3.56), and (3.58) are the Ward identities corresponding to the conformal
group.

3.9 Effective field theories

In physics we need to describe physical phenomenons that take place at
different scales. Since a fundamental theory of particle physics is not yet
known, we must contend with describing interactions in a particular scale
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with fields relevant to that scale. The theoretical tool to achieve this goal
is effective field theory(EFT), which is a field theory that describes physics
below some energy scale Λ, as opposed to a fundamental theory which is valid
in all energy scales. In fact, every field theory known to date is an effective
field theory, including the SM. The fact that we know that our theory is
valid up to a scale free us from the requirement of renormalizibility which
represents the biggest challenge in constructing a fundamental theory. One
only need to build an EFT with finite number of parameters that describe
physics up to effects suppressed by

(
E
Λ

)
, where E is the energy of the particles

in the effective theory. The approach used in EFT is the Wilsonian approach
[27, 28] which consists in taking the lagrangian of a fundamental theory
splitting the fields into light modes and heavy modes, and then integrating
out the heavy fields above some cutt-off Λ. However, In practical calculations,
it is much easier to work with dimensional regularization in the MS scheme
instead of the cuttuff Λ . To be more concrete let us consider a field theory
with a characteristic energy scale Λ. We are only interested in physics at
low energy E � Λ. The dynamic of the full theory can be described by
correlation function defined by the following path integral

〈0|T φ(x1) . . . φ(xn) |0〉 =
1

Z

∫
DφeiS(φ)φ(x1) . . . φ(xn) (3.59)

where Dφ =
∏

xi

dφ(xi) and Z =
∫
DφeiS(φ). To obtain the low energy

effective theory, we split the field φ into

φ = φl + φh (3.60)

where φh contain all Fourier modes with ω > Λ and φl contains the low
energy modes ω < Λ. Since we are only interested in low energy physics,
we keep the light modes and integrate out the heavy modes. The resulting
correlation function is

〈0|T φl(x1) . . . φl(xn) |0〉 =

∫
DφleiSΛ(φl)φl(x1) . . . φl(xn) (3.61)

where SΛ(φl) is defined by

SΛ =

∫
DφheiS[φl,φh] (3.62)

S[φl, φh] being the full action from eq(3.59). SΛ is called the wilsonian ef-
fective action. Because we have eliminated the high energy modes we end
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up with a non-local action according to uncertainty principle (∆x ∼ 1
Λ
6= 0).

We now expand the non-local action as a series of local operators. This is
allowed because E � Λ. The result has the form

SΛ =

∫
dxLeffΛ (x) (3.63)

with
LeffΛ =

∑
giOi(x) (3.64)

LeffΛ is called the effective lagrangian and gi are referred to as Wilson coef-
ficients. If we perform a dimensional analysis on the lagrangian (3.64), we
find that the coefficient gi can be written as

gi = ci
1

Λdi−D (3.65)

where ci is dimensionless coupling constant and di is the scaling dimension
of the operator Oi. Since gi, hence ci, is obtained by integrating out the
heavy degree of freedom, all the information about the high energy scale M
(the scale of the fundamental theory) is encoded in ci. We can classify the
operators Oi into three categories according to their dimensions di

• Relevant if (di < D)

• Marginal if (di = D)

• Irrelevant if (di > D)

The operator Oi with di > D are called irrelevant because they are sup-
pressed by power of

(
E
Λ

)
and become small at low energies. Operators with

di = D are called marginal or renormalizable and they can teal toward rel-
evancy or irrelevancy because quantum effects could modify their scaling
behavior on either side. Operators with di < D are relevant because their
effect becomes more important as the energy decreases.
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Unparticle model

4.1 Introduction

Unparticle model was proposed by Howard Georgi in 2007 [3] as a theoretical
curiosity. He suggested the existence of scale invariant hidden sector interact-
ing with SM particles at high energies with a connector sector, a messenger
that carries both the SM quantum numbers and the hidden sector quantum
numbers. The use of a mediator is a way of simplifying the complicated and
nonlinear interactions at high energies. Georgi has chosen to model these
scale invariants fields with the so called Banks-Zaks fields (BZ) proposed
in 1984 by the said authors. Banks-Zaks fields [29] are massless fermions
which belong to the fundamental representation of the SU(N) group, whose
dynamics depends on the numbers of flavours NF in the fundamental rep-
resentation. These fields have non-trivial fixed point generated by running
the renormalized coupling using renormalization group flow. In his paper,
Georgi used these fields to construct an interacting theory between the SM
and the hidden sector which flows into a scale invariant theory at low en-
ergy. In what follow, we describe briefly the general principles beyond the
unparticle model.

Georgi model is based on two interacting sectors, a visible sector (SM
fields) and a hidden sector (BZ fields) which communicate with each other
through the exchange of very heavy field, of mass M . Using effective field
theory as a tool, we can integrate out the mediator fields and we end up with
an effective Lagrangian describing the interactions as follows

L ∝ c0M
dv+dh−DOvOh + c1M

2dv−DOvOv + c2M
2dv+2−DOv∂

2Ov + . . . (4.1)

where Ov are the operators representing the SM fields and Oh represent the
BZ fields. The coefficients ci are dimensionless coupling constants. The first
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term in this Lagrangian represents the interaction between BZ fields and the
SM fields. The second term is a contact interaction between the SM fields.
The other terms are non-renormalizable interactions suppressed by power of
M . So, the term relevant to our model is the first one, which can be expressed
in the generic form

1

M c
OSMOBZ (4.2)

If we decrease the energy further, according to BZ [29], a scale invariant sector
emerges at a scale Λ. Below this scale dimensional transmutation occurs.
That is the dimensionless coupling ci transmute into dimensionful coupling
and the BZ operators match onto unparticle operators. The interaction (4.2)
becomes

CU
ΛdBZ−dU

M
OSMOU (4.3)

where dU is the scaling dimension of the unparticle operator OU .
Describing unparticle physics using the term (4.3) has multiple advan-

tages:

1. In the low energy theory, below the scale Λ, the BZ fields decouple
from the SM fields which help us keep the IR theory (unparticles)
scale invariant, otherwise the situation would have been a lot more
complicated.

2. If we make the mass of the mediator field M large enough, the coupling
between the SM and unparticles becomes very weak at low energy,
which explain the absence of detection of these novel fields in currents
colliders.

Because of scale invariance, unparticles do not obey the usual dispersion
relation ω2 = c2k2 +m2c4/h̄. Unparticles do not have a definite mass. They
are either massless fields or they have a continuous mass distribution. This
is because the presence of a mass term in the Lagrangian destroys scale
invariance. If we take the dilatation operator D, it can be shown that

eiαDP 2e−iαD = e2αP 2 (4.4)

If we apply this equation on the vacuum state, it shows that scale invari-
ance cannot exist in a massive theory. Thus, conformal symmetry must be
spontaneously broken. To prove this concept let us consider discrete massive
state with p2 = m2, using the conformal algebra of eq(3.5), we find

[P 2, D ] = P µ[Pµ, D ] + [P µ, D ]Pµ = 2iP 2 (4.5)
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Then,
〈p| [P 2, D ] |p〉 = 2i 〈p|P 2 |p〉 = 2im2, (4.6)

in the other hand we have

〈p| [P 2, D ] |p〉 = 〈p|m2D −Dm2 |p〉 = 0 (4.7)

which means m2 = 0. Hence, all massive states break conformal symme-
try. A conformal invariant theory should only contains massless states or a
continuous mass spectrum.

4.2 Phase space

In order to compute the probability distribution involving unparticle states,
we have to find the phase space of unparticles. For this reason, we start with
the Whitman correlation function defined as

W (x) = 〈0|OU(x)O†U(0) |0〉 (4.8)

If we insert the complete set of intermediate unparticles momentum states

1 =

∫
dλ |λ〉 〈λ| (4.9)

and we use the properties of the translation operator P , we find

〈0|OU(x)O†U(0) |0〉 = 〈0| eiPxOU(0)e−iPxO†U(0) |0〉

=

∫
dλ

∫
dλ
′ 〈0|OU(0) |λ′〉 〈λ′| e−iPx |λ〉 〈λ|O†U(0) |0〉

=

∫
dλe−ipλ.x|〈0|OU(0) |λ〉|2 (4.10)

inserting the unity relation
∫ d4p

(2π)4 δ
4 (p− pλ) = 1, we can rewrite the Whit-

man function (4.10) as

〈0|OU(x)O†U(0) |0〉 =

∫
d4p

(2π)4 e
−ip.xρU(p2) (4.11)

where ρU(p2) is a Lorentz invariant spectral density function defined by

ρU(p2) = (2π)4

∫
dλδ4 (p− pλ) |〈0|OU(0) |λ〉|2

= (2π)4 θ(p0)θ(p2)ρ̃U(p2) (4.12)
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the heavyside step function θ(p0) ensures that the spectral function contains
only positive energies and θ(p2) ensure that unparticles are not tackyonic. If
we substitute the second equation from (4.12) in eq(4.11) we get the following

〈0|OU(x)OU(0) |0〉 =

∫
d4p

(2π)4 e
−ip.xθ(p0)θ(p2)ρ̃U(p2) (4.13)

In the other hand, from eq(3.46) we see that conformal symmetry imposes
a particular form on the two point correlation function. For scalar field it is
given by

〈0|OU(x)OU(0) |0〉 = Cs
1

(2π)2

1

(x2)d
(4.14)

In momentum space this expression translates to

〈0|OU(x)OU(0) |0〉 = Cs
Γ(2− d)

4d−1Γ(d)

∫
d4p

(2π)4 e
ip.x(p2)d−2 (4.15)

Now, comparing eq(4.13) and eq(4.15), we find

ρ̃U(p2) = A(d)(p2)d−2 (4.16)

where A(d) is a normalization factor to be determined. Using eq(4.12), the
spectral density for unparticle states is

ρU(p2) = A(d)θ(p0)θ(p2)(p2)d−2 (4.17)

this expression allow us to define the phase space of an unparticle state with
momentum p as follows

dΦU(p) = ρU(p2)
d4p

(2π)4 = A(d)θ(p0)θ(p2)(p2)d−2 d4p

(2π)4 (4.18)

We see that this expression is similar to the phase space of n massless scalar
particles:

dΦn(p) =
n∏

i=1

d4pi

(2π)3 δ
(
p2
i

)
θ
(
p0
i

)
(2π)2 δ4

(
p−

n∑

i=1

pi

)
d4p

(2π)4

= A(n)θ(p0)θ(p2)(p2)n−2 d4p

(2π)4 (4.19)

where

A(n) =
16π2
√
π

(2π)2n

Γ (n+ 1/2)

Γ(n− 1)Γ(2n)
(4.20)
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So, if we take the limit n → d and A(n) → A(d), the normalization factor
(4.20) takes the form

A(d) =
16π2
√
π

(2π)2d

Γ (d+ 1/2)

Γ(d− 1)Γ(2d)
(4.21)

d, the scale dimension of unparticles, can take fractional values which is a
peculiar feature of unparticle physics. The phase space of an unparticle state
resembles that of a fractional number of massless particles. Or as Georgi put
it

“Unparticle stuff with scale dimension d look like a non-integral number
of invisible particles”

If we take the limit d→ 1, we can recover the phase space of an ordinary
scalar particle as follows

lim
d→1

A(d) = 2π, lim
d→1

(p2)d−2 =
1

p2
(4.22)

Using the propriety lim
ε→0

εθ(x)

x1−ε = δ(x), we find

lim
d→1

A(d)θ(p0)θ(p2)(p2)d−2 = 2πθ(p0)δ(p2) (4.23)

So,

dΦd→1(p2) = 2πθ(p0)δ(p2)
d4p

(2π)4 (4.24)

which is indeed the phase space of a massless scalar particle.

4.3 Propagators

In this section we use the spectral density, constrained by conformal symme-
try, and the Kallen-Lemman spectral representation of propagators [30, 31]
to find the propagators in momentum space for unparticles fields with differ-
ent spins. We start by considering a scalar unparticle Us. We can define the
propagator in configuration space as follows

∆Us(x− y) =

∫
dDp

(2π)D
eip(x−y)∆̃Us(p

2) (4.25)

where ∆̃Us is the propagator of scalar unparticle in momentum space. We
start our derivation by the definition of propagator in configuration space

∆Us(x− y) = 〈0|TUs(x)Us(y) |0〉 (4.26)
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where T denote the time ordered product of the Uss operators. Inserting the
completeness relation ∫

dλ |λ〉 〈λ| = 1 (4.27)

between the operators Us(x) and Us(y), we find

∆+
Us(x− y) =

∫
dλ 〈0| Us(x) |λ〉 〈λ| Us(y) |0〉 (4.28)

here the + in ∆ indicates that x0 > y0, so we dropped the time ordered
product T . Now, using the transformation property

Us(x) = e−iP ·xUs(0)eiP ·x (4.29)

where P is the momentum operator which satisfy P |λ〉 = pλ |λ〉, eq(4.28)
becomes

∆+
Us(x− y) =

∫
dλ 〈0| e−iP ·xUs(0)eiP ·x |λ〉 〈λ| e−iP ·yUs(0)eiP ·y |0〉

=

∫
dλeipλ·(x−y)|〈0| Us(0) |λ〉|2 (4.30)

Now inserting the unity relation

∫
δ(p− pλ)

dpD

(2π)D
= 1

in eq(4.30) we get the following formula

∆+
Us(x− y) =

∫
dpD

(2π)D

∫
dλeip·(x−y)|〈0| Us(0) |λ〉|2δ(p− pλ) (4.31)

Next, we define the spectral density

ρ(p2) =

∫
|〈0| Us(0) |λ〉|2δ(p− pλ)dλ

which is the same spectral density defined in the previews section (eq(4.12)).
so, we can write

ρU(p2) = θ(p2)θ(p0)ρ̃U(p2) (4.32)

with
ρ̃U(p2) = A(d)(p2)ds−2 (4.33)
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Now, we come back to the time ordered green function ∆Us(x− y). We can
write it as

〈0|TUs(x)Us(y) |0〉 = θ(x0−y0) 〈0| Us(x)Us(y) |0〉+θ(y0−x0) 〈0| Us(y)Us(x) |0〉
(4.34)

where 〈0| Us(y)Us(x) |0〉 = ∆+
Us(y−x) is the propagator for y0 > x0. ∆+

Us(x−
y) and ∆+

Us(y − x) can be rewritten in the following form

∆+
Us(x− y) =

∫ ∞

0

dM2ρ(M2)

∫
dpD

(2π)D
eip·(x−y)δ(p2 +M2)

=

∫ ∞

0

dM2ρ(M2)∆+(x− y;M2) (4.35)

and

∆+
Us(y − x) =

∫ ∞

0

dM2ρ(M2)

∫
dpD

(2π)D
eip·(y−x)δ(p2 +M2)

=

∫ ∞

0

dM2ρ(M2)∆+(y − x;M2) (4.36)

Using Eqs(4.35,4.36), the time ordered propagator function is

〈0|TUs(x)Us(y) |0〉 = −i
∫ ∞

0

dM2ρ(M2)∆F (x− y;M2) (4.37)

where ∆F (x − y;M2) is the Feynman propagator for a spinless particle of
mass M :

−i∆F (x−y;M2) = θ(x0−y0)∆+(x−y;M2)−θ(y0−x0)∆+(y−x;M2) (4.38)

the scalar unparticle propagator in momentum space is

∆̃Us(p
2) =

∫
dDx exp(−ip · (x− y)) 〈0|TUs(x)Us(y) |0〉 (4.39)

Knowing that
∫
dDx exp(−ip · (x− y)))∆F (x− y;M2) =

1

p2 +M2 − iε (4.40)

this yields the spectral representation of unparticle propagator:

∆̃(p2) =

∫ ∞

0

dM2 ρ(M2)

p2 +M2 − iε =

∫ ∞

0

dM2A(d)(M2)ds−
D
2

p2 +M2 − iε (4.41)
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performing the integration we get finally

∆̃Us(p
2) =

A(dUs)

2sin(πdUs)

−i
(−p2 − iε)D/2−dUs

(4.42)

in 4 spacetime dimension D = 4, this expression becomes

∆̃Us(p
2) =

A(dUs)

2sin(πdUs)

−i
(−p2 − iε)2−dUs

(4.43)

the factor (−p2 − iε)2−dUs can be expanded in the following way

(
−p2 − iε

)2−dUs =
(
p2
)2−dUs

(
(−1− iε)2−dUs − (−1 + iε)2−dUs

)

≈
(
p2
)2−dUs (e−i(dUs−2)π − e−i(dUs−2)π

)

=
(
p2
)2−dUs (−2i sin(dUsπ)) (4.44)

So eq(4.43) simplifies to

∆̃Us(p
2) = A(dUs)

(
p2
)dUs−2

(4.45)

in the limit dUs → 1 we recover the familiar propagator of an ordinary scalar
field

lim
dUs→1

∆̃Us(p
2) =

1

p2
(4.46)

4.3.1 Fermionic unparticle

Proceeding in the same manner as in the scalar case, we first consider the
green function of fermionic unparticles

〈0|TUf (x)Uf (0) |0〉 =

∫
dλ 〈0|TUf (x) |λ〉 〈λ|TU †f (0) |0〉

=

∫
dλeipλ·x|〈0| Uf (0) |λ〉|2

=

∫
d4peip·x

∫
dλδ(p− pλ)|〈0| Uf (0) |λ〉|2

=

∫
d4peip·xθ(p2)θ(p0)ρ̃(p2) (4.47)

where ρ̃(p2) is the spectral density corresponding to unfermions in the final
states.
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In the other hand, we can use conformal symmetry to determine the two
point function in configuration space of fermionic fields, the result is the
following

〈0|TUf (x)Uf (0) |0〉 =
Cf

(2π)2

�x

(−x2 + iε)dUf
(4.48)

this expression can be transformed to momentum space via Fourier transfor-
mation as follows

〈0|TUf (x)Uf (0) |0〉 =

∫
d4p

(2π)4 e
ip·xA(dUf − 1/2)�p

(
p2
)dUf−5/2

(4.49)

comparing equation (4.49) to eq(4.47) we can deduce the expression for the
spectral density ρ(p2)

ρ(p2) = A(dUf − 1/2)θ(p2)θ(p0)�p
(
p2
)dUf−5/2

= θ(p2)θ(p0)ρ̃(p2) (4.50)

Now, using the Källén–Lehmann spectral representation (4.41), we compute
the propagator in momentum space

∆Uf (p
2) =

1

2π

∫ ∞

0

dM2 ρ(M2)

p2 −M2 + iε
(4.51)

=
A(dUf − 1/2)

2π

∫ ∞

0

dM2 (M2)dUf−5/2

p2 −M2 + iε �
p (4.52)

=
A(dUf − 1/2)

2 cos
(
πdUf

) i�p

(−p2 − iε)5/2−dUf
(4.53)

Using the same method described in eq(4.44), this expression simplifies to

∆Uf (p
2) = −A(dUf − 1/2)�p(p

2)5/2−dUf (4.54)

4.3.2 Vector unparticles

For vector unparticles the Whittman function is defined as

〈0|TUµv (x)Uνv (0) |0〉 =

∫
dλ 〈0| Uµv (x) |λ〉 〈λ| Uνv (0) |0〉

=

∫
dλe−ipλ·x 〈0| Uµv (x) |λ〉 〈λ| Uνv (0) |0〉

=

∫
d4pe−ip·xA(dUv)θ(p

2)θ(p0)ρ̃(p2)V µν (4.55)
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where the spectral density ρ̃(p2) is defined as before eq(4.33). In the other
hand if we Fourier transform the two point function (3.49) for vector confor-
mal fields into momentum space we find

〈0|TUµv (x)Uνv (0) |0〉 =
Cv

(2π)2

1

(−x2 + iε)

(
ηµν − 2xµxν

x2

)

=

∫
d4p

(2π)4
eip·xA(dUv)(p

2)dUv−2

(
ηµν − 2(dUv − 2)

dUv − 1

pµpν

p2

)

(4.56)

Comparing eq(4.55) to (4.56) we find

ρ(p2) = A(dUv)θ(p
2)θ(p0)(p2)dUv−2 (4.57)

and

V µν = ηµν − 2(dUv − 2)

dUv − 1

pµpν

p2
(4.58)

then, using the spectral representation of the propagator (4.41), we have

∆Uv(p
2) =

1

2π

∫ ∞

0

dM2 ρ(M2)

p2 −M2 + iε
V µν

=
1

2π

∫ ∞

0

dM2A(dUv)(M
2)dUv−2

p2 −M2 + iε
V µν

=
A(dUv)

2 sin(πdUv)

i

(
ηµν − 2(dUv − 2)

dUv − 1

pµpν

p2

)

(−p2 − iε)2−dUv
(4.59)

4.3.3 Tensor unparticles

Due to conformal invariance tensor unparticles are restricted to be either
antisymmetric or symmetric and traceless. Pursuing a similar procedure as
outlined above, we can construct the propagator for tensor unparticles.

We start by considering the case of antisymmetric unparticle tensor (Uµν =
−Uνµ). The two point function is given by

〈0|TUµνt (x)Uρσt (0) |0〉 =

∫
dλ 〈0| Uµνt (x) |λ〉 〈λ| Uρσt (0) |0〉

=

∫
dλe−ipλ·x 〈0| Uµνt (x) |λ〉 〈λ| Uρσt (0) |0〉

=

∫
d4pe−ip·xA(dUt)θ(p

2)θ(p0)ρ̃(p2)T µνρσ (4.60)
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where ρ̃(p2) is the usual spectral density and T µνρσ is a function of p that
encode the tensorial structure of the propagator (4.60). Now, going back
to eq(3.50) we see that conformal symmetry restrict the form of two point
function of tensorial fields to be

〈0|TUµνt (x)Uρσt (0) |0〉 = Ct
1

(2π)2

1

(x2)dUt

(
[Iµρ(x)Iνσ(x) + µ↔ ν]− 1

2
ηµνηρσ

)

(4.61)

where Iµρ(x) = ηµν − 2
xµxν

x2
. Performing a Fourier transformation to mo-

mentum space we get

〈0|TUµνt (x)Uρσt (0) |0〉 =

∫
d4p

(2π)4
eip·xA(dUt)(p

2)dUt−2T µνρσ(p) (4.62)

here the tensor structure is encoded in T µνρσ as

T µνρσ = dUt(dUt − 1)(ηµρηνσ + µ↔ ν) +

(
2− dUt

2
(dUt + 1)

)
ηµνηρσ

− 2(dUt − 1)(dUt − 2)

(
ηµρ

pνpσ

p2
+ ηµσ

pνpρ

p2
+ µ↔ ν

)

+ 4(dUt − 2)

(
ηµν

pρpσ

p2
+ ηρσ

pµpν

p2

)
+ 8(dUt − 2)(dUt − 3)

pµpνpρpσ

(p2)2

(4.63)

Comparing eq(4.62) to eq(4.60), we find the spectral density

ρ(p2) = θ(p0)θ(p2)A(dUt)(p
2)dUt−2T µνρσ(p) (4.64)

In the case of symmetric and traceless unparticle operator Uµµ = 0, T µνρσ(p)
takes the form

T µνρσ(p) =
1

2

(
Πµρ(p)Πνσ(p) + Πµσ(p)Πνρ(p)− 2

3
Πµν(p)Πρσ(p)

)
(4.65)

with Πµν(p) = −ηµν +
pµpν

p2
. Now, substituting the expression of ρ(p2) from

eq(4.64) in the spectral representation (4.41) we find the propagator of tensor
unparticles

∆Ut(p
2) =

1

2π

∫
dM2 ρ(M2)

p2 −M2 + iε
T µνρσ(p)

=
1

2π

∫
dM2A(dUt)(M

2)dUt−2

p2 −M2 + iε
T µνρσ(p)

=
A(dUt)

2 sin(πdUt)

i

(−p2 − iε)2−dUt
T µνρσ(p) (4.66)
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4.4 Deconstruction of unparticles

The unparticle fields as defined by Georgi are continuous distribution of
massless states. Another representation of unparticles was introduced by
Stephanov [32]. In his model, unparticle are represented as an infinite tower
of massive particles with spacing ∆, which when it goes to zero ∆ → 0, we
recover the familiar unparticle representation.This deconstructed version of
unparticles can be very useful in practical calculations (see for exemple ref
[8]). Here we give a brief description of this model.

The correlation function of a scalar unparticle operator is
∫
d4xeip·.x 〈0|TO(x)O†(0) |0〉 =

∫
dM2

2π
ρO(M2)

i

P 2 −M2 + i
(4.67)

scale invariance restrict the form of the spectral function ρ to be a power of
M2 as we have seen in previews sections

ρO(M2) = AdU (M2)dU−2 (4.68)

where AdU is the normalization constant defined in eq(2.11), and we also have

ρO(M2) = 2π
∑

λ

δ(M2 −M2
λ) 〈0|O(0) |λ〉 (4.69)

The sum is in fact an integral over the normalized states |λ〉. If we assume
scale invariance to be broken in a controllable way, in place of a continuous
spectrum of states |λ〉, we will have a discrete tower of states with the spacing
between them controlled by the parameter ∆

M2
n = ∆2n (4.70)

If we introduce the matrix element

F 2
n = |〈0|O(0) |λn〉|2 (4.71)

we can then write

ρO(M2) = 2π
∑

n

δ(M2 −M2
n)F 2

n (4.72)

and the correlation function becomes
∫
d4xeip·x 〈0|TO(x)O†(0) |0〉 =

∑

n

iF 2
n

p2 −M2
n + i

(4.73)

in the limit ∆ → 0, the sum becomes an integral which must match the
definition (4.67). So, we get

F 2
n =

AdU
2π

∆2(M2
n)dU−2 (4.74)
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4.5 Conformal symmetry breaking

Unparticles are conformal fields with a continuous mass distribution, but in
reality we have not yet observed any fields with these characteristics. The
absence of detection of scale invariant fields indicates that if unparticles exist
in nature conformal symmetry must be broken at some energy scale. To
implement conformal symmetry breaking (CSB) in the unparticle sector, the
authors in [33] proposed the coupling of unparticle fields with Higgs boson
as described by the following interaction term

1

MdUV −2
|H|2OUV (4.75)

OUV stands for the banks Zaks fields. At the energy scale Λ this interaction
term flows to

C
ΛdUV −dIR

MdUV −2
|H|2OIR = |H|2U (4.76)

where U is scalar unparticle field with scaling dimension 1 < dU = dIR < 2.
The Higgs potential is as usual

V0 = m2|H|2 + λ|H|4 (4.77)

Where m2 is a term that can take either positive or negative values. When
the Higgs field acquires VEV, via the normal process of electroweak sym-
metry breaking, it introduces a scale into the unparticle sector through the
interaction term (4.75) which breaks the conformal invariance of the theory.
In the language of renormalization group flows we say that the unparticle
sector flows away from its conformal fixed point at an energy scale ��Λ. Below
this scale the unparticle stuff behave like a traditional particle sector

��Λ4−dU =

(
Λ

M

)dUV −dU
M2−dUv2 (4.78)

To keep the conformal window open, we must have Λ > ��Λ. This condition
put a lower limit on the energy scale at which unparticle physics may be
observed directly, which is consistent with experimental observations since
no unparticle signals have yet been observed.

Since we de not know the details of CSB mechanism we can propose a
simple model to incorporate scale invariance breaking into our theory. As is
done in [5], we can adjust the spectral density (4.17) to be

ρ(p2) = AdUθ(p
0)θ(p2 −m2)(p2 −m2)dU−2 (4.79)
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where m2 is the energy scale at which conformal invariance is broken. This
term is equivalent to eliminating the mass modes of the unparticle spectrum
inferior to m2 which means that we introduced a mass gap into the the-
ory. Another interesting proposal have been suggested by Delgado et al [34].
In their model the authors use a deconstructed version of unparticle fields
(introduced in the previews section) to compute the VEV of the unparticle
sector induced by its interaction with the Higgs field. In this case, there
is an interplay between the unparticle sector and the Higgs sector in which
the Higgs sector breaks conformal invariance of the unparticle sector and the
unparticle sector, via the mixed term vHU , shifts the VEV of the Higgs so
the Higgs mass is no longer the familiar

√
2λv2 but it is defined as the pole

of the spectral function constructed from mixed spectrum of the Higgs and
unparticles.

The authors of [4] propose a slightly different interaction between the
Higgs and unparticles. In this case, they imposed a parity symmetry on
the unparticle fields to stabilize the vacuum so unparticles can be a viable
candidate for dark matter. But the parity symmetry means that unparticle
can only interact as pairs. So, the interaction term with the Higgs field is
the following

Lint =
c

Λ2dU−2
U2
(
H†H

)
(4.80)

4.6 Unparticle interactions

Unparticle interactions with SM particles are organized in the form of an
effective interaction in accordance with the generic term

C
ΛdBZ−dSM

MdSM+dBZ−4
U

OSMU (4.81)

the term Λ serves as a cutuff energy scale to suppress interactions, so that
the absence of detection of unparticles at low energy experiments, can be
justified by the weakness of the coupling between the SM operators and
unparticles. We can in principle construct different interaction terms in the
form of (4.81) with scalar, vector, tensor and fermionic unparticles. Since in
this chapter we only consider unparticle singlet under the SM gauge group
the only symmetry that we must implement is Lorentz invariance. For scalar
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unparticles we have the following interactions [35, 36]

λ0
1

ΛdU−1
ffU

λ0
1

ΛdU−1
fiγ5fU

λ0
1

ΛdU
fγµγ5f∂µU

1

ΛdU

[
λ0GαβG

αβ + λ
′
0GαβG̃

αβ
]
U (4.82)

Gαβ is the gauge field strength tensor which can be gluons, photons, or weak
gauge bosons and G̃αβ is given by

G̃αβ =
1

2
εµναβG

µν (4.83)

f is a standard model fermion which can be singlet or doublet. the term λ is
a dimensionless coupling constant defined generically in eq(4.81). For tensor
unparticles we have the following interactions

− 1

4
λ2

1

ΛdU
fi
[
γµγ5
←→
D ν + γνγ5

←→
D µ

]
fUµν

1

ΛdU

[
λ2GµαG

α
ν + λ

′
2GµαG̃

α
ν

]
Uµν (4.84)

where Dµ = ∂µ − ig
σa

2
W a
µ − ig′ Y2Bµ is the covariant derivatives in the SM.

For vector unparticles we have

λ1
1

ΛdU−1
fγµfUµ

λ1
1

ΛdU−1
fγµγ5fUµ (4.85)

fermionic unparticle interactions with SM particles are more stringent due
to Lorentz invariance. We can only construct terms of the form

fγµUfAµ (4.86)

here Aµ is a standard model gauge boson.

4.7 The AdS/CFT correspondence

Since the paper by Maldacena [37] that established a correspondence between
a 5d gravity in the anti de sitter space (AdS) and a 4d CFT theory on
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the boundary, a lot of effort have been devoted to holographic models in
many area of theoretical physics [38]. The advantage of this approach is
that problems which are very difficult typically in CFT are easier to solve
on the gravity side and vise versa. The unparticle model, which is a CFT
theory is no exception. The use of the correspondence to better understand
unparticle physics is still a work in progress. Authors like Cacciapaglia et
al have found a way to use this duality to deal with the limitation of the
effective lagrangian description of unparticles. For example in the paper
[5] it was shown that cross section for two particle scattering mediated by
charged scalar unparticle takes negative value for scale dimension d > 2, but
in [39] the case for d > 2 was treated successfully using the correspondence.
However, despite the advantages of the AdS/CFT correspondence, there are
considerable challenges, particularly that not all CFT have AdS duals, and
in case they do, finding them is not a trivial task. As Georgy himself said,
”while Ads based models can provide very useful guidance and examples,
their ability to describe realistic unparticle physics scenarios is limited” [40]
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Gauged unparticles

The nontrivial form of the unparticle propagator, with non integer scaling
dimension d, leads to nonlocal action for unparticles which make a gauge
invariant formalism harder to construct. In this case, the minimal coupling
prescription used in the SM is no longer valid. Fortunately, a similar problem
has been solved by Terning [41] et al and Holdom [42] in the context of non
local chiral quark model. Based on that work the first gauged unparticle
model was constructed by Cacciapaglia et al [5]. Later works in this subject,
based on different approches, subsequently followed [43, 44, 9]. In this chapter
we follow the work of [5].

The presence of unparticle that carries SM quantum numbers can modify
drastically the low energy phenomenology, including electroweak precision
observables, which are in excellent agreement with the SM predictions. For
this reason conformal symmetry must be broken, so that unparticles fields
don’t appear at low energies in contradiction with experiments. One way to
implement conformal symmetry breaking is to modify the unparticle propa-
gator with an IR cut-offm, which parametrize our ignorance about the details
of conformal symmetry breaking. In this case the spectral representation of
scalar unparticles is

∆s(p,m) =

∫
d4xeip·x 〈0|TUs(x)U †s (0) |0〉

=
AdUs
2π

∫ ∞

m2

dM2
(
M2 −m2

)dUs−2 i

p2 −M2 + iε
(5.1)

performing the integration in (5.1) we find

∆s(p,m) =
AdUs

2 sin(πdUs)

i

Σs(p2,m2)
(5.2)
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where Σs(p
2,m2) = (m2

s − p2)
2−dUs . In the limit dUs → 1 this propagator

reduces to a propagator for free massive scalar field. The effective action
corresponding to the propagator (5.2) is the following

S =

∫
d4p

(2π)4
U †s (p)∆̃−1

s (p,m)Us(p)

=
2 sin(πdUs)

AdUs

∫
d4p

(2π)4
U †s (p)

(
m2 − p2

)2−dUs Us(p) (5.3)

If we Fourier transform the action (5.3) we arrive at a non local action in the
configuration space

S =

∫
d4xd4yU †s (x)∆−1

s (x− y)Us(y) (5.4)

where ∆−1
s (z) is the Fourier transform of ∆̃−1

s (p,m)

∆−1
s (z) =

∫
d4p

(2π)4
eip·z∆̃−1

s (p,m) (5.5)

To insure gauge invariance we introduce a Wilson line W [45] between the
two unparticle fields

S =

∫
d4xd4yU †s (x)∆−1

s (x− y)W (x, y)Us(y) (5.6)

where

W (x, y) = P exp

(
−igsT a

∫ y

x

Aaµ(u)duµ
)

(5.7)

where T a are the generators of the SM groups SU(3)C , SU(2)L or U(1)Y . The
vectors fields Aaµ are the corresponding gauge bosons. P is the path ordering
operators for the fields Aaµ between the points x and y. The Wilson line
(5.7) obeys the Mandelstam condition, applied by that author to quantum
electrodynamics, as follows [46]

∂

∂xµ
W (x, y) = igT aAaµW (x, y) (5.8)

a similar condition holds for y. The action (5.6) is invariant under the fol-
lowing gauge transformations

Us → U−1Us, U †s → U †sU, Aµ = T aAaµ → U−1AµU +
1

ig
U−1∂µU (5.9)
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as the Wilson line transforms as

W (x, y)→ U−1(x)W (x, y)U(y) (5.10)

Now, using the same techniques developed by Terning et al, we can derive
the vertex functions describing the interactions between unparticle fields and
any number of gauge bosons Aµ. For the propose of our work, we only focus
on the coupling between unparticles and one (AaµUsU †s )or two gauge bosons
(Aa

µA
b
νUsU †s ) as follows

igsΓ
aµ =

iδ3S

δAaµ(q)δU †s (p+ q)Us(p)
= igsT

a(2pµ + qµ)Σs
1(p, q)

= igsT
a(2pµ + qµ)

2 sin(πdUs)

AdUs

[
(m2 − (p+ q)2)2−dUs − (m2 − p2)2−dUs

]

2p · q + q2

(5.11)

we can check that this vertex satisfies the Ward-Takahashi identity [47, 48]

iqµΓaµ = ∆−1
s (p+ q,m)T a − T a∆−1

s (p,m) (5.12)

For the coupling between unparticles and two gauge bosons we have

ig2
sΓ

abµν =
iδ3S

δAaµ(q1)δAaν(q2)δU †s (p+ q1 + q2)Us(p)
= ig2

s

[
{T a, T b}ηµνΣs

1(p, q1 + q2) + T aT b(2p+ q2)ν(2p+ 2q2 + q1)µ

× Σs
2(p, q2, q1) + T bT a(2p+ q1)µ(2p+ 2q1 + q2)µΣs

2(p, q1, q2)
]

(5.13)

where the form factors Σs
1 and Σs

2 are given by

Σs
1(p, q) =

2 sin(πdUs)

AdUs

[
(m2 − (p+ q)2)2−dUs − (m2 − p2)2−dUs

]

2p · q + q2

=
2 sin(πdUs)

AdUs

Σs
0(p+ q)− Σs

0(p)

(p+ q)2 − p2
(5.14)

Σs
2(p, q1, q2) =

Σs
1(p, q1 + q2)− Σs

1(p, q1)

(p+ q1 + q2)2 − (p+ q1)2
(5.15)

In the canonical limit, dUs → 1, eq(5.11) and (5.13) reduce to the usual
coupling between standard scalar fields and gauge bosons

igsΓ
aµ = igsT

a(2p+ q)µ (5.16)
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ig2
sΓ

abµν = ig2
s

(
T aT b + T bT a

)
(5.17)

Now, we repeat the same process for fermionic unparticles. The propagator
of unfermion is

∆f (p,m) =
AdUf
2π

∫ ∞

m2

dM2(M2 −m2)5/2−dUf i�p

p2 −M2 + iε

=
AdUf

2 cos
(
dUfπ

) i

(�p−m)Σf
0(p)

(5.18)

where Σf
0(p) = (m2 − p2)3/2−dUf . The corresponding effective action is

S =

∫
d4p

(2π)4
U †f (p)∆̃−1

f (p,m)Uf (p)

= −2 cos
(
dUfπ

)

AdUf

∫
d4p

(2π)4
Uf (p)

(m2 − p2)5/2−dUf

�p+m
Uf (p)

=
2 cos

(
dUfπ

)

AdUf

∫
d4p

(2π)4
Uf (p)(m2 − p2)3/2−dUf (�p−m)Uf (p)

=
2 cos

(
dUfπ

)

AdUf

∫
d4p

(2π)4
Uf (p)Σf

0(p)(�p−m)Uf (p) (5.19)

To implement gauge symmetry we Fourier transform the action (5.19) into a
no local action in configuration space and introduce a Wilson line as follows

S =
2 cos

(
dUfπ

)

AdUf

∫
d4xd4yUf (x)

(
−i��∂yΣf

0(x− y)
)
W (x, y)Uf (y) (5.20)

where W (x, y) is the same as (5.7).
Now, we derive the vertex functions for the coupling of unfermion with

one and two gauge bosons by taking functional derivative of the appropriate
fields. The coupling between two unfermion and one gauge boson is given by

igfΓ
aµ =

iδ3S

δAaµ(q)δUf (p+ q)Uf (p)
= i

gf
2

{
γµT a

[
Σf

0(p+ q) + Σf
0(p)

]
+ (2�p+ �q − 2m)T a(2p+ q)µΣf

1(p, q)
}

(5.21)

where the form factor Σf
1 is the following

Σf
1(p, q) =

[
(m2 − (p+ q)2)3/2−dUf − (m2 − p2)3/2−dUf

]

2p · q + q2
(5.22)
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One can check that the vertex (5.21) satisfies the Ward-Takahachi Identity

iqµΓaµ =
[
∆−1
f (p+ q,m)−∆−1

f (p,m)
]
T a (5.23)

The coupling between two unfermions and two gauge bosons is given by

ig2
fΓ

abµν =
iδ3S

δAaµ(q1)δAbν(q2)δUf (p+ q1 + q2)Uf (p)

= i
g2
f

2

{
(2�p+��q1 +��q2 − 2m)

[
{T a, T b}ηµνΣf

1(p, q1 + q2) + T aT b(2p+ q2)ν

× (2p+ 2q2 + q1)µΣf
2(p, q2, q1) + T bT a(2p+ q1)µ(2p+ 2q1 + q2)µ

× Σf
2(p, q1, q2)

]
+ γµΓabνf (p, q2, q1) + γνΓabµf (p, q1, q2)

}
(5.24)

where the form factor Σf
2 is given by

Σf
2(p, q1, q2) =

Σf
1(p, q1 + q2)− Σf

1(p, q1)

(p+ q1 + q2)2 − (p+ q1)2
(5.25)

and Γabµf is the following

Γabµf (p, q1, q2) = T aT b(2p+ q1)µΣf
1(p, q2) + T bT a(2p+ 2q2 + q1)µΣf

1(p+ q2, q1)
(5.26)

In the canonical limit, dUf → 3/2, we recover the usual vertex of fermion-
gauge bosons couplings

igfΓ
aµ
f → igfT

aγµ (5.27)

ig2
fΓ

abµν
f → 0 (5.28)

The second vertex vanishes in (dUf → 3/2) which means that the coupling
between two unfermion and two gauge bosons is a novel interaction for un-
particle physics(there is no equivalent interaction in the SM).

5.1 Unparticle coupling with SM electroweak

gauge bosons

In our work, we will need to derive expressions for unparticle coupling with
SM electroweak gauge bosons W , Z and γ. For this purpose, we derive
in this section the vertices that enter in the computation of polarization
functions Πγγ, ΠZZ , ΠγZ , and ΠWW . We will use the results to calculate
the oblique parameters and the evolution of the running coupling induced by
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virtual scalar unparticles that carries both the color charge and electroweak
quantum numbers.

We start from the action

S =

∫
d4xd4y

(
U †L(x)∆̃−1

U (x− y)WL(x, y)UL(y)

+ U †R(x)∆̃−1
U (x− y)WR(x, y)UR(y)

)
(5.29)

here we suppose that unparticles carries weak quantum numbers. UL is a left
handed unfermion doublet that transform under the group SU(2)L and UR is
a singlet under the group SU(2), but transform according to the hypercharge
group U(1)Y .

To insure gauge invariance we have introduced the Wilson lines WL,R

defined as

WL(x, y) = P exp

(∫ y

x

(−igT aW a
µ (u)− ig′Y Bµ(u))duµ

)
(5.30)

WR(x, y) = exp

(∫ y

x

−ig′QBµ(u)duµ
)

(5.31)

where as usual P denotes path ordering that effects on the generators T a

in the unparticle representation. Q is the charge operator defined in the
same representation. g, g′ are the gauge coupling of the SM groups SU(2)L
and U(1)Y respectively. W a

µ are the weak gauge bosons associated with the
three generators of the isospin group SU(2)L and Bµ is the gauge boson
associated with the group UY . To find the interaction vertices of unparticles
with the physical gauge bosons Z, W and γ we replace W a

µ , Bµ in eq(5.30)
and eq(5.31) according to the relations

W µ
3 = cos(θW )Zµ + sin(θW )Aµ (5.32)

Bµ = − sin(θW )Zµ + sin(θW )Aµ (5.33)

W µ = (W1 + iW2)/
√

2,W µ† = (W1 − iW2)/
√

2 (5.34)

where θW is the Weinberg mixing angle. Substituting in the action (5.29) we
get

S =

∫
d4xd4y

{
U †L(x)∆̃−1

U (x− y)P exp
(
− ig

∫ y

x

1

2
(σ−W−

µ (u) + σ+W+
µ (u))duµ

−
∫ y

x

i(g
σ3

2
cos(θW ) + g′Y1 sin(θW ))Zµ(u)duµ − e

∫ y

x

(σ3

2
+ Y1

)
Aµ(u)duµ

)
UL

+ U †R(x)∆̃−1
U (x− y) exp

(
+ig′

∫ y

x

sin(θW )QZµ(u)duµ + ie

∫ y

x

QAµ(u)duµ
)
UR
}

(5.35)

53



Chapter 5 – Gauged unparticles

where UL, UR are defined as

UL =
1− γ5

2
U

UR =
1 + γ5

2
U (5.36)

Substituting the last two expressions in eq(5.35) we find

S =

∫
d4xd4y

{
U †(x)∆̃−1

U (x− y)P exp
(
− ig

∫ y

x

1

2
(σ−W−

µ (u) + σ+W+
µ (u))duµ

−
∫ y

x

i(g
σ3

2
cos(θW ) + g′Y1 sin(θW ))Zµ(u)duµ − e

∫ y

x

(σ3

2
+ Y1

)
Aµ(u)duµ

)1− γ5

2
U(y)

+ U †(x)∆̃−1
U (x− y) exp

(
+ig′

∫ y

x

sin(θW )QZµ(u)duµ + ie

∫ y

x

QAµ(u)duµ
)

1 + γ5

2
U(y)

}

(5.37)

where U = UL + UR is the parity conserving fermionic unparticle. Now,
using functional derivatives with respect to the appropriate fields we find the
coupling of unparticles to one photon

igfΓ
aµ =

iδ3S

δAaµ(q)δU †f (p+ q)Uf (p)

= i
eQ

2

{
γµ
[
Σf

0(p+ q) + Σf
0(p)

] 1− γ5

2
+ (2�p+ �q − 2m) (2p+ q)µΣf

1(p, q)
1− γ5

2

}

+ i
eQ

2

{
γµ
[
Σf

0(p+ q) + Σf
0(p)

] 1 + γ5

2
+ (2�p+ �q − 2m) (2p+ q)µΣf

1(p, q)
1 + γ5

2

}

= i
eQ

2

{
γµ
[
Σf

0(p+ q) + Σf
0(p)

]
+ (2�p+ �q − 2m) (2p+ q)µΣf

1(p, q)
}

(5.38)

this vertex is equal to the one described in eq(5.21) if we make the following
substitutions

gf = e, T a = Q (5.39)

If we take the canonical limit dUf → 3
2
, igfΓ

aµ becomes

igfΓ
aµ = ieQγµ (5.40)

which is exactly the vertex describing the interaction between an ordinary
fermion and a photon.
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The coupling between two unfermion and two photon is found to be

ig2
fΓ

abµν =
iδ3S

δAaµ(q1)δAbν(q2)δUf (p+ q1 + q2)Uf (p)

= i
e2

2

{
(2�p+��q1 +��q2 − 2m)

1− γ5

2

[
2Q2ηµνΣf

1(p, q1 + q2) +Q2(2p+ q2)ν

×2p+ 2q2 + q1)µΣf
2(p, q2, q1) +Q2(2p+ q1)µ(2p+ 2q1 + q2)µΣf

2(p, q1, q2)
]

+γµ
1− γ5

2
Γabνf (p, q2, q1) + γν

1− γ5

2
Γabµf (p, q1, q2)

}

+i
e2

2

{
(2�p+��q1 +��q2 − 2m)

1 + γ5

2

[
2Q2ηµνΣf

1(p, q1 + q2) +Q2(2p+ q2)ν

2p+ 2q2 + q1)µΣf
2(p, q2, q1) +Q2(2p+ q1)µ(2p+ 2q1 + q2)µΣf

2(p, q1, q2)
]

+γµ
1 + γ5

2
Γabνf (p, q2, q1) + γν

1 + γ5

2
Γabµf (p, q1, q2)

}

(5.41)

after simplification we find

ig2
fΓ

abµν = i
e2

2

{
(2�p+��q1 +��q2 − 2m)

[
2Q2ηµνΣf

1(p, q1 + q2) +Q2(2p+ q2)ν

× 2p+ 2q2 + q1)µΣf
2(p, q2, q1) +Q2(2p+ q1)µ(2p+ 2q1 + q2)µΣf

2(p, q1, q2)
]

+ γµΓabνf (p, q2, q1) + γνΓabµf (p, q1, q2)
}

(5.42)

where the form factors Σf
1 , Σf

2 are the same functions defined in the previews
section eqs(5.22,5.25). Γabµf is given by

Γabµf = Q2
(

(2p+ q2)µΣf
1(p, q1) + (2p+ 2q1 + q2)µΣf

1(p+ q1, q2)
)

(5.43)

Repeating the same procedure we find the coupling between unfermion
and Z bosons. The U †UZµ vertex is

igfΓ
aµ =

iδ3S

δZaµ(q)δU †f (p+ q)Uf (p)

= i
g
σ3

2
− g′Y sin(θW )

2

{
γµ
[
Σf

0(p+ q) + Σf
0(p)

] 1− γ5

2
+ (2�p+ �q − 2m) (2p+ q)µ

× Σf
1(p, q)

1− γ5

2

}
− ig

′ sin(θW )Q

2

{
γµ
[
Σf

0(p+ q) + Σf
0(p)

] 1 + γ5

2

+ (2�p+ �q − 2m) (2p+ q)µΣf
1(p, q)

1 + γ5

2

}
(5.44)
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using the relation e = g sin(θW ) = g′ cos(θW ) and the Gell-Mann–Nishijima

formula Y = Q− σ3

2
we find

igfΓ
aµ = i

e

4 sin(θW ) cos(θW )

{
γµ
[
Σf

0(p+ q) + Σf
0(p)

] (σ3

2
− 2 sin(θW )2Q− σ3

2
γ5

)

+ (2�p+ �q − 2m)
(σ3

2
− 2 sin(θW )2Q− σ3

2
γ5

)
(2p+ q)µΣf

1(p, q)
}

(5.45)

If we take the limit dUf → 3
2
, this vertex reduces to

igfΓ
aµ = i

e

2 sin(θW ) cos(θW )
γµ
(σ3

2
− 2 sin(θW )2Q− σ3

2
γ5

)
(5.46)

this expression is the same vertex describing the the interaction between an
ordinary fermion and a Z boson in the SM.
The vertex describing the interaction between two unfermions and two Z
bosons is the following

ig2
fΓ

abµν =
iδ3S

δZaµ(q1)δZbν(q2)δUf (p+ q1 + q2)Uf (p)

= i
e2

4 sin(θW )2 cos(θW )2

×
{

(2�p+��q1 +��q2 − 2m)

(
σ2

3

4
+ 2 sin(θW )4Q2 − sin(θW )2σ3Q− γ5

(
σ2

34− sin(θW )2σ3Q
))

×
[
ηµνΣf

1(p, q1 + q2) + (2p+ q2)ν(2p+ 2q2 + q1)µΣf
2(p, q2, q1) + (2p+ q1)µ(2p+ 2q1 + q2)µ

×Σf
2(p, q1, q2)

]
+ γµΓZZνf (p, q2, q1) + ΓZZµf (p, q1, q2)

}

(5.47)

where the form factor ΓZZµf is defined as

ΓZZµf (p, q2, q1) =

(
σ2

3

4
+ 2 sin(θW )4Q2 − sin(θW )2σ3Q− γ5

(
σ2

3

4
− sin(θW )2σ3Q

))

×
(

(2p+ q2)µΣf
1(p, q1) + (2p+ 2q1 + q2)µΣf

1(p+ q1, q2)
)

(5.48)

in the same manner we derive the vertex functions for weak gauge bosons
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W , W †. For the vertex U †UW µ we have

igfΓ
aµ =

iδ3S

δW aµ(q)δU †f (p+ q)Uf (p)

= i
e

4 sin(θW )
σ−
{
γµ
[
Σf

0(p+ q) + Σf
0(p)

]
+ (2�p+ �q − 2m) (2p+ q)µΣf

1(p, q)
} 1− γ5

2
(5.49)

for the vertex U †UW µW ν we have the following result

ig2
fΓ

abµν =
iδ3S

δW aµ(q1)δW bν(q2)δUf (p+ q1 + q2)Uf (p)

= i
e2

8 sin(θW )2

{
(2�p+��q1 +��q2 − 2m)

[
{σ−, σ+}ηµνΣf

1(p, q1 + q2) + σ−σ+(2p+ q2)ν

× 2p+ 2q2 + q1)µΣf
2(p, q2, q1) + σ+σ−(2p+ q1)µ(2p+ 2q1 + q2)µΣf

2(p, q1, q2)
]

+ γµΓWWν
f (p, q2, q1) + γνΓWWµ

f (p, q1, q2)
}1− γ5

2
(5.50)

where the form factor ΓWWµ
f is given by

ΓWWµ
f = σ−σ+(2p+q1)µΣf

1(p, q2)+σ+σ−(2p+2q2 +q1)µΣf
1(p+q2, q1) (5.51)

here σ−, σ+ are the lowering and raising operators, receptively, of the the
SU(2) group defined by

σ− =
σ1 − iσ2√

2
, σ+ =

σ1 + iσ2√
2

(5.52)

where σ1, σ2 are Pauli matrices. Finally, we derive the vertex function de-
scribing the coupling between two unfermion, one photon and one Z boson
U †UZµAν as follows

ig2
fΓ

abµν =
iδ3S

δZaµ(q1)δAbν(q2)δUf (p+ q1 + q2)Uf (p)

= i
e2

4 sin(θW ) cos(θW )

×
{

(2�p+��q1 +��q2 − 2m)
[
ηµνΣf

1(p, q1 + q2) + (2p+ q2)ν(2p+ 2q2 + q1)µΣf
2(p, q2, q1)

+(2p+ q1)µ(2p+ 2q1 + q2)µΣf
2(p, q1, q2)

]
+ γµΓZZνf (p, q2, q1) + γνΓZZµf (p, q1, q2)

}

×
(σ3

2
− γ5

(
σ32− 2 sin2(θW )Q

))
(5.53)
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V

V’

Uf

Uf

Uf

V

V’

Figure 5.1: The one loop contribution to polarization functions from charged
fermionic unparticle fields, V and V ′ stand for γ, Z or W .

Taking a closer look at the structure of the previews vertices, we can give a
general form for the interactions between one gauge boson and two unfermion
as follows,

igaΓ
aµ = iga

{
γµ(Ta + Tbγ5)

[
Σf

0(p+ q) + Σf
0(p)

]
+ (2�p+ �q − 2m) (Ta + Tbγ5)

× (2p+ q)µΣf
1(p, q)

}
(5.54)

in the same manner we can generalize the expression for the coupling between
two gauge bosons and two unfermion with the general expression

igagbΓ
abµν = igagb

{
(2�p+��q1 +��q2 − 2m) (T1 + T2γ5)

[
ηµνΣf

1(p, q1 + q2) + (2p+ q2)ν

× 2p+ 2q2 + q1)µΣf
2(p, q2, q1) + (2p+ q1)µ(2p+ 2q1 + q2)µΣf

2(p, q1, q2)
]

+ γµ(T1 + T2γ5)Γabνf (p, q2, q1) + γν(T1 + T2γ5)Γabµf (p, q1, q2)
}

(5.55)

5.2 Polarization functions for unfermion

Now that we have derived Feynman vertices for the interaction between
unparticles and electroweak gauge bosons, we can calculate the unparticle
contribution to the polarization functions Πabµν . Later we will use these
functions to compute the fermionic unparticle contribution to the oblique
parameters. In Fig (5.1), we show a typical diagram of the fermionic unpar-
ticles loops contributions to the self-energy functions Πabµν at the one loop
level, where V and V ′ stand for γ, Z or W .

The expression for the diagram in the right hand side (a) is given by

Πabµν
(a) = −µ4−D

∫
dDp

(2π)D
Tr
(
Γaµ(p, q, p+ q)S(p)Γbν(p+ q,−q,−p)S(p+ q)

)

(5.56)
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For the diagram on the left hand side (b) we have

Πabµν
(b) = −µ4−D

∫
dDp

(2π)D
Tr
(
Γabµν(p, q, p+ q)S(p)

)
(5.57)

where Γaµ(p, q, p+q) is the three point vertex function (5.54), Γabµν(p, q, p+q)
is the four point vertex function (5.55), S(p) is the unfermion propagator in
momentum space and µ is the renormalization constant. The complicated
Feynman vertices and the non standard form of the propagator (5.18) do
not allow the application of the usual tensor reduction recipe to compute the
integrals (5.56) and (5.57). However, If we look at the large p region of the
loop integrals, we can affect a Taylor expansion of the functions Σf

0(p + q)
for small q, this is allowed because the beta function of the theory is sensible
only to the UV regime [49]. We begin by writing Σf

0(p) as follows

Σf
0(p) = (m2 − (p)2)3/2−dUf = (−1)3/2−dUf ((p)2 −m2)3/2−dUf (5.58)

(For simplicity, from here on, we will use d to denote the scale dimension
of scalar and fermionic unparticles, instead of dUf ,Us). If we make change of
variable p′ = p+ q we get

Σf
0(p) = Σf

0(p′ − q)
= (−1)3/2−df ((p′)2 −m2 + q2 − 2p′ · q)3/2−df

= (−1)3/2−d((p′)2 −m2 + y)3/2−d (5.59)

Applying a Taylor expansion with respect to y we find

Σf
0(p′−q) = Σf

0(p′)
(

1− 3/2− d
p′2 −m2

(q2−2q.p′)+
(3/2− df )(1/2− d)

(p′2 −m2)2
(q2−2q.p′)2+· · ·

)

(5.60)
from this expansion we get

Σf
0(p+ q)− Σf

0(p) = −
(

Σf
0(p′ − q)− Σf

0(p′)
)

=
3/2− d
p′2 −m2

(q2 − 2q.p′)− (3/2− d)(1/2− d)

(p′2 −m2)2
(q2 − 2q.p′)2 + · · ·

(5.61)

Taking the first order in the expansion coefficient y = q2 − 2q.p′, the form
factor Σf

1(p, q) becomes

Σf
1(p, q) ≈ (−1)3/2−d 3/2− d

((p+ q)2 −m2)d−1/2
(5.62)
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Using this approximation for Σf
1(p, q) we can derive a similar approximation

for Σf
2(p, q1, q2) as follows

Σf
2(p, q1, q2) =

Σf
1(p, q1 + q2)− Σf

1(p, q1)

(p+ q1 + q2)2 − (p+ q1)2

≈ (−1)3/2−d(3/2− d)

(p+ q1 + q2)2 − (p+ q1)2

(
1

((p+ q1 + q2)2 −m2)d−1/2
− 1

((p+ q1)2 −m2)d−1/2

)

= (−1)5/2−d(3/2− d)
((p′ + q2)2 −m2)d−1/2 − (p′2 −m2)d−1/2

((p′ + q2)2 − (p′)2)((p′ + q2)2 −m2)d−1/2(p′2 −m2)d−1/2

(5.63)

where in this case p′ = p + q1. now we take a first order approximation for
the expression ((p′ + q2)2 −m2)d−1/2

((p′ + q2)2 −m2)d−1/2 = (p′2 + q2
2 + 2p′ · q2 −m2)d−1/2

= (p′2 −m2)d−1/2

(
1 +

q2
2 + 2p′ · q2

p′2 −m2

)d−1/2

≈ (p′2 −m2)d−1/2

(
1 + (d− 1/2)

q2
2 + 2p′ · q2

p′2 −m2

)

(5.64)

plugging the result (5.64) in eq(5.63) we find finally

Σf
2(p, q1, q2) ≈ (−1)5/2−d(3/2− d)(d− 1/2)

((p+ q1)2 −m2)((p+ q1 + q2)2 −m2)d−1/2
(5.65)

Using these approximations we can proceed with the calculation of the loop
integrals represented in Fig (5.1). We note that the second diagram, which
involves interaction of two unfermion with two gauge bosons, does not have
an equivalent in the SM. Eq (5.56) can be written as

Πabµν
(a) = −µ4−D

∫
dDp

(2π)D
Tr
(
Γaµ(p, q, p+ q)(�p+m)Γbν(p+ q,−q,−p)(�p+ �q +m)

)

(p2 −m2)5/2−d((p+ q)2 −m2)5/2−d

(5.66)
and Eq(5.57) becomes

Πabµν
(b) = −µ4−D

∫
dDp

(2π)D
Tr
(
Γabµν(p, q, p+ q)(�p+m)

)
(p2 −m2)5/2−d

(5.67)

60



Chapter 5 – Gauged unparticles

Substituting the expressions from eq(5.62) and (5.65) in the previews two
equations we find the following

Πabµν
(a) = −µ4−D

∫
dDp

(2π)D

{
Nµν

1

( 1

(p2 −m2)d−1/2((p+ q)2 −m2)5/2−d

+
1

(p2 −m2)5/2−d((p+ q)2 −m2)d−1/2
+

2

(p2 −m2)((p+ q)2 −m2)

)
+Nµν

2 (
3

2
− d)

×
( 1

(p2 −m2)d+1/2((p+ q)2 −m2)5/2−d +
1

(p2 −m2)2((p+ q)2 −m2)

)
+Nµν

3 (
3

2
− d)

×
( 1

(p2 −m2)5/2−d((p+ q)2 −m2)d+1/2
+

1

(p2 −m2)2((p+ q)2 −m2)

)

+
Nµν

4 (3
2
− d)2

(p2 −m2)2((p+ q)2 −m2)2

}
(5.68)

where

Nµν
1 = Tr

(
γµ(T a1 + T a2 γ5)(�p+m)γν(T b1 + T b2γ5)(�p+ �q +m)

)

= 4
(
ηµν
(
m2A− p · qB − p2B

)
+ (2pµpν + qµpν + qνpµ)B

)
(5.69)

with
A = Tr

(
T a1 T

b
1 − T a2 T b2

)
, B = Tr

(
T a1 T

b
1 + T a2 T

b
2

)
(5.70)

Nµν
2 = (2p+ q)ν Tr

(
γµ(T a1 + T a2 γ5)(�p+m)(2�p+ �q − 2m)(T b1 + T b2γ5)(�p+ �q +m)

)

= 4
(
qµ
(
Bp2 − Cm2

)
− pµ

(
2m2 − 2pq̇ − 2p2 − q2

)
B
)

(2p+ q)ν (5.71)

with
C = Tr

(
T a1 T

b
1 + 3T a2 T

b
2

)
(5.72)

Nµν
3 = (2p+ q)µ Tr

(
(2�p+ �q − 2m)(T a1 + T a2 γ5)γν(T b1 + T b2γ5)(�p+ �q +m)

)

= (2p+ q)µ4
(
qν
(
Bp2 − Am2

)
− pν

(
2m2 − 2pq̇ − 2p2 − q2

)
B
)

(5.73)

and

Nµν
4 = Tr

(
(2�p+ �q − 2m)(T a1 + T a2 γ5)(�p+m)(2�p+ �q − 2m)(T b1 + T b2γ5)(�p+ �q +m)

)

× (2p+ q)µ(2p+ q)ν

= 4B

(
−p2

(
8m2 − 8p · q − 3q2

)
− p · q(8m2 − q2) +m2

(
4m2 − q2D

B

)

+ 2(p · q)2B + 4p4B

)
(2p+ q)µ(2p+ q)ν (5.74)
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with
D = Tr

(
3T a1 T

b
1 + T a2 T

b
2

)
(5.75)

In the same manner substituting the approximated form factor (5.65)
leads to the following expression for the four point polarization function
(5.57)

Πabµν
(b) = −µ4−Dgagb

∫
dDp

(2π)D

3
2
− d

(p2 −m2)5/2−d

{
N ′1

(
2ηµν

1

(p2 −m2)d−1/2

− (2p− q)ν(2p− q)µ(d− 1
2
)

((p− q)2 −m2)(p2 −m2)d−1/2
− (2p+ q)ν(2p+ q)µ(d− 1

2
)

((p+ q)2 −m2)(p2 −m2)d−1/2

)

+N ′2
µ

(
(2p− q)ν

((p+ q)2 −m2)d−1/2
+

(2p− q)ν
(p2 −m2)d−1/2

)
+N ′3

ν

(
(2p+ q)µ

((p− q)2 −m2)d−1/2

+
(2p− q)µ

(p2 −m2)d−1/2

)}
(5.76)

where

N ′1 = 2 Tr((�p+m)(�p−m)(T1 + T2γ5))

= 8 Tr(T1)(p2 −m2), (5.77)

N ′2
µ = Tr((�p+m)γµ(T1 + T2γ5))

= 4 Tr(T1)pµ (5.78)

and

N ′3
ν = Tr((�p+m)γν(T1 + T2γ5))

= 4 Tr(T1)pν (5.79)

where T1 is the operator corresponding to the four point vertex function de-
fined in eq(5.55). With tensor manipulation of the p terms in the numerators,
we can reduce all integrals in eq(5.68) and (5.76) into ones of the following
form

I(k, α, β) =

∫
dDp

(2π)D
(p2)k

(p2 −m2)α((p+ q)2 −m2)β
(5.80)

which is found to be (more details in appendix A)

I(k, α, β) =
Γ(α)Γ(β)

Γ(α + β)
3F2

({
1, α + β − D

2
− k, α, β

}
,

{
α + β

2
,
α + β + 1

2

}
,
τ

4

)

(5.81)
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where 3F2 is hypergeometric function that converges for τ
4

= q2

4m2 ≤ 1, which
is consistent with experimental data since q2, the momentum transfer in elec-
troweak precision experiments, is in the vicinity of M2

Z and we will assume
that m the CBS is superior to MZ . We can express the polarization func-
tions (5.56) and (5.57) in terms of hypergeometric functions like the one in
(5.81). Since our goal is to calculate the oblique parameters and the beta
function of gauge coupling, we concentrate on the physically relevant part of
the polarization functions (5.68,5.76), which is the transverse part, the part
proportional to the metric tensor Πabµν(q2) = iηµνΠab(q2) + . . . . Hence, the
polarization function expressed by the sum of diagram (a) and (b) in Fig
(5.1) (Πab = Πab

(a) + Πab
(b)) is the following

Πab(q2) =− 8i
gagb

(4π)
D
2

(m2)
D
2
−2

{
Γ(2− D

2
)
{
F1 + (

3

2
− d)BF2 + (

3

2
− d)2BF3

}

+ Γ(3− D

2
)(

3

2
− d)2BF4

}
− 4i

g2

(4π)
D
2

(m2)
D
2
−2 Γ(2− D

2
)

1− D
2

Tr(T1)F5

(5.82)

where the superscript a and b denote the SM gauge bosons γ, Z, or W and
the functions from F1 to F5 are the following

F1 = −Bm2

[
3F2

({
2− D

2
, d− 1

2
,
5

2
− d
}
,

{
1,

1

2

}
,
τ

4

)
+ 2F1

(
1, 2− D

2
,
1

2
,
τ

4

)]

+Am2

[
3F2

({
3− D

2
, d− 1

2
,
5

2
− d
}
,

{
1,

3

2

}
,
τ

4

)
+ 2F1

(
1, 3− D

2
,
3

2
,
τ

4

)]

+
Bq2

Γ(4)

[(
d− 1

2

)(
5

2
− d
)

3F2

({
3− D

2
, d+

1

2
,
7

2
− d
}
,

{
2,

5

2

}
,
τ

4

)

+2F1

(
2, 3− D

2
,
5

2
,
τ

4

)]
(5.83)

,

F2 =
2m2 − q2

Γ(3)

[
3F2

({
3− D

2
, d+

1

2
,
5

2
− d
}
,

{
2,

3

2

}
,
τ

4

)
+ 2F1

(
1, 3− D

2
,
3

2
,
τ

4

)]

−m2 1 + D
2

1− D
2

[
3F2

({
2− D

2
, d+

1

2
,
5

2
− d
}
,

{
2,

3

2

}
,
τ

4

)
+ 2F1

(
1, 2− D

2
,
3

2
,
τ

4

)]

+
2q2

Γ(5)

[(
d+

1

2

)(
5

2
− d
)

3F2

({
3− D

2
, d+

3

2
,
7

2
− d
}
,

{
3,

5

2

}
,
τ

4

)

+22F1

(
2, 3− D

2
,
5

2
,
τ

4

)]
(5.84)
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,

F3 =

(
1 +

D

2

)[−8m2 + 3q2 + 2q2

n

Γ(4)
2F1

(
2, 3− D

2
,
5

2
,
τ

4

)
− 4q2

16
n

+ 8

Γ(6)
2F1

(
3, 3− D

2
,
7

2
,
τ

4

)]

− 4

Γ(4)
m2

(
2 + D

2

) (
1 + D

2

)

1− D
2

2F1

(
2, 2− D

2
,
5

2
,
τ

4

)
(5.85)

,

F4 = −
4m2 − q2D

B
Γ(4)

2F1

(
2, 4− D

2
,
5

2
,
τ

4

)
− 4

(
8q2 − q4

m2

)

Γ(6)
2F1

(
3, 4− D

2
,
7

2
,
τ

4

)

− 4q2 Γ(4)2

Γ(8)
2F1

(
4, 4− D

2
,
9

2
,
τ

4

)
(5.86)

and

F5 = m2

[
6−8 (d− 1/2) 2F1

(
1, 2− D

2
,
3

2
,
τ

4

)
+23F2

({
2− D

2
, d− 1

2
,
5

2
− d
}
,

{
1,

3

2

}
,
τ

4

)]

(5.87)
The result (5.82) is not renormalizable. To find the renormalized polarization
function Πab

ren(q2), we use the MS renormalization scheme. After separating
the divergent and the finite parts, we arrive at the renormalized polarization
function (see appendix A for details)

Πab
ren(q2) = −igagb

2π2
B(F ′1 + (

3

2
− d)2F ′2)− ig2

Tr(T1)(
3

2
− d)

4π2
F ′3

− ln

(
µ2

m2

){gagb
2π2

(F ′4 + F ′5) + g2
Tr(T1)(

3

2
− d)2

4π2
2m2

}
(5.88)

where

F ′1 = m2

[
− 2 +

1

3
τ

(
d− 1

2

)(
5

2
− d
)

4F3

(
1, 1, d+

1

2
,
7

2
− d, 2, 2, 5

2
,
τ

4

)

+
1

3
τ 2F1

(
1, 1,

5

2
,
τ

4

)]
+m2

(
3

2
− d
)[

4 +
1

4
τ

(
d+

1

2

)(
5

2
− d
)

× 4F3

(
1, 1, d+

3

2
,
7

2
, 2, 3,

5

2
,
τ

4

)
+

1

2
τ 2F1

(
1, 1,

5

2
,
τ

4

)]
(5.89)

64



Chapter 5 – Gauged unparticles

,

F ′2 =
8m2 − 11

4
q2

Γ(4)
2F1

(
1, 2,

5

2
,
τ

4

)
+

24

Γ(6)
q2

2F1

(
1, 3,

7

2
,
τ

4

)

4

Γ(4)
m2

(
5 +

12

5
τ 3F2

(
1, 1, 3, 2,

7

2
,
τ

4

))
− 4m2 − q2D

B

Γ(4)
2F1

(
2, 2,

5

2
,
τ

4

)

− 4

Γ(6)

(
8q2 − q4

m2

)
2F1

(
2, 3,

7

2
,
τ

4

)
− 4q2 Γ(4)2

Γ(8)
2F1

(
2, 4,

9

2
,
τ

4

)
(5.90)

,

F ′3 = −6m2 + 8m2

(
d− 1

2

)(
1 +

1

6
τ 2F1

(
1, 1,

5

2
,
τ

4

))
− 2m2

(
1 +

1

6
τ

×
(
d− 1

2

)(
5

2
− d
)

4F3

(
1, 1, d+

1

2
,
7

2
− d, 2, 2, 5

2
,
τ

4

))
(5.91)

,

F ′4 = 4Bm2 + Am2

(
3F2

(
{1, d− 1

2
,
5

2
− d}, {1, 3

2
}, τ

4

)
+ 2F1

(
1, 1,

3

2
,
τ

4

))

+B

(
3

2
− d
)2(

3

Γ(4)

(
−8m2 +

7

2
q2

)
2F1

(
1, 2,

5

2
,
τ

4

)
− 144

Γ(6)
q2

× 2F1

(
1, 3,

7

2
,
τ

4

)
+

48

Γ(4)
m2

)
(5.92)

and

F ′5 = B

(
3

2
− d
){

2m2 − q2

Γ(3)

(
3F2

(
{1, d− 1

2
,
5

2
− d}, {1, 3

2
}, τ

4

)
+ 2F1

(
1, 1,

3

2
,
τ

4

))

+
2q2

Γ(5)

((
d+

1

2

)(
5

2
− d
)

3F2

(
{1, d+

3

2
,
7

2
− d}, {3, 5

2
}, τ

4

)
+ 22F1

(
1, 2,

5

2
,
τ

4

))

+ 6m2

}
(5.93)

Now that we have found the general expression for the fermionic polariza-
tion function, we can express the polarization functions ΠγZ , ΠZZ ,Πγγ and
ΠWW just by replacing the constants A, B, C and D and Tr(T1) for each
case. Following the definition of these constants from eqs(5.70,5.72,5.75) and
relaying on the definition of the corresponding generators (deduced from the
vertex functions (5.38,5.42,5.45,5.47,5.49,5.50,5.53) we find the following re-
sults(more detail in appendix B):
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For Πγγ we have

A = B = q2
u + q2

d

D = 3(q2
u + q2

d)

ga = gb =
e

2
, g2 =

e2

2
Tr(T1) = q2

u + q2
d (5.94)

For ΠZZ we have the following

A = 2 sin2(θW )(qd − qu + 2 sin2(θW )(q2
u + q2

d))

B = 1 + 2 sin2(θW )(qd − qu) + 4 sin4(θW )(q2
u + q2

d)

D = 2 + 6 sin2(θW )(qd − qu) + 12 sin4(θW )(q2
u + q2

d)

ga = gb =
e

4 sin(θW ) cos(θW )
, g2 =

e2

4 sin2(θW ) cos2(θW )

Tr(T1) =
1

2
(1 + 2 sin2(θW )(qd − qu) + 4 sin4(θW )(q2

u + q2
d)), (5.95)

For ΠγZ we get

A = B =
1

2
(qu − qd − 4 sin2(θW )(q2

u + q2
d))

D =
3

2
(qu − qd − 4 sin2(θW )(q2

u + q2
d))

ga =
e

2
, gb =

e

4 sin(θW ) cos(θW )
, g2 =

e2

8 sin(θW ) cos(θW )

Tr(T1) =
1

2
(qu − qd), (5.96)

and for ΠWW we have

A = 0

B = 1

D = 2

ga = gb =
e

4 sin(θW )
, g2 =

e2

8 sin2(θW )

Tr(T1) =
1

2
, (5.97)

with the computation of the self energy functions to the electroweak gauge
bosons induced by unfermions, we can proceed with the calculation of the
oblique parameters
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5.3 Oblique parameters for unfermions

As we have seen in chapter 2, the oblique parameters are used to represent
the contribution of new physics models to electroweak observable measured
at low energy. In this work, we will use this approach to constrain the
parameters space of the gauged unparticle model described previously. In the
literature there are six independent parameters . The STU parameters were
introduced in the original paper of Peskin and Takachi [18]. In that paper,
the authors made the assumption that the new physics is much heavier than
the masses of the gauge bosons MZ ,MW which allowed them to consider a
linear approximation to calculate the polarization functions Πab. In our case,
the equivalent to the mass of the new states is the CSB scale m. We de not
known at what energy scale the conformal symmetry is broken, but we will
assume m is in the range [100, 1000] Gev. We begin by defining the S and T
parameters in terms of the polarization functions Πab as follows

S =
4s2

wc
2
w

α

(
ΠZZ(m2

Z)− ΠZZ(0)

m2
Z

− c2
w − s2

w

swcw
Π
′
Zγ(0)− Π

′
γγ(0)

)
(5.98)

T =
1

α

(
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

)
(5.99)

where the derivatives Π
′
ab(q

2) are defined by Π
′
ab(q

2) = dΠab(q
2)/dq2. α is the

fine structure constant and sw = sin(θW ), cw = cos(θW ). Using the results
for the polarization functions (5.88) and making the appropriate substitution
from eqs(5.94. . . 5.97)) in (5.98 ) and (5.99 ) we find the expressions for the
oblique parameters to be

T =
m2

8πs2
wc

2
wM

2
Z

{
23

6
+ 4d− 2d2 +

(
1 + 2s2

w(qd − qu) + 4s4
w(q2

u + q2
d)
)(
−7

2
+ 6d− 10

3
d2

−2

3

(
3

2
− d
)2

1 + 3s2
w(qd − qu) + 6s4

w(q2
u + q2

d)

1 + 2s2
w(qd − qu) + 4s4

w(q2
u + q2

d)

)
+ ln

(
µ2

m2

)(
−5

4
+

14

2
d− 4d2

+
(
1 + 2s2

w(qd − qu) + 4s4
w(q2

u + q2
d)
)(

43− 44d+ 12d2

+
4s2

w ((qd − qu) + 2s2
w(q2

u + q2
d))

1 + 2s2
w(qd − qu) + 4s4

w(q2
u + q2

d

))}
(5.100)

and
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S = −(1 + 2s2
w(qd − qu) + 4s4

w(q2
u + q2

d))

2π

(
F ′′1 + F ′′2 + ln

(
µ2

m2

)
(F ′′3 + F ′′4 + F ′′5 )

)

+
c2
w − s2

w

48π

(
qd − qu + 2s2

w(q2
u + q2

d)

70

(
6115− 6219d+ 568d2 + 420d3

)
+ 8(qd − qu)

× (3/2− d)2(d− 1/2) + ln

(
µ2

m2

)(
qd − qu − 4s2

w(q2
u + q2

d)
) (
−16− 33d+ 28d2 − 4d3

)
)

+
s2
wc

2
w(q2

u + q2
d)

24π

(
7123− 4959d+ 848d2 − 140d3

70
+ ln

(
µ2

m2

)(
−16− 33d+ 28d2 − 4d3

)
)

(5.101)

where

F ′′1 =
1

3

(
d− 1

2

)2(
5

2
− d
)

4F3

(
1, 1, d+

1

2
,
7

2
, 2, 2,

5

2
,
τ1

4

)
+

1

4

(
d+

1

2

)

×
(

5

2
− d
)(

3

2
− d
)

4F3

(
1, 1, d+

3

2
,
7

2
− d, 2, 3, 5

2
,
τ1

4

)
+

(
3

2
− d
)2

×
((

4

3

m2

M2
Z

− 11

24

)
2F1

(
1, 2,

5

2
,
τ1

4

)
− 4

3

m2

M2
Z

+
1

5

(
2F1

(
1, 3,

7

2
,
τ

4

)

+83F2

(
1, 1, 3, 2,

7

2
,
τ1

4

)))
(5.102)

F ′′2 = −
(

3

2
− d
)2((

2

3

m2

M2
Z

− 1

3

)
1 + 3s2

w(qd − qu) + 6s4
w(q2

u + q2
d)

1 + 2s2
w(qd − qu) + 4s4

w(q2
u + q2

d)
2F1

(
2, 2,

5

2
,
τ1

4

)

+
1

30
(8− τ1)2F1

(
2, 3,

7

2
,
τ1

4

)
+

1

35
2F1

(
2, 4,

9

2
,
τ1

4

)
− 2m2

3M2
Z

×1 + 3s2
w(qd − qu) + 6s4

w(q2
u + q2

d)

1 + 2s2
w(qd − qu) + 4s4

w(q2
u + q2

d)

)
+

(
1

12
+

13

6
d− 4

3
d2

)
2F1

(
1, 1,

5

2
,
τ1

4

)
(5.103)

and

F ′′3 =
1

6

((
d− 1

2

)(
5

2
− d
)

3F2

(
1, d+

1

2
,
7

2
− d, 2, 5

2
,
τ1

4

)
+ 2F1

(
1, 2,

5

2
,
τ1

4

))

+

(
3

2
− d
)2((

−4
m2

M2
Z

+
τ1

4

)
2F1
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(5.104)
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and

F ′′4 =

(
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2
− d
)((
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M2
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− 1
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)(
3F2
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2
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)
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(5.105)

and

F ′′5 =
2s2

w (qd − qu + 2s2
w(q2

u + q2
d))

1 + 2s2
w(qd − qu) + 4s4

w(q2
u + q2

d)

(
3F2

(
1, d− 1

2
,
5

2
− d, 1, 3

2
,
τ1

4

)

+ 2F1

(
1, 1,

3

2
,
τ1

4

)
− 2

)
(5.106)

where τ1 =
M2
Z

m2

5.3.1 Phenomenology

To find the region of parameter space of fermionic unparticle that is compati-
ble with experimental limits, we must compare the unparticle contribution to
the oblique parameters S and T to their experimental values deduced from
electroweak precision measurements. Taking into account the discovery of
the Higgs boson with mass mh = 125.18± 0.16, the fitted values of S and T,
as reported in ref [20], are the followings

∆S = S − SSM = 0.05± 0.11

∆T = T − TSM = 0.09± 0.13 (5.107)

To illustrate the bounds on unparticles parameters from electroweak precision
tests we present in Fig. 5.2 and Fig. 5.3 contour plots in the plane of (d,m) in
the regions 1, 5 ≤ d ≤ 2.5 and 100 ≤ m ≤ 1100 for S and 100 ≤ m ≤ 250 for
T . In this study, we have chosen the values qu = −1, qd = 0 for the charges
of the upper and lower components, respectively, of the unparticle multiplet.
In Fig. 5.2 contour plots for experimental upper and lower bounds S = 0.11
and S = −0.11 are depicted for two choices of the renormalization scale µ.
For µ = MZ/2, the solid line in the right hand side represents S = 0.11 and
the solid line in the left hand side represents S = −0.11. For µ = 2MZ ,
the dashed line in the right represents S = 0.11 and the dashed line in the
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left represents S = −0.11. As can bee seen from this figure, for values of
scale dimension d ≤ 1, 7, there is practically no constraints on the values
of conformal breaking scale m, but for values of d ≥ 1.7 m is restricted to
m ≤ 200Gev. The allowed region in the parameters space (d,m) becomes
narrower as d increases. For µ = 2MZ the scale dimension d must be inferior
to 1.7 to satisfies the experimental bounds. Fig. 5.3 shows contour plots

d
1.5 2 2.5

m
 (

G
e
v
)

100

200

300

400

500

600

700

800

900

1000

1100

Figure 5.2: contour plots in the plane (d,m) for S = 0.11 on the right hand
side and S = −0.11 on the left hand side, solid lines are contour plots for
µ = 2MZ and dashed lines are contour plots for µ = MZ/2.

for the upper and lower experimental limits T = 0.13(the upper solid and
dashed lines) and T = −0.13(the lower solid and dashed lines). The solid
plots represent T for the renormalization scale value µ = MZ and the dashed
plots represent T for µ = 2MZ . The region between the two solid lines
and the two dashed lines is consistent with measurements for the chosen
renormalization scale value. It is clear from this figure that the oblique
parameter T imposes a strong constraint on the allowed region of parameter
space. For µ = 2MZ , values of the conformal breaking scale m ≥ 200 are
excluded in the range 1.5 ≤ d ≤ 2.5. For µ = MZ , the allowed region is even
smaller. The allowed values of the scale dimension d shrinks to the range
1.5 ≤ d ≤ 1.7 and m ≤ 110.
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d
1.5 2 2.5

m
 (

G
e
v
)

100

150

200

250

Figure 5.3: contour plots in the plane (d,m) for T = 0, 13 represented by the
upper solid and dashed lines and T = −0, 13 represented by the lower solid
and dashed lines, solid lines are contour plots for µ = MZ and dashed lines
are for µ = 2MZ .

Fig. 5.2 and Fig. 5.3 are based on the bounds expressed by Eq. (5.107),
in which S and T are taken as independent parameters. In reality, there is a
correlation between these two observables expressed by the correlation coeffi-
cient ρ = 0.9 [20]. Fig. 5.4 shows scatter plots in the (d,m) plane compatible
with 1σ experimental bounds of electroweak precision data, in which the cor-
relation coefficient ρ is taken into account. The blue dots represent scatter
points for the renormalization scale value 2MZ . The red point represents the
allowed region for µ = MZ . From this figure, we see that the allowed region
is highly sensitive to the value of the renormalization scale in the chosen
range. The IR cut-off scale m is constrained to the interval 100 ≤ m ≤ 200,
but the scale dimension can take value up to 2.34 for µ = 2MZ . In general,
the combined fitted results of S and T , expressed by Fig. 5.4, are compatible
with the restrictions imposed by the oblique parameter T (Fig. 5.3) except
that the allowed region gets smaller in the edges, when d approaches 2.4 and
the conformal breaking scale m approaches 200.
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Figure 5.4: scatter plot in the plane (d,m) which show the region in param-
eters space compatible with the 1σ experimental bound.

5.4 Oblique parameters for scalar unparticles

Following similar steps as in the fermionic unparticle case, in this section we
compute the scalar unparticle contribution to oblique parameters, then we
use the results to find bounds on the parameters space of the scalar unparticle
sector.

the couplings between SM gauge bosons and scalar unparticle are ex-
pressed by the vertex functions given in eqs(5.11,5.13). The scalar unparticle
contribution to the polarization functions Πab is depicted in Fig (5.5). The
right hand side diagram (a) is

Πabµν
s(a) = µ4−D

∫
dDp

(2π)D
Tr
(
Γaµ(p, q, p+ q)S(p)Γbµ(p+ q,−q,−p)S(p+ q)

)

(5.108)
and diagram (b) is

Πabµν
s(b) = µ4−D

∫
dDp

(2π)D
Tr
(
Γabµν(p, q,−q)S(p)

)
(5.109)

where S(p) is the scalar propagator given by

S(p) =
A(d)

2 sin(πd)

i

(m2 − p2 − iε)2−d (5.110)

The structure of Feynman vertices Γaµ, Γabµν and the propagator S(p)
makes the calculation of the integrals (5.108,5.109) complicated. To deal with
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V
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Us

Us

Us

V

V’

Figure 5.5: The one loop contribution to polarization functions from charged
scalar unparticle fields, V and V ′ stand for γ, Z or W .

this problem, we use a Taylor expansion of the vertices (5.11,5.13), as we did
for the unfermion case. For the form factors Σs

1 and Σs
2 (Eqs(5.14,5.15)) we

get the following results

Σs
1(p, q) ≈ (−1)2−d 2− d

((p+ q)2 −m2)d−1
(5.111)

,

Σs
2(p, q1, q2) ≈ (−1)2−d (2− d)(1− d)

((p+ q1 + q2)2 −m2)d−1((p+ q1)2 −m2)
(5.112)

the asymptotic forms for the vertices (5.11) and (5.13) are the following

Γaµ(p, q, p+q) ' igaT
a2 sin(πd)

A(d)
(2p+q)µ(−1)2−d 2− d

((p+ q)2 −m2)d−1
(5.113)

,

ig2Γabµν(p, q1, q2) ' ig2 2 sin(πd)

A(d)
(−1)2−d 2− d

((p+ q1 + q2)2 −m2)d−1

(
ηµν{T a, T b}

+ T aT b
(1− d)(2p+ q2)ν(2p+ 2q2 + q1)µ

(p+ q2)2 −m2

+ T bT a
(1− d)(2p+ q1)µ(2p+ 2q1 + q2)ν

(p+ q1)2 −m2

)

Using these approximations, the first diagram (a) is

Πabµν
s(a) = µ4−Dgagb Tr

(
T aT b

)
(2− d)2

∫
dDp

(2π)D
(2p+ q)µ(2p+ q)ν

(p2 −m2)((p+ q)2 −m2)
(5.114)

and the second diagram is the following
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Πabµν
s(b) = −µ4−Dgagb Tr

(
T aT b

)
(2− d)

∫
dDp

(2π)D
1

p2 −m2

×
(

2ηµν + (1− d)
(2p− q)µ(2p− q)ν

(p− q)2 −m2
+ (1− d)

(2p+ q)µ(2p+ q)ν

(p+ q)2 −m2

)

(5.115)

Thus, we have

Πabµν
s = Πabµν

s(a) + Πabµν
s(b) = µ4−D(2− d)gagb Tr

(
T aT b

) ∫ dDp

(2π)D

( −2ηµν

p2 −m2
− (1− d)

× (2p− q)µ(2p− q)ν
((p− q)2 −m2)(p2 −m2)

+
(2p+ q)µ(2p+ q)ν

(p2 −m2)((p+ q)2 −m2)

)
(5.116)

To perform the loop integrals in (5.116), we proceed in the same manner
as we did in the fermionic case explained before. Here we just give the final
result which is the following

Πabµν
s = i

(2− d)gagb Tr
(
T aT b

)
m2

8π2
ηµν
(

1 + ln

(
µ2

m2

)
+ dg(τ)− d(1 + ln

(
µ2

m2

)
)f(τ)

)

(5.117)
where

f(τ) = 1− τ

6

g(τ) = − τ

Γ(4)
2F1

(
1, 1,
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2
,
τ

4

)
+ τ 2 Γ(3)2

Γ(6)
3F2

(
1, 1, 3, 2,

7

2
,
τ

4

)

with τ = q2

m2 Now, to find the polarization functions Πγγ, · · · we must
replace ga, gb and T a, T b defined by eqs(5.38. . . 5.53) in section (5.2) in
eq(5.117). Finnaly, the scalar unparticle contribution to the oblique param-
eters S and T are the following

S =
s2
wc

2
wd(2− d)

π

{ 1
2

+ 4s2
w(q2

u + q2
d) + 2s2
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+
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)
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+
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w − s2

w
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wc

2
w

1
2
(qd − qu)− 2s2

w(q2
u + q2

d)

6
ln

(
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m2

)
+
q2
u + q2

d

3
ln

(
µ2

m2

)}

(5.118)
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and

T =
(2− d)(1 + d)

4πs2
wc

2
w

m2

M2
Z

(
1 + ln

(
µ2

m2

))(
3

4
− 2s4

w(q2
u + q2

d)− s2
w(qd − qu)

)

(5.119)

5.4.1 Phenomenology

In order to find the region of parameters space of the scalar unparticle model
compatible with experiments, we should compare the contribution of scalar
unparticle to the oblique parameters S and T to their experimental limits
expressed by equation (5.107). In this phenomenological study, we focus on
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Figure 5.6: scatter plot in the plane (d,m) which shows the region in param-
eters space compatible with the 1σ experimental bound.

the scatter plot Fig (5.6) which expresses the 1σ electroweak bound from both
S and T , taking into account the correlation between the two observables.
The red dots represent the scatter plot for the renormalization scale value
µ = MZ . The yellow dots represent scatter points for µ = 2MZ . From
this figure, we see that there is no constraint on the value of the CBS m
toward the decoupling limit d → 2. For µ = MZ there is a thin region in
the parameters space which is compatible with experimental bounds in the
range 1 < d < 1.8, between 1.8 < d < 2 the constraints on m become more
relaxed and it can takes values up to 300 Gev when d→ 2.
For µ = 2MZ , we note from the figure that the range 1 < d < 1.65 lie outside
the experimental bound, but as d approach d = 1.9, the compatible region
becomes larger.
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In conclusion, we have shown, in this study, that the oblique parameters
impose a strong constraint on the CBS(m) value. Generally speaking, this
value must be inferior to 200 Gev to be compatible with electroweak precision
measurements. We note that constraints imposed by the OP on the value of
the scale dimension d of scalar unparticles are stronger then that off fermionic
unparticle. m is a parameter that represent a cut-off under which unparticle
degree of freedom disappear. an upper limit of 200 means that the breaking
of scale invariance must take place in the energy range inferior to 200 in order
to be compatible with experiments. For scalar unparticles this constraints
becomes more relaxed as we increase the value of scale dimension d. In
the next section, we give remarks concerning unparticle phenomenology in
general and its relation to our work with oblique parameters.

5.5 Comments on unparticle phenomenology

A lot of phenomenological studies prove that unparticles can decay, just
like normal particles. They can be regarded as a sum over several particle
propagators, where the particles have a continuously distributed mass and
a width related to the imaginary part of the loop correction as required
by unitarity. Scalar unparticles with these interactions can be produced
at colliders through gluon-gluon fusion, in the subprocesses gg → U ,gg →
gU .The unparticle can decay through the processes U → gg and U → γγ,
leading to multijet events, or events with two photons plus jets.For the scale
dimension d = 1.1 and d = 1.4 [50]. For larger values of the scale breaking
m the decays are almost all prompt. For small m, more unparticles with a
long lifetime can be produced, and we get a large number of monojets. This
provides a new type of signal of unparticles. Note that if the unparticle is a
singlet under SM gauge group transformations, there is a limited number of
ways that the unparticles can couple to SM particles [51] . Another scenario
is when the unparticles have electroweak quantum numbers. For example
unquarks can decay into ordinary quarks and will have a resemblance to
a 4th family. It is very important to mention that unparticles can decay
even if they are singlets under SM gauge group transformationss (they do
not carry SM quantum numbers) [52]. If we consider unparticles as a 4th
generation quarks, the collider bounds on masses, precision observables and
the renormalization flow of coupling are equivalent to imposing constraints
on gauged unparticles parameters which depend on the process and type
of unparticles (scalar, vector, spinor or tensor) under consideration. The
analysis of electroweak precision tests imposes severe bounds on the involved
parameter space, particularly the quark mixing between the third and 4th
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family and the possible mass differences within the new quark and lepton
doublets Constraints on the masses of the 4th family fermions are obtained
from their contributions to the electroweak correction parameters S and T.
The CCollaboration put a lower bound on the mass of 4th generation up-type
quark of about 450 GeV and exclude 4th generation down-type quark in the
mass region 255− 361GeV at 95% C.L [53].

To see the effect of the experimental results on the unparticles parameters
space when decaying or interacting with SM particles let us consider the work
of ref.[54] where it was shown that the scalar and spinor colored unparticle
loop contributions have an important impact on Higgs phenomenology at the
LHC and can explain the excess in h→ γγ observed by ATLAS experiment.
In fact in the scalar case, an enhancement in the Higgs diphoton decay rate
requires a negative coupling λhUs and a large electrical charge to restore the
naturalness and vacuum stability, while in the spinor case an enhancement
can be obtained by either negative or positive coupling to the Higgs boson
depending on the scale dimension df due to the flipping of the sign of the
spin-1/2 contributions. In both cases, a significant enhancement of h → γγ
selects a very special region of the unparticle parameters.The present data
of ATLAS in diphoton decay rate of SM-like Higgs boson around 125GeV
serve to constrain the unparticle parameter model. Concerning the uncol-
ored unparticles, both scalar and tensorial interactions to SM fields can lead
to sizable observable effects in the invariant mass distributions of dilepton
pairs at hadron colliders in the large invariant mass region [55, 56]. energy
from the unparticle at hadronic collisions are explored. The complex phase
in the unparticle propagator that can give rise to interesting interference
effects between an unparticle exchange diagram and the standard model am-
plitudes are found sensitively depending not only on the scale dimension but
also on the spin of the unparticle. Furthermore the possible effects of unpar-
ticules through photon-photon scattering, rare annihilation type B decays,
top quark rare decays and comparaison with experimental data put severe
constraints on the unparticles parameter space. As a concrete exemple for
the triangle exchange of fermionic unparticles to saturate the upper bound of
the electron, muon and neutron electromagnetic dipole moments, one has to
have ΛU = 1TeV (Energy scale at which unparticles emerge), m = 200GeV ,
d ∈ [1.5, 2], [57]. In the electroweak gauge boson W scattering and since
the vector unparticles propagator dependes on the scale dimension d mea-
suring the angular distribution of the W boson, one can determine the scale
dimension d. For the scalar signal at the LHC [58], A detailed study of
certain processes within the unparticles scenario pp → 4γ . . . pp → 2γ2g
. . . pp → 2γ2l, pp → 4e ... pp → 4µ . . . pp → 2e2µ at

√
s = 14TeV is

carried out. Using basic selection cuts and analyse various distributions to
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discriminate the signals over the SM background. Using the experimental
values, limits on the uncolored scalar unparticles parameters d and ΛU are
set. The bound on ΛU can get as large as 1TeV for small d values, but it is
smaller for larger values. Finally, we conclude that. the unparticles (gauged
or ungauged) decays and interactions with the SM particles are very impor-
tant and lead to sizeable effects. Imposing the collider and/or electroweak
precision data tests which are in general complementary will affect more the
parameter space region like (ΛU , d) etc. . . depending on the type of unparti-
cles (scalars, vectors. . . .) and the process under consideration. In the present
case if we consider the unparticles effect like the one of the 4th generation of
quarks, we believe that the collider bounds on the 4th generation of fermions
will impose stringent constraints on the other gauged fermionic unparticles
parameters like the unparticle SM charge QU and Yukawa coupling λU , and
ΛU .

5.6 Effects of unparticle on gauge coupling

In this section, we study the effects of scalar unparticle on the running of the
SM gauge couplings and the unification scale. For this purpose, we consider
unparticle contribution, at the one loop level, to the beta function of the SM
gauge groups U(1)Y , SU(2) and SU(3)c. In previews works, the authors of
[59],[60] have only considered unparticles defined in the r representation of
the color group SU(3)c, but neutrals under the weak and hypercharge groups
SU(2) and U(1)Y . In our work, we take unparticles charged under all three
gauge groups and compute their contribution to the beta function. Then,
we search for the unification scale by scanning the parameter space of scalar
unparticles which consist of the scale dimension d, and the number of species
ns. We have found that the unification of the three gauge couplings takes
place for a large number of unparticle species, ns = 9, for the scale dimension
value d = 1.5 and the corresponding unification scale is MU = 1012 , which is
orders of magnitude lower than the grand unification scale (GUS) achieved
using supersymmetric particles [61]. We note that in our work, we did not
use a canonical normalization for the hyper-charge group coupling g as is
usualy done in grand unification models [62].

5.6.1 The beta function

The coupling constants are defined as effective values at some energy scale.
This is a characteristic of QFT discovered by Wilson, Polchenski and others.
Dynamical constants such as mass, coupling strength are constants in a par-
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ticular energy range but change value when we go from low energy to high
energy. these variations are governed by the renormalization group equation
(RGE). For our purpose, we focus on RGE for gauge coupling. The one loop
RGE for the SM is given by

µ
dgi
dµ

=
bi
4π
g3
i = βi(gi), i = 1 . . . N (5.120)

where N is the number of gauge coupling in the theory. µ is the energy scale
at which gi is evaluated and βi is the beta function for the gauge coupling gi.
In the SM, the gauge couplings are gS, g and g′ corresponding to the gauge
groups SU(3)c, SU(2) and U(1)Y respectively. The constants bi encode the
contribution, at one loop level, of virtual particles to self energy diagrams
of the SM gauge particles. Any contribution from new physics, in the form
of extra degree of freedom circulating in the loops, can be added to the
constants bi. Here, we consider the contribution of scalar unparticles and in
this case, bi can be written as

bi = bSMi + bUi (5.121)

where bSMi is the contribution of the SM particles given by

b1 = −7

b2 = −19

6

b3 =
41

10
(5.122)

and bUi is the contribution of the unparticle sector. In section (5.4) we already
calculated scalar unparticle contribution to the polarization functions of the
SM gauge bosons. That result will be used to compute the unparticle beta
function for each SM gauge coupling.

The beta function β is related to the polarization functions of SM gauge
bosons via the counter terms δ3 used to eliminate the divergent part of these
functions. we can write β as follows

β = gµ
∂

∂µ

(g
2
δ3

)
(5.123)

Since δ3 is proportional to the divergent part of the polarization functions
Πab, here we give its expression in the scalar unparticle case extracted from
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equation (5.116)

Πab
div = −µ4−D2i

gagb

(4π)
D
4

(m2)
D
2
−1 Tr

(
T aT b

)
(2− d)ns

× Γ(
D

2
− 1)

(
1 + d

∫ 1

0

dx

(
1− q2

m2
x(1− x)

)D
2
−1
)

(5.124)

in this equation we added the number of unparticle species ns. The next step
is to rewrite eq (5.124) to be proportional to Γ(ε) = Γ(2 − D

2
). Using the

identity

Γ(1− D

2
) =

Γ(2− D
2

)

1− D
2

and a Taylor expansion to the first order in ε, we find the expression for δ3

δ3 =
gagb

((4π)2
(m2)

D
2
−2d(2− d) Tr

(
T aT b

)
×−1

3
ns (5.125)

substituting in eq(5.123), we find the one loop beta function for scalar un-
particle

β(g) =
1

48(π)2
g3d(2− d)C(r)ns (5.126)

where C(r) = Tr
(
T aT b

)
is the quadratic Casimir operator for the repre-

sentation r of the gauge group. From the last equation, we can write the
unparticle contribution to the running coupling, bUi , as follows

bUi =
1

12π
g3d(2− d)C(r)ns (5.127)

To calculate the unparticle contribution to the running of gauge coupling, we
need to add bUi to the coefficients bi of the SM. However, since unparticle fields
have not been detected at low energy experiments, scale invariance must be
broken at some energy scale m. So, unparticle fields do not contribute at
low energy to the beta function. To take this fact into account, we divide
the energy range from low energy scale, at which current experiments are
conducted, to the grand unification scale, in two ranges. In the energy range
from MZ up to m only the SM particles contribute to the beta function. From
m, at which the unparticle sector appears, to MGUT we consider the effects of
unparticle loops. The next step is to scan the parameters space of unparticles
namely, the scale dimension d and the number of species ns, to find a set
of values for which the unification of gauge couplings is possible. We found
that for a number of generations ns = 9 and scale dimension d = 1.5, the

80



Chapter 5 – Gauged unparticles

unification of all three SM coupling is achieved at the energy scale MGUT =
1012. Results are depicted in Fig (5.7). It is notable that this unification
scale value is orders of magnitude lower than the value MGUT,Susy = 1016

achieved using supersymmetric models.
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Figure 5.7: Unification of gauge coupling as a function of the energy scale
µ. The red line represent hyper-charge coupling, blue line represent the
weak coupling and the yellow line represent strong coupling. The three lines
intersect at MGUT = 1012 for ns = 9 and d = 1.5.
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Chapter 6

Muon Anomalous Magnetic
Moment in the Left-Right
Symmetric Model

The work presented in this chapter represents an original contribution to the
international conference of theoretical physics held in Constantine in October
2013. In this work we calculate the contribution of the left right symmet-
ric model (LRSM) to the the muon anomalous magnetic moment (AMM).
Specifically the effects of virtual loops of extra gauge bosons associated with
the model. We found that for the chosen parameters values the AMM re-
duces from 2, 6σ to 2.5σ which is small but not negligible. The deviation
between the SM predictions for the muon AMM and experimental results,
which persisted during the years, represents a strong hint for physics beyond
the SM. Recently this discrepancy has received a further confirmation by the
muon g-2 experiment at Fermi lab . The current value of the deviation sits
at 4.2σ which is not high enough to declare a discovery, a 5σ is necessary for
particle physics experiments. However, this new results prompted the search
for new physics solutions.

Our work is based on the minimal left right symmetric model. This model
has been proposed in the 1970s by Salam and pat [63] and later on by Mo-
habatra [64]. The original motivation for this model is to treat left handed
fermions and their right handed counterparts on an equal footing. This is
done by adding an additianal gauge group for right handed particles SU(2)R.
So the electroweak group becomes SU(2)L×SU(2)R×U(1)B−L. Where here
B−L is the difference between baryons and lepton number. Mohabatra also
proposed in [65] to restore parity symmetry at high energies, using sponta-
neous symmetry breaking as a mechanism, to explain the violation of left
right symmetry at the electroweak scale. The symmetry breaking in this
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model takes place in two stages. In the first stage a right handed scalar
triplet ∆R break the left right symmetry down to SM symmetry

SU(2)L × SU(2)R × U(1)B−L → SU(2)L × U(1)Y (6.1)

In the second stage the familiar symmetry breaking via, in this case, a bidou-
blet scalar field Φ looks like

SU(2)L × U(1)Y → U(1)em (6.2)

A left triplet ∆L is introduced to maintain parity symmetry into the theory.
The three scalars are the following

∆L,R =

(
∆+
L,R/
√

2 ∆++
L,R

∆0
L,R −∆++

L,R/
√

2

)
, Φ =

(
Φ0

1 Φ+
1

Φ−2 Φ0
2

)
(6.3)

for each generator of the SU(2)R we associate a gauge boson which are
W 1
R,W

2
R,W

3
R plus a vector field V µ associated with UB−L gauge group. The

symmetry breaking induced by the vev of the ∆R give masses to right gauge
bosons but kepp left bosons WL, ZL massless. If we perform a rotation in the
internal isospin space of the group SU(2)R×U(1)B−L we will get the neutral
gauge boson ZR as follows

(
Zµ
R

Bµ

)
=

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)(
W µ
R

V µ

)
(6.4)

where ϕ is defined by

cos(ϕ) =
gR√

g2
R + g2

B−L

, sin(ϕ) =
gB−L√
g2
R + g2

B−L

(6.5)

where gR is the coupling constant of the SU(2)R group and gB−L is the cou-
pling constant of the U(1)B−L group. The masses for right gauge bosons WR

and ZR can be extracted from the kinetic term of the Higgs sector associated
with ∆R

Tr |Dµ∆R|2 =
g2
RV

2
R

2
W µ−
R W µ+

R +
V 2
R

2

(
gRW

µ3
R − gB−LV µ

) (
gRW

µ3
R − gB−LV µ

)

=
g2
RV

2
R

2
W µ−
R W µ+

R +
V 2
R

2
Zµ
RZ

µ
R (6.6)

by the end of the first stage of SB, we end up with two charged right gauge
bosons W µ±

R , one right neutral gauge boson ZR, two neutral scalars H0
i , two

pseudo scalars ϕ0
i , two singlet charged Higgs scalars H+

i and two doubly
charged scalars H++

i , where i = 1 or 2. For more detailed study of the left
right symmetric model see the review [66].
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6.1 Calculation of the AMM in the LRSM

In our work, we use the LRSM to explain the anomalous magnetic moment
of the muon (AMM). The study of AMM represents a very sensitive test of
the SM at the quantum loop level and permits the investigation of physics

that lie beyond it. The magnetic moment is defined as µ = g(
e

2m
)s, where

g is the gyromagnetic ratio, s is the spin of the particle. The deviation of
the magnetic moment from the value of the point-like Dirac particle (g = 2)
is induced by the interactions of leptons with virtual particles which couple
to electromagnetic field. Whereas, the electron anomaly provides the most
precise measurement of the fine structure constant, the muon anomaly is more
sensitive to virtual gauge bosons(because the muon mass is much larger than
the electron mass). In this work, we consider all possible contributions from
extra gauge bosons at the one loop level. Our purpose is to get a better
interpretation of the experimental results of the muon anomaly.

6.1.1 Values of aµ in the SM

The muon anomaly in the SM is the summation of three contributions

aSMµ = aQEDµ + aWeak
µ + aHadµ (6.7)

These contributions have been determined precisely in previews works. The
QED contribution is the dominant one, and it has been calculated up to the
fourth order α4. The weak contribution has been calculated up to 3 loop
level and it has not changed much in the last years. We present below the
best results of the muon anomaly calculation in the SM [67]

aQEDµ = 11658471.958(0.143)× 10−10 (6.8)

aWeak
µ = 15.4(0.2)× 10−10 (6.9)

aHadµ = 697.2(5.9)× 10−10 (6.10)

The total SM value for aµ is

aQEDµ = 11659184.56(5.9)× 10−10 (6.11)

and the present experimental value for aµ is

aExpµ = 11659208.56(6)× 10−10 (6.12)

thus, the deviation of the experimental value of the anomalous magnetic
moment of the muon from the SM prediction is the following

∆aµ = aExpµ − aSMµ = 23.4(9)× 10−10 (6.13)
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6.1.2 Calculation of aµ

The LRSM contribution to the muon anomaly is done using one loop cor-
rections from the heavy weak gauge bosons WR and ZR and the the neutral
scalar and pseudo-scalar from the Higgs sector H0

1,2 and ϕ0
1,2. In our calcu-

lations we find that the most important contribution to the anomaly come
from the weak gauge bosons WR, ZR. The contribution of the charged Higgs
is negligible compared to other particles. The finals results are the following
(for more details see appendix E)

aWR
µ =

α

16π sin2(θW )

(
mµ

MWR

)2

× 7

3
+O

((
mµ

MWR

))
(6.14)

aZRµ = − αm2
µ

12πM2
ZR

1− tan2(θW )(1 + tan2(θW ))

sin2(θW )(1− tan2(θW ))
(6.15)

aH
0
1

µ =
α

8π sin2(θW )

tan2(β)(1 + tan2(β))

1− tan2(β))

(
mµ

MWL

)2
(
mµ

MH0
1

)2

ln

(
M2

H0
1

m2
µ

)

(6.16)

aH
0
2

µ =
α

8π sin2(θW )

(1 + tan2(β))

1− tan2(β))

(
mµ

MWL

)2
(
mµ

MH0
2

)2

ln

(
M2

H0
2

m2
µ

)
(6.17)

aϕ
0
1
µ =

α

8π sin2(θW )

tan2(β)(1 + tan2(β))

1− tan2(β))

(
mµ

MWL

)2 ∫ 1

0

dx
x3

x2 + (1− x)
M2

ϕ0
1

m2
µ

(6.18)

aϕ
0
2
µ =

α

8π sin2(θW )

(1 + tan2(β))

1− tan2(β))

(
mµ

MWL

)2 ∫ 1

0

dx
x3

x2 + (1− x)
M2

ϕ0
2

m2
µ

(6.19)

where β is a parameter of the LRSM related to the expectation value for the
bidoublet Φ

tan(β) =
κ1

κ2

〈Φ〉 =

(
κ1 0
0 κ2

)
(6.20)

6.1.3 Numerical results

To calculate the effects of the LRSM spectrum on the AMM we use the fol-
lowing values for the LRSM parameters [68]: MWR

= MZR = 1Tev,MH0
1

=
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MH0
2

= Mϕ0
1

= Mϕ0
1

= 5Tev, tan(β) = 10. After summation of all contribu-
tion we get the result

aLRµ = 0.137× 10−10 (6.21)

the deviation of the experimental value of AMM of the muon from the SM
prediction is reduced to

∆aµ = aExpµ − aSM+LRSM
µ = 23.26(0.9)× 10−10 (6.22)

so we conclude that the LRSM with the current phenomenological constraints
on its parameters, coming from direct production channels of the heavy weak
bosons, and electroweak precision measurements, allows us to reduce slightly
the deviation of the theoretical prediction of AMM from experiments from
2.6σ deviation in the SM to 2.5σ in the LRSM.
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Chapter 7

Conclusion

Unparticle model, which started as a theoretical curiosity by Georgi and
Co, ended up producing a reach theoretical and phenomenological conse-
quences, ranging from dark matter and black holes to superconductivity. In
this thesis we focused on construction of unparticle model charged under the
electroweak standard model group SU(2) × U(1). We were able to derive
vertex functions describing the interaction between the unparticle sector and
the SM gauge bosons γ, W and Z, and derive their asymptotic forms in the
large momentum limit, which dominates in loop integrals. Then we used
these vertices to calculate the polarization function of γ, W and Z, with
scalar and fermionic unparticle fields circulating in the loops. The results
of polarization functions allowed us to compute the oblique parameters S
and T in the scalar and fermionic cases. Then we used these results to find
the region of parameter space, namely scale dimension d and the conformal
breaking scale m, compatible with electroweak precision measurements. The
results suggest that the CBS m must be inferior to 200 Gev, in the case of

unfermion, for a renormalization scale value ranging from
MZ

2
to 2MZ . for

scalar unparticles the allowed CBS values must be inferior to 350 Gev for
the same renormalization scale interval, which enlarge the conformal window
for unparticles assuming that the unparticle scale is ΛU ∼ 1Tev. These re-
sults implies that unparticles effects should be detectable in the energy range
m ≤ 200 Gev ≤ E ≤ ΛU for unfermion and m ≤ 350 Gev ≤ E ≤ ΛU for
scalar unparticles.
In the course of this thesis we also used polarization functions to estimate
the effects on the running of gauge coupling induce by virtual unparticle
fields with spin 0. Contrary to other works in the literature, in this case
we considered unparticle fields that are charged under all three SM gauge
groups SU(3)C , SU(2)L and U(1)Y . We found that the unification between
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the three gauge coupling gS,g and g′ requires a large number of unparticle
species ns = 9 for the scale dimension value d = 1.5. The unification scale
attained through unparticle contribution is MGUT = 1012 which is orders of
magnitude lower then the value reached using supersymmetric models.
In the last part of this thesis we presented a computation of the muon anoma-
lous magnetic moment of the muon, at the one loop level, based on the left
right symmetric model. We found that the contribution of the extras gauge
bosons and the Higgs sector decreases the discrepancy between the SM pre-
diction and experimental results from 2.6σ deviation to 2.5σ which is small
but non negligible contribution

In future works we hope to use the Ads/CFT correspondence, mentioned
briefly in chapter 4, to achieve a deeper understanding of unparticle physics.
For example unparticle hadronization process which is related to strong cou-
pling conformal field theory. In addition to that we aim to construct a gauged
model for vector and tensor unparticle which is absent in the literature.
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Appendix A

Loop Integrals

There is multiple ways to perform loop integrals, in our work, we use Feyn-
man parametrization and dimensional regularization. The general form of
Feynman parametrization is the following

n∏

i=1

1

Aαii
=

Γ (
∑n

i=1 αi)∏n
i=1 Γ(αi)

∫ 1

0

∏n
i=1 dxix

αi−1
i

(
∑n

i=1Aixi)
∑n
i=1
δ

(
1−

n∑

i=1

xi

)
(A.1)

where Ai are arbitrary complex numbers, in our case the denominator of the
propagators inside the loops. Γ is the gamma function defined by the integral

Γ(z) =

∫ ∞

0

tz−1e−tdt (A.2)

Γ(z) satisfies the following proprieties

Γ(z + 1) = zΓ(z)

Γ(n+ 1) = n! (A.3)

the gamma function admits poles for negative integer values z = 0,−1,−2, . . . .
In the vicinity of the pole z = m we have the following approximation

Γ(z) =
(−1)m

m!

1

m+ z
+

(−1)m

m!
ψ(m+ 1) +O(m+ z) (A.4)

where ψ is the logarithmic derivative of Γ

ψ(z) =
d

dz
ln(Γ(z)) (A.5)

which have the following proprieties

ψ(1) = −γ

ψ(z + 1) = ψ(z) +
1

z
(A.6)
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where γ = 0.5772156649 . . . is the Euler constant. From eq(A.4), we conclude
that for ε→ 0

Γ(ε) =
1

ε
+ ψ(1) +O(ε)

Γ(−n+ ε) =
(−1)D

n!

(
2

ε
+ ψ(n+ 1) + 1

)
(A.7)

with the help of these proprieties of the gamma function we can perform loop
integrals and separate the divergent and finite parts. Other useful formulas
are the Euler function, B(α, β) defined as

B(α, β) =

∫ 1

0

dxxα(1− x)β =
Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
(A.8)

and the generalized hypergeometric functions 2F1,3F2,4F3 defined as

q+1Fq(a1, . . . , aq+1; b1, . . . , bq; z) =
∞∑

n=0

∏q+1
i=1 (ai)n∏q
i=1(bi)n

zD

n!

=

(
q∏

i=1

Γ(bi)

Γ(ai)Γ(bi − ai)

)∫ 1

0

· · ·
∫ 1

0

q∏

i=1

tai−1
i (1− ti)bi−ai−1(1− z

q∏

i=1

ti)
−ai+1dt1 . . . dtq

(A.9)

Re(bi) > Re(ai) > 0 ∧ 1 ≤ i ≤ q ∧ |arg(1− z)| ≤ π (A.10)

where the second equation is the integral representation of the generalized
hypergeometric functionq+1Fq. (ai)n is the Pochhammer symbol defined as

(ai)n =
Γ(ai + n)

Γ(n)
(A.11)

A.1 Evaluation of the integral I(k, α, β) from

section (5.2)

Next we evaluate the integrals I(k, α, β) from eq(5.81) section(5.2). All the
loop integrals encountered in the course of this thesis can be reduced to one
of the following form

I(k, α, β) =

∫
dDp

(2π)D
(p2)k

(p2 −m2)α((p+ q)2 −m2)β
(A.12)
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We will use dimensional regularization to compute loop integrals. In this
method integrals of the type (A.12) can be calculated by using Feynman
parametrization method relaying on these basic formulas
∫

dDp

(2π)D
1

(p2 −∆2)α
=
i(−1)α

(4π)n/2
Γ(α− n/2)

Γ(α)
(∆2)n/2−α

∫
dDp

(2π)D
p2

(p2 −∆2)α
=
i(−1)α−1

(4π)n/2
D

2

Γ(α− n/2− 1)

Γ(α)
(∆2)n/2−α+1

∫
dDp

(2π)D
pµpν

(p2 −∆2)α
=
i(−1)α−1

(4π)n/2
ηµν

2

Γ(α− n/2− 1)

Γ(α)
(∆2)n/2−α+1 (A.13)

the result for the integral (A.12) is the following

I(k, α, β) =
1

(4π)
D
2

Γ(D
2

+ k)Γ(α + β − D
2
− k)

Γ(α)Γ(β)Γ(D
2

)
(m2)

D
2

+k−α−β

×
∫ 1

0

dxxα−1(1− x)β−1

(
1− q2

m2
x(1− x)

)D
2

+k−α−β
(A.14)

we will assume τ =
q2

m2
< 1 which is consistent with experimental data since

q2 will be in the vicinity of M2
Z and we will assume that m the CBS is superior

to MZ . To calculate the integral (A.14) we affect a Taylor expansion for the

coefficient (1 − q2

m2
x(1 − x)

D
2

+k−α−β with respect to τ =
q2

m2
. The result is

the following

(1− τx(1− x))
D
2

+k−α−β =
∞∑

j=0

1

j!

Γ
(
1−

(
D
2

+ k − α− β
)

+ j
)

Γ
(
1−

(
D
2

+ k − α− β
)) xj(1− x)jτ j

(A.15)
substituting eq(A.15) in (A.14) we find

I(k, α, β) =
1

(4π)
D
2

Γ(D
2

+ k)Γ(α + β − D
2
− k)

Γ(α)Γ(β)Γ(D
2

)
(m2)

D
2

+k−α−β

×
∫ 1

0

dxxα−1(1− x)β−1

∞∑

j=0

1

j!

Γ
(
1−

(
D
2

+ k − α− β
)

+ j
)

Γ
(
1−

(
D
2

+ k − α− β
)) xj(1− x)jτ j

(A.16)

using the definition of the beta function eq(A.8) and the following propriety
of the gamma functions

Γ(2α) = 22α−1π−
1
2 Γ(α)Γ(α +

1

2
) (A.17)
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we arrive at the result

I(k, α, β) =
Γ(α)Γ(β)

Γ(α + β)

∞∑

j=0

1

j!

(τ
4

)j (1 + α + β − k, j) (α, j)(β, j)(
α + β

2
, j

)(
α + β + 1

2
, j

)

=
Γ(α)Γ(β)

Γ(α + β)
3F2

({
1, α + β − D

2
− k, α, β

}
,

{
α + β

2
,
α + β + 1

2

}
,
τ

4

)

(A.18)

3F2 is a Hypergeometric function defined in eq(A.9) which converge for τ =
q2

m2
< 1. In using Feynman parametrization we made the substitution p = p−

q(1−x) in the denominator of the integrals (5.68,5.76) a similar substitution
must take place for the numerators Eq(5.69-5.74) and Eq(5.77-5.79) as well.
Taking these changes into account we can express the polarization functions
(5.56) and (5.57) in terms of hypergeometric functions like the one in (A.9)
for each integral in (5.68) and (5.76). So the polarization function expressed
by the sum of diagram (a) and (b) in Fig (5.1) (Πab = Πab

(a) + Πab
(b)) is given

by

Πab =− 8i
gagb

(4π)
D
2

(m2)
D
2
−2

{
Γ(2− D

2
)
{
F1 + (

3

2
− d)BF2 + (

3

2
− d)2BF4

}

+ Γ(3− D

2
)(

3

2
− d)2BF5

}
− 4i

g2

(4π)
D
2

(m2)
D
2
−2 Γ(2− D

2
)

1− D
2

Tr(T1)F6

(A.19)

The result (A.19) is not renormalizable. To find the renormalized polarization
function Πab

ren(q2), we use the MS renormalization scheme. In this scheme
we replace the spacetime dimension D by 4 − 2ε in all the terms of (A.19)
that contain D. Then, we extract the terms proportional to Γ(ε). these
terms diverge when we take the limit ε → 0. After that, we make a Taylor
expansion to first order for terms like aε ≈ 1 − ln(a)ε. Then, we isolate the
ones proportional to Γ(ε). and we make the substitution

Γ(ε) =
1

ε
− γ +O(ε2) (A.20)

For terms proportional to hypergeometric functions 2F1 and 2F3 we have two
possibilities, either we have terms of the form α 3F2 where α is independent
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from Γ(ε), or we have terms of the form Γ(ε)3F2. For the first type we find

α 3F2({ε, a, b}{e, f}; τ
4

) = α
∞∑

j=0

1

j!

(τ
4

)j (ε, j) (a, j)(b, j)

(e, j) (f, j)

= α
Γ(e)Γ(f)

Γ(a)Γ(b)Γ(ε)

∞∑

j=0

1

j!

(τ
4

)j Γ(ε+ j)Γ(a+ j)Γ(b+ j)

Γ(e+ j)Γ(f + j)

= α +
Γ(e)Γ(f)

Γ(a)Γ(b)Γ(ε)

∞∑

j=1

1

j!

(τ
4

)j Γ(ε+ j)Γ(a+ j)Γ(b+ j)

Γ(e+ j)Γ(f + j)
(A.21)

If we take the limit ε→ 0 we get Γ(ε)→∞, so the sum in eq(A.21) vanishes
and we end up with

lim
ε→0

α3F2({ε, a, b}{e, f}; τ
4

) = α (A.22)

for terms of the form Γ(ε)3F2 we have

Γ(ε)3F2({ε, a, b}{e, f}; τ
4

) = Γ(ε) +
Γ(e)Γ(f)

Γ(a)Γ(b)

∞∑

j=1

1

j!

(τ
4

)j Γ(ε+ j)Γ(a+ j)Γ(b+ j)

Γ(e+ j)Γ(f + j)

(A.23)

taking the limit ε → 0 for the second term in eq(A.23) and making the
substituting j = j′ + 1 we get the following result

Γ(ε)3F2({ε, a, b}{e, f}; τ
4

) = Γ(ε) +
Γ(e)Γ(f)

Γ(a)Γ(b)

×
∞∑

j′=0

1

(j′ + 1)!

(τ
4

)j′+1 Γ(1 + j)Γ(a+ 1 + j′)Γ(b+ 1 + j′)

Γ(e+ 1 + j′)Γ(f + 1 + j′)

= Γ(ε) +
Γ(e)Γ(f)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b+ 1)

Γ(e+ 1)Γ(b+ 1)

τ

4

∞∑

j′=0

1

(j′)!

(τ
4

)j′ (1, j′)(1, j′)(a+ 1, j′)(b+ 1, j′)

(2, j′)(e+ 1, j′)(f + 1, j′)

= Γ(ε) +
ab

ef
4F3

(
{1, 1, a+ 1, b+ 1} , {2, e+ 1, f + 1} , τ

4

)
(A.24)

using both eq (A.22) and (A.24) we can renormalize the polarization func-
tion eq(A.19). We will find a sum of terms proportional to Γ(ε) and terms
independent from Γ(ε). We will get rid off the former and keep the rest. The
renormalized expression is given in the main text eq(5.88)
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Calculation of the constants
A,B,D from chapter (5)

In this appendix we calculate the constants that appear in the calculation of
the polarization function Πγγ,ΠZZ and ΠZγ. We begin with Πγγ, in this case
the coupling constants are

ga = gb =
e

2
where e is the electromagnetic coupling constant. We have from eqs(5.70-
5.75)

A = Tr
(
T a1 T

b
1 − T a2 T b2

)

B = Tr
(
T a1 T

b
1 + T a2 T

b
2

)

D = Tr
(
3T a1 T

b
1 + T a2 T

b
2

)

since electromagnetic interaction conserves parity, the coefficient T2 propor-
tional to γ5 is zero. So, we get

A = B = Tr
(
T a1 T

b
1

)

D = 3 Tr
(
T a1 T

b
1

)

for electromagnetic interactions the generator T a1 = T b1 = Q, where Q is the
charge operator given by

Q =

(
qu 0
0 qd

)

qu, qd are the charges of the upper and lower components, respectively of the
unparticle multiplet introduced in eq(5.35). So we conclude

A = B = Tr
(
Q2
)

= q2
u + q2

d

D = 3(q2
u + q2

d)
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In addition to A,B,D we should calculate Tr(T1) related to the loop integral
involving two gauge bosons and two unparticles, we find

Tr(T1) = Q2 = q2
u + q2

d

B.1 Constants for ΠZZ

In this case the coupling constants are

ga = gb =
e

4 sin(θW ) cos(θW )

the generators of the ZU coupling are the following

T a1 = T b1 =
σ3

2
− 2 sin2(θW )Q

T a2 = T b2 = −σ3

2

so A, B and D are given by

A = Tr
(
T a1 T

b
1 − T a2 T b2

)
= Tr

(
2 sin2(θW )

(
2 sin2(θW )q2

u − qu 0
0 2 sin2(θW )q2

d + qd

))

= 2 sin2(θW )(qd − qu + 2 sin2(θW )(q2
u + q2

d))

B = Tr
(
T a1 T

b
1 + T a2 T

b
2

)
= Tr

(
1

4

(
(1− 4 sin2(θW )qu)

2 + 1 0
0 (1 + 4 sin2(θW )qd)

2 + 1

))

= 1 + 2 sin2(θW )(qd − qu) + 4 sin4(θW )(q2
u + q2

d)

D = Tr
(
3T a1 T

b
1 + T a2 T

b
2

)
= Tr

(
3

4

(
(1− 4 sin2(θW )qu)

2 0
0 (1 + 4 sin2(θW )qd)

2

)
+

1

4

(
1 0
0 1

))

= 2 + 6 sin2(θW )(qd − qu) + 12 sin4(θW )(q2
u + q2

d)

and

T1 =
1

4

(
σ2

3 + 8 sin4(θW )Q2 − 4σ3Q sin2(θW )
)

which gives

Tr(T1) =
1

2

(
1 + 4 sin4(θW )(q2

u + q2
d) + 2 sin2(θW )(qd − qu)

)
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B.2 Constants for ΠZγ

The coupling constants in this case are the following

ga =
e

2
, gb =

e

4 sin(θW ) cos(θW )

and the generators for one unparticle one gauge boson interactions are given
by

T a1 = Q, T a2 = 0

for γU vertex, and

T b1 =
σ3

2
− 2 sin2(θW )Q, T b2 = −σ3

2

for γU vertex. So, we get

A = Tr
(
T a1 T

b
1 − T a2 T b2

)
= Tr

(
T a1 T

b
1

)

=
1

2

(
qu − qd − 4 sin2(θW )(q2

u + q2
d)
)

and

B = A =
1

2

(
qu − qd − 4 sin2(θW )(q2

u + q2
d)
)

and

D = 3A =
3

2

(
qu − qd − 4 sin2(θW )(q2

u + q2
d)
)

the generator corresponding to ZγUU interaction is

T1 = Q
σ3

2
=

1

2

(
qu 0
0 −qd

)

So, we get

Tr(T1) =
1

2
(qu − qd)
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We calculate the one loop contribution from an unparticle gauged model, based on the
group SU(2)×U(1), to the electroweak oblique parameters S and T . Using the current
bounds on S and T from electroweak measurements, we find the constraints on the scale
dimension d of the unparticle fermionic fields to be 1.5 < d < 1.7 and the constraints on
the conformal breaking scale m to be 100 < m < 200 Gev. The bounds on m impose a
lower limit on the conformal window of the unparticle fields which means that unparticle
are not detectable below 100 Gev.
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1. Introduction

The Standard Model (SM) has been so far in excellent agreement with experiment.

However, it fails to explain neutrino oscillations, dark matter, and the origin of

baryon asymmetry in the universe. Moreover, the hierarchy problem indicates that

the SM in its basic version cannot describe physics above the weak scale. These

inconsistencies and shortcomings of the SM prompted the study of physics beyond

the Standard Model (BSM). A particularly interesting model of BSM proposed

about a decade ago is unparticle model,1 which describes a scale invariant hidden

sector interacting with SM particles at high energy via messenger particles. These

interactions are organized in an effective field theory in which unparticles are repre-

sented by scale invariant operators. An extension of the unparticle model to include

∗Corresponding author.
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operators with quantum numbers was introduced in Ref. 2. For any new physics

model to be valid, it must be consistent with the SM predictions. In this regard,

the electroweak precision tests represent a powerful tool to check the compatibility

of a new model with experimental data. To achieve this goal for the unparticle

model, we consider unparticle fields embodied in the SM electroweak group. These

fields would induce loop effects on the electroweak precision tests, represented as

contributions to the oblique parameters S and T .3

In Sec. 2, we give a short review of gauged unparticle model and we calculate

its contributions to the oblique parameters S and T . In Sec. 3, we use the results

of the previous section to study the parameters space of unparticles, and finally a

short summary and conclusion are given.

2. The Model

The purpose of our paper is to calculate the effects of unparticles sector on elec-

troweak observables. For this reason, we must find Feynman vertices describing the

interactions of unparticle fields with the electroweak SM gauge bosons.

The unparticle stuff are described by scale invariant fields with scaling dimen-

sion d. Conformal invariance impose a particular form for the green function of

unparticles. The free propagator of fermionic unparticles in momentum space is:

∆Uf
(p, µ) =

A(d− 1/2)

2cos(πd)

i

(✁p−m)Σ0(p)
(1)

where Σ0(p) = (m2 − p2)3/2−d, p is the momentum, m is the conformal symmetry

breaking scale, and A is a normalization factor defined by:

A(d) =
16π3/2

(2π)2d)

Γ(d+ 1/2)

Γ(d− 1)Γ(2d)
(2)

with 3/2 ≤ d ≤ 5/2. In order to incorporate the unparticle fields to the SM gauge

group, we use the following action:

S =

∫
d4x d4y

(
U†
L(x)∆̃

−1
U (x − y)WL(x, y)UL

+U†
R(x)∆̃

−1
U (x− y)WR(x, y)UR

)
(3)

where UL is the left-handed unparticle multiplet, which transform according to

the gauge group SU(2)L. UR is the right-handed SU(2)L singlet, which transform

according to the hypercharge group U(1)Y . To ensure gauge invariance, we have

introduced the Wilson line W(x, y) defined as:

WL(x, y) = P exp

(∫ y

x

(T aW a
µ − ig′Y Bµ)du

µ

)
, (4)

WR(x, y) = exp

(∫ y

x

−ig′QBµ du
µ

)
, (5)

2050241-2
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where P denotes path ordering in the generators T a in the unparticle representation.

Q is the charge operator in the same representation. To find the interaction vertices

of unparticles with physical gauge bosons Z, W and γ of the SM, we replace W a,

B in Eqs. (4) and (5) according to the relations:

Wµ
3 = cos(θW )Zµ + sin(θW )Aµ, (6)

Bµ = − sin(θW )Zµ + sin(θW )Aµ, (7)

Wµ = (W1 + iW2)/
√
2, Wµ† = (W1 − iW2)/

√
2 (8)

where θW is the Weinberg mixing angle.

Now, using the same techniques developed by Terning et al., in the context

of nonlocal chiral quark model (see Ref. 4), we derive Feynman vertices for the

coupling of unparticles with one and two gauge bosons as follows

igΓµ(p, q) = i
δ3S

δV µ(q)δU†
L(p+ q)δU(p)

= i
g

2
(γµ(Ta + Tbγ5)(Σ0(p) + Σ0(p+ q))

+ (2✁p+ ✁q − 2m)(Ta + Tbγ5)(2p+ q)µΣ1(p, q)). (9)

As a check, we note that this vertex satisfies the Ward–Takahashi identity5

iqµΓ
µ = ∆−1(p+ q,m)T a − T a∆−1(p,m). (10)

We will also need the explicit form of the vertex involving two unfermions and two

gauge bosons:

igagbΓabµν(p, q1, q2)

= i
δ3S

δV a
µ (q1)V

ν
b (q2)δU†

L(p+ q1 + q2)δU(p)

= i
gagb
2

(
(2✁p+✚✚q1 +✚✚q2 − 2m)

[
{T a, T b}gµνΣ1(p, q1 + q2)

+T aT b(2pµ + 2qµ2 + qµ1 )(2p
ν + qν2 )Σ2(p, q2, q1) + T bT a(2pµ + qµ1 )

× (2pµ + 2qµ1 + qµ2 )Σ2(p, q1, q2)
]
+ γµΓabν(p, q2, q1) + γνΓabµ(p, q1, q2)

)
. (11)

g and ga,b denote unparticle coupling with SM gauge bosons, Ta and Tb are operators

defined in the unparticle representation and the form factors are

Σ1(p, q) =
Σ0(p+ q)− Σ0(p)

(p+ q)2 − p2
, (12)

Σ2(p, q1, q2) =
Σ1(p, q1 + q2)− Σ1(p, q1)

(p+ q1 + q2)2 − (p+ q21)
(13)

and Γabµ is defined as

Γabµ = T bT a(2pµ + qµ1 )Σ1(p, q2) + T bT a(2pµ + 2q2 + qµ1 )Σ1(p+ q2, q1). (14)
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V

V ′

Uf

Uf

Uf

V

V ′

Fig. 1. The one loop contribution to polarization functions from charged fermionic unparticle
fields, V and V ′ stand for γ, Z or W .

For the Abelian group U(1), it is sufficient to replace Ta with 1 and Tb with 0.

For W and Z we define Ta and Tb as follows

for W : Ta =
σ−

2
, Tb =

σ+

2
, (15)

for Z : Ta =
σ3

2
− 2 sin2(θ)Q, Tb = −σ3

2
, (16)

σ−, σ+ and σ3 are Pauli matrices.

Now that we have derived Feynman vertices we can calculate the unparticles

contribution to the oblique parameters S and T . The explicit expressions of these

parameters are the following

S =
4s2wc

2
w

α

(
ΠZZ(m

2
Z)−ΠZZ(0)

m2
Z

− c2w − s2w
swcw

Π′
Zγ(0)−Π′

γγ(0)

)
(17)

and

T =
1

α

[
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

]
(18)

Πab(q
2), where a, b stand for γ, Z or W , denote the new physics contribution

to the part proportional to the metric gµν of the self-energies functions Πµν
ab (q

2) =

igµνΠab(q
2) + · · · . The derivatives Π′

ab(q
2) are defined by Π′

ab(q
2) = dΠab(q

2)/dq2.

α is the fine structure constant and sw = sin(θW ), cw = cos(θW ).

In Fig. 1, we show a typical diagram of the fermionic unparticles loops con-

tributions to the self-energy functions Πab(q
2) at the one loop level, where V and

V ′ stand for γ, Z or W . The complicated Feynman vertices (9 and 11) and the

nonstandard form of the propagator (1) do not allow the application of the usual

tensor reduction recipe to compute the integrals corresponding to the diagrams in

Fig. 1. However, if we look at the large p region of the loop integral, as is done in

Refs. 6 and 7, we can affect a Taylor expansion of the function Σ(p+ q) for small q.

Σ(p′ − q) = Σ(p′)

(
1− 3/2− d

p′2 −m2
(q2 − 2q · p′)

+
(3/2− d)(1/2− d)

(p′2 −m2)2
(q2 − 2q · p′)2 + · · ·

)
(19)
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where p′ = p+ q. Taking the first order in the expansion coefficient y = q − 2q · p′
the form factors Σ1 and Σ2, defined in Eqs. (12 and 13), become

Σ1(p, q) ≃
(−1)3/2−d(3/2− d)

((p+ q)2 −m2))d−1/2
+ · · · (20)

and

Σ2(p, q1, q2) ≃
(−1)5/2−d(3/2− d)(d− 1/2)

((p+ q1)2 −m2)

× 1

((p+ q1 + q2)2 −m2)d−1/2
+ · · · . (21)

Using Eqs. (20) and (21) in the calculations of the loop integrals contained in

the polarization functions of Eqs. (17) and (18), we find the one loop contribution

of unfermions to the oblique parameters S and T as follows

T =
m2

8πs2wc
2
wM

2
Z

{
23

6
+ 4d− 2d2 + (1 + 2s2w(qd − qu) + 4s4w(q

2
u + q2d))

×
(
−7

2
+ 6d− 10

3
d2 − 2

3

(
3

2
− d

)2
1 + 3s2w(qd − qu) + 6s4w(q

2
u + q2d)

1 + 2s2w(qd − qu) + 4s4w(q
2
u + q2d)

)

+ ln

(
µ2

m2

)(
−5

4
+

14

2
d− 4d2 + (1 + 2s2w(qd − qu) + 4s4w(q

2
u + q2d))

×
(
43− 44d+ 12d2 +

4s2w((qd − qu) + 2s2w(q
2
u + q2d))

1 + 2s2w(qd − qu) + 4s4w(q
2
u + q2d

))}
(22)

and

S = − (1 + 2s2w(qd − qu) + 4s4w(q
2
u + q2d))

2π

(
F1 + F2 + ln

(
µ2

m2

)
(F3 + F4 + F5)

)

+
c2w − s2w
48π

(
qd − qu + 2s2w(q

2
u + q2d)

70
(6115− 6219d+ 568d2 + 420d3)

+ 8(qd − qu)(3/2− d)2(d− 1/2) + ln

(
µ2

m2

)
(qd − qu − 4s2w(q

2
u + q2d))

× (−16− 33d+ 28d2 − 4d3)

)
+

s2wc
2
w(q

2
u + q2d)

24π

×
(
7123− 4959d+ 848d2 − 140d3

70
+ ln

(
µ2

m2

)
(−16− 33d+ 28d2 − 4d3)

)

(23)
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with

F1 =
1

3

(
d− 1

2

)2(
5

2
− d

)
4F3

(
1, 1, d+

1

2
,
7

2
, 2, 2,

5

2
,
τ

4

)
+

1

4

(
d+

1

2

)(
5

2
− d

)

×
(
3

2
− d

)
4F3

(
1, 1, d+

3

2
,
7

2
− d, 2, 3,

5

2
,
τ

4

)
+

(
3

2
− d

)2

×
((

4

3

m2

M2
Z

− 11

24

)
2F1

(
1, 2,

5

2
,
τ

4

)
− 4

3

m2

M2
Z

+
1

5

(
2F1

(
1, 3,

7

2
,
τ

4

)
+ 83F2

(
1, 1, 3, 2,

7

2
,
τ

4

)))
(24)

F2 = −
(
3

2
− d

)2((
2

3

m2

M2
Z

− 1

3

)
1 + 3s2w(qd − qu) + 6s4w(q

2
u + q2d)

1 + 2s2w(qd − qu) + 4s4w(q
2
u + q2d)

2F1

(
2, 2,

5

2
,
τ

4

)

+
1

30
(8− τ)2F1

(
2, 3,

7

2
,
τ

4

)
+

1

35
2F1

(
2, 4,

9

2
,
τ

4

)

− 2m2

3M2
Z

1 + 3s2w(qd − qu) + 6s4w(q
2
u + q2d)

1 + 2s2w(qd − qu) + 4s4w(q
2
u + q2d)

)

+

(
1

12
+

13

6
d− 4

3
d2
)

2F1

(
1, 1,

5

2
,
τ

4

)
(25)

and

F3 =
1

6

((
d− 1

2

)(
5

2
− d

)
3F2

(
1, d+

1

2
,
7

2
− d, 2,

5

2
,
τ

4

)
+ 2F1

(
1, 2,

5

2
,
τ

4

))

+

(
3

2
− d

)2((
−4

m2

M2
Z

+
τ

4

)
2F1

(
1, 2,

5

2
,
τ

4

)

− 6

5
2F1

(
1, 3,

7

2
,
τ

4

)
+ 4

m2

M2
Z

)
(26)

and

F4 =

(
3

2
− d

)((
m2

M2
Z

− 1

2

)(
3F2

(
1, d+

1

2
,
5

2
− d, 2,

3

2
,
τ

4

)
+ 2F1

(
1, 1,

3

2
,
τ

4

))

− 2
m2

M2
Z

2

Γ(5)

((
d+

1

2

)(
5

2
− d

)
3F2

(
1, d+

3

2
,
7

2
− d, 3,

5

2
,
τ

4

)

+22F1

(
1, 2,

5

2
,
τ

4
)

))
(27)
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and

F5 =
2s2w(qd − qu + 2s2w(q

2
u + q2d))

1 + 2s2w(qd − qu) + 4s4w(q
2
u + q2d)

(
3F2(1, d−

1

2
,
5

2
− d, 1,

3

2
,
τ

4

)

+ 2F1

(
1, 1,

3

2
,
τ

4

)
− 2

)
(28)

where τ = M2
Z/m

2 and 2F1, 3F2 and 4F3 are the generalized hypergeometric func-

tions. qu, qd are the electric charges in unit of e of the upper and lower component

of the unparticle doublet U . µ is the renormalization scale constant. In general, µ

takes arbitrary values but since we are working with experimental data extracted

at the LEP experiments, with momentum scale around the Z pole, we choose in

the following study values of µ in the range µ ∈ [MZ/2, 2MZ].

3. Phenomenology

To find the region of parameter space of unparticle that is compatible with ex-

perimental limits, we must compare the unparticle contribution to the oblique

parameters S and T to their experimental values deduced from electroweak pre-

cision measurements. Taking into account the discovery of the Higgs boson with

mass mH = 125.18± 0.16, the fitted values of S and T , as reported in Ref. 8, are

the following

∆S = S − SSM = 0, 05± 0, 11,

∆T = T − TSM = 0, 09± 0, 13.
(29)

To illustrate the bounds on unparticles parameters from electroweak precision tests

we present in Figs. 2 and 3 contour plots in the plane of (d,m) in the regions

d
1.5 2 2.5

m
 (

G
e

v
)

100

200

300

400

500

600

700

800

900

1000

1100

Fig. 2. Contour plots in the plane (d,m) for S = 0, 11 on the right-hand side and S = −0, 11 on
the left-hand side, solid lines are contour plots for µ = 2MZ and dashed lines are contour plots
for µ = MZ/2.
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d
1.5 2 2.5

m
 (

G
e

v
)

100

150

200

250

Fig. 3. Contour plots in the plane (d,m) for T = 0, 13 represented by the upper solid and dashed
lines and T = −0, 13 represented by the lower solid and dashed lines, solid lines are contour plots
for µ = MZ and dashed lines are for µ = 2MZ .

1, 5 ≤ d ≤ 2, 5 and 100 ≤ m ≤ 1100 for S and 100 ≤ m ≤ 250 for T . In this study,

we have chosen the values qu = −1, qd = 0 for the charges of the upper and lower

components, respectively, of the unparticle multiplet. In Fig. 2, contour plots for

experimental upper and lower bounds S = 0, 11 and S = −0, 11 are depicted for

two choices of the renormalization scale µ. For µ = MZ/2, the solid line in the right-

hand side represents S = 0, 11 and the solid line in the left-hand side represents

S = −0, 11. For µ = 2MZ , the dashed line in the right represents S = 0, 11 and

the dashed line in the left represents S = −0, 11. As can bee seen from this figure,

for values of scale dimension d ≤ 1, 7, there is practically no constraints on the

values of conformal breaking scale m but for values of d ≥ 1, 7 is restricted to

values m ≤ 200 Gev. The allowed region in the parameters space (d,m) becomes

narrower as d increases. For µ = 2MZ , the scale dimension d must be inferior to 1, 7

to satisfies the experimental bounds. Figure 3 shows contour plots for the upper

and lower experimental limits T = 0, 13 (the upper solid and dashed lines) and

T = −0, 13 (the lower solid and dashed lines). The solid plots represent T for the

renormalization scale value µ = MZ and the dashed plots represent T for µ = 2MZ.

The region between the two solid lines and the two dashed lines is consistent with

measurements for the chosen renormalization scale value. It is clear from this figure

that the oblique parameter T imposes a strong constraint on the allowed region of

parameter space. For µ = 2MZ , values of the conformal breaking scale m ≥ 200 are

excluded in the range 1, 5 ≤ d ≤ 2, 5. For µ = MZ , the allowed region is smaller.

The allowed values of the scale dimension d shrinks to the range 1, 5 ≤ d ≤ 1, 7 and

m ≤ 110.

Figures 2 and 3 are based on the bounds expressed by Eq. (29) in which S and

T are taken as independent parameters. In reality, there is a correlation between

these two observables expressed by the correlation coefficient ρ = 0, 9.8 Figure 4

2050241-8



September 16, 2020 11:51 MPLA S0217732320502417 page 9

Constraints on electroweak gauged unparticle model from the oblique parameters S and T

d
1.6 1.8 2 2.2 2.4

m
 (

G
e

v
)

100

110

120

130

140

150

160

170

180

190

200

Fig. 4. (Color online) Scatter plot in the plane (d,m) wish show the region in parameters space
compatible with the 1σ experimental bound.

shows scatter plots in the (d,m) plane compatible with 1σ experimental bounds

of electroweak precision data in which the correlation coefficient ρ is taken into

account. The blue dots represent scatter points for the renormalization scale value

2MZ . The red point represents the allowed region for µ = MZ . From this figure, we

see that the allowed region is highly sensitive to the value of the renormalization

scale in the chosen range. The infrared (IR) cutoff scale m is constrained to the

interval 100 ≤ m ≤ 200 but the scale dimension can take value up to 2.34 for

µ = 2MZ . In general, the combined fitted results of S and T , expressed by Fig. 4,

are compatible with the restrictions imposed by the oblique parameter T (Fig. 3)

except that the allowed region gets smaller in the edges when d approaches 2, 4 and

the conformal breaking scale m approaches 200.

4. Conclusion

In this work, we have calculated the contribution of a gauged unparticle model,

based on the electroweak group SU(2)×U(1), to the oblique parameters S and T .

We have used the results of this calculation to construct the region in the parameters

space (d,m) consistent with electroweak precision measurements represented by S

and T . For different choices of the renormalization scale constant, we have found

that the conformal breaking scale must lie in the interval 100 ≤ m ≤ 200 Gev for

1, 5 ≤ d ≤ 2, 4 in order to satisfy the experimental bounds. m is an IR cutoff scale

introduced in the propagator (1) to parametrize our ignorance about the details of

how scale invariance of the conformal sector (unparticle) is broken in the IR. The

constraints on m mentioned above suggest that the unparticle physics is relevant

only for experiments that probe energies E ≥ m ≃ 200 Gev. Below this limit,

the unparticle sector become an ordinary particle sector. Thus, the most promising

probes of the unparticle effects must come from high-energy physics.
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It is worth to mention that the unparticles can decay, just like normal parti-

cles. They can be regarded as a sum over several particle propagators, where the

particles have a continuously distributed mass and a width related to the imagi-

nary part of the loop correction as required by unitarity. Scalar unparticles with

these interactions can be produced at colliders through gluon–gluon fusion, in the

subprocesses gg → U , gg → gU . The unparticle can decay through the processes

U → gg and U → γγ, leading to multijet events, or events with two photons plus

jets. For the scale dimensions d = 1.1 and d = 1.4.9 For larger values of the scale

breaking m the decays are almost all prompt. For small m, more unparticles with

a long lifetime can be produced, and we get a large number of monojets. This pro-

vides a new type of signal of unparticles. Note that if the unparticle is a singlet

under SM gauge group transformations, there is a limited number of ways that the

unparticles can couple to SM particles.10 Another scenario is when the unparticles

have electroweak quantum numbers. For example, unquarks can decay into ordi-

nary quarks and will have a resemblance to a fourth family. It is very important

to mention that unparticles can decay even if they are singlets under SM gauge

group transformations (they do not carry SM quantum numbers).11 If we consider

unparticles as a fourth-generation quarks, the collider bounds on masses, precision

observables, and the renormalization flow of coupling are equivalent to imposing

constraints on gauged unparticles parameters, which depend on the process and

type of unparticles (scalar, vector, spinor, or tensor) under consideration. The anal-

ysis of electroweak precision tests imposes severe bounds on the involved parameter

space, particularly the quark mixing between the third and fourth family and the

possible mass differences within the new quark and lepton doublets. Constraints

on the masses of the fourth-family fermions are obtained from their contributions

to the electroweak correction parameters S and T . The CMS Collaboration put

a lower bound on the mass of fourth-generation up-type quark of about 450 GeV

and exclude fourth-generation down-type quark in the mass region 255–361 GeV

at 95% C.L.12

To see the effect of the experimental results on the unparticles parameters space

when decaying or interacting with SM particles, let us consider the work of Ref. 7

where it was shown that the scalar- and spinor-colored unparticle loop contributions

have an important impact on Higgs phenomenology at the LHC and can explain

the excess in h → γγ observed by ATLAS experiment. In fact in the scalar case, an

enhancement in the Higgs diphoton decay rate requires a negative coupling λhUs

and a large electrical charge to restore the naturalness and vacuum stability, while

in the spinor case an enhancement can be obtained by either negative or positive

coupling to the Higgs boson depending on the scale dimension df due to the flipping

of the sign of the spin-1/2 contributions. In both cases, a significant enhancement of

h → γγ selects a very special region of the unparticle parameters. The present data

of ATLAS in diphoton decay rate of SM-like Higgs boson around 125 GeV serve to

constrain the unparticle parameter model. Concerning the uncolored unparticles,

both scalar and tensorial interactions to SM fields can lead to sizable observable
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effects in the invariant mass distributions of dilepton pairs at hadron colliders in the

large invariant mass region.13 Missing energy from the unparticle at hadronic col-

lisions are explored. The complex phase in the unparticle propagator that can give

rise to interesting interference effects between an unparticle exchange diagram and

the SM amplitudes are found sensitively depending not only on the scale dimension

but also on the spin of the unparticle. Furthermore the possible effects of unparti-

cles through photon–photon scattering, rare annihilation type B decays, top quark

rare decays, and comparison with experimental data put severe constraints on the

unparticles parameter space. As a concrete example for the triangle exchange of

fermionic unparticles to saturate the upper bound of the electron, muon and neu-

tron electromagnetic dipole moments, one has to have ΛU = 1 TeV (energy scale at

which unparticles emerge), m = 200 GeV, d ∈ [1.5, 2].14 In the electroweak gauge

bosonW scattering and since the vector unparticles propagator depends on the scale

dimension d measuring the angular distribution of the W boson, one can determine

the scale dimension d. For the scalar signal at the LHC,15 A detailed study of cer-

tain processes within the unparticles scenario pp → 4γ . . . pp → 2γ2g . . . pp → 2γ2l,

pp → 4e . . . pp → 4µ . . . pp → 2e2µ at
√
s = 14 TeV is carried out. Using basic

selection cuts and analyze various distributions to discriminate the signals over the

SM background. Using the experimental values, limits on the uncolored scalar un-

particles parameters d and ΛU are set. The bound on ΛU can get as large as 1 TeV

for small d values, but it is smaller for larger values.

Finally, we conclude that the unparticles (gauged or ungauged) decays and in-

teractions with the SM particles are very important and lead to sizable effects.

Imposing the collider and/or electroweak precision data tests, which are in gen-

eral complementary will affect more the parameter space region like (ΛU , d) etc.,

depending on the type of unparticles (scalars, vectors . . .) and the process un-

der consideration. In the present case if we consider the unparticles effect like the

one of the fourth generation of quarks, we believe that the collider bounds on the

fourth generation of fermions will impose stringent constraints on the other gauged

fermionic unparticles parameters like the unparticle SM charge QU and Yukawa

coupling λU , and ΛU .
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Abstract. The measurement of muon anomalous magnetic moment provides a test of the 
standard model and of the physics that lies beyond it. Currently, there is a deviation of 
2.6σbetween the standard model prediction and the experimental results. In this work, the 
contribution of heavy gauge bosons from the left right symmetric model (LRSM) is calculated. 
We find that the LRSM can give a relatively small but non-negligible extra weak contribution 
to the muon anomalous magnetic moment and can reduce the deviation of ∆ܽఓ  from 2.6σ for 
the SM to 2.5σ for the LRSM model. 

Introduction 

1. Introduction 
The SM has been so far in excellent agreement with experiment. However, some problems do not have 
any explanation in its minimal version. Among them, the hierarchy problem (the stability of the higgs 
mass under radiative corrections) [1,2], neutrino masses [3] and the anomalous magnetic moment of 
the muon [4], which is the subject of this work. 
The left right symmetric model based on the gauge group ܷܵ(2)௅ × ܷܵ(2)ோ ×ܷ(1)஻ି௅ is the most 
natural extension of the standard model. It can explains parity violation at low energies [5,6] and 
provide a seesaw mechanism that give masses to neutrinos in a natural way. 
In our work, we use the LRSM to explain the anomalous magnetic moment of the muon (AMM). The 
study of AMM represents a very sensitive test of the SM at the quantum loop level and permits the 
investigation of physics that lie beyond it. The magnetic moment is defined as µ = g(e 2m⁄ )s, where g 
is the gyromagnetic ratio. The deviation of the magnetic moment from the value of the point-like 
Dirac particle (݃ = 2) is induced by the interactions of leptons with virtual particles which couple to 
electromagnetic field. Whereas the electron anomaly provides the most precise measurement of the 
fine structure constant, the muon anomaly is more sensitive to virtual gauge bosons.In this paper, we 
investigate the effects of the left right symmetric model on anomalous magnetic moment of the muon. 
We consider all possible contributions from extra gauge bosons at the one loop level. Our purpose is to 
get a better interpretation of the experimental results of the muon anomaly. In section 2, we give a 
short review of the LRSM, its theoretical basis and the structure of the gauge sector. In section 3, we 
give the calculation of muon g-2 in the LRSM. In section 4, we give a numerical estimation of the 
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value of the anomalous magnetic moment of the muon. Finally, a short summary and conclusion are 
given. 

2. Review of the left right symmetric model 
The main motivation for the left right symmetric model is the treatment of the right-handed particles 
and their interaction on an equal footing with the left ones. In this model the weak interaction is based 
on the gauge group  ܷܵ(2)௅ × ܷܵ(2)ோ × ܷ(1)஻ି௅ , where ܤ −  stand for the difference in baryon ܮ
and lepton numbers. The symmetry breaking (SB) of the LRSM is achieved in two steps via the 
vacuum expectation value (VEV) of scalar triplets and multiples. 
 

∆௅,ோ= ቆ∆
ା √2⁄ ∆ାା

∆଴ −∆ା √2⁄
ቇ
௅,ோ

,   ߶ = ቆ
߶ଵ଴ ߶ଵା

߶ଶି ߶ଶ଴
ቇ                                                (1) 

 
The symmetry-breaking scheme is as follows 
 

ܷܵ(2)௅ × ܷܵ(2)ோ × ܷ(1)஻ି௅
∆ೃሱሮܷܵ(2)௅ × ܷ(1)௒                                                (2) 

 
At this stage the right scalar develop a vev 〈∆ோ〉 = ோܸ and break the left right symmetry to the 
electroweak symmetry giving masses to heavy electroweak gauge bosons. After the first stage of SM, 
the kinetic term of the higgs sector become 
 

ఓ∆ோܦ|ݎܶ 	|ଶ = ௚ೃ
మ௏ೃ

మ

ଶ ோܹ
ఓି

ோܹఓ
ା + ௏ೃ

మ

ଶ
(݃ோ ோܹ

ఓଷ − ݃஻ି௅ܸఓ)(݃ோ ோܹ
ఓଷ − ݃஻ି௅ܸఓ)                       (3) 

 
The physical heavy field ܼோ ,	and the ܷ(1)௒ gauge field ܤఓ  are derived by appling unitry 
transformation characterized by the mixing angle φ 
 

൬
ܼோఓ
ఓܤ

൰ = ൬
(߮)	ݏ݋ܿ (߮)	݊݅ݏ−
(߮)	݊݅ݏ (߮)	ݏ݋ܿ ൰ ቆ

ோܹఓ
ଷ

ఓܸ
ቇ                                                            (4) 

 
Where ߮ is defined by 
 

(߮)ݏ݋ܿ = ௚ೃ

ට௚ೃ
మା௚ಳషಽ

మ
(߮)݊݅ݏ  , = ௚ಳషಽ

ට௚ೃ
మା௚ಳషಽ

మ
                                                            (5) 

 
In the second stage of symmetry breaking, the other higgs fields ߶  and ߂௅ get vev and give masses to 
the SM gauge bosons ௅ܹ and  ܼ௅ 
 

〈߶〉 = ൬ߢଵ 0
0 ଶߢ

൰,  〈߂௅〉 = ൬ 0 0
௅ܸ 0൰                                                                     (6) 

 
The gauge bosons masses are given by 
 

஺ܯ = 0,                                                                                         (7) 
 

௓ಽܯ
ଶ = ௚ೃ

మ

ଶ
ଵ

௖௢௦మ(ఏೈ) ଵଶߢ) + ଶଶߢ + 4 ௅ܸ
ଶ),                                                               (8) 

௓ೃܯ
ଶ = 2(݃ோଶ + ݃஻ି௅ଶ ) ோܸ

ଶ                                                                       (9) 
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ௐಽܯ
∓

ଶ = ௚ೃ
మ

ଶ
ଵଶߢ) + ଶଶߢ + 4 ௅ܸ

ଶ)                                                                 (10) 
 

ௐೃܯ
∓

ଶ = 2݃ோଶ ோܸ
ଶ                                                                             (11) 

3. Calculation of ࣆࢇ in the left right symmetric model 
3.1. Values of  ܽఓ in the SM 
The muon anomaly in the SM is the summation of three contributions  
 

ܽఓௌெ = ܽఓ,ௌெ
ொா஽ + ܽఓ,ௌெ

ௐ௘௔௞ + ܽఓ,ௌெ
ு௔ௗ                                                              (12) 

 
These contributions have been determined precisely in previews works. The QED contribution is the 
dominant one, and it has been calculated up to the fourth order ߙସ. The weak contribution has been 
calculated up to 2 and 3 loop level and it has not changed much in the last years.  
We present below the best results of the muon anomaly calculation in the SM [7,8,9] 
 

ܽఓ,ௌெ
ொா஽ = 11658471.958(0.143) × 10ିଵ଴                                                  (13) 

 
ܽఓ,ௌெ
ௐ௘௔௞ = 15.4(0.2) × 10ିଵ଴                                                              (14) 

 
ܽఓ,ௌெ
ு௔ௗ = 697.2(5.9) × 10ିଵ଴                                                             (15) 

 
The total SM value for ܽఓ is 
 

ܽఓௌெ = 11659184.56(5.9) × 10ିଵ଴                                                        (16) 
 
and the present experimental value for ܽఓ is 
 

ܽఓ
ா௫௣ = 11659208.56(6) × 10ିଵ଴                                                          (17) 

 
thus, the deviation of the experimental value of the anomalous magnetic moment of the muon from the 
SM prediction is 
 

         ∆ܽఓ = ܽఓ
ா௫௣ − ܽఓௌெ = 23.4(9.0) × 10ିଵ଴                                                (18) 

3.2.Calculation of  ܽఓ in the LRSM 
The LRSM contribution to the muon anomaly is calculated using the diagrams of fig 1. In our 
calculation, we use the t’Hooft Feynman gauge for the propagator of gauge bosons. The total 
amplitude for the diagrams of fig1 can be written as 
 

௅ோܯ =  (19)                                                            (݌)ݑఓ߁(′݌)തݑ(ݍ)ఓߝ݁−
 
Where ݍ is the four-momentum of the photon, ݌ and ݌′ are momentum of the incoming and outgoing 
muon respectively, ߁ఓ  is the vertex function which has the general Lorentz structure  
 

ఓ߁ = ఓߛ(ଶݍ)ଵܨ + (ଶݍ)ଶܨ ௜ఙ
ഋഌ௤ഌ
ଶ௠ഋ

+ (ଶݍ)ଷܨ ௜ఙ
ഋഌ௤ഌఊఱ
ଶ௠ഋ

                                           (20) 
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Because ܨଵ(ݍଶ),ܨଶ(ݍଶ) and ܨଷ(ݍଶ) are related to the electric charge, the anomalous magnetic moment 
and the electric dipole moment respectively, we must calculate only the form factor ܨଶ(ݍଶ). The 
LRSM contribution to the muon anomaly is derived as 
 

ܽ௅ோ(1݈݌݋݋) = ௚ିଶ
ଶ

=  ଶ(0)                                                               (21)ܨ
In our calculation we find that the most important contribution to muon anomaly came from the extras 
gauge bosons ோܹ,ܼோ related to the gauge group ܷܵ(2)ோ.For ோܹ, we find the following result for the 
vertex function 
 

ఓ߁ = ௜௚మ௘௠ഋ

଺ସగమெೈ
మ × ଻

଺
݌) +  ఓ                                                               (22)(′݌

 
using the Gordon identity (݌ + ఓ(′݌ = ఓߛ2݉ −  ఓ  and the definition of the AMM (eq(21)), weݍఓఔߪ݅
find the following result 
 

ܽௐೃ
ఓ ≅ ఈ

ଵ଺గ௦௜௡మ(ఏೈ)
൬ ௠ഋ

ெೈೃ
൰
ଶ ଻
ଷ

+ ܱ ቆ൬ ௠ഋ

ெೈೃ
൰
ସ
ቇ                                              (23) 

 
where ߙ is the fine structure constant. 
 

 

 
 
Figure 1. The electroweak one loop Feynman diagrams of the muon anomalous magnetic moment in 
the left right symmetric model 
 
In the same manner, we calculate the heavy neutral gauge boson (ܼோ) correction to the vertex function, 
and we deduce the corresponding muon anomaly 
 

ܽ௓ೃ
ఓ = − ఈ௠ഋ

మ

ଵଶగெೋೃ
మ

൬ଵି௧௔௡మ(ఏ)ቀଵା௧௔௡మ(ఏ)ቁ൰

௦௜௡మ(ఏ)(ଵି௧௔௡మ(ఏ))
                                                         (24) 

 
The calculation of the muon anomaly corresponding to the charged higgs, represented by diagrams 
three and four in Fig 1, show that its contribution is negligible compared to the W and Z contribution. 
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For the scalar neutral higgs ܪଵ଴,ܪଶ଴ and the neutrals pseadoscalar higgs ߮ଵ଴ and ߮ଶ଴, we get the 
following results 
 

ܽுభబ
ఓ ≈ ఈ

଼గ௦௜௡మ(ఏ)

௧௔௡మ(ఉ)ቀଵା௧௔௡మ(ఉ)ቁ

(ଵି௧௔௡మ(ఉ))మ
൬ ௠ഋ

ெೈಽ
൰
ଶ
ቆ௠ഋ

ெಹభ
బ
ቇ
ଶ

݈݊ ቆ
ெಹభ

బ
మ

௠ഋ
మ ቇ                                 (25) 

 

ܽுమబ
ఓ ≈ ఈ

଼గ௦௜௡మ(ఏ)

ቀଵା௧௔௡మ(ఉ)ቁ

(ଵି௧௔௡మ(ఉ))మ
൬ ௠ഋ

ெೈಽ
൰
ଶ
ቆ௠ഋ

ெಹమ
బ
ቇ
ଶ

݈݊ ቆ
ெಹభ

బ
మ

௠ഋ
మ ቇ                                      (26) 

 

ܽఝభబ
ఓ = ఈ

଼గ௦௜௡మ(ఏ)

௧௔௡మ(ఉ)ቀଵା௧௔௡మ(ఉ)ቁ

(ଵି௧௔௡మ(ఉ))మ
൬ ௠ഋ

ெೈಽ
൰
ଶ
∫ ݔ݀ ௫య

௫మା(ଵି௫)
ಾ
കభ
బ

మ

೘ഋమ

ଵ
଴                                   (27) 

 

ܽఝమబ
ఓ = ఈ

଼గ௦௜௡మ(ఏ)

ቀଵା௧௔௡మ(ఉ)ቁ

(ଵି௧௔௡మ(ఉ))మ
൬ ௠ഋ

ெೈಽ
൰
ଶ
∫ ݔ݀ ௫య

௫మା(ଵି௫)
ಾ
കమ
బ

మ

೘ഋమ

ଵ
଴                                           (28) 

Where ߚ is a free parameter of the LRSM defined as 
 

(ߚ)݊ܽݐ = ఑భ
఑మ

                                                                               (29) 

3.3. Numerical results 
To get an estimate of the value of muon anomalous magnetic moment in the LRSM, we use the 
following values for the LRSM parameters:ߙ = ଵ

ଵଷ଻
௓ಽܯ , = ௐೃܯ,ݒ݁ܩ90 = ௓ೃܯ ,ݒ1ܶ݁ = ுభబܯ,ݒ݁ܶ =

ுమబܯ = ఝభబܯ = ఝమబܯ = (ߚ)݊ܽݐ,ݒ5ܶ݁ = (ߠ)ଶ݊݅ݏ,10 = 0.223.After the summation of all contributions, 
we get the final result 
 

ܽ௅ோ
ఓ = 0.137 ∗ 10ିଵ଴                                                                         (30) 

 
so, the deviation of the experimental value of the AMM of the muon from the SM prediction is 
reduced in the LRSM to 
 

∆ܽఓ = ܽఓ
ா௫௣ − ܽఓ௅ோ = 23.26(0.9) × 10ିଵ଴                                                (31) 

4. Conclusions and Summary 
The LRSM is an alternative candidate of new physics beyond the SM which can explain parity 
violation at low energies. The LRSM predicts new particles, such as heavy gauge bosons ( ோܹ ,ܼோ), 
and heavy charged and neutral higgs (ܪଵ,ଶ

ି ଵ,ଶܪ,
଴ ,߮ଵ,ଶ

଴ ). In this work, we have calculated the muon 
anomalous magnetic moment at the one loop level in the LRSM. We find that the LRSM electroweak 
contribution can reduce slightly the deviation of the theoretical prediction of muon AMM from the 
experimental result. The total contribution of LRSM to muon g-2 is about 0.137 × 10ିଵ଴, so the 
muon anomaly decreases from ∆ܽఓ = 23.4 × 10ିଵ଴in the SM to ∆ܽఓ = 23.26 × 10ିଵ଴ in the LRSM, 
which is 0.6 % smaller. We conclude that the LRSM gives a small but non-negleagble extra 
contribution to muon g-2, and reduce the deviation ∆ܽఓ from 2.6σ in the SM to 2.5ߪ in the LRSM. 
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Abstract

Though very successful at describing a wide variety of particle physics
phenomenons, the standard model leaves some proprieties of nature unex-
plained. This fact lead physicists to search for new solutions based on ex-
tended symmetries or extra degree of freedoms. In this thesis we focus on two
of the new physics proposal, the unparticle model and the left right symmet-
ric model. We begin by presenting the theoretical framework upon which
unparticle are founded, conformal field theory. Then, we describe briefly
the original formulation of the unparticle model by Georgi and subsequent
works relevant to our study. Next, we construct a gauged unparticle model
charged under the standard model electroweak group SU(2)×U(1). Any new
physics model must be compatible with the standard model predictions. In
this regard the electroweak precision tests represent a powerful tool to check
the compatibility of new physics model with experimental data. For the
gauged unparticle model we calculate the oblique parameters S and T that
parametrize the contribution of new physics states to electroweak observ-
ables. We then use the bound for these parameters extracted from LEP and
other experiments to constrain the parameters space of unparticles. Finally,
we consider the effects of left right symmetric model spectrum on the muon
anomalous magnetic moment and use it to decrease the deviation between
the SM predictions and experimental observations . A paper describing part
of the results of this dissertation has been published in the Journal Modern
Physics Letters A, entitled: ”Constraints on electroweak gauged unparticle
model from the oblique parameters S and T”.

Keywords: unparticles , gauged model, oblique parameters, left right sym-
metry, muon anomaly



Résumé

Le modèle standard est une théorie très efficace pour décrire une grande
variété de phénomènes de physique des particules, mais il n’éxplique pas cer-
taines propriétés de la nature. Ce fait a conduit les physiciens à rechercher
une nouvelle solution basée sur des symétries étendues ou des degrés de lib-
ertés supplémentaires. Dans cette thèse, nous nous concentrons sur deux
propositions du physique au dela du modéle standard , les unparticles et
le modele symétrique gauche droite. Nous commençons par présenter le
cadre théorique sur lequel les unparticles sont fondées, la théorie des champs
conformes. Ensuite, nous décrivons brièvement la formulation originale du
modèle unparticle due à Georgi et les travaux ultérieurs liés à notre étude.
Ensuite, nous construisons un modèle de gauge pour les unparticle, précisément
nous considérons des unparticles chargés sous le groupe du modèle stan-
dard électrofaible SU(2) × U(1). Tout nouveau modèle de physique doit
être compatible avec les prédictions du modèle standard. À cet égard, les
tests de précisions électrofaibles représentent un outil efficace pour vérifier la
compatibilité du nouveau modèle avec les données expérimentales. Pour le
modèle unparticle chargé, nous calculons les paramètres obliques S et T qui
paramètrisent la contribution des nouveaux états physiques aux observables
électrofaibles. Nous utilisons ensuite les bornes de ces paramètres extraits
des expériences LEP et autres pour construire l’espace des paramètres des
unparticle compatible avec l’experience. Enfin, nous considérons les effets
des spectres du modèle gauche droite sur le moment magnétique anomale
du muon et nous l’utilisons pour diminuer la déviations entre la prédiction
du modèle standard et les observations expérimentales. Un article décrivant
une partie des résultats de cette thèse a été publié dans le Journal Modern
Physics Letters A, intitulés: ”Constraints on electroweak gauged unparticle
model from the oblique parameters S and T”.

Mots-clés: unparticles, modèle de gauge, paramètres obliques, symétrie droite
gauche, anomalie du muon
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