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SUMMARY 

          Silicon carbide (SiC), Zinc oxyde (ZnO), graphite and molybdenum disulfide (MoS2) 

attract much interest as materials with technological applications for the development of new 

electronic devices, in particular the new generation of semiconductors known as Power 

Semiconductor Devices (PSDs) or Field Effect Transistors (FETs). One of the biggest 

challenges is to understand the mechanical failure that occurs in the manufacturing   process 

of these materials as a result of the stresses induced during the heating cycles to which they 

are subjected. Therefore, the fundamental objective of this thesis is the evaluation and 

analysis in chemical-physical terms of the stress-strain relationships. From these relationships, 

the limit of mechanical stability of these systems can be determined. Computational 

simulation allow acces to these relationships in a quantitative way, thus providing information 

that is difficult to acces, sometimes experimentally.In this study, we present results fromfirst-

principles density functional theory calculations that quantitatively account for the responseof 

selected covalent, ionic and layered materials to general stress conditions. In particular, we 

have evaluated the ideal strength along the main crystallographic directions of 3C and 2H 

polytypes ofSiC, hexagonal ABA stacking of graphite, ZnO and 2H-MoS2. Transverse 

superimposed stress on thetensile stress was taken into account in order to evaluate how the 

critical strength is affected by thesemulti-load conditions. In general, increasing transverse 

stress from negative to positive values leads to the expected decreasing of the critical strength. 

Few exceptions found in the compressive stressregion correlate with the trends in the density 

of bonds along the directions with the unexpectedbehavior. In addition, we propose a 

modified spinodal equation of state able to accurately describethe calculated stress–strain 

curves. This analytical function is of general use and can also be appliedto experimental data 

anticipating critical strengths and strain values, and for providing informationon the energy 

stored in tensile stress processes. 

The first part of this Doctoral Thesis will be devoted to the presentation of the theoretical and 

methodological bases of the computational tools that are used in the simulations of the 

mechanical behavior that will be investigated in these materials. In the second part, stress-

strain relationships are evaluated along relevant crystallographic directions, the ideal voltage 

is calculated and the results are interpreted and explained in terms of the chemical bond and 

the thermodynamic stability limit using the spinodal equation. The thesis will conclude with a 

summary of the most relevant contributions of this study. 

 



                                                                    INTRODUCTION 
 

 

 

 

 

 

 

 

INTRODUCTION 



                                                                                                                       INTRODUCTION                                                                                 
 

2 
 

INTRODUCTION 

 This thesis is the result of four years of theoretical and computational work aimed at 

the development and application of chemical and physical models that bridge the gap between 

the outcome of quantum mechanical electronic structure methodologies and the observed 

stress-strain phenomena in solids. Stress (σ) along with temperature (T), electromagnetic 

radiation and chemical agents are the essential elements of alteration of the properties and 

functionality of bulk materials systems. They participate in a multitude of phenomena and 

processes of interest for many areas of knowledge, essential for scientific and technological 

progress. This is one of the main reasons to have undergone the current investigation. 

 This fundamental character has ensured, in tune with the advances in modern 

science, a development of specific research lines focused on both basic and applied aspects of 

the interaction of these elements on various chemical-physical systems. This is the case of the 

expansion experienced in the field of High Pressure (HP), whose boom in the last decades has 

been strongly favored the Physics of Condensed Matter, the Sciences of the Materials, the 

Earth Sciences and the Planets and even the food sciences [1]. 

 Research on various aspects related to High Pressure is currently carried out 

routinely in many laboratories due to the development of advanced experimental techniques 

capable of achieving pressures in the mega bar regime (102GPa), particularly thanks to the 

improvement in methods based on diamond anvil cells (DAC) combined with new generation 

sources of synchrotron radiation and other spectroscopic (infrared and Raman), electrical and 

magnetic techniques. On the other hand, the increase of the power of the computers together 

with the greater precision of the calculation programs, where more robust and rigorous 

theoretical methodologies have been codified, now allow reliable simulations and with 

predictive character of the response of the materials to various mechanical conditions [2]. 

 The character of the essential role of stress (and particular its hydrostatic 

representative pressure) is reflected in its ability to correlate the microscopic and macroscopic 

visions of the matter providing capacity to control and access different geometrical 

configurations in solids, modifying interatomic distances and angles of bonds. Its 

effectiveness is higher than that of temperature. In crystalline solids, for example, the 

volumetric changes vary from a few units to a few tens of percent depending on whether the 

maximum temperatures or the maximum pressures attainable in the laboratories are applied, 
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respectively. In the most common experiments, the decrease in volume and the consequent 

increase in density experienced by a solid sample when subjected to pressure within the DAC 

are quantified through the variable compressibility. In practice, its inverse is evaluated, which 

is called the modulus of compression (bulk modulus), and at zero pressure it is represented by 

B0. This magnitude and its pressure derivative, also evaluated at zero pressure (B'0), are the 

fundamental parameters of the equation of state (EOS) isotherm of the material system 

contained in the DAC.  

 When increasing the hydrostatic pressure, it is observed that the stability range of a 

sample in a certain crystalline structure is finite and, normally, a transformation takes place 

towards another structure where the packing of its atoms is more effective. A phase transition 

induced by pressure is therefore produced. This change affects the nature of the bonding 

chemical network of the solid which can induce for example polymerization processes, as in 

molecular solids. In addition, it usually increases the hardness and incompressibility and can 

lead to new magnetic arrangements. The study of polymorphism has, therefore, a great 

importance in basic aspects such as the understanding of the cohesion of solids, but also in the 

field of technological applications where, for example, potentially super hard materials have 

been synthesized by means of induced transitions by pressure [3]. 

 The observable properties of solids are, ultimately, determined by the electronic 

structure, which, in turn, is governed by the laws of quantum mechanics. The calculations of 

first principles provide the ideal complement to experimental work. They allow the support, 

confirmation and interpretation of measurements and experiments. They also may have a 

predictive character and can provide information about regions that are not experimentally 

accessible. The use of quantum-mechanical methodologies of the electronic structure in solids 

to study the effects of stress on crystalline structures has experienced an extraordinary growth 

in recent years, mainly due to the high reliability of its results and the interdisciplinary nature 

of High Pressure [2]. 

         This thesis aims to contribute to the understanding of the behavior of crystalline solids 

when they are subjected to varying conditions of stress, with emphasis on regions of uniaxial 

tensions rather than hydrostatic compressions. This is the essential contribution of this 

investigation which differentiates from others carried out in the same group. The fundamental 

objective that arises in this thesis is the generation of interpretative theoretical models aimed 

at the understanding of properties, phenomena and processes that exhibit crystalline solids 
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subjected up to limiting stability conditions of uniaxial tensions with and without 

superimposed loads. To do this, we resort to first principles quantum-mechanical 

methodologies for the resolution of the electronic structure, non-empirical algorithms for 

obtaining equations of state (EOS), and theoretical algorithms for evaluating elastic constants. 

These computational tools allow us to access fundamental properties of matter (structural, 

elastic, etc.) and compare with the observed behavior in the form of general trends in order to 

propose simple models for their description.  

 In order to rationalize the study while keeping also a practical implementation of the 

investigation, a selection of crystalline systems has been performed. We focus on materials 

with important and current technological applications in fields as electronics, solar cells and 

lubricants. For example, in the development of new electronic devices, particularly the last 

generation of semiconductors known as PDSs (Power Semiconductors Devices) [4] and 

prototype FFTs (Field Effect Transistors) [5,6,7 and 8], one of the biggest challenges is to 

understand the mechanical failure that occurs in the manufacturing processes of these 

materials as a result of the stress induced during the heating cycles to which they are 

subjected. The ideal strength, defined as the maximum tension that a crystal can support in the 

absence of defects in a certain direction, constitutes one of the most important mechanical 

properties to provide reliable information on this behavior due to the role it plays in the 

description of these phenomena during the production process. One way to access this 

fundamental property, both experimentally and theoretically, is through the study of stress-

strain relationships. Understanding how these relationships affect the mechanical properties of 

PSDs and prototype FETs is therefore crucial to optimize their manufacturing processes and 

the clarification of the types of polymorphic transformations induced by pressure these 

materials can undergo.  

 First principles computational simulations based on the density functional theory 

(DFT) allow the quantitative evaluation of stress-strain relationships in any crystallographic 

direction, thus providing information that is difficulttoaccess experimentally. Although 

studies of these relationships exist in particular crystalline systems, limited mostly to a small 

set of directions, it would be also desirable to investigate the general theoretical fundaments 

of the stress-strain relationships and to systematically address the assessment and analysis of 

the elastic stability of at least some family of compounds using these relationships following a 

computational strategy. 
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 We aim to use theoretical and computational methodologies from Quantum and 

Physical Chemistry to calculate structural, stability and elastic properties of 2H and 3C 

polytypes of silicon carbide (SiC), graphite, zinc oxide (ZnO) and molybdenum disulfide 

(MoS2). Due to the particular bi-dimensional and three-dimensional atomic arrangements of 

their crystalline structures, the behavior of these solids is shown to be highly anisotropic.This 

fact constitutes both, a challenge and an attractive research scenario to our computational 

approach. The fundamental objective is the determination of the stability limits of these 

systems when they are subjected to controlled uniaxial and biaxial stresses along the most 

relevant crystallographic directions. The fulfillment of this objective entails the detailed 

exploration of tension-deformation curves. For detailed analysiswe mean that it is required (i) 

the interpretation of these relationships in terms of the different chemical bonding networks 

present in each material, (ii) to establish the correspondence of these curves with the elastic 

behavior of the materials and (iii) to find the relationship of the calculated critical strengths 

with the stability limit evaluatedby means of the so-called spinodal equation of state (SEOS) 

[9]. This analytical function was designed to describe the high-pressure behavior of 

condensed matter using as a reference state the onset of elastic instability. It has been 

successfully applied not only to the description of experimental and theoretical pressure-

volume data, but also to the pressure evolution of one dimensional unit cell parameters [10] 

 The computational codes used in this Thesis can be divided into two groups 

according to the tasks they perform: (i)-quantum-mechanical methods of solving the 

crystalline electronic structure and (ii)-equation of state and thermal models to access stability 

limits and thermodynamic properties of crystalline materials at static and finite temperatures. 

The calculation of the electronic structure can be made with different methodologies 

according to the characteristics of the system and the problem to be treated. For example, in 

clearly ionic systems, the aiPI method is a good option [11,12]. It solves the Hartree-Fock 

equations of the solid by splitting the crystal wave function into localized group functions 

using a crystal-consistent procedure. For other systems, different methodologies framed 

within the approach of the density functional theory can be proposed. The choice of one or the 

other lies fundamentally in the problem to be dealt with. Thus, all electron electronic density 

can be obtained with the CRYSTAL code [13], which approximates the wave functions by a 

linear combination of localized orbitals of Gaussian type (LCAO). This procedure has on the 

other hand certain undesired characteristics (linear pseudo dependency problems, base 

superposition errors, etc.). The immediate alternative is the use of plane waves as base 



                                                                                                                       INTRODUCTION                                                                                 
 

6 
 

functions, since they constitute a universal, orthogonal and in principle complete set. This is 

the strategy implemented in the codes ABINIT [14], PWSCF [15] and VASP [16], which also 

use the pseudo potential approach, according to which the strong potential of coulomb and the 

core electrons are replaced by an effective pseudo potential much weaker, and the valence 

wave functions, which oscillate rapidly in the core region, by pseudo-wave functions, which 

vary more smoothly in this region and coincide with the real wave functions outside it. This 

reduces the complexity of the problem. First, by not considering the core electrons explicitly, 

the number of wave functions to be calculated is smaller. Second, since the potential no 

longer diverges to  -∞  and the valence wave functions are softer within the core region, fewer 

flat waves are needed to describe the valence wave functions. Within the presented methods, 

the ABINIT method is the one chosen for the study of our crystalline systems. 

 On the other hand, the GIBBS code [17] deals numerically and analytically with 

energy-volume (E-V) points calculated in order to deduce pressure-volume relations (p-V) and 

parameters of the EOS (compressibility module and its derivatives with respect to pressure) in 

static conditions (zero temperature and neglecting the vibrational contributions of zero point). 

The code used also a non-empirical Debye-type model to give an approximate account of the 

thermal contributions. In given conditions of P and T, the evaluation of the Gibbs function 

allows to identify the thermodynamically stable phase. In our work, we have used 

computational strategies implemented in the GIBBS code to describe energy-strain curves 

computed with ABINIT.  

 The first block of the two in which this document is organized introduces the 

fundamentals of the methodologies used in the Thesis. We have also divided it into two parts 

according to the static or dynamic character of the properties studied. In the first place, we 

consider the crystalline structure and the electronic structure (chapters I and II). This part 

contains the bases that allow us the study of the fundamental observables of the solids and 

also those of prototypical access from the computational point of view. In the second part we 

consider the response of the crystalline system to forces on the cell or on the atoms (chapter 

III). We consider only the linear response. We let the cell to change in shape (not only in size) 

and the atoms to move. We briefly study the concepts and procedures for calculating 

elasticity.  

 The second block of the document collects and discusses the results of quantum- 

mechanical simulations in a collection of selected crystalline solids. We have divided it into 



                                                                                                                       INTRODUCTION                                                                                 
 

7 
 

four chapters. Chapters IV deals with the four materials under study, SiC, Graphite, ZnO and 

MoS2. They are organized in similar sections:(i)-description of the crystal structure, (ii)-

computational details in total energy calculations including the convergence study (bases, k-

points, exchange-correlation functional, weak interactions corrections, etc.), (iii)-results and 

discussion. This last section is further divided into subsections containing our discussion of 

(1)-observable structural, EOS and elastic constants, (2)-evaluation of ideal strength with and 

without transverse stress effects and (3)-analysis beyond the stability limit: phase transition 

and bond breaking.   

 The Thesis ends with a compilation of the general and particular conclusions of the 

investigation. At the end of them we have compiled the manuscript that has already been 

published in the Nanomaterials journal and other in the submit or revision period. 
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CRYSTALLOGRAPHY 

 Point symmetry and periodicity are perhaps the most fascinating and genuine 

characteristics of crystalline systems. These attributes allow distinguishing crystals from other 

forms of matter. In the context of group theory, point symmetry is described using point 

groups and periodicity by means of translation groups, with the global symmetry of the crystal 

governed by the space groups. 

 The correlation between the symmetry of the crystal and its observational properties 

is clear according to the Neumann principle that states that all physical property of a crystal 

must possess at least the same symmetry as the symmetry of its point group. The crystalline 

symmetry manifested by real solids is, therefore, of vital importance for the understanding of   

the electronic structure, the polymorphism, the compressibility, the elasticity and the 

crystalline vibrations. All these phenomena and properties will be object of study in the 

present memory. 

1.1. CRYSTALLOGRAPHIC LANGUAGE 

1.1.1 Unit cell 

 The crystals are objects in the three-dimensional (3�) physical space. � model for 

its mathematical treatment is point space. Known in crystallography as a direct space. In this, 

the structures of the finite real crystals are idealized as infinite and perfect crystalline 3� 

structures, which for most applications is an excellent approach. 

 A vector space �� (� � 3) connected to the point space can also be considered. 

Thus, the crystalline structures are described in the point space, since the vectors normal to 

the faces, the translational vectors and the reciprocal lattice are elements of the vector space. 

 The connection between the vector space �� and the point space �� transfers the 

metric and the dimension of ��  to the point space �� so that the distances and angles in the 

point space can be calculated.The translational periodicity implies the existence of translation 

symmetry operations defined by the set of vectors {��}: 

                                              ���i =��,����+��,���� � ��,����;    ��,�∊�                                      (1.1) 
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 Such that set of points at the ends of the translation vectors (nodes) forms a 3� 

network. The three base vectors define a parallelepiped called the unit cell. In this way, the 

3�network is perfectly described by the lengths�, � ��� �, of the base vectors (���, ���, ���) and 

by the three inter axial angles α, β, and �, this set constituting the so-called parameters 

metrics of the structure. Another description of the base can be given through the scalar 

products of all pairs of base vectors. The set of these scalar products obeys the rules of the 

second rank covariant tensors and can be written through a 3x3 matrix, called the metric 

tensor, �, with elements  ���  = ���.���;  �, � � 1,2,3. 

 The different types of unit cells are characterized by the number of network points 

they have. Thus, primitive cells contain a lattice point, while those containing two or more 

lattice points are designed as multiple or centered. The distinction between these two types of 

cells can be transferred to the vector space. Thus, if the coefficients of all the vectors with 

respect to the crystallographic basis are integers, the base is primitive, whereas if rational 

coefficients appear, the base is non-primitive. A unit cell commonly used is the Wigner-Seitz 

cell. This cell is constructed by choosing as origin any point of the lattice � and drawing 

planes that bisect perpendicularly the lines that join � with its closest neighbors.Due to the 

fact that crystals are anisotropic systems it is necessary to identify directions and planes in 

which specific properties are observed. In this sense, the directions and planes determined by 

two or three lattice points are called directions and crystallographic planes, respectively. To 

facilitate the realization of calculations and to allow the interpretation of the physical 

properties of the glass, the use of the reciprocal space is convenient. Thus, if the base vectors 

of the real lattice are  ���, ��� ���  ���, it is possible to define a set of vectors of the reciprocal 

lattice ����, �����������, where ���� . ����  = 2���� (�, � � 1,2,3�, so that ����, ���� ��� ���� can be written 

explicitly as: 

                                         ���� � �������������
����.�����������

,  ���� � �������������
����.�����������

, ���� � �������������
����.�����������

                        (1.2) 

Thus, any vector of the reciprocal lattice can be written as a function of ����, ����������� and, by 

analogy, with equation (1.1): 

                                         ���= ��,����� +��,�����+ ��,����� ;   ��,�∊ Z                                            (1.3) 
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While in real space �, �, � are used as coordinates for any vector��, in the reciprocal space 

�� , �� ��� �� are used as coordinates, since any vector in the reciprocal space it is usually 

designated by  ���. 

As in the real space the unit cell is defined, in the reciprocal space the first zone of Brillouin is 

defined, which is, essentially, a unit cell of the reciprocal lattice. Conventionally, the Wigner-

Seitz unit cell of the reciprocal lattice is chosen.  Another unit cell that is useful to consider is 

the primitive unit cell, which is the parallelepiped centered on ��� = 0�� and with vertices parallel 

and equal in magnitude to  ����, ���� ��� ����, where  ����, ���� ��� ���� are the base vectors of the 

reciprocal lattice. The volume of the first Brillouin zone is then given by: 

                                                              ����. �������������� �  ���

�
                                                   (1.4) 

� being the volume of the real primitive unit cell. 

1.1.2 Symmetry operations 

 To understand the periodic and ordered nature of the crystals, it is also necessary to 

know the rest of the operations, apart from the translation, by which the repetition of the basic 

unit is obtained and which leave the metric tensor invariant. An operation of any symmetry is 

represented by an augmented matrix formed by a 3x3 matrix,�, called the linear part (it is the 

part that defines the rotation) and a column matrix (3x1) that describes the translation in the 

movement (ω). Thus, any movement of x to its image ��can be represented by: 

                                                           �� � ��, �� � �� � �                                                          (1.5) 

Considering the properties of the augmented matrix, three movements can be defined: 

 ▪ Translation.  In this case � � �, where � is the unit matrix and the vector 

  ����= ����� +�����+ ����� is the translation vector. 

 ▪ Movements with at leastone fixed point. They are divided into their own   

movements or rotations if det (�) = +1. Within the improper operations can be inversions if   

� � �1, reflections if  �� � � and � � �1 and rotor inversions in the rest of the cases. 
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 ▪ Movements without fixed points and that are not translations (or non-simorphic 

operations). They are divided into helical rotations if det (�) = +1 and reflections with slip if 

det��� � �1 . 

 The geometries (points, axes or planes) around which the symmetry operations take 

place and which correspond to the geometric place of the points that remain for such 

operations are called elements of symmetry. Not all elements of symmetry are compatible 

with the periodic nature of space, which imposes restrictions on the type and possible 

combinations of elements of symmetry. The set of all the symmetry operations of an object 

forms a group, the symmetry group. 

1.1.3 Space groups and point groups 

 In crystallography, the symmetry groups are called space groups and there are 230 

types. Classification in types reveals the common symmetry properties of all space groups 

belonging to a type. Algebraically, the space groups � and �' belong to the same type of 

space group if there exists a matrix � of dimensions (n + 1) � (n + 1) with det (�) = ± 1 and 

column � conformed by real numbers such that: 

                               � ′ � �����                                                               (1.6) 

where the matrix part of � describes the translation from the primitive basis of � to the 

primitive basis of ��and the column � of � indicates the possibility of a different origin 

choice for the operations of � and ��. Recall that � represents an operation of any symmetry 

of group �. Thus the 219 types of related space groups are obtained. In practical 

crystallography, however, we want to distinguish the orientation of the helicoidal rotations 

and we do not want to change the orientation of the coordinate system, so we add the 

additional condition det��� � �1  to the equation 1.6, such that 11 types of space groups 

divide themselves, originating the 230 space groups collected in the International Chart of 

Crystallography [1]. 

 Let's see now how the point groups are defined. If we consider that � is a subgroup 

of the space group � and �� an element of � not contained in �, � can be decomposed with 

respect to � in the following way: � � �� ������� ...., where ��� and ��� form a coset 

on the left and on the right of � respectively. Furthermore, if the above decompositions result 

in the same cosets, except for the order of the elements in each coset, the subgroup � is called 
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the normal subgroup. An example of a normal subgroup present in all space groups is the 

translation subgroup. If we call the normal group of translation ξ and decompose the space 

group � with respect to that: 

                                                   �=ξ���ξ���ξ�                                                              (1.7) 

it can be shown that there is a unique correspondence between cosets and matrices ��. As a 

consequence, if the symmetry operations of � are described by the matrices (�,�), the cosets 

can be represented alternatively by the matrices��. These matrices form a group of finite 

order, known as group point β of group�. Likewise, it is possible to define the group, � �⁄ , 

formed by a finite number (h ≤ 48) of own, improper and non-simorphic operations, where the 

translational vectors  �� = �����+�����+�����are restricted to the unit cell:  0 � ��, ��, �� � 1. 

The space group is obtained as a direct product of the factor and translation groups: � �

��
�

� ⨂�. It is always possible to establish an isomorphism between the factor group and a 

crystallographic point group. Both will have the same operations and their multiplication table 

will be equivalent. 

 The point groups are polar or not depending on whether or not there is a polar 

direction, without equivalent directions by symmetry, such that a permanent dipole electrical 

moment appears along this direction. 

 The set of crystalline structures with the same point group constitute a crystalline 

class, there being, therefore, 32 crystalline classes in 3� space. Algebraically, two space 

groups � and �� belong to the same crystalline class if the matrix representation � and �� of 

their point groups are equivalent, there is an actual matrix � such that the equation �� = 

����� is verified. The name comes from the mathematical definition according to which is a 

group of symmetry operations that act on a point � leaving all the distances and angles in 3� 

space invariant. 

 A crystallographic point group must satisfy the extra requirement of being 

compatible with the translational symmetry of crystalline solids, which reduces the possible 

operations to identity, inversions, reflections in certain planes and rotations around axes of 

order 1,2,3,4 or 6. The combination of these operations leads to 32 crystallographic point 

groups. These can be classified into 7 crystalline systems (syngonies) according to the order 

of the main axis. There are 5 crystal systems for point groups with a single major axis of order 
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1,2,3,4 or 6 called triclinic, monoclinic, trigonal, tetragonal and hexagonal crystalline 

systems, respectively. There are 2 more systems, the orthorhombic with 3 axes of rotation of 

order 2 mutually perpendicular and the cubic system with 4 axes of rotation of order 3 

directed towards the vertices of a regular tetrahedron. 

 In a given crystalline system, the point group that contains the greatest number of 

symmetry operations is called the holosimetric point group of the system. It is also possible to 

assign each of the 14 Bravais networks (possible arrangements of identical points in 3D space 

such that the environment of each is identical) to one of the 7 crystalline systems. Through the 

combination of the 32 point groups with the 14 Bravais networks, the 73 simorphic space 

groups are obtained, while the remaining 157 groups require the substitution of proper or 

improper symmetry axes and of reflection planes by sliding axes of the same order and by 

sliding plans, respectively. 

1.1.4 Unit cell and symmetry 

 Normally, crystallography usually chooses unit cells that clearly exhibit the 

symmetry of the crystal, which is done by selecting vector vectors along symmetry directions 

and origin at a network point. This leads to so-called cell conventions that are not necessarily 

primitive, although it is possible to obtain primitive cells from them. In the reciprocal space 

the choice of the unit cell of Wigner-Seitz in front of others is due to the fact that this unit cell 

exhibits the symmetry of the point group of the reciprocal lattice. However, for crystals that 

belong to crystalline systems of low symmetry (monoclinic, triclinic) its construction is very 

tedious and the primitive unit cell is used. On the other hand, the usefulness of the primitive 

cells in the reciprocal space is crucial in the calculations of electronic structure (developed in 

chapter 4). Thanks to them it is possible to simplify the mathematical expressions, and that 

allow to transform an infinite system (the crystalline cell) into a finite one (the cell of Wigner-

Seitz or first zone of Brillouin). The integrals thus have finite limits and, making use of the 

translational symmetry, the calculations are facilitated. 

 Given a zone of Brillouin and a point � of this zone there are certain elements of�, 

the point holosimetric group of the corresponding crystalline system, which transform � into 

itself or at some equivalent point ��. These elements form a subgroup of � that is denoted by 

���� and is called the symmetry group of�. Based on this, points, lines and planes of 

symmetry can be defined. Thus, � is a point of symmetry if there exists a neighborhood  � of  
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� in which no point except � has the symmetry group ����. On the other hand, if in a 

sufficiently small neighborhood  � of � there is always a line (plane) passing through � such 

that all its points have the same group of symmetry of�, then �is said to be a line (plane) of 

symmetry. 

1.2 CHARACTER TABLES 

The isomorphism between operations of symmetry, �� and matrices allows representing the 

operations by means of matrices of transformation of coordinates in the base�, 

��������,whose order corresponds with the dimension of the representation. However, the 

matrix representation of the operations of the symmetry is not unique, but different 

representations of a group can be obtained through a base change by means of a 

transformation of similarity, �������� � ������������where � is the matrix that relates the 

bases�����. When there exists the matrix � that transforms by the previous similarity 

relation all the matrices of the representation ���� = {��������} in those of the 

representation���� � ����������, ���� and  ���� are equivalent representations. A 

representation can be reduced if a new coordinate system is found in which each matrix has 

non zero blocks in the main diagonal and blocks of zeroes outside it (blocked matrices). That 

is, where �������� and �������� are matrices n1xn1 and n2xn2,, respectively, and  n1,n2< n; 

n1+n2 = n. When this reduction is possible, we say that the representation ���� is the right sum 

of the representations ����= {��������} and  ���� = {��������}, ����= ����⨂����. On the 

other hand, we say that ����is an irreducible representation if there is no matrix� capable of 

converting all the matrices of ���� in an identical block. The enormous advantage of 

examining the irreducible representations of a group is that: 

  ▪ A finite group has only a small number of non-equivalent irreducible 

representations. 

 ▪ Similarity transformations keep some properties of the matrices (determinant, 

trace) invariant. 

 Since the symmetry operations that are part of an equivalence class are also 

transformed by equivalence relations, the matrices of the operations �� and �� that belong to the 

same class will also have an identical trace and determinant. This allows us to construct a 
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unique table for the group (Table of characters), in which the rows are labeled by non-

equivalent irreducible representations and the columns mediate the equivalence classes of 

operations. Thus, class i of the irreducible representation ���� corresponds to the trace of the 

matrices �������� (�� ∈ to class�) also called character. The last two columns list basic 

functions of the irreducible representations. In the first column, translational and rotational 

movements appear along and around the �, �, � axes (��, ��, �� and  ��, ��, ��), while in the 

second, the six components of the polarizability are listed.  

 The character tables provide essential information for the study of the vibrations of a 

solid, both for its determination through the factor group analysis, as well as for the 

assignment of Raman or IR activities. Traditionally, the Mullikan notation is used for 

irreducible representations. According to this, the irreducible representations of dimension 1 

are called � or � depending on whether or not they are symmetric with respect to the rotation 

around the main axis of symmetry. Moreover, the subindices 1 or 2 depending on whether or 

not they are symmetrical with respect to the rotation around the axis �� perpendicular to the 

main axis or to the perpendicular plane of reflection. The letter � designates an irreducible 

representation of dimension 2, while the letter � denotes an irreducible representation triple-

degenerated. For pooled groups containing an operation �� single and double primes are used, 

indicating the first symmetry and the second antisymmetry with respect to  ��. When there is 

a center of symmetry�, the symbols � and � are used to designate irreducible representations 

that transform symmetrically and anti symmetrically with respect to  �. 

              One of the results of group theory that has deeper consequences is the Great 

Orthogonality Theorem (���), according to which if  ���� and ����are two irreducible 

representations of group �, then: 

                                               ∑ ���
���

Ȓ (�̂����
�������� = �

��
���������                                    (1.8) 

Where the sum runs through all the symmetry operations of the group, � is the order of�, �� 

the dimension of  ���� and ��� � 0, unless � � �. Among the consequences of the  ��� are: 

 ▪The number of non-equivalent irreducible representations matches the class number 

of the group. 
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              ▪ The sum of the squares of the dimensions of all irreducible representations not 

equivalent to the order of the group.▪ Any two rows of the table of characters are orthogonal 

to each other: 

If   ∑ ������̂�����∗��̂�� = h��� =∑ ����
�����

���∗
�  where the second summation crosses classes � 

and �� is the order of class �. 

 ▪ Any  two columns of the table of characters are also orthogonal:    

∑ ��
���∗��

���
� = �

��
���. 

 ▪ An arbitrary representation� with characters ��������̂is irreducible if and only if   

∑ |�����|��̂ � ∑ ��� |��|�� 

 As a consequence of the theorems seen and the obtaining of the matrices as diagonal 

blocks, the trace of an irreducible representation is obtained as a sum of diagonal elements in 

which it can be decomposed. We can write the reducible representation as a direct sum of the 

irreducible representations, that is  � � ∑ ������
�  where �go through the irreducible 

representations and �� indicates the number of times the irreducible representation ���� is 

contained in �. 

 If this equation is transferred to the characters of each representation, we can 

determine the coefficients ��as a consequence of the orthogonality between rows of the 

character table, such that: 

                                     ��= �
�
∑ ���̂�����∗��̂� ��̂

�
�
∑ ���������∗�                                        (1.9) 

1.3  INTERNATIONAL CRYSTALLOGRAPHY TABLES 

 The description of the 230 space groups is included in the International 

Crystallography Tables [1]. These include notation, equivalent point diagrams by symmetry 

and arrangement of elements of symmetry, information about the origin, the symmetry 

operations, the symmetry generators, the Wyckoff positions, the symmetry of space 

projections and maximum and minimum subgroups. For our purposes, the crystalline structure 

of a compound is specified from (i)-the space group (selecting the appropriate origin), (ii)-the 
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values of the network parameters, and (iii)-the positions occupied by the atoms in the unit cell 

with the particular values of these positions for the compound (also called Wyckoff 

positions). 

 The positions occupied by the atoms can be general or especial. A point � is said to 

be a point of general position with respect to a space group � if there is no symmetry 

operation of � (apart from the identity operation) that leaves � fixed. The setof all the 

symmetry operations of the space group � that leave point � invariant form a finite group, the 

point group ���� of � with respect to the space group. 

 In the International Tables of Crystallography, information appears about the 

multiplicity, the letter of Wyckoff [2], the point symmetry, the coordinates and conditions of 

reflection. Multiplicity is the number of equivalent points per unit cell; for primitive cells, the 

multiplicity of the general position is equal to the order of the point group of the space group. 

For centered cells, it is equal to the product of the order of the point group by the number 

(2,3,4) of network points per cell. Thus, the multiplicity of a special position is always a 

divisor of the multiplicity of the general position. The letter of Wyckoff is, simply, a scheme 

of code, in alphabetical order of greater to lesser symmetry. The coordinate triplets of a 

general position can be interpreted as a form of the matrix representation of the symmetry 

operations of the space group. Its sequence is based on the generators and represents the 

coordinates of the � equivalent points (atoms) in the unit cell. In the case of space positions, 

there are specific restrictions on coordinates. The number of Wyckoff positions other than 

each space group is finite. 

 Another classification of points in the point space with respect to the space group � 

is the subdivision of all the points in sets of equivalent points by symmetry, called 

crystallographic orbits, according to the following definition: the set of all the points that are 

equivalent by symmetry at a point � with respect to a space group � called the 

crystallographic orbit of � with respect to   �. The crystallographic orbits are infinite sets of 

points due to the infinite number of translations in a space group. Any one of its points can be 

the generating point of the crystallographic orbit, and represent, therefore, the total 

crystallographic orbit. Because the point groups of the different points of the same 

crystallographic orbit are conjugated subgroups of  �, a crystallographic orbit consists of 

points of general position or points of space position. Therefore, one can speak of 

crystallographic orbits of general position or special crystallographic orbits. The points of 
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each crystallographic general orbit of a space group � present a one-to-one correspondence 

with the symmetry operations of   �.  

 This one-to-one correspondence is the reason why the coordinates listed for the 

general position in the space group tables can be interpreted as the coordinates of the � image 

points or as a notation for the pairs ��,�� of the � symmetry operations. Such one-to-one 

correspondence does not exist for special crystallographic orbits where each point 

corresponds to a complete coset of decomposition in cosets of the space group with respect to 

the point group ���� of  �. 

 A concept of great relevance in crystallography is that of normalizer. The normalizer 

� of a space group � in the group � of all the affine transformations is the set of those fine 

transformations that transform � into it. The space group � is a subgroup of  �, where � is a 

subgroup of �. Thanks to this concept, the Wyckoff set can be defined with respect to � as all 

the points � for which the point groups are conjugated subgroups of  �. 

 In analogy with the shapes of the faces of the crystalline polyhedra, Paul Niggli 

introduced the concept of lattice complexes to characterize relationships between dot patterns 

with space group symmetry. Thus, a network complex is defined as the set of all the 

crystallographic orbits that can be generated within a type of Wyckoff sets. Different space 

groups of the same type have their corresponding Wyckoff sets, and we can talk about types 

of Wyckoff sets. Thus, if the space groups � and �′ belong to the same type of space group, 

the Wyckoff � sets of �′ and �′ belong to the same type of Wyckoff sets if the fine 

transformations that transform � into �′ also transform � into �′. All the crystallographic 

orbits belonging to the same network complex can be found following procedure: 

   ▪ Take all the crystallographic orbits of a particular Wyckoff position in a particular 

space group. Mathematically, their point groups are conjugated subgroups of the space group. 

 ▪ Take all the crystallographic orbits of Wyckoff positions belonging to the same set 

of Wyckoff (their point groups are conjugated subgroups of the normalizing space group in 

the affine group). 

 ▪ Take all the crystallographic orbits of Wyckoff sets from all space groups of the 

same type of affine space group. Each isomorphism, transforming two space groups of the  
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same type one into another, simultaneously transforms the point groups of the points from the 

crystallographic orbits of the corresponding Wyckoff sets. 

              Thus, since the crystalline forms of a particular type can be found in different types 

of point groups, the same network complex can occur in different types of space groups. 

Accordingly, two Wyckoff positions are assigned to the same network complex. Their space 

groups belong to the same crystal family and there is an adequate transformation that 

commutes the crystallographic orbits of the two Wyckoff positions. By this criterion, the 

Wyckoff positions of all space groups are assigned only to 402 network features. 

 The concept of network complex is important to reconnect structural relationships in 

connection with relationships between subgroups and, therefore, in the proposal of 

mechanisms of phase transitions. For geometric studies it is sufficient to consider only a 

representative Wyckoff position by network complex. 

1.4 RELATIONS IN CRYSTALLOGRAPHY 

 Relationships between crystalline structures simplify relationships between their 

groups that can be expressed through group-subgroup relationships. A set of symmetry 

operations {��} of a space group � is called subgroup � of � if {��} satisfies the group 

conditions. A subgroup � is called maximum symmetry or maximal if there is no own 

subgroup � such that H is a subgroup of�:� � � � � . In this case, � is called a 

supergroup of minimal symmetry of  �. The International Tables of Crystallography [1] lists 

the contingent subgroups in each space group. The diminution of symmetry in these 

subgroups can take place essentially in three ways: (i)-by reduction of the order of the point 

group, that is, by eliminating all point symmetry operations of a type. (ii)-for loss of 

translations, (iii)-by combination of (i) and (ii). The subgroups of the first type are called t-

subgroups (or subgroups with equivalent translation), and that the groups of translation of � 

and � are the same���� � ����, although the subgroup � loses rotation operations with 

respect to � and, therefore, the point group of  � is smaller than that of  �: ���� � ����. 

 The subgroups of the second uncle are called �-subgroup (or subgroups with 

equivalent point group). These present the same point group as the group from which they 

come: ���� � ����, decrease in the order of the translation group ���� � ����. Finally, in 
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subgroups of the third type, both the translation group and the point group have a lower order 

than those of the original group: ���� � ����, ���� � ���� 

 Fortunately, Herman's theorem states that a subgroup of maximum symmetry of a 

space group must necessarily be a subgroup � or �. The index of a transformation in a group-

subgroup relationship (� � �) can be factored into two parts: � = ��. �� . In the formula, �� is 

the index �, which coicides with the multiplication of the cell in the subgroup in the case of 

primitive cells and it (the index of translation), is equal to the quotient between the orders of 

the point groups � and � In the �-subgroup: �� � 1 and  �� � �, while in the �-subgroups: 

�� � 1 and �� � �. Formally, the index associated with a group-subgroup relationship of 

general type is given by: 

                                           �= �� . �� �
����
����

 . ����
����

                                             (1.10) 

where ���� and ���� are the orders of the point groups of the space groups � and � and 

���� and ���� the number of forulas unit per unit unit of the two structures with groups of 

symmetry � and �. In the general case in which � is not a subgroup of maximum symmetry 

of �, it is possible to represent its relationship through an intermediate maximal subgroup: 

� � �� �. . . . � �� � �. The index of � in � equals the index product of the intermediate 

steps. Through a tree diagram it is possible to show the intermediate groups that connect � 

and � with a certain index. 

 A particular application is the cross-search of subgroups common to the symmetries 

of the two structures involved in solids-solid transformation. Although we later discuss the 

different types of transitions, we can advance that in a reconstructive transition there is no 

group-subgroup relationship between the initial and final phases. However, we can find a 

subgroup � common to the space groups of symmetry of the two phases that allows us to 

describe the structural change of the transition �1 → �2, being �1 the initial space group and 

�2 the end. 

 Several procedures have been proposed to find these common subgroups imposing 

limitations for the cell size and a determined maximum distortion [3,4 and 5]. For the 

proposal of transition mechanisms, Stokes and Hatch only consider subgroups of maximum 

symmetry, with theaddition that the initial and final atomic positions are compatible. In the 

specific case of the transition �1 → �2and using cells up to four times the size of the 
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primitive cells of the two groups involved (with � � 1), they obtained the 12 subgroups of 

maximum symmetry that appear in Table 1.1. 

 

Table1. 1 Subgroups common to structures �1 and �2 according to [5], � is the number of 
molecules per unit cell. 

�    1 2 
 

4 

� �3� �2�2�, ���2�, ���� 
� 2 �⁄ �2�, � 2� �,⁄ ��� 2 �,⁄  

�1,   Iba2 

 

 Transformations of coordinate systems are very useful when considering 

unconventional unit cell descriptions of a crystalline structure. For example, to understand the 

possible relationships between the structures of the polymorphs of a compound, in the 

proposal of mechanisms of phase transitions and in group-subgroup relations. 

 It will then be assumed that while the coordinate system and the unit cell are 

changed, the crystal structure remains unchanged. A point � of a crystal is defined with 

respect to the base that makes up the vectors ��, ���, �� and the origin � by the coordinates 

��, �, �� of the position vector��. This same point, with respect to the new coordinate system of 

base vectors ��′, ���′, ��′and origin�′, will be described by the vector: 

                                       ��′ � �’��′ � �′���′ � �′��′                                               (1.11) 

The related transformation that relates both position vectors is composed of the matrix � and 

the column�, which contains the components of the displacement vector �� and define the 

transformation unequivocally. This is represented, according to the Seitz notation, by (�, ��). 

The matrix � implies a change in the orientation, or both of  ��, ���,��: 

                                             �����′  ��′� � ��������� � � ��������� �
��� ��� ���
��� ��� ���
��� ��� ���

�.                (1.12) 
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 For a pure linear transformation the displacement vector ���� is zero and the symbol 

of the transformation is (�, 0��). The determinant of � should be positive. Otherwise, the right-

handed coordinate system is transformed into a sinister. If the determinant is zero, the new 

base is linearly dependent, so it does not complete the space. A displacement of the origin is 

defined by the vector 

                                                          ��= ���� � ����� � ����                                                 (1.13) 

Where the vectors of the new coordinate system are born at the origin �′, of coordinates 

��, ��, �� according to the old coordinate system. In the case of a displacement of pure origin, 

the base vectors do not change their orientation or length, so the transformation matrix � is 

the unit matrix�, and the global displacement symbol is (�, ��). 

The inverse matrix of � and the opposite vector of��: 

                                                                  �= �-1,   �� � ��-1 ��.                                       (1.14) 

the matrix � is formed with the components of the vector ��, which refers to the coordinate 

system��′, ���′, ��′: 

                                                 �� � ����′ � �����′ +����′                                     (1.15) 

the transformation of the components of a vector �� of the direct space is given by: 

                                        �
�′
�′
�′

� � � �
�
�
�

� � ��                                                    (1.16) 

If there is no displacement at origin (�� � �� � 0��� , the position vector of point � will be given 

by: 

                                ��� � �������������� �
��

��

��
�=(�������� �� �

�
�
�

� � ��������� � ��                        (1.17) 

In this case ��� � ��, that is to say the position vector remains invariant, although its 

components change. 

The volume of the ���� unit cell also changes with the transformation: 
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                                          ����� = │�│���� = �
��� ��� ���
��� ��� ���
��� ��� ���

� ����                                     (1.18) 
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2.1. THE PROBLEM OF MANY BODIES  

 The microscopic description of the matter requires a theoretical model in accordance 

with the laws of quantum mechanics. In the solids, the electrons move around the nuclei that 

are in determined positions, according to the symmetry operations of the crystal. The 

chemical-physical properties of solids are governed by the behavior of electrons, so that the 

understanding of a significant part of the behavior of condensed matter could be achieved if 

its electronic structure could be determined exactly. 

 The basic equation used to describe quantum systems is the Schrödinger equation 

dependent on time, proposed by Schrödinger in 1926, 

                                                             Ĥ����, �� = �ħ ����, ��                                                (2.1) 

The separation of the wave function ����, ��  in terms of its variables �� and �, 

����, �� �  � ��� � ����,  allows to use the non-relativistic and time-independent Schödinger 

equation, Ĥ��  = ����  to determine the properties of the stationary states of a system.  Ĥ,  

������, ...., ���, ����, ......, ����� and  ��  are the Hamiltonian, the wave functions and the energies 

of the stationary states of the system, where ��� and ���� are the electronic and nuclear variables, 

respectively. 

 The Hamiltonian can be expressed as:  

                                                           �� = ���+���+ ��  + ����+  ����,                                      (2.2) 

 Being the contributions to the kinetic energy of electrons and nuclei (in atomic 

units): 

                                                             ��� = - ∑ ��
�

�
�
��� ,   ��� = - ∑ ��

�

�
�
���                                 (2.3) 

and the coulomb electron-electron, nucleon-electron and nucleon-nucleon interactions: 

                 ��=∑ ∑ �
�│�������│

�
���

�
� ,   ����=∑ ∑ ��

�│��������│
�
���

�
��� ,  ����=∑ ∑ ����

�│�������│
�
���

�
���        (2.4) 
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 The wave form  ������, ...., ���, ����, ......, ����� of the ground state contains the basic 

information we wish to determine. Although all the variables involved in the Schödinger 

equation are known, their exact resolution is, in general, invariable in systems with an 

arbitrarily large number of electrons. Efforts to make the quantum problem of many bodies 

treatable are centered on finding intelligent approximations to the Hamiltonian H and the 

wave function � that conserve the correct physics and are computationally feasible. 

 The first simplification of this problem is due to Born and Oppenheimer [1]. Under 

its approach, the movement of nuclei and electrons can be separated due to the large 

difference in mass between the both. It can be considered, therefore, that the solid is 

constituted by a skeleton of atomic nuclei whose positions are decoupled from the electronic 

movement. The electronic structure is then resolved for frozen nuclear geometries. In this 

sense, the global Schrödinger equation is simplified into two equations, one electronic and the 

other nuclear. In the electronic Schrödinger equation the term ��� does not intervene and ���� is 

a constant that we can omit: 

                                                                        ������ = ���+����  + ����                                      (2.5)  

Such that, 

                                                                          ������
� �����

�  = ϵ������
�                                     (2.6) 

where  �����
�  are the electronic wave functions that depend explicitly on the positions and spin 

coordinates of the electrons and parametrically on the coordinates of the nuclear 

positions.ε�are the energies of the electronic levels of the system. The nuclear repulsion is 

usually included in this term:  �����
� �  ε� �  ��� .  If we consider only the fundamental state 

we can dispense with the term  �����  from the superindice and call the nuclear potential 

because it acts as a potential to which the nuclear movement is subjected: 

                                                ����������� =  ������ ,  ������ = ��� + �����                         (2.7) 

where  � is the total energy of the system and  ���������� �  �. In the so-called static 
approximation, which we will frequently use, we consider the immobile nuclei (� �  0� and 
negligible zero-point vibrations) and, therefore, we only have to worry about solving the 
electronic Schödinger equation. Despite considering thisapproach, the problem continues to 
be very difficult to solve, since in a solid the number of interacting electrons is at the 



                 CHAPTER II ELECTRONIC STRUCTURE: The Hartree-Fock Method (HF) 
 

26 
 

macroscopic level of the order of 1023, which entails an intractable task even considering the 

punctual and translational symmetry of the crystalline system. 

2.2.    THE HARTREE-FOCK METHOD (��) 

 The Hartree-Fock theory (��) [2] is one of the simplest and most efficient 

approximate theories to solve the problem of N electrons. It is based on an approximation to 

the true � of many bodies. According to this, the electronic wave function �� (���) of a 

system of � electrons are constructed as an anti-symmetric product of spinorbitals (��) 

through a Slater determinant of the form, 

                                                      ���  = �
√�!

�
�������…�������
……………………
�������…�������

�                                         (2.8) 

where the variables  ��include  the coordinates of space and spin. This approach to wave 

function� captures much of the physical memory to obtain successful solutions from the 

Hamiltonian. More importantly, the wave function ���  is antisymmetric with respect to an 

exchange of 2 electronic positions, thereby fulfilling Pauli's exclusion principle: 

                               �(���, ���, … , ���, … , ���, … , ���) = ��(���, ���, … , ���, … , ���, … , ���).           (2.9) 

 The �� method tries to obtain the best monodeterminantal approximation to the 

exact wave function � through the variational principle. Thus: 

                                                   ��� � 〈���│�������│����〉 � �                                        (2.10) 

� being the energy of the ground state. The variations are made by varying the shape of the � 

spinorbitals and conserving the orthonormality������� � δ�� until reaching the lowest 

possible energy. The resulting equations that lead to the best orbitals, called Fock equations 

                                        ��(1)��(1) = [��(1) + ��(1) ]��(1) = ����(1)   � � 1, �                  (2.11) 

where the operator �� is defined as: 

                                                           �� (���) = � �
�
�2 + ����(���)                                            (2.12) 

And the operator �� is defined as: 
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                                ��(���) =∑ � ��
∗����� �

���
 �1 �  ����� �������d����

���                                  (2.13) 

where  ���� is a permutator that changes electron 1 to 2 and vice versa. The resolution of the 

Fock equations requires a self-consistent iterative procedure, since the operator �� depends on 

its eigen functions �� through��. These eigenfunctions are fictitious monoelectric operators, 

which include the kinetic energy and nuclear attraction (��) and an approximate repulsion 

averaged (��) exerted by the rest of electrons. 

       Once the orbitals have been calculated, it only remains to obtain the total electronic 

energy of the system, that is: 

                              ���  =  〈��� │���│����〉 = ∑ 〈��│����1�│���〉�
���  + �

�
〈���∥ ���〉                  (2.14) 

where〈���∥ ���〉 is the sum of the terms of coulomb and change: 

                     〈���∥ ���〉 = � d���d���
��

∗����������
∗��������

���
� � d���d���

��
∗����������

∗��������

���
         (2.15) 

the first term represents the coulomb repulsion of electron 1 in the orbital �� with the electron 

2 in the orbital �� and the last one, the integral of exchange, arises as a consequence of the 

antisymmetry of the Hartree-Fock wave function. This nonlocal term cancels the self-

interaction, or Coulomb repulsion without physical meaning of an electron with it, assuring 

that〈���∥ ���〉 � 0. The exchange interactions also introduce the correlation associated with the 

Fermi hole, that is, the physical impossibility that two electrons of the same spin occupy a 

certain volume. However, the Hartree-Fock theory, assuming a mono-determinantal form for 

the wave function, does not include the correlation between electrons of different spin. The 

electrons are subject to an average nonlocal potential generated by the other electrons, which 

leads in general to a poor description of the electron structure. 

 The limitations of the Hartree-Fock method can be reduced by going beyond the 

approximation of a mono-determinantal wave function. The wave function is expressed as a 

linear combination of Slater determinants in which a set of spinorbitals occupied by virtual 

ones have been replaced by electronic excitations of a different nature. Basically, there are 

two ways of dealing with the problem of the electronic correlation: through the theory of 

perturbations and through the variational principle. Although these post-HF methods, such as 

interaction of configurations, coupled-cluster and Moller-Plesset theory have been developed  
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extensively in the field of quantum chemistry, they have only recently begun to be used in the 

preliminary way in the study of solids [3], due to the rapid increase in computational cost 

associated with the size of the system. For this reason, in this thesis we have opted to estimate 

and correct a correlation error a posteriori by using functionalities of the electron density 

suitable in the cases in which we have resorted to �� formalism in the resolution of the 

electronic structure of the crystalline system. 

2.3.    DENSITY FUNCTIONAL THEORY (���) 

 An alternative to the conventional abinitio methods of introducing the effects of 

electronic correlation in the resolution of the electronic Schrödinger equation is the density 

functional theory (���) [4], in which the basic variable is electron density instead of the 

wave function. The advantage is obvious since the density only depends on 3 spatial 

coordinates and the spin, while the wave function depends on 3� variables (4� if the spin is 

included), where � is the number of electrons. Unlike traditional chemistry-quantum 

methods, in the ��� formalism it is not treated with the �-interacting electron system but 

with a dynamically equivalent system of � non-interacting fictive electrons that have the 

same density as the real system. In this way, formalism does not lead to a multielectronic 

wave function, although the algebraic implementation of the ��� theory through the Kohn-

Sham equations [5] is monoelectronic and shares many similarities with the Hartree-Fock 

formulation. 

 Formally, it is an exact theory. However, in practice it is necessary to resort to 

approximations, which does not prevent the accuracy of the calculations from being 

surprisingly good. On the other hand, the methods developed in light of ��� are substantially 

simpler and potentially capable of providing results of similar or even greater precision than 

methods based on wave function with much lower computational cost. 

 Therefore, the choice of computational methods based on the ��� theory to 

approach the study of solids has been predominant in recent years. 

2.3.1.    THEOREMS OF HOHENBERG AND KOHN 

 The density functional theory was formulated by Hohenberg and Kohn in 1964 [6], 

following the spirit of the electron-sea model of Tomas-Fermi [7,8] (in which the electronic 
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contributions to the kinetic energy and to the classical electrostatic interactions are obtained 

using a uniform electron gas), and the subsequent correction of Dirac that includes the energy 

of electron exchange. 

 The first theorem states that the expected value of any observable of a fundamental 

non-degenerate steady state can be calculated, in principle exactly, from the electron density 

of this fundamental state. That is, the expected value of any observable can be written as a 

functional of the electron density of the ground state, ��ρ� � 〈����│���│�����〉. Thus, in an 

electron system under an external potential�����, the potential is only determined by the 

electron density. Since electron density determines the number of electrons, � � � ��������, 

and fix �����according to the first theorem of Hohenberg and Kohn, it is concluded that the 

density determines the Hamiltonian (except in an additive constant) and the wave function of 

the fundamental state. Consequently, the electronic density fixes all the observable properties 

of the ground state, including the kinetic energy of the electrons, the potential energy and the 

total energy. 

 Thus, the energy of the ground state is a unique functional of the electronic density, 

                                             �����=  ������  + ������ + ���),                                           (2.16) 

Where������ �  � ���  �  � ��� is a universal functional density and  �������� ��� kinetic 

and potential contributions to it. 

 This demonstration is only valid for �-representable density, that is, for electron 

densities associated with the antisymmetric wave function of the obtained fundamental state 

of a Hamiltonian that includes the external potential �����. However, not all densities are �-

representable. The restricted Levy formulation [9] eliminates the requirement that the density 

be �-representable. Part of the set of functions, ��� that integrate ρ� (the exact density of the 

fundamental state, with wave function  ��). According to the variational principle. 

              〈���
�│�� � ��│����

〉+� ρ������������� � 〈��
�│�� � ��│���〉  +  � ρ�������������      (2.17) 

 This expression is immediately reduced to the inequality: 

                                        〈���
�│�� � ��│����

〉 � 〈��
�│�� � ��│���〉                                      (2.18) 



              CHAPTER II ELECTRONIC STRUCTURE: Density Functional Theory (DFT) 
 

30 
 

being the terms of electron-core interaction on each side of the identical inequality. Thus, 

                                        ����ρ�  =   ���│��〉⇾ │���〉〈��│�� � ��│��〉                                    (2.19) 

where the universal functional of the electronic density is searching among all the wave 

functions that generate the electron density  ρ�����. And selecting the one that minimizes the 

expected value �� � ��, which is none other than the function wave of the fundamental state. It 

is, therefore, possible to determine  �� only from the knowledge of  ρ�, through a restricted 

minimization within the set  ��� of the value of  �� � ��. Consequently, it is shown that there is 

a biunivocal correspondence between ρ� and �� without the need to consider the external 

potential ����� 

 The restricted Levy formulation also eliminates the requirement that the 

fundamental states must be non-degenerate, since in the restricted search we limit ourselves to 

one of the degenerate functions, which corresponds to the density that interferes with us. 

 Unfortunately, the demonstration of the first theorem of Hohenberg and Kohn is 

only of existence and does not provide information of the form of the functional ����  so it is 

necessary to resort to approximations. 

 The second theorem (known as the variational principle) states that the exact 

electron density of a non-degenerate ground state minimizes the functional of the total energy 

����, from which the variational equation follows: 

                                                              �����
��

�  � � 0                                                        (2.20) 

whereμ is a Lagrange multiplier that ensures that the functional of the energy is determined by 

the normalized electron density  �, ρ. 

 

2.3.2.    THE KOHN-SHAM FORMULATION 

 Unfortunately, the Euler equation that determines the energy function has no 

practical meaning for computational purposes. Taking into account the decomposition of 

����, the need for an explicit functional form for both the kinetic energy functional and the 

electron-electron repulsion is clear. Kohn and Sham devised in 1965, an ingenious procedure 
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to avoid the difficult problem of the functional of kinetic energy, the Kohn-Sham ���� 

method, which converts the ���  theory into a more practical computational scheme. The 

idea is based on introducing, in the style of the traditional chemical-quantum methods, 

orbitals in the problem and invoking a fictive system of independent electrons whose density 

is equivalent to that of the real one. The total functional energy can then be decomposed as 

follows: 

                                ��ρ� =  ���ρ� + � ρ������������  + � d�����′ �����������
│������│

   +  ����ρ�           (2.21) 

 The first term ���ρ�is the kinetic energy of the non-interacting electrons, although it 

should be noted that it is functional of the electron density of the interacting electrons. The 

second term is the energy contribution of the external potential. The third term, which we will 

call��ρ�, represents the classic Coulomb repulsion of the electronic cloud including the self-

interaction energy. The fourth term is called exchange-correlation energy. This term includes 

the self-interaction as well as the rest of nonclassical effects of the electron-electron quantum 

interaction: the energy of exchange, the correlation energy and the kinetic energy with respect 

to the reference system: 

����ρ� = ���ρ� � ���ρ�� + ���ρ� � ��ρ� =  ���ρ� �  ��� �ρ� = � ρ��������������.              (2.22) 

 Re-perceiving equation 2.19 in terms of an effective potential ��������we get that: 

                                                                    ������
������

� �������� �  μ                                       (2.23)  

where the monoelectronic effective potential of Kohn-Sham is defined by: 

                                                           �������� =�����  +  � ����������
│������│

    +  �������                  (2.24) 

With: 

                                                          �������=  �������
������

 .                                                        (2.25) 

 Interestingly, if we considered non-interacting electrons moving in an external 

potential ��������they would generate the same equation 2.22. The problem of minimizing the 

density ρ���� is reduced, then, to solving the monoelectronic Schödinger equation: 
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                                        ������  = ϵ���, ����  =  � �
�

��
� � ��������, 〈��

�│���〉  = δ��             (2.26) 

 These equations (called Kohn-Sham equations) are similar to the �� equations. The 

orbitals that are obtained are called Kohn-Sham orbitals and allow the immediate calculation 

of the electronic density, 

                                                                    ρ���� = ∑ │������│��
�                                        (2.27) 

 However, the �� orbitals do not simulate the orbitals of the system, nor the �� 

autovalues are the orbital energies, nor the determinant function ��1, �� that we can build 

with the �� orbitals has explicit relation with the multielectronic function of the real system, 

nothing more than generating both the same density. In spite of this, the �� orbitals obtained 

in solid calculations are often very similar to the �� orbitals and have been used in many 

cases to describe electronic excitations. 

 As in the �� method, the resolution procedure is self-consistent, due to the 

dependence of the effective potential with the electron density defined as a function of the 

occupied spinorbitals������ through equation 2.26, being in the case ofFock's equations the 

dependency with the solutions �� explicit of the Coulomb and exchange operators. 

 The energy of the fundamental state can be extracted from the solutions obtained in 

the �� equations, through the equation: 

                                   �� =  ∑ ϵ�� �  �
� � d�����′ �����������

│������│
  +  ����ρ� � � ����������              (2.28) 

where the sum is over all the occupied states. 

 This is an exact expression for the total energy. The problem is that we do not know 

the exact form of ��� . The practical development of  ��� is based, then, on finding 

approximations to the functional ���  sufficiently simple and precise and to the later resolution 

of the Kohn-Sham equations. 

2.3.3.    EXCHANGE AND CORRELATION APPROACHES 

2.3.3.1.    LDA 
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 The oldest approach to the energy of exchange and correlation is due to Kohn and 

Sham. According to this,  ����ρ�  could be expressed as: 

                                          ����ρ�  =   � ρ����ϵ���ρ���� +  0��│ρ����│��                           (2.29) 

 Considering only the first term of the expansion, the approximation is called the 

local density approximation �����. The functional ϵ���ρ� is the energy density of exchange 

and correlation of a uniform electronic gas, although the constant density of the homogeneous 

gas �ρ�) is replaced by the local density ρ����of the interacting and not homogenous real 

system. 

 Its extension to magnetic systems leads to the approximation of local spin density 

������: 

                       ���
�����ρ�����, ρ������ =  � ρ����ϵ��

�����ρ�����, ρ��������� ,                              (2.30) 

where  ρ����� and ρ����� are the spin densities � and � respectively. The ��� approach 

(����) is, without a doubt, the simplest since it does not consider the nonlocal character of 

the exchange and correlation functional,ϵ���ρ�, therefore, it is a function that depends 

exclusively on density. To simplify the problem, contributions to correlation and exchange are 

usually treated separately: 

                                              ϵ��
����ρ� =ϵ�

����ρ� +ϵ�
����ρ�.                                                  (2.31) 

 For the part corresponding to the exchange, the Dirac functional is usually used, 

while the term of correlation is determined through different interpolation formulas that 

connect the known limits to the high and low density of ϵ�. Within the existing 

parametrizations, in our calculations we have restricted ourselves to the parameterization of 

the Monte-Carlo results of Ceperley and Alder [10] by Perdev and Zunger [11]. 

 Despite its simplicity, the success of the ��� has been great, even in systems very 

far from the formal limits of its applicability, that is, in systems with abrupt variations of the 

electronic density, such as atoms, molecules and even crystals, where the charge density 

experiences a sharp change in the vicinity of the nuclei. Physically, this is attributed to two 

facts. In the first place, it satisfies the rule of addition for the hole of exchange and 

correlation. That is, an electron located in �� creates a hole around it, a charge deficit, being the 
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charge that displaces exactly the same as that of a positive electron. Second, the energy of 

exchange and correlation depends only on the spherical average of the gap of exchange and 

correlation. Therefore, although ��� does not give the correct form for the gap of exchange 

and correlation if it provides a spherical average that is very close to the real one. 

 Despite the obvious successes of this approach in the prediction of macroscopic 

structures and properties (in general, ��� gives reasonable results for geometries, vibration 

frequencies and elastic constants), it also has limitations. Among these are the 

underestimation of the band gap in semiconductors and insulators, the tendency to 

overestimate the link energy (underestimating the lattice parameters), the erroneous 

determination of magnetic fundamental states and the treatment of strongly correlated systems 

and weak van des Waals interactions.  

2.3.3.2.    GGA 

 The limitations noted above were attributed to the local character of the exchange-

correlation functional. Equation 2.28 suggests a natural method of improvement, through the 

inclusion of terms of order greater than zero order (corresponding to the ��� approximation) 

in the Taylor expansion of the exchange and correlationfunctional versus density. However, 

the inclusion of the first order gradient of the density in the expansion was a complete failure 

for atoms and molecules. The origin of the problems was later associated with the fact that the 

gap of exchange and correlation associated with the truncated expansion of equation 2.28 

violated the physical rules that must be met, that is, the rule of addition and the requirement of 

no exchange gap positivity, if fulfilled in ���. Despite this, the gradient expansion 

approximation (���) [12] provides the base for the generalized gradient approximation 

(���) [13]. It is a semilocal approach, in which the functional exchange and correlation 

depends not only on the density of the electrons but also on their local gradients: 

                                                 ���
����ρ� =� ��ρ�, ρ� , ��� , ������� ,                                    (2.32) 

 Due to the lack of knowledge of the exact form offunction�, it is necessary to use 

approximations. The design of these has sought that the energy of exchange and correlation 

present an adequate asymptotic behavior and properties of correct scaling, as well as that the 

rules of addition for the gap of exchange and correlation are not violated. 
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 Within the different approaches, in our calculations we have used Becke's semi-

empirical generalized gradient correction to the exchange energy [14], according to which a 

term of correction is added to the ��� expression for the Slater exchange. The explicit form 

of the functional was chosen so that it presented the exact asymptotic behavior of the energy 

density of exchange and the density of spin. It also includes a parameter that comes from the 

adjustment of least squares to the exact exchange energy of Hartree-Fock of noble gases 

calculated with orbitals of the Clementi-Roetti type [15]. 

 Another of the functional used, has been the ��91 [16]. In this functional the gap 

energies of exchange and correlation are those of the expansion to first order of the equation 

2.28, including abrupt cutoffs in the real space to eliminate the contributions of long range 

without physical sense, fulfilling so the rule of sum and the requirement of not positivity for 

the gap of exchange. Likewise, for the correlation function, a cutoff is introduced into the 

reciprocal space to force the correlation gap to satisfy its exact sum rule. 

 For the correlation, the functional Lee, Yang and Parr ����� have also been used 

[17]. This has its origin in the Colle and Salveti model [18] according to which the electronic 

correlation is obtained by approximating the density of real electron pairs by the density of 

non-interacting pairs multiplied by a correlation factor that includes the electron density, the 

density of electron-electron coalescence and the Laplacian density of pairs, together with four 

constants that fit the Hartree-Fock helium orbitals. Later, Lee, Yang and Parr expressed the 

density of non-interacting pairs in terms of density and first order density matrix. In this way, 

the correlation energy can be assigned a form that only involves the electron density and the 

kinetic energy of the non-interacting system. A gradient expansion of the density of the latter 

allows expressing the correlation energy as a functional density and its gradient. 

 These different types of functional have been quite successful in the correlation of 

some of the deficiencies of���. Its main improvements are the correction of the 

overestimation of the cohesion of the ��� method, generating higher lattice parameters and 

cohesion energy than that (the overestimation of the compressibility module is of the order of 

10% while in the ��� method the underestimation was close to 20%), and the prediction of 

the correct magnetic fundamental state of certain metals, such as Fe. However, they still 

present problems in the description of Van der Waals systems. 
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2.3.3.3.    Hybrid methods 

 These functionals were fundamentally developed in the decade of the 1990s by Becke 
[19]. The existence of hybrid methods in which an exact exchange is partially included from a 
�� calculation can be justified through the adiabatic connection formula for the correlation-
exchange energy: 

                                                       ����ρ� =� ���
� �ρ����

�                                                    (2.33) 

where  ���
� �ρ� is the potential contribution of a system whose bielectronic interaction has 

been scaled by the parameter  �.  � � 0 corresponds to the Kohn-Sham system and � � 1 to 

the real physical system. It can be shown that for  � � 0, ���
� �ρ�is the exact exchange energy, 

that is, the Hartree-Fockexchange, which justifies the emergence of hybrid methods. Within 

the existing methods, we have chosen the 3-parameter method of Becke or �3��� [20], so-

called because it includes 3 parameters that fit a set of experimental thermochemical data. 

2.3.4.    BASIS FUNCTIONS 

 In both �� and ���, the effective potential is defined in terms of the solutions  

��of the Fock and  Kohn-Sham equations, respectively. This common characteristic imposes 

a self-consistent resolution procedure. If the searched orbitals are expressed as linear 

combinations of a base  χ={χ1,…,χm} of known functions  ��=∑ χ�
�
��� C��, where  C�� is an 

element of the matrix of the coefficients unknown, the system of integrodifferential equations 

in partial derivatives are transformed into a homogeneous algebraic system: 

                                                          ∑ ���� �  ϵ������ =0                                                    (2.34) 

where  ��� and  ���  are, respectively, elements of the Fock (Kohn-Sham) and overlap matrices 

and ϵ� are the eigenvalues. 

2.4.    ELECTRONIC STRUCTURE IN SOLIDS 

2.4.1.    CLUSTER-NETWORK APPROACH 

   Probably, the most intuitive way to approach the study of solids is the application 

of quantum-mechanical molecular methods. This is the foundation of the approach known as 

cluster-lattice, according to which the solid is formed by an active part or cluster and is 

perturbed by the rest of the infinite system. The case limit in which the cluster is reduced to a 
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single center (atom or ion) coupled to the crystalline lattice through a self-consistent quantum-

mechanical cluster-lattice is the origin of the method ab initio Perturbed Ion, ����, [21,22] 

developed in the laboratory of our research group at the Oviedo University. 

 This method is based on the Electronic Separability Theory ����� of Mc Weeny 

and Huzinaga [23]. Within this formalism, the �� equations of solids are resolved in a Fock 

space localized by the division of the crystal into weakly interacting groups, each of which 

contains an arbitrary number of electrons and a single nucleus. The total wave function is an 

antisymmetric product of the optimal local wave functions, strongly orthogonal to each other. 

The energy of system � is given by the sum of the net energies of each group �net  and the 

sum, extended to all possible pairs of groups, of the energy of interaction between them, �����  

                                                              E =∑ �����
� +∑ ∑ �����

�˃��                                      (2.35) 

 The local wave functions are obtained through the restricted variational principle, 

that is, by minimizing the effective energy of the group in the field of the crystal lattice. The 

effective energy of each group � is defined as: 

                                                   �����  =����� +∑ ���������    =  ����� � �����                             (2.36) 

 The second sum is the expected value, in the space of the cluster of an operator that 

contains the effective potential of the network (nuclear attraction and electronic parts of 

Coulomb not local exchange) and a projection operator that seeks the fundamental condition 

of ion-lattice orthogonality. The best ionic wave function is used in the re-computation of the 

effective potential and the projection operator until self-consistency is achieved.  �����  

contains all the terms of  � in which group � intervenes, so that the electronic structure of 

group � that minimizes both magnitudes is the same. Therefore, to obtain the global 

minimum it is necessary to successively apply the restricted variational principle to each of 

the groups, until consistent local wave functions are achieved for all the groups and, 

consequently, the best total wave function compatible with the initial hypothesis of 

separability. Although effective group energies are fundamental magnitudes in the  ���, with 

them it is not possible to regenerate the total energy of the system. To achieve this, the so-

called group additive energy is defined, which contains the net energy of the group and half of 

the energy of interaction with the rest of the groups:  
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                                        ����
�  =����

� +�
�

∑ ����
��

���    =  ����
� � ����

�                                     (2.37) 

 With this definition, the total energy of the system is simply the sum of the additive 

energies of each group. If the system is assumed to consist of �equivalent groups of type�, � 

groups�, ..., the total energy of the system will be: 

                                             ������ … � � �����
� � �����

�  + …                                      (2.38) 

 This is the energy that must be minimized to obtain the optimal geometry of the 

crystal. The current implementation of the model includes additional hypotheses, for reasons 

of simplicity and speed of calculation. In the first place, it is required that the quantum 

mechanical groups maintain the spherical symmetry, characteristic of the free ions, inside the 

crystal. This approximation is quite restrictive, since the only allowed mode of adaptation of 

the group to its environment is reduced to the radical relaxation of the density (isotropic 

deformation). To try to overcome this limitation, a semiclassical model of electronic 

polarization that considers the existence of dipolar terms has been adapted to this method. 

2.4.2.    BLOCH'S THEOREM 

 Another way to approach the study of solids is to explicitly consider the infinite 

nature and the translational symmetry of these. Both in the �� formalism and in the ��� 

formalism, it is assumed that the electrons are subjected to an effective monoelectronic 

potential, which requires translational symmetry. According to Bloch's theorem [24], the 

eigenstates  �����of a monoelectronic Hamiltonian ������ = ��
� + ��� ���, where  ��� �� � ���� =  

��� ���for all the vectors  ��� of the Bravais lattice, can be written as a product of a plane wave 

and a function with the periodicity of the lattice: 

                                                              ��������� = ����������������                                         (2.39) 

where  ����� ��� � ���� = ���������for all vectors ��� of the Bravais lattice. The number � is the band 

index and labels the independent stations for a given wave vector ���. Since ����� ����is periodic 

because it is the Hamiltonian and ���������also, the theorem can also be stated in the form: 

                                                                �������� � ���� = ������������� ����                                   (2.40)  
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 Which shows that each vector of the periodic Hamiltonian corresponds to a vector of 

the reciprocal lattice ���. In the language of band theory, ��� labels one of the infinite, one-

dimensional, irreducible representations of the abelian translation group and �����  is a basic 

function of representation. To define the irreducible representation unequivocally, one must 

limit the value of ��� to the Brillouin zone (��), since any vector  ���′outside it can be written as  

���′ = ��� +���� where  ��� is inside of the  �� and  ���� is a vector of the reciprocal lattice, fulfilling 

that  ��������′. ���� = ��������. ����. The introduction of the periodic contour conditions of Born-

Von Karman, expressed as: 

                                          �������� � ����� � ����� � ������ = ���������                               (2.41) 

where ��, ��, ��, ���, ���, ���correspond respectively to primitive cells and vectors in each 

dimension of a finite arbitrary crystal  � � ������, it leads to the electronic states being 

allowed only in a certain group of points � of the primitive cell of the reciprocal lattice. The 

number of these is equal to � the number of unit cells and their density is proportional to the 

volume of the solid. 

 Also, the form of  �����  specified by Bloch's theorem transforms the Schrödinger 

equation: 

                                                                ��� �������� ���� =�����������                                    (2.42) 

 In the equation of eigenvalues of the periodic function  ���������: 

                                                   �������  �  ����
� 

� ������� ���������=������������ ����                 (2.43) 

 This equation is subject to the periodic condition����� ���� � �������� � ����, which is 

equivalent to confining the solutions in a primitive cell of the crystal. In this way, the problem 

of solving the Schrödinger equation for an infinite system is reduced to that of solving it for a 

finite volume, that of the primitive cell of the  ��. This confinement implies an infinite set of 

solutions  ��������� with eigenvalues  ������� discretely distributed, and which, when containing 

��� as a parameter, depend on it in a continuous mode. The fact that ��� appears as a continuous 

variable does not go against the contour condition of Born-Von Karman, and that at the limit 

of an infinite lattice (and therefore, also for a finite and macroscopic one), density of points  � 
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(the number of which matches the number of solutions) increases, transforming a� into a 

continuous variable that can take all possible values within the��. 

 Bloch's theorem, then, replaces the problem of calculating an infinite number of 

electron wave functions by calculating a finite number of electronic functions in an infinite 

number of points �. The information contained in the functions  ������� is the structure of 

bands of the crystal. For each value of �, the function  �������is the � band of electronic 

energy of the system. The periodicity of  �������in the reciprocal space requires that the band 

have upper and lower limits, that is, that the energy is bounded. The call of the bands is made 

according to Pauli's exclusion principle. The energy of the highest occupied state is known as 

Fermi energy and is defined by  � � � ��������
�� , where � is the number of electrons and 

���� the density of electronic states ����� or number of states per unit of energy with 

energy between  � and  � � ��. The surface of Fermi is the surface of the space � of constant 

energy and equal to the energy of Fermi, �� . This surface separates the occupied electronic 

states from the voids at � � 0�. The electronic occupation of the states |����〉,with two electrons 

of different��, can give rise to two basic types of filling, in the first, a series of bands are 

completely filled and the rest are empty. An interbanded energetic spacing (bandgap) then 

arises between the roof of the occupied band of higher energy and the bottom of the empty 

band of lower energy. This type of filling appears typically in systems with an even number of 

electrons per primitive cell, since the number of states |����〉 is equal to the number of cells and 

each |����〉admits two electrons with different  ��. In the second type of filling are partially 

occupied bands. The Fermi level then appears in the energy range of one or several of these 

bands. For each partially occupied band, there is a surface in space � that separates the 

occupied levels from the gaps. The set of these surfaces forms the surface of Fermi. 

2.4.2.1    Sampling of points � 

 The integration of functions of ��� in the first zone of Brillouin is a very important 

aspect of ab-initio calculations in periodic structures. The problem appears in each cycle of 

the self-consistent process, when the energy of Fermi is obtained, the density matrix is 

reconstructed and, after achieving self-consistency, the density of states and the observable 

quantities are calculated. In principle, it is possible to perform the integration through a 

standard numerical technique, but in practice this requires the evaluation of the integrand in a 

very large number of wave vectors, which is linked to a high computational cost. For 
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sufficiently smooth functions, one can take advantage of the fact that the functions do not 

change appreciably in small distances of space � and approximate the integral by a heavy sum 

of values ������ in a discrete set � of sample points ������ � 1, … �� carefully selected to ensure 

convergence. Thus any integrand ����� (density, total energy) can be calculated through: 

                                                        �������������=�
�

∑ ����������
���                                       (2.44) 

where ������ is the Fourier transform of �����, � is the volume of the cell and �� are weight 

factors. For each Bravais lattice and for each pontual group there are several sets of special 

points. In our calculations we have chosen the Monkhorst-Pack method [25] to perform the 

sampling. This method generates a homogeneous distribution of points  � through space in 

rows and columns parallel to the vectors of the reciprocal lattice. The zone of Brillouin is 

broken down into small polyhedra in the same way as this one. The subdivisions along each 

vector of the reciprocal lattice necessary to generate this polyhedral decomposition are called 

contraction factors ���, ��, ���. In the original scheme, the coordinates of the sample points � 

with respect to the base vectors   �
���
��

,�
���
��

��� ����
��

are given by: 

                                       ���� = 
����

�
��

���� � 
����

�
��

���� �  
����

�
��

���� ;              0 � �� � ��                 (2.45) 

which is equivalent to placing a single point � in the center of each polyhedron. The set � 

contains  � � ������ elements. It is convenient that the contraction factors be multiples of 2 

or 3, according to the order of the main axis of the crystalline punctual group. The number of 

non-equivalent sampling points is obtained by dividing � (product of contraction factors) by 

the order of the punctual group. In systems of high symmetry it can be considerably smaller, 

because many points are placed on planes or axes of symmetry. In the selection of � for non-

centrosymmetric crystals, the symmetry������� � ��������is exploited. All this produces a 

small subset of the set  �, with points located in the irreducible part of the ��. The values of 

the weight factors are adjusted according to this set of points�. This leads to a reduction in the 

time of calculation. 

 In the case of non-cubic cells, the estimation of the values of the contraction factors 

must also take into account the dimensions of the vectors in the real lattice. Thus, the smallest 

vector in the real network corresponds to the largest vector in the reciprocal network and 
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therefore, to a contraction factor necessarily greater than that of the other two reciprocal 

lattice vectors. The grid of points � must belong to the same kind of lattice of bravais as the 

��. Moreover, the symmetry of the grid � can lead to grids that cannot be divided into 

polyhedra (at least by the conventional division schemes implemented in the calculation 

programs). This occurs, for example, in certain Bravais lattices with low symmetry. One 

possible solution is to center the Monkhorst-Pack grid on��� � 0�, such that the coordinates 

of the sample points ���� with respect to the base vectors  ����
��

,����
��

��� ����
��

  are given by:  

                                         ���� = ��
��

���� �  ��
��

���� �  ��
��

���� ;              0 � �� � ��                       (2.46) 

 This is, for example, necessary in the hexagonal cells, in which the grids generated 

according to the original Monkhorst-Pack scheme do not have total hexagonal symmetry. It is 

also possible to carry out other displacements of the grid of points  �, but in our calculations 

we have not used them. Choosing a grid of sufficiently dense points is crucial for the 

convergence of results and is, therefore, one of the main objectives when conducting 

convergence tests. However, it is also necessary to point out that there is no variational 

principle that governs the convergency with respect to the grid of points �, so that the total 

energy does not  necessarily show a monotonous behavior when the density of points � 

increases. For insulators, 100 � points per atom in the total �� are, in general, sufficient to 

reduce the energy error to less than 10 meV. The metals require 1000 (including 5000 some 

transition metals) points � to obtain the same precision. These numbers are considerably 

reduced in the irreducible part of the �������.In fact, the precision of the grid is normally 

directly proportional to the number of points � in the���, but not to the number of divisions.     

 The previous procedure allows integrations of well-behaved functions (with Fourier 

transform that decay rapidly in real space) over the first Brillion zone by selecting sampling 

points in the reciprocal space. This does not pose problems in semiconductors and insulators, 

but in metals, where it is necessary to integrate the Fermi distribution function, discontinuous 

when � � ��  and with Fourier transform not located in real space. We want to evaluate: 

                                                            �=̅ �
���

� �� �� � �����������������                              (2.47)   

where  ��  is the Fermi energy and  ���� is the Dirac step function. In accordance with the 

sampling techniques: 
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                                                                  �=̅∑ �� ������ � ���������                               (2.48)   

This sum converges very slowly with the number of points  �, except in semiconductors and 

insulators where the bands are completely full or empty and the recording of the band index � 

is limited to the occupied bands. Moreover, with a small change in the value of the �� , a point 

� can enter or leave the surface of Fermi, resulting in a discontinuous change of the values of  

�.̅ This pathology can create a numerical instability in the self-consistent process of the 

electronic structure codes. A method to avoid these problems is the linear tetrahedron method 

[26], in the term ������ is linearly interpolated between two points �. Blöchl [27] eliminated 

the quadratic errors of the method and assigned effective weights for each band and point �. 

This method was, in general, chosen in semiconductors and insulators, and for calculations of 

total energy without relaxation in metals. 

 In the study of relaxation in metals, it is opted for approximations of fictive 

temperature. Among these are the smearing methods [28], in which the step function of Dirac 

is replaced by a function ������������soft (Dirac, Gaussian function). In these, it is necessary 

to replace the total energy with the generalized free energy � � � � ∑ ���������������� �, so that 

the calculated forces are now derived from this free  �. According to the Fermi-Dirac 

statistics, free energy could be interpreted as the free energy of electrons at finite temperature 

= ���, but the physical meaning is not the case of Gaussian smearing. Despite this problem, it 

is possible to obtain a precise extrapolation for �� ⇾ 0� � �� �  �
�

�� � ��. In this way, we 

obtain a 'physical' quantity of a calculation at finite temperature. 

 However, two problems appear. In the first place, the forces calculated by the 

computational programs are derived from the free electronic energy,  �. Therefore, they can 

not be used to obtain the fundamental state of equilibrium, corresponding to the minimum 

energy. In spite of this, the error in the forces is generally small and adaptable. Second, the 

parameter � must be chosen carefully. If � is large the integral in the  �� converges with a 

small number of points�, but in general leads to an erroneous result. If � is smaller, the 

integral tends to the correct result but to express of a greater number of points�. The only way 

to obtain a good � is to perform several calculations with different grid of points � and 

different values for�. These problems can be solved by adopting a slightly different form for  

������������. This is possible by transforming the step function into a complete orthonormal 

set of functions (Methfessel and Paxton method) [29]. The Gaussian function is the first 
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approximation �� � 0� to the step function. Subsequent approximations �� � 1,2� are easily 

obtained. As with the Gaussian method, energy is replaced by free energy, but, unlike the 

Gaussian term, the entropic term is small for reasonable values of � and gives an estimate of 

the error between free energy and physical energy ���� ⇾ 0��. In this way � is increased 

until the error takes a certain value. 

2.4.2.2    Basis functions 

 As previously mentioned, it is necessary to express the orbitals as a linear 

combination of a known basis of functions. Thus, the crystalline orbitals ����� ����are expressed 

as a linear combination of Bloch functions, so that the generated orbital ����� ���� �

 ∑ ������ ���������also satisfies the Bloch theorem and therefore reflects the translational 

periodicity of the system. There are two basic types of Bloch functions (��s) used in the 

expansion. 

 First, functions located in the positions of the nuclei (χ��): 

����� � �
�

∑ ��������χ�������� �� � ��� � ����, where ���is the position value of the atom  � with respect to 

the origin of its cell and  ��� the vector of the Bravais lattice corresponding to the origin of the 

cell. The generating functions χ������� � ��� � ����are centered on the atomic nuclei, hence they 

are called atomic orbitals (��s). Normally, ��s are expressed as a linear combination of 

���s, with preference over ���s due to their analytical properties, despite the fact that they 

imply a bad description of nuclear cuspids. Likewise, each ��� is expressed as a linear 

combination of Gaussians centered on the same nucleus and with identical quantum angular 

numbers. In this context, Gaussians are called primitive functions and ��s are contracted 

functions. The use of such contracted sets allows to reduce the number of basic functions to 

build a given crystalline orbital (��), especially when considering the more internal ones, 

which have to simulate the core ��s. However, and as a counterpart to its chemical 

suitability, this basic choice has four undesirable characteristics: (i)-it is not a universal set, in 

the sense that it depends on the positions of the atoms in the unit cell and their nature, (ii)-it 

does not form orthogonal sets, and the overlapping terms must be included explicitly in the 

calculation, (iii)-despite its incompleteness, linear pseudo-dependence problems can be 

generated between the most diffuse valence ��s and (iv)-it does not reproduce the  
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self functions mono electronics of free electron gas and, therefore, there are justified doubts in 

their use in metals nuclear positions. The most usual way to overcome it is to perform a core-

valence separation. In this sense, the electrons of the core are described by pseudopotentials 

and those of valence by a sum of plane waves. 

2.5.    COMPUTATIONAL METHODS 

2.5.1.    LINEAR COMBINATION OF ATOMIC ORBITALS (����) 

 The term ���� means that each crystalline orbital is a linear combination of Bloch 

functions defined in terms of local functions (atomic oribitals). Within this approach and 

under the �� formalism the ������� program [30] is suitable for calculations. 

 In this, and as has been mentioned in the previous section, atomic orbitals are, in 

turn, mixtures of Gaussian-type functions, called primitives, whose exponents and coefficients 

are defined in the input. The atomic orbital belonging to a given atom are grouped in shells. 

Each shell contains all the OAs with equal � ��� � quantum numbers (shells 3s, 2p, 3d) or all 

OAs with the same main quantum number �, if the number of GTO s and their corresponding 

exponents are the same for all of them (sp shells) . 

 The expansion coefficients of the Bloch functions  c�����  are obtained by independent 

resolution of the Hartre-Fock matrix equations at each point ��� of the first Brillouin zone: 

                                             ������������ � ������������������,                                                (2.49) 

where  ������ is the matrix overlapping between Bloch functions, ������is the diagonal energy 

matrix and ������ is the Fock matrix in the reciprocal space:   ������ � ∑ ������������
��� . 

This is possible thanks to the structure in diagonal blocks of the matrices (the matrices 

between crystalline orbitals that differ in ��� are null according to the Bloch theorem). The 

dimensions of the matrices are equal for each ��� and equal to the number of atomic orbitals in 

the elementary cell. The matrix elements of  ����, the Fock matrix in the direct space, can be 

written as a sum of monoelectronic and bielectronic contributions in the base of ��s: 

                                                       ���
��� �  ���

��� � ���
���                                                           (2.50) 
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where the monoelectronic contribution includes the kinetic terms and the nuclear 

attraction���
��� �  ���

��� � ���
��� and the term bielectronic is the sum of the contributions of 

Coulomb and exchange ���
��� �  ���

��� � ���
��� . The Coulomb interactions are individually 

divergent, since the summations on vectors of the direct lattice include infinite terms. It is 

necessary, therefore, to group the different contributions to eliminate the divergence. The 

exchange integrals that are combined with small elements of the density matrix are 

suppressed. Threshold parameters are also introduced for the overlap between the contracted 

���s with the object of truncating the summations. This approach introduces very severe 

restrictions on the number and spatial extent of the basic functions used. For this reason, high-

quality molecular bases cannot be used in ������� calculations, and medium or low quality 

bases must be adopted whose more diffuse exponents, especially in the case of anions, have to 

be reoptimized in each crystal. The elements of the density matrix in the direct space and in 

the base of ��s are calculated by integrating on the volume of the first zone of Brillioun: 

                         ���
��� � �

��
���

������������� ∑ ���
∗ ����������������� � ���������                             (2.51)                                                                

where the sum extends to the � eigenvalues. The total electronic energy per cell, not including 

the term of internuclear repulsion, can be written in terms of the density matrix as: 

                                                ε=�
�

∑ ���
��� ����,�,� ���

��� � ���
��� �                                                 (2.52) 

 To calculate the Fermi energy and the density matrix, Monkhorst-Pack grids are 

used. In the case of metals, denser grids (Gilat grids) [31] are used, with an analogous 

definition to the first ones. The new subdivisions divide the first Brillion area into mini-cells. 

In them, linear or quadratic interpolations are made for the periodic functions in  ���, so that the 

integral is calculated approximately as a sum of integrals over the individual.  

2.5.2.    PSEUDOPOTENTIAL-PLANE WAVES METHOD ���-��� 

 As previously discussed, wave functions can be represented on a plane wave basis: 

                                                       ����� �  ∑ ��������� ��������������                                           (2.53) 
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where the sum recovers the vectors of the reciprocal lattice  ���� and the  c������K����are the 

expansion coefficients. The substitution of Equation 2.53 in the Kohn-Sham equations leads, 

after its integration, to the secular equation: 

   ∑ ����� � �����
�

������’���� � ������ � ����’� � ������� � ����’� � �������� � ����’����,�������’���� �� ����,�������’����       (2.54) 

 According to this expression, the representation in the reciprocal space of the kinetic 

energy is diagonal and the different potentials (local in real space) can be described in terms 

of their Fourier transforms. Fourier transformations can be done very efficiently with the ��� 

technique (Fast Fourier Transform), which reduces the computational cost of the calculation 

to �log� (� = number of plane waves in the base). The traditional methods to solve the 

Kohn-Scham equations are based on the diagonalization of the Hamiltonian matrix whose 

elements  ���������,��������’ are given by the terms in the brackets from equation 2.54. The size of the 

matrix is determined by the cutoff energy  �

������������
� and is enormous, even in the simplest 

systems. Therefore, it is necessary to resort to the approximation of the pseudopotential and to 

the application of numerical techniques different from the conventional diagonalization 

techniques. 

2.5.2.1.    Pseudopotentials 

 The computational cost derived from the inclusion of all the electrons of a system is 

prohibitive using a plane wave base. The rapid oscillations of the functions of valence waves 

in the region near the nucleus, originated by the orthogonality condition with the wave 

functions of the core, according to the principle of exclusion, and the fact that the electron-

nucleus potential varies as  � �
�
 , so that it diverges when � ⇾ 0 leads to large kinetic 

energies, and therefore makes a large number of plane waves necessary. Furthermore, 

describing the core wave functions also requires a large number of plane waves. 

 These problems can be avoided by using the pseudopotential approach. This arises 

from two observations from the study of the chemical-physical properties of matter. First of 

all, the core electrons of different atoms are not, to a large extent, affected by the surrounding 

environments. Second, only valence electrons participate actively in the interactions between 

atoms. Therefore, most of the observable properties are determined by the valence electrons. 

For a large number of atoms, there is a clear distinction between the electrons that can be 
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considered part of the core, and the valence electrons that determine the atomic 

characteristics. Even if it is not, a reasonable division is possible. 

 The pseudopotential approach substitutes the strong Coulomb potential and the core 

electrons for an effective pseudopotential that is much weaker, and the valence wave 

functions, which oscillate rapidly in the core region, for pseudo-wave functions, which vary 

more smoothly in the core region and coincide with the real wave functions outside the core 

region. This reduces the complexity of the problem. First, by not considering the core 

electrons explicitly, the number of wave functions to be calculated is smaller. Second, since 

the potential no longer diverges to �∞ and the valence wave functions are softer within the 

core region, fewer plane waves are needed to describe the valence wave functions. 

 The introduction of pseudopotentials appears as a natural development of the 

orthogonalized plane wave method. If we describe the electronic structure of the atom through 

the monoelectronic Hamiltonian ��, we can write the equations of eigenvalues in the form: 

                                                   ��|��〉 �  ��|��〉��|��〉 �  ��|��〉                                             (2.55) 

where |��〉 and |��〉are, respectively, valence and core electronic states and ��and  ��their 

corresponding eigenvalues. Since |��〉 do not contain core contributions, we can construct a 

softer base pseudostate |��〉 defined by: 

                                                    |��〉 � |��̅〉 � ∑ |��〉� 〈��|��̅〉                                                  (2.56)  

if we act with the effective monoelectronic Hamiltonian on transformation equation 2.56, we 

find, 

                                       ��� � ∑ |��〉� ��� � ���〈��|�|��̅〉 �  ��|��̅〉                                          (2.57) 

which shows that the transformed vectors |��〉are eigenvectors of the transformed Hamiltonian 

��� � �� � ∑ |��〉� ��� � ���〈��|, with identical eigenvalue to which they have the true |��〉with ��. 

The additional potencial���� � ∑ |��〉� ��� � ���〈��|, whose effect is located in the core, is 

repulsive since �� � �� �  0and cancels part of the strong attractive Coulomb potential  

������resulting in a softer pseudopotential  �������, ���� � ������ + ∑ |�������〉� ��� � ���〈��������|. 

Since the wave functions of core  |��〉 are exhausted at relatively small distances from the 

nucleus, the pseudo-wave valence functions  |��〉suffer, at higher distances, a very similar 
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nominal potential  ������and result, in that range of distance, very similar to the true wave 

functions  |��〉. At smaller distances, the valence wave pseudo-functions |��〉suffer a Coulomb 

potential screened by the core components. This shielding is responsible for the non-

singularity of the pseudopotential �������, ���� at the origin. 

Pseudopotentials norm-conserving 

 There is no single procedure for the construction of pseudopotentials, although a 

valid pseudopotential should be transferable, smooth and the pseudo-wave function should 

generate identical charge density to that of the real wave function outside the region of core 

with the object to obtain a correct description of the exchange and correlation terms. The 

transferability of the pseudopotential indicates its ability to describe valence electrons in 

different chemical environments, while the softness of the pseudopotential is related to the 

inclusion of few plane waves in the expansion of the valence wave pseudo-functions, so that 

the cost computational data associated with the calculation is as low as possible. Therefore, 

traditionally its generation has been guided by the fulfillment of four properties: 

 ▪ The eigenvalues of the pseudo-wavefunction and the all-electron wavefunction 

must coincide for a given atomic configuration. 

 ▪ The pseudo-wavefuncion must be equal to the all-electron wavefunctionfrom a 

radius of core  �� . 

 ▪ The charge within �� must be equal for the two wave functions (conservation of the 

norm). This condition guarantees the coincidence of the all-electron wavefunction and the 

pseudo-wavefunction outside the core region. 

 ▪ The logarithmic derivatives of the pseudo-wavefunction and the all-electron wave 

function and their first derivatives with the energy must coincide for � � �� . 

 The last two properties are fundamental to ensure the transferability of the 

pseudopotential in a variety of different chemical environments. The third property guarantees 

that the Coulomb interaction between the atoms is calculated correctly, since the correct core 

charge is available. For its part, the fourth property ensures that the effect of scattering 

(derived from logarithms) is the same as the original potential in the proximity of eigenvalues 

(although, in general, occurs throughout the energy interval of the valence bands). Both 
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properties are related by a simple identity and the generated pseudopotentials are called norm-

conserving. Usually, the procedure for generating pseudopotentials consists of a series of 

steps: 

 ▪ Obtaining the all-electron solution of the free atom. 

 ▪ Choice of a cutting radius �� , from which the pseudo-valence wave function and 

the pseudopotential coincide with the wave function of real valence and potential. The choice 

is determined by the compromise between transferability (lower �� ) and smoothness (greater 

�� ). In general, to obtain good reproducibility of the charge distribution, and therefore a good 

transferability, �� should be close to the maximum of the all-electron wave function, which for 

elements with orbitals strongly localized leads to huge bases of plane waves. 

 ▪ Parametrization of the wave function in � � �� requiring a softjunction in  �� with 

the all-electron wave function and the conservation of the norm. 

 ▪ Inversion of the Schrödinger equation to obtain the pseudopotential that 

reproduces the pseudowavefuncion. 

 ▪ Unscreening by subtracting Hartree's contributions and exchange-correlation. 

 ▪ Verification of transferability and smoothness. 

 The wave functions and eigenvalues are different for different angular moments, 

which imply that the pseudopotential must also depend on the angular momentum. In general, 

we can express the non-local pseudopotential in the semilocal form: 

                                             ���� �  ����� � ∑ ∑ �|��〉����〈���|�
�����                                       (2.58) 

where �|��〉 denotes the spherical harmonic  ���. The choice of the local potential ����� is 

arbitrary, but in general the sum over � is truncated to a small value (for example, � = 2) in 

such a way that the local part represents the potential that acts on components at the moment 

angular greater.  ���� is the angular momentum component � of the pseudopotential acting on 

the wave function. It is a semilocal term, which is given by:  ���� � ����,� � ����� . This form 

presents the problem of being very costly computationally, since the number of elements of 

the matrix goes with the square of the number of basis functions. The most common solution 
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to this problem is the use of the separable form of Kleinmen-Bylander (��) [32], in which the 

semilocal term is transformed into a non-local separable term: 

                                                ���� � ����� � ∑ |��������〉〈��������|
〈����|����|����〉��                                        (2.59)  

where  |����〉 is an eigenfunction of the atomic pseudo-Hamiltonian calculated with ���� . 

 This operator acts on a state of reference in a way identical to the original semi local 

operator ���� , but the number of projections scales only linearly with the number of basis 

functions. An artifact of the non-local form of �� is the appearance of ghost states without 

physical sense close to valence states with physical sense. Formally, the �� form can be 

generalized to a serial expansion of a non-local pseudopotential that avoids ghost states by 

projection in additional reference states. In practice, it is possible to achieve transferable 

pseudopotentials without ghost states through a correct choice of the local component of the 

potential and  �� . 

 An alternative to the pseudopotential type ��are the pseudopotential ��� [33], 

which we have used in our calculations. Its form is analytical, so it is not necessary to store 

the projectors in numerical form in dense radial grids (as in the �� type pseudopotentials), 

but only a small number of parameters need to be specified. They consist of a local part and a 

nonlocal contribution. The nonlocal part is a sum of separable terms that include projectors 

with the product form of a Gaussian by a polynomial. A characteristic property of these 

pseudopotentials is that the same form is maintained in the reciprocal space. Because of this, 

pseudopotentials have optimal decay properties in both real and reciprocal space, which 

allows the nonlocal potential to be located in a small region around the atom and the 

pseudopotential to be reasonably smooth, avoiding the use of a very narrow grid dense, 

respectively. 

 The construction procedure differs from the traditional method, since the 

pseudopotential parameters are determined through a setting of least squares, in which the 

function to be minimized includes the differences of eigenvalues and charges within an 

atomic sphere of the atom all electron and the pseudoatom, instead of producing pseudo-

wavefuntions identical to the electron beyond �� . These pseudopotentials also allow the 

explicit consideration of semiconductor electrons, although the precision required for the 

eigenvalues and the charges of the pseudo-wavefunctions is smaller than that of the pseudo-
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valence wave functions. The use of pseudopotentials with semiconductor wave functions, 

despite the greater computational cost associated with containing a greater number of 

electrons, is very important in those systems in which there is a non-negligible overlap 

between the wave functions of core and valence. Another way used in other pseudopotentials 

to solve the problem is the inclusion of non-linear core corrections, which consider the 

contribution of the core charge to the potential for exchange and correlation. 

Pseudopotentials ultasoft (US) 

 The determination of the �� of an arbitrary pseudopotential is governed by two 

general rules. First, to allow an adequate representation of the logarithmic derivatives, it 

should not exceed the value of half the distance between first neighbors ��� : 

                                                                   ��,��� � �
�

���                                                  (2.60) 

 Secondly, and only for the norm-conserving pseudopotentials, the spatial region 

where the real solutions are replaced by pseudo-solutions has to be restricted to a region 

where the Hamiltonian remains close to the reference Hamiltonian for any chemical 

environment, since the equation 2.60 together with the rule conservation requirement, only 

guarantees a correct description of the logarithmic derivatives of the wave functions for the 

Hamiltonian, or reference. The general recommendation is that the peak of highest charge 

density associated with a certain orbital, this is the most external maximum of the all electron 

wave function should be reproduced correctly, so: 

                                                            ��,��� � ����                                                            (2.61) 

where ���� is the value of the radius for the most external maximum of the wave function. 

Equation 2.61 leads to the existence of strong limitations for the description of systems with 

strongly localized orbitals ( 3� transition metals, rare earths with� orbitals) since in these 

cases ���� is significantly smaller than 0.5 ��� , which makes a large number of plane waves 

per atom (a <�� >�� ). The calculation is also expensive in systems that combine large atoms 

with small atoms (elements of the first row), since the ���� of the latter can be significantly 

smaller than 0.5 ���  (for example, molecular phases of  �, �). 

 The main idea of the ultrasoft pseudopotentials proposed by Vanderbilt in 1990 

[34], is that the relaxation of the conservation requirement of the standard can be used to 
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generate much smoother potentials, so that the size of the plane wave basis set can be 

substantially less. In this scheme, the forms of the pseudo-wavefunctions are forced to be 

equal to the all electronfunctions out of  ��  (like the concept of conservation of norm) but they 

are allowed to be much softer inside, as a consequence of the elimination of the requirement 

of the norm. As the fulfillment of the equation 2.61 is not necessary, ��  can be considerably 

greater, which reduces the number of plane waves needed in the calculation. 

 With the elimination of the requirement of conservation of the norm, the problem of 

standard eigenvalues: 

                                           ��� � ����� � �� �� � ��|��〉 � 0                                                (2.62) 

where � is the kinetic energy operator, �����  and �� ��  the local and non-local components of 

the pseudopotential, � the eigenvalue and |��〉 the pseudofuncion of angular momentum  ��, 

is transformed to generalized eigenvalues problem: 

                                                 ��� � ����� � �� �� � ���|��〉 � 0,                                       (2.63) 

in which an overlapping operator appears as a consequence of the use of non-orthogonal wave 

functions: 

                                                      � � 1 � ∑ ��,��� |���〉〈��
�|                                                (2.64) 

in such a way that the normalization of the solutions in the generalized problem takes the 

form: 

                                                            〈��
����|�|������� 〉 � ���                                               (2.65) 

 On the other hand, the expression for the totally separable non-local pseudopotential 

is: 

                                                            V��
� � ∑ ��,��� |���〉〈��

�|                                            (2.66) 

    The functions of increase ��,����� are given by: 

                                                         ��,����� � ψ�
∗����ψ����� � Φ�

∗����Φ�����                        (2.67) 
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where  ψ����� and  Φ�����are the all electron wave functions and ultrasoft, respectively. 

Therefore, the conservation requirement of the standard  ��,����� � 0 is eliminated and the 

only restriction is that the pseudo-wavefuntions are continuous and with first and second 

derivatives equal to those of the all electron wavefunctionin��  . |���〉 are localized projectors, 

dual to |�Φ�
��〉, 〈��

�|�Φ�
��〉 � ���and the coefficients ��,�determine the importance of each 

contribution in  V��
� . It opens the possibility to the use of more than one reference energy � by 

quantum state � (in general, the number of projectors is reduced to two) in the construction of 

ultrasoft pseudopotentials, which guarantees good transferability of them in a specified 

energetic range even at ��  large. Another important aspect is the electron density deficit of 

valence that appears in the core region, as a consequence of the elimination of the requirement 

of conservation of the norm in the construction of the pseudo-wavefunction. Thus, in the self-

consistent calculation, the electron density originated by the square of the modulus of the 

pseudo-wavefunctions has to be increased in the region of core, in order to recover the total 

density. The electronic density appears subdivided, then, in a smooth contribution that extends 

throughout the unit cell and a hard contribution located in the regions of core, according to the 

expression: 

                                     ρ����� � ∑ Φ����
∗ �������� Φ���� ���� � ∑ ρ�,���,������,�                              (2.68) 

where 

                                                    ρ�,� � ∑ 〈��
�|�Φ���� 〉〈Φ�

����|���〉����                                           (2.69) 

 To calculate the increase part of the charge density (second term in equation 2.68) it 

is convenient to substitute the ��,�����for the functions ��,�
������.To do this, all electron 

functions in equation 2.67 are replaced by norm-conserving function homologs  |�Φ�� 〉. 

 The main advantage of the ultrasoft pseudopotential scheme, although 

mathematically more complicated, is evident from equation 2.68. The pseudo-charge defined 

by the ultrasoft wave functions lacks physical significance, being the only relevant quantity 

the total electronic density obtained after the increase. For this reason, the 2.61 restriction is 

only relevant for the norm-conserving wave function that defines the increase of charges. For 

the ultrasoft wave pseudofunction, the only restriction is 2.60. From this expression it is also 

deduced that the quality of the calculation will be determined by the presence of charges of 

high quality increase, that is, with r�sufficiently small. 
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 In the construction scheme of pseudopotentials of type ���� [35], the pseudo-

wavefunctions belonging to an angular momentum � and energy ε are expanded in spherical 

Bessel functions within the region of the core defined by the radius ����� � ���� 

                                                         Φ��
������ � ∑ ��

�
��� ���,  �����                                       (2.70) 

where wave vectors �� are chosen in such a way that the Bessel functions have the same 

logarithmic derivatives in � � ���that the wave functions all electron: 

                                   �
��

���Φ��
�������|����� � �

��
�������������|�����                                 (2.71) 

 The expansion coefficients  �� are determined according to the requirement that the 

wave function is continuously differentiable up to order 2 and without nodes. The basis of 

function of Bessel presents the advantage of being orthogonal and for (� ⇾ ∞) complete. 

 This scheme is used both in the construction of the ultrasoft wave functions and in 

the norm-conserving functions, with which  ��� is identified with the cutting radius of each of 

them. In the model used, two functions of Bessel for the construction of ultrasoft wave 

functions are produced, extending the number to 3 (even to 4) in the norm-conserving wave 

functions, in order to guarantee compliance with the conservation of the rule. 

2.5.2.2.    Electronic minimization 

 The traditional procedure to perform a calculation of total energy under the 

approximation of the pseudopotential begins with the determination of the electron-electron 

potential and the construction of the Hamiltonian matrices for each of the points � included in 

the calculation (assuming equation 2.54) from an electronic density test. Diagonalize, then, 

the Hamiltonian matrices and lower eigenvectors in energy are occupied. These eigenvectors 

will, in principle, generate a charge density and electron-electron potential different from the 

initial ones, so that the process is repeated until it reaches self-consistency. In practice, the 

new density (or the new potential) is not simply the density (potential) generated in the 

previous iteration, but it is necessary to perform an averaging of the densities (potentials) of 

input and output to avoid oscillations in the process. According to this original scheme, the 

maximum number of plane waves in the calculation is restricted to 1000, as a consequence of 

the limitation of memory and computational speed, so taking into account that to represent the 
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orbitals in a calculation of this type it is needed a number of 100 plane waves per atom, a 

system of 10 atoms represented the largest system to treat. 

 It is necessary, therefore, to resort to iterative algorithms, in which the explicit 

calculation and storage of the Hamiltonian matrix (���� . ����� (����= number of plane 

waves) is avoided, allowing the use of very large bases (���� � 10000�. 

 They are distinguished within these: 

1. Methods to determine the minimum energy functional of Kohn-Sham directly (direct 

methods). 

2. Iterative methods for the diagonalization of the Hamiltonian �� in conjunction with an 

iterative (mixed) improvement of the charge density (�� methods). 

 The direct methods were proposed by Car and Parrinello [36] and are based on the 

fact that the functional Kohn-Sham (���� is minimal in the electronic ground state, so the 

minimization with respect to the degrees of vibrational freedom leads to a suitable scheme for 

the calculation of the electronic ground state. Its biggest problem lies in the difficulty in 

maintaining orthogonal wave functions. 

 In contrast to the direct methods, the �� methods [37] divide the problem of the 

evaluation of the fundamental state of �� into two parts, on the one hand, the determination 

of the ���� � ���������� charge density (or potential) and, on the other hand, the 

diagonalization of the Hamiltonian �� for a fixed potential. 

 Traditionally, SC methods are used in spite of being mathematically less effective 

than direct methods (self-consistent minimization of functional �� is replaced by independent 

improvement of eigenfunctions and charge density). The reasons are simpler implementation 

and the inclusion of the mixed charge density, allowing to retain information of previous 

steps, avoiding the occurrence of charge oscillation problems. On the other hand, the 

advantages of the �� methods over the direct diagonalization of the Hamiltonian are clear: 

 ▪ The use of only ��test wave functions ��� � �����representing all occupied 

eigenstates and some gaps. 



                             CHAPTER II ELECTRONIC STRUCTURE: Computational Methods            
 

57 
 

 ▪ The rapid evaluation of the action of �� on the electronic wave functions, through 

the transformation of the wave functions of the reciprocal space to the real one and vice versa 

through  ���. 

 ▪ The inclusion of iterative methods within the self-consistent calculation, with 

which the optimization of charge density and wave functions can be performed almost 

simultaneously. 

 A common feature of all iterative methods is that they start from a set of 

basisfunctions, to which correction vectors are added in each iteration. This allows obtaining 

an approximate improvement to the eigenvalues and eigenvectors, through the Rayleigh-Ritz 

scheme [37,38] in which  �� is diagonalized in the subspace of the expansion set and a 

problem of eigenvalues is solved.The result is the � eigenvectors associated with the � 

lowest eigenvalues in energy. The main difference lies in whether the optimization is done 

simultaneously, adding in each step � new vectors (blocked methods) or sequentially band by 

band so that in each iteration a single correction value (non-blocked methods) is added. These 

last ones are the ones included generally in the calculation codes since in spite of being 

considered slower than the blocked algorithms they do not need to store 2�� vectors in each 

iteration. On the other hand, they also allow a greater number of iterations so they are more 

efficient. An important amount within the iterative methods is the Rayleigh quotient or 

expected value of the Hamiltonian for a specific band: 

                                                                  ϵ��� � 〈����|�|��〉
〈����|�|��〉

                                               (2.72) 

 Its variation with respect to 〈φ�
�| leads to a residual vector: 

                      �|R�φ��〉 � �� � ϵ���� �|φ�〉���〈φ�
��|S|φ�〉 � 1                            (2.73) 

The residual vector rule 〈���|�〉measures the error in the eigenvector. Formally, a good 

approximation to the difference between the approximate eigenvector and the exact one is 

given by the expression: 

                                                      �|�φ�〉 � �
������

�|�〉.                                                      (2.74)  

 However, the difficulty of evaluatingthe term �� � ϵ������,requires an approximate 

treatment. Thus, the step that calculates the approximate error of the residual vector is called 
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preconditioned and the matrix � that multiplies the residual vector in order to obtain �|�φ�〉 is 

called a preconditioned matrix �|�φ�〉 � ��|�〉.A preconditioned matrix usually used with 

slight modifications is the one proposed by Teter et al [39]. 

 In sequential methods it is convenient to restrict the search vector to the orthonormal 

subspace to the wave functions under study. Thus, to ensure that the orthogonality between 

the bands is maintained, Lagrange multipliers are introduced, so that the gradient vector takes 

the form: 

                               ����� � �|��〉 � �1 � ∑ �|�|��〉� 〈��
�|� � ��|��〉                               (2.75) 

and the preconditioned search vector is given by: 

                                    �|�����〉 � �|��〉 � �1 � ∑ �|��〉� 〈��
�|�� � ���� � ϵ����|��〉     (2.76) 

 The different sequential methods differ in the way that this correction vector is 

analogous to the wave functions. The iterative methods used in our calculations are the 

Davidson method [40], the conjugate gradient method (��) [41] and the residual 

minimization method with direct inversion in the iterative subspace (���-���) [42]. In the 

Davidson method, we start with a test vector  �|��
� 〉to which the preconditioned gradient  �|��

� 〉  

is added. The optimal eigenvector ineach iteration is calculated, then, through the Rayleigh-

Ritz scheme. After a band has been optimized several times it is passed to the next one. 

Finally, when all bands have been optimized, the optimal wave functions in the subspace of 

the �� test functions (rotation in the subspace) are determined. 

 In the conjugate gradient method, the new direction �|��〉for the iteration � is 

conjugated (independent) to the previous directions and is given by: 

                                               �|��〉 � �|��
�〉 � 〈��

���|��
�〉

〈��
�����|��

���〉
�|����〉                                      (2.77) 

 The optimal wave function �|��
���〉is determined from the set {�|��

�〉/�|��〉�through 

the Rayleigh-Ritz scheme. The only drawback associated with this method is the need for an 

explicit ortonomalization of the preconditioned residual vector to the set of test wave 

functions. This is a disadvantage in large systems since a single vector has to be orthonormal 

to a large number of vectors in each iteration. The solution proposed by Wood and Zunger is 

to minimize the residual vector rule instead of the Rayleigh-Ritz quotient. 
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 Thus, orthonormalization is not necessary when presenting the minimum residual 

vector rule in the eigenvectors. This is the origin of the residual minimization method with 

direct investment in the iterative subspace (���-���). This method is based on the 

evaluation of the preconditioned residual vector for a band ��|��
� 〉. A fraction of steb is 

analogous to the starting wave function �|��
� 〉originating the new wave function �|��

� 〉 � �|��
� 〉 

+���|��
� 〉,, and the new residual vector �|��

� 〉 is evaluated. A combination of the initial wave 

function �|��
� 〉 is then generated and the test �|��

� 〉, �|��
�〉 � ∑ ��

�
���

�|��
� 〉 (� � 1), in which 

the parameters �� are those that minimize the residual vector rule. This minimization is 

known as the direct investment in the iterative subspace (����). The next step starts from 
�|���〉at the direction��|���〉.In each iteration  �, a new wave function �|��

�〉 � �|�����〉 �

���|�����〉 and a new residual vector �|����
��〉is addedto the iterative subspace. The main 

drawback of this method is that it always finds the vector closest to the initial test vector, so it 

can lead to false fundamental states (absence of eigenvectors in the final solution). To avoid 

this, initialization has to be done carefully, starting with a set of random test vectors and 

sweeping over all the bands. These sweeps involve a rotation in the subspace in addition to 

the steps in the direction of residual vectors preconditioned by bands. Finally, after the sweeps 

on all the bands, the final vectors reorthonormalize. Although, in principle, the���-��� 

method should converge without explicit rotation in the subspace or explicit 

orthonormalization, these operations allow to improve the convergence and ensure the 

obtaining of the ground state (especially if the spacing between eigenvalues is small). 

 The wave functions optimized in the different iterative methods allow calculating a 

new charge density. This leads to the next part of the problem where self-consistency with 

respect to the input charge density must be achieved, i.e. the residual charge density vector  

��ρ��� � ρ��� � ρ��has to be canceled. It is also possible to consider the self-consistency for 

the potential, since the convergence of the potential and the charge density is equivalent. The 

direct iteration ρ��
��� � ρ���

� leads to problems of charge oscillations, with which the algorithm 

diverges. To avoid these oscillations and facilitate convergence, different methods have been 

designed. The simplest is the linear mixing in which a linear combination of the input and 

output density generate the starting density of the following iteration: 

                                                  ρ��
��� � �1 � ��ρ��

� � �ρ���
�                                              (2.78) 

 An extension of this method is the Anderson method [43], in which information 

from a greater number of previous iterations is included. It presents, however, the problem of 
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the appearance of linear dependencies. Other more efficient mixtures are those attributed to 

Pulay [44] and Broyden [45]. In the first, the optimal input charge density is obtained as a 

linear combination of the input density of all the previous steps  ρ��
��� � ∑ ��ρ��

�
� . The optimal 

�� are obtained by minimizing the residual vector rule 〈R�ρ��
������|��ρ��

����〉 under the 

requirement  ∑ �� � 1�  and assuming the linearity of the residual vector with respect to to the 

input density R�ρ��
���� � ∑ ��R�ρ��

�
� �. The quasi-Newton algorithms proposed by Broyden 

assume that the residual vector can be linearized close to the minimum: 

                                                   ��ρ� � R�ρ��
� � � ���ρ � ρ��

� �                                         (2.79) 

Where  �� is an approximation to the Jacobian matrix. Imposing that ��ρ∗� � 0 we obtain the 

optimal charge density that makes the vector zero: 

                                         ρ∗ �  ρ��
� � ������R�ρ��

� �                                                      (2.80) 

 In each iteration an approximation is constructed for the Jacobean matrix from 

which a new charge density is obtained. The algorithms differ in the way in which  �� is 

generated in each iteration. For some of its parameters this method is reduced to the Pulay 

method. 

2.5.2.3.    Geometric optimization 

 The objective of the geometrical optimization is to find the optimal structure (cell 

constants and internal parameters) of the crystal from an arbitrary state. For this, it is 

necessary to calculate the forces acting on the atoms. Through the Hellmann-Feynman 

theorem [46], the force��on an atom � in the position ����is given by �� � � ��
���

, where � is the 

energy and �� the position atomic. Once the forces on the atoms have been calculated, the 

atomic equilibrium structure of the system is achieved considering the total energy as a 

function of the atomic coordinates. 

 Within the planewave-pseudopotential approximation the forces are very simple to 

calculate and inexpensive computationally. In fact, the application of the Hellmann-Feynman 

theorem is strictly valid in the case of a plane wave base, since they are floating (they do not 

belong to a determining atom) and represent all regions of space with the same precision. 

Thanks to this, the Pulay forces coming from the derivation of the basis functions with respect 

to the nuclear coordinates cancel out. Within the algorithms used in the geometrical 
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optimization, we highlight conjugated gradient methods [41] and quasi-Newton methods 

(���- ���[44], ���� [47]). These methods are fast and efficient if the starting point is 

close to a local minimum, but they fail if this is not the case. 

2.5.3.    PAW method 

 The main problem represented by the ultrasoft pseudopotentials is their difficulty in 

construction, since by including many parameters (several cutting radii), many tests have to 

be carried out to prove their accuracy and transferability. This problem is solved partially 

through the method ��� (Blöchl) [48,49], which combines the versatility of the method of 

linear increased plane waves (����) with the approximation of  ��. The fundamental idea is 

that the true wave function (�) and a well-behaved pseudo-wave function (�) are related by a 

linear transformation (� � ��). This allows to easily calculating all the physical properties in 

the pseudo-space of the pseudo-wave function (computationally more manageable than the 

all-electron wave function). Thus, the original Hamiltonian ���is transformed, virtue to the 

linear transformation that relates the real wave function and the pseudo-wavefuncion, into a 

pseudo-Hamiltonian  H��� easier to solve: ������ � H��� .The strategy (typical of the 

augmented wave method) consists in dividing the crystal into an augmentation region, formed 

by spheres in which the atoms and an interstitial region (the rest of the crystal) are located. 

The radius of the spheres must be small enough so that the spheres do not overlap, but at the 

same time large enough for the electron density of the core to remain within the spheres. 

 Frequently, it is chosen equal to the value of half the distance between first 

neighbors. According to this division, the total wave function expands in plane waves in the 

interstitial region and in atomic wave functions centered on the atoms in the augmentation 

region. On the one hand, the plane wave part provides flexibility to the description of the tail 

region of the wave functions, but, by requiring a prohibitive number of basis functions to 

correctly describe the oscillations of the wave functions near the nucleus opts for expansions 

in atomic orbitals to correctly describe the nodal structure of the wave functions near the 

nucleus. 

 The transformation operator � is given by the sum of the identity operator and the 

sum of atomic contributions � � 1 � ∑ ��� (� = atomic positions), which shows that modifies 

the pseudo-wavefuncion within the atomic region in order to generate the correct nodal 

structure. 
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 Thus, the construction of a potential ��� requires, first of all, an all-electron 

calculation for the reference atom. Generally, for each angular quantum number �� two 

reference energies are chosen, whose solutions are the partial waves �|�����〉. The next step is 

the introduction of pseudo atomical wave functions and projector functions in order to have a 

practical approach that ensures that the complete wave function is continuous and 

differentiable across the interstitial augment-area surface, and to cancel the part of plane 

waves of the full wave function within the spheres of increase. Pseudo atomical wave 

functions are functions of the �� equations for an isolated pseudoatom, identical to the atomic 

wave functions outside the augmented sphere and with eigenvalues equal to those. 

 Within the spheres of magnification, the wave function and the pseudo function 

wave take the form: 

                                     ����� � ∑ ��������� ������ � ∑ ����������                                    (2.81) 

From these 2 equations it follows that 

                                            �|�〉 � �|��〉 � ∑ ���������� �∑ ���������                                    (2.82) 

 As the linear � tranformation, the coefficients �� must be linear functions of the 

pseudo-wave functions. They are given by the integral overlap between the pseudo-

wavefuncion and projector functions 〈�����|ψ�〉.Projector functions are mathematical constructs 

that connect the augmentation and interstitial regions. Within the increase region, the 

condition is met: 

                                                               ∑ �|���〉〈����|� � 1                                                     (2.83) 

which implies that 〈����|����〉 � ���, that is, they are dual to atomic pseudofunctions. 

        The combination of the above equations allows to determine the general form of the 

transformation operator  �: 

                                                          � � 1 � ∑ ��|��〉 ��|���〉�〈����|�                                      (2.84) 

with which the all-electron wave function is obtained from the corresponding pseudo-

wavefunction through the relationship: 

                                                   �|�〉 � �|��〉 � ∑ ��|��〉 � �|���〉�〈����|���〉� .                                (2.85) 
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accurately represent the load distribution of the all-electron wave function, the cut-off radius 

is close to the maximum of the all-electron wave function, which leads to contracted and 

localized magnification loads, with the consequent associated computational cost. The ��� 

method avoids this problem, through the introduction of radial grids, in which the increase 

loads are quite extended (they are softer). 

 In general, ��� potentials are more suitable than ultrasoft pseudopotentials. There 

are two reasons for this. First, the �� are smaller than �� used in the ultrasoft pseudopotentials 

and second, they reconstruct the exact valence wave function with all the nodes in the core 

region. The only disadvantage is given by the fact that �� is smaller, which makes the �������  

slightly larger. 

2.6.    CODES USED IN THE THESIS 

2.6.1 ABINIT PACKAGE 

         We use ABINIT program [50] for the total energy and electronic structure calculations. 

All calculations were performed using the GGA exchange-correlation functional of  Perdew-

Burke-Ernzerhof  [51] and the so-called FHI atomic plane wave pseudopotentials [52] are 

adopted. The geometrical optimization was performed at pressure via Broyden-Fletcher-

Goldfarb-Shanno minimization technique [53]. To ensure the stability of the structure during 

successive deformations, the lattice parameters and the atomic positions for each deformation 

are taken from the output of the previous deformation. We print the cif.file for visualizing the 

bond length. The script-job allows an automatic run using the input-initial as a template. At 

the end we get the results (stress-strain) using the script-extract. 

2.6.1.1 Script-job for strain(2H-MoS2) 
#! /bin/csh 
foreach ee(0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40) 
gawk 'BEGIN 
{key=not;nn1=1000;nn=1000;mm=1000;p1="1.0";p2="0.0";p3="0.0";p4="0.0";p5="1.0";p6=
"0.0";p7="0.0";p8="0.0";p9="1.0"} \\ 
     /-outvars: echo values of variables after computation  --------/  {nn1=NR}\\ 
    /acell/ {AA=$2;BB=$3;CC=$4} \\ 
     / rprim/ {if(NR>nn1) {p1=$2;p2=$3;p3=$4;nn=NR;key="yes"}} \\ 
     {if (NR==nn+1 && key=="yes"){p4=$1;p5=$2;p6=$3}  \\ 
     if (NR==nn+2 && key=="yes"){p7=$1;p8=$2;p9=$3}}  \\ 
        /xred/  {mm=NR} \\ 
     /xred/ {x1=$2;x2=$3;x3=$4;mm=NR} \\ 
    {if (NR==mm+1) {x4=$1;x5=$2;x6=$3} \\ 
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       if (NR==mm+2) {x7=$1;x8=$2;x9=$3} \\ 
       if (NR==mm+3) {x10=$1;x11=$2;x12=$3} \\ 
       if (NR==mm+4) {x13=$1;x14=$2;x15=$3} \\ 
       if (NR==mm+5) {x16=$1;x17=$2;x18=$3} \\ 
       if (NR==mm+6) {x19=$1;x20=$2;x21=$3} \\ 
       if (NR==mm+7) {x22=$1;x23=$2;x24=$3} \\ 
       if (NR==mm+8) {x25=$1;x26=$2;x27=$3} \\ 
       if (NR==mm+9) {x28=$1;x29=$2;x30=$3} \\ 
       if (NR==mm+10) {x31=$1;x32=$2;x33=$3} \\ 
       if (NR==mm+11) {x34=$1;x35=$2;x36=$3}} \\ 
    END {e=('$ee'+0.05); rprim11=(1+('$ee'+0.05)); bb=(BB*p5); cc=(CC*p9); printf "%s %s 
%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s 
%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %3.2f %15.8f 
%15.8f %15.8f\n", 
AA,BB,CC,p1,p2,p3,p4,p5,p6,p7,p8,p9,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15
,x16,x17,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,e,
rprim11,bb,cc}' filename.out_$ee > parametrosPAR 
set par=(`cat parametrosPAR`) 
#set aa = `echo "$par[1]` 
#set bb = `echo "$par[2]` 
#set cc = `echo "$par[3]` 
#set mat11 = `echo "$par[4]` 
#set mat12 = `echo "$par[5]` 
#set mat13 = `echo "$par[6]` 
#set mat21 = `echo "$par[7]` 
#set mat22 = `echo "$par[8]` 
#set mat23 = `echo "$par[9]` 
#set mat31 = `echo "$par[10]` 
#set mat32 = `echo "$par[11]` 
#set mat33 = `echo "$par[12]` 
#set x1 = `echo $par[13]` 
#set y1 = `echo $par[14]` 
#set z1 = `echo $par[15]` 
#set x2 = `echo $par[16]` 
#set y2 = `echo $par[17]` 
#set z2 = `echo "$par[18]` 
#set x3 = `echo $par[19]` 
#set y3 = `echo $par[20]` 
#set z3 = `echo $par[21]` 
#set x4 = `echo $par[22]` 
#set y4 = `echo $par[23]` 
#set z4 = `echo "$par[24]` 
#set x5 = `echo $par[25]` 
#set y5 = `echo $par[26]` 
#set z5 = `echo $par[27]` 
#set x6 = `echo $par[28]` 
#set y6 = `echo $par[29]` 
#set z6 = `echo "$par[30]` 
#set x7 = `echo $par[31]` 
#set y7 = `echo $par[32]` 
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#set z7 = `echo $par[33]` 
#set x8 = `echo $par[34]` 
#set y8 = `echo $par[35]` 
#set z8 = `echo "$par[36]` 
#set x9 = `echo $par[37]` 
#set y9 = `echo $par[38]` 
#set z9 = `echo $par[39]` 
#set x10 = `echo $par[40]` 
#set y10 = `echo $par[41]` 
#set z10 = `echo "$par[42]` 
#set x11 = `echo $par[43]` 
#set y11 = `echo $par[44]` 
#set z11 = `echo $par[45]` 
#set x12 = `echo $par[46]` 
#set y12 = `echo $par[47]` 
#set z12 = `echo "$par[48]` 
#set eenext = `echo "$par[49]` #Tensilestrain e (contador para los nombre de los ficheros) 
#set rprim11-next =  `echo "$par[50]` #  Tensileextrain e+1 en que se mete en abinit 
#set bb-abinit=  `echo "$par[51]` # parametro b sirprim cambia b=bcell*(rprim-imput/rprim-
out) 
#set cc-abinit=  `echo "$par[52]` # parametro c sirprim cambia c=ccell*(rprim-imput/rprim-
out) 
sed -e "s/ee/$par[49]/g"   filename.files_initial > filename.files_$par[49] 
sed -e "s/bred/$par[51]/g" -e "s/cred/$par[52]/g" -e "s/MAT11/$par[50]/g" -e 
"s/X1/$par[13]/g" -e "s/Y1/$par[14]/g"  -e "s/Z1/$par[15]/g"  -e "s/X2/$par[16]/g"  -e 
"s/Y2/$par[17]/g"   -e "s/Z2/$par[18]/g"   -e "s/X3/$par[19]/g"   -e "s/Y3/$par[20]/g"   -e 
"s/Z3/$par[21]/g" -e "s/X4/$par[22]/g"   -e "s/Y4/$par[23]/g"   -e "s/Z4/$par[24]/g" -e 
"s/X5/$par[25]/g"   -e "s/Y5/$par[26]/g"  -e "s/Z5/$par[27]/g"  -e "s/X6/$par[28]/g"  -e 
"s/Y6/$par[29]/g"   -e "s/Z6/$par[30]/g"   -e "s/X7/$par[31]/g"   -e "s/Y7/$par[32]/g"   -e 
"s/Z7/$par[33]/g" -e "s/X8/$par[34]/g"   -e "s/Y8/$par[35]/g"   -e "s/Z8/$par[36]/g" -e 
"s/X9/$par[37]/g"   -e "s/Y9/$par[38]/g"  -e "s/Z9/$par[39]/g"  -e "s/x10/$par[40]/g"  -e 
"s/y10/$par[41]/g"   -e "s/z10/$par[42]/g"   -e "s/x11/$par[43]/g"   -e "s/y11/$par[44]/g"   -e 
"s/z11/$par[45]/g" -e "s/x12/$par[46]/g"   -e "s/y12/$par[47]/g"   -e "s/z12/$par[48]/g"  
vgrid_b4-rprim.in_initial  > vgrid_b4-rprim.in_00.0_$par[49] 
mpirun -np 8 abinit < filename.files_$par[49]  >& log 
end 

2.6.1.2 Script-job for transversal stress (2H-MoS2) 
#! /bin/csh 
foreach pgpa(00 10 20 30 40) 
gawk 'BEGIN 
{key=not;nn1=1000;nn=1000;mm=1000;p1="1.0";p2="0.0";p3="0.0";p4="0.0";p5="1.0";p6=
"0.0";p7="0.0";p8="0.0";p9="1.0"} \\ 
     /-outvars: echo values of variables after computation  --------/  {nn1=NR}\\ 
    /acell/ {AA=$2;BB=$3;CC=$4} \\ 
     / rprim/ {if(NR>nn1) {p1=$2;p2=$3;p3=$4;nn=NR;key="yes"}} \\ 
     {if (NR==nn+1 && key=="yes"){p4=$1;p5=$2;p6=$3}  \\ 
     if (NR==nn+2 && key=="yes"){p7=$1;p8=$2;p9=$3}}  \\ 
        /xred/  {mm=NR} \\ 
     /xred/ {x1=$2;x2=$3;x3=$4;mm=NR} \\ 
    {if (NR==mm+1) {x4=$1;x5=$2;x6=$3} \\ 
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       if (NR==mm+2) {x7=$1;x8=$2;x9=$3} \\ 
       if (NR==mm+3) {x10=$1;x11=$2;x12=$3} \\ 
       if (NR==mm+4) {x13=$1;x14=$2;x15=$3} \\ 
       if (NR==mm+5) {x16=$1;x17=$2;x18=$3} \\ 
       if (NR==mm+6) {x19=$1;x20=$2;x21=$3} \\ 
       if (NR==mm+7) {x22=$1;x23=$2;x24=$3} \\ 
       if (NR==mm+8) {x25=$1;x26=$2;x27=$3} \\ 
       if (NR==mm+9) {x28=$1;x29=$2;x30=$3} \\ 
       if (NR==mm+10) {x31=$1;x32=$2;x33=$3} \\ 
       if (NR==mm+11) {x34=$1;x35=$2;x36=$3}} \\ 
    END {pp=('$pgpa'+10);p=(pp/29421.033);aa=(AA*p1); bb=(BB*p5); cc=(CC*p9); printf 
"%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s 
%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %3.2f 
%15.8f  %15.8f %15.8f %15.8f\n", 
AA,BB,CC,p1,p2,p3,p4,p5,p6,p7,p8,p9,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15
,x16,x17,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,e,
p,aa,bb,cc}' filename.out_$pgpa > parametrosPAR 
set par=(`cat parametrosPAR`) 
#set aa = `echo "$par[1]` 
#set bb = `echo "$par[2]` 
#set cc = `echo "$par[3]` 
#set mat11 = `echo "$par[4]` 
#set mat12 = `echo "$par[5]` 
#set mat13 = `echo "$par[6]` 
#set mat21 = `echo "$par[7]` 
#set mat22 = `echo "$par[8]` 
#set mat23 = `echo "$par[9]` 
#set mat31 = `echo "$par[10]` 
#set mat32 = `echo "$par[11]` 
#set mat33 = `echo "$par[12]` 
#set x1 = `echo $par[13]` 
#set y1 = `echo $par[14]` 
#set z1 = `echo $par[15]` 
#set x2 = `echo $par[16]` 
#set y2 = `echo $par[17]` 
#set z2 = `echo "$par[18]` 
#set x3 = `echo $par[19]` 
#set y3 = `echo $par[20]` 
#set z3 = `echo $par[21]` 
#set x4 = `echo $par[22]` 
#set y4 = `echo $par[23]` 
#set z4 = `echo "$par[24]` 
#set x5 = `echo $par[25]` 
#set y5 = `echo $par[26]` 
#set z5 = `echo $par[27]` 
#set x6 = `echo $par[28]` 
#set y6 = `echo $par[29]` 
#set z6 = `echo "$par[30]` 
#set x7 = `echo $par[31]` 
#set y7 = `echo $par[32]` 
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#set z7 = `echo $par[33]` 
#set x8 = `echo $par[34]` 
#set y8 = `echo $par[35]` 
#set z8 = `echo "$par[36]` 
#set x9 = `echo $par[37]` 
#set y9 = `echo $par[38]` 
#set z9 = `echo $par[39]` 
#set x10 = `echo $par[40]` 
#set y10 = `echo $par[41]` 
#set z10 = `echo "$par[42]` 
#set x11 = `echo $par[43]` 
#set y11 = `echo $par[44]` 
#set z11 = `echo $par[45]` 
#set x12 = `echo $par[46]` 
#set y12 = `echo $par[47]` 
#set z12 = `echo "$par[48]` 
#set pnext = `echo "$par[49]` #Tensilestrain e (contador para los nombre de los ficheros) 
#set p-abinit=  `echo "$par[50]` 
#set aa-abinit=  `echo "$par[51]` #  parametroasirprim cambia a=acell*(rprim-imput/rprim-
out) 
#set bb-abinit=  `echo "$par[52]` # parametro b sirprim cambia b=bcell*(rprim-imput/rprim-
out) 
#set cc-abinit=  `echo "$par[53]` # parametro c sirprim cambia c=ccell*(rprim-imput/rprim-
out) 
sed -e "s/ee/$par[49]/g"   filename.files_initial > filename.files_$par[49] 
sed -e "s/ared/$par[51]/g" -e "s/bred/$par[52]/g" -e "s/cred/$par[53]/g" -e 
"s/PGPa/$par[50]/g"-e "s/X1/$par[13]/g" -e "s/Y1/$par[14]/g"  -e "s/Z1/$par[15]/g"  -e 
"s/X2/$par[16]/g"  -e "s/Y2/$par[17]/g"   -e "s/Z2/$par[18]/g"   -e "s/X3/$par[19]/g"   -e 
"s/Y3/$par[20]/g"   -e "s/Z3/$par[21]/g" -e "s/X4/$par[22]/g"   -e "s/Y4/$par[23]/g"   -e 
"s/Z4/$par[24]/g" -e "s/X5/$par[25]/g"   -e "s/Y5/$par[26]/g"  -e "s/Z5/$par[27]/g"  -e 
"s/X6/$par[28]/g"  -e "s/Y6/$par[29]/g"   -e "s/Z6/$par[30]/g"   -e "s/X7/$par[31]/g"   -e 
"s/Y7/$par[32]/g"   -e "s/Z7/$par[33]/g" -e "s/X8/$par[34]/g"   -e "s/Y8/$par[35]/g"   -e 
"s/Z8/$par[36]/g" -e "s/X9/$par[37]/g"   -e "s/Y9/$par[38]/g"  -e "s/Z9/$par[39]/g"  -e 
"s/x10/$par[40]/g"  -e "s/y10/$par[41]/g"   -e "s/z10/$par[42]/g"   -e "s/x11/$par[43]/g"   -e 
"s/y11/$par[44]/g"   -e "s/z11/$par[45]/g" -e "s/x12/$par[46]/g"   -e "s/y12/$par[47]/g"   -e 
"s/z12/$par[48]/g"  vgrid_b4-rprim.in_initial  > vgrid_b4-rprim.in_00.0_$par[49] 
mpirun -np 8 abinit < filename.files_$par[49]  >& log 
end 
 
2.6.1.3 Input-initial for strain (2H-MoS2) 

#calculations of the atomic volumes (critic) 
# Unit cell  
Acell ared  bred  9.8280170035E+00      
rprim        1.0  0.0  0.0 
                 0.0 1.0  0.0 
                 0.0  0.0  MAT33 
# En P1 
nsym 1 
#symrel 1  0  0   0  1  0   0  0  1 



                             CHAPTER II ELECTRONIC STRUCTURE: Codes used in the Thesis              
 

68 
 

#tnons 0.0000000  0.0000000  0.0000000 
# Definition of the atoms  
Ntypat  2 
Znucl 42  8 
natom12 
typat  1 1 1 1 2 2 2 2 2 2 2 2 
xred 
 X1  Y1 Z1 
 X2  Y2 Z2 
  X3  Y3 Z3 
  X4  Y4 Z4 
  X5  Y5 Z5 
  X6  Y6 Z6 
  X7  Y7 Z7 
  X8  Y8 Z8 
 X9  Y9 Z9 
 x10 y10 z10 
 x11 y11 z11 
 x12 y12 z12 
# exchange-correlationfunctional 
ixc 11 
#Definition of the self-consistency procedure 
diemac   9.0        # Model dielectric preconditioner 
nstep200            #Maxiumum number of SCF iterations 
tolvrs 1d-18 
# ecut -> optimized, change it! 
ecut   40 
#Don't generate _DEN,_EIG,_WFK 
prtden 0 
prteig 0 
prtwf 0 
# kpts -> optimized, change it! 
kptopt  1 
ngkpt   11 10 6 
nshiftk   1                 # Use one copy of grid only (default) 
shiftk   0.5 0.5 0.5    # This choice of origin for the k point grid 
                                 # preserves the hexagonal symmetry of the grid, 
                                # which would be broken by the default choice. 
# ficheroscif 
prtcif 1 
# symbreak 
chksymbreak 0 
# optimization 
ntime  50 
tolmxf  5.0d-5 
ionmov  2 
optcell  9 
# fix the pressure to transition pressure Pt=0.00, 20, 40 GPadividirlo entre 29421.033 
#fix pressure  
Strtarget  0.00  0.00  0.00  0.00  0.00  0.00 
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ecutsm 0.5 
strprecon 0.5 
dilatmx 1.5 
 

2.6.1.4 Input-initial for transversal stress (2H-MoS2) 

#calculations of the atomic volumes (critic) 
# Unit cell  
Acell  ared  bred  cred 
rprim   1.0  0.0  0.0 
            0.0 1.0  0.0 
            0.0  0.0  1.0 
# En P1 
nsym 1 
#symrel  1  0  0   0  1  0   0  0  1 
#tnons  0.0000000  0.0000000  0.0000000 
# Definition of the atoms  
ntypat  2 
znucl  42  8 
natom 12 
typat  1 1 1 1 2 2 2 2 2 2 2 2 
xred 
  X1  Y1 Z1 
  X2  Y2 Z2 
  X3  Y3 Z3 
  X4  Y4 Z4 
  X5  Y5 Z5 
  X6  Y6 Z6 
  X7  Y7 Z7 
  X8  Y8 Z8 
  X9  Y9 Z9 
 x10 y10 z10 
 x11 y11 z11 
 x12 y12 z12 
 
# exchange-correlationfunctional 
ixc 11 
#Definition of the self-consistency procedure 
diemac   9.0   # Model dielectric preconditioner 
nstep  200       #Maxiumum number of SCF iterations 
tolvrs 1d-18 
# ecut -> optimized, change it! 
ecut   40 
#Don't generate _DEN,_EIG,_WFK 
prtden  0 
Prteig  0 
prtwf  0 
# kpts -> optimized, change it! 
kptopt  1 
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ngkpt   11 10 6 
nshiftk   1                 # Use one copy of grid only (default) 
shiftk   0.5 0.5 0.5    # This choice of origin for the k point grid 
                                 # preserves the hexagonal symmetry of the grid, 
                                 # which would be broken by the default choice. 
# ficheroscif 
prtcif 1 
# symbreak 
chksymbreak 0 
# optimization 
ntime  50 
tolmxf  5.0d-5 
ionmov  2 
optcell 2 
# fix the pressure to transition pressure Pt= 00, 20, 40 GPa dividirlo entre 29421.033 
#fix pressure 
Strtarget  PGPa  PGPa 0.00  0.00  0.00  0.00 
ecutsm 0.5 
strprecon 0.5 
dilatmx 1.5 
 

2.6.1.5 Script extract (2H-SiC) 

#! /bin/csh 
foreach AA(0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40) 
gawk 'BEGIN {nn=1000;mm=1000;rr=1000} \\ 
    /(ucvol)/ {volume=$6} \\ 
    /Pressure=/ {pressure=$8} \\ 
   /Pressure=/ {rr=NR} \\ 
  {if (NR==rr+1) {sigma11=$4;sigma32=$7} \\ 
   if (NR==rr+2) {sigma22=$4;sigma31=$7} \\ 
   if (NR==rr+3) {sigma33=$4;sigma21=$7}} \\ 
     /-outvars: echo values of variables after computation  --------/  {nn=NR} \\ 
     /acell/ {a=$2;b=$3;c=$4}\\ 
    /etotal/ {etotal=$2} \\ 
    /xred/ {mm=NR} \\ 
    /xred/ {x1=$2;x2=$3;x3=$4;mm=NR} \\ 
    {if (NR==mm+1) {x4=$1;x5=$2;x6=$3}\\ 
       if (NR==mm+2) {x7=$1;x8=$2;x9=$3} \\ 
       if (NR==mm+3) {x10=$1;x11=$2;x12=$3} \\ 
       if (NR==mm+4) {x13=$1;x14=$2;x15=$3} \\ 
       if (NR==mm+5) {x16=$1;x17=$2;x18=$3} \\ 
       if (NR==mm+6) {x19=$1;x20=$2;x21=$3} \\ 
       if (NR==mm+7) {x22=$1;x23=$2;x24=$3}} \\ 
    END {printf " %4.3f %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s 
%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s\n", 
'$AA',volume,pressure,sigma11,sigma22,sigma33,sigma32,sigma31,sigma21,a,b,c,etotal,x1,x
2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,x21,x22,x23,x24}' 
filename.out_00.0_$AA  >> salida 
end 
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awk '{printf " %4.3f %s %s %s %s %s %s\n",$1,$2,$4,$10,$11,$12,$13}' salida >> 
salidatotal 
 
2.6.1.6  .file-initialfor transversal stress (2H-MoS2) 

filename.in_ee 
filename.out_ee 
filename_i_ee 
filename_o_ee 
filename_tmp_ee 
42-Mo.GGA.fhi 
08-O.GGA.fhi 
 

2.6.1.7  .file-initialfor strain (2H-MoS2) 

filename.in_pgpa 
filename.out_pgpa 
filename_i_pgpa 
filename_o_ pgpa 
filename_tmp_pgpa 
42-Mo.GGA.fhi 
08-O.GGA.fhi 
 
2.6.1.8  .file-initialfor strain-transversal stress (2H-MoS2) 

filename.in_pgpa_ee 
filename.out_pgpa_ee 
filename_i_pgpa_ee 
filename_o_ pgpa_ee 
filename_tmp_pgpa_ee 
42-Mo.GGA.fhi 
08-O.GGA.fhi 

1.6.2 GIBBS PROGRAM 

     The equation of state (EOS) is a thermodynamic equation describing properties of solids 
with respect to changes in the macroscopic variables (p,V,T). GIBBS [54] can analyses the 
output of electronic structure calculations using a set of energy-volume (E-V) data using a 
selected form of EOS. The equilibrium volume, bulk modulus (B0) and its pressure derivative 
(B�

� ), both evaluated at zero pressure, were obtained by fitting the 4thorderstatic Birch-
Murnaghan EOS [55] to the calculated (E-V) data set. We applied this method to the (E-V) 
data obtained from the electronic structure calculations of crystals under hydrostatic pressure. 

The 4th  orderstatic  Birch-Murnaghan EOS takes the form 

� = �� +�
�
��������9� � 63��

′ � 143��� � 12���
′ � 4�� � 12� 

� �
1
2���2� � 1��/���9� � 63��

′ � 143��� � 9���
′ � 4�� � 6� 
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� �
1
6���2� � 1��/���99� � 693��

′ � 1573��� � �27� � 108��′ � 105���

� 6�3��
′ � 5�� � 6� 

     Where   � � ����
′′ � ��

′� and � is the finite Eulerian strain in terms of a reference 
volume ��  in our case the zero pressure volume. 

� � �
�
����

�
�
�/�

� 1�. 
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3.1.    ELASTICITY IN SOLIDS: GENERAL IDEAS 

        The classic theory of elasticity studies the mechanics of solid bodies, considered these 

as continuous media and homogeneous. It ignores, therefore, the microscopic atomic 

structure. The connection with the theory of lattice vibrations begins by considering that at 

low temperature only the vibrational levels of low frequencies, corresponding to the acoustic 

branches, are active. As the wavelengths are very large, they no longer depend on the 

microscopic behavior of the crystal and can thus be assumed that the vibrational behavior of 

the crystal is that of a continuous medium. Under the application of external forces, the 

bodies are deformed in a varied and complex manner. In particular, a material is called 

elastic if the deformations caused by the application of external forces disappear completely 

after the elimination of these. The elastic constants relate the applied external forces 

(described by the stress tensor) to the original deformation (described by the strain tensor). 

They are, therefore, a key factor when determining the strength of a material. They also 

provide information from a fundamental point of view on the nature of the interatomic forces 

responsible for the cohesion and geometrical characteristics of the crystalline structure, as 

well as on the characteristics of the bond between adjacent atoms and their anisotropic 

character. Thermodynamically, they are linked to the specific heat, thermal expansion, 

Debye temperature, melting point and Grüneisen parameters. On the other hand, the 

mechanical stability of a phase is subjected to the fulfillment of certain conditions for the 

elastic constants, fixed by the crystalline symmetry of the crystal under study. 

 The study of the elastic constants under pressure is undoubtedly fundamental to 

deepen the knowledge of the interatomic interactions, the mechanical properties (for 

example, the synthesis of superhard materials), the mechanical stability of the phases and the 

mechanisms of phase transitions. In this sense, the violation of the conditions involving 

elastic constants necessary for mechanical stability is related to the presence of ferro-elastic 

phase transitions. In particular, the existence of a certain elastic constant or linear 

combination of these becoming negative when increasing the pressure can allow knowing 

the symmetry associated with the instability, thus allowing to obtain the symmetry of the 

phase that would emerge as stable (or metastable).  
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 Traditionally, the study of elasticity in crystals starts from considering these as 

homogeneous and anisotropic continuous media and assuming that the stress and 

deformation are homogeneous. 

 The state of deformation of the crystal is given by the vector field ���(��) (the so-called 

displacement field): 

                                                                ������� � ��′ � ��                                                      (3.1) 

which gives for each point within the solid the change between its position vectors before���� 

and after���′�the deformation. Also, since the deformation is homogeneous, the position 

vector   �� and  ��′ are related by a linear transformation: 

                                                                   ��′ � ∑ ������
���                                                   (3.2) 

Where the sub-indices �, � represent Cartesian coordinates and take the values �, �, � or 1, 2, 3 

and the  ��� �
���

�

���
  are constants (independent of their position on the crystal) since the 

deformation is homogeneous. If we define the displacement gradients  ��� �
���
���

 , the 

differentiation of the equation 3.1 expressed in its Cartesian components with respect to 

��compared with the definition of ��� leads to the relationship between transformation 

coefficients and gradients displacement:  ��� � ��� � ���, from which it is evident that the ��� 

are also constant in a homogeneous deformation. Equation 3.2 can, therefore, be rewritten as:  

��� � ∑ ���� � �������
��� .  The elements  ��� constitute a tensor of second rank, the strain tensor  

�. In general, the strain tensor � can be decomposed into a sum of two tensors � � � � �, 

where � is the symmetric tensor, 

                                                                ��� �
�
�
���� � ����                                                (3.3) 

and � is the antisymmetric tensor, 

                                                               ��� �
�
�
���� � ����                                                 (3.4) 

the tensor ω represents the rotation as a rigid body of the material, which is called rotation 

tensor. The physically relevant part of the deformation, compression (or dilatation) and shear 
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deformation, is therefore found in the symmetric tensor ε, also known as an infinitesimal or 

Cauchy strain tensor [1], as it is only suitable for representing small deformations. 

Another measure of the deformation is given by the change of distance between two points of 

the crystal. Thus, the relationship between the distances before and after the deformation is 

given by ,. 

                                                     ���′�� � ����� � 2∑ ����������
�,���                                   (3.5) 

where lagrangian deformation parameters [2] are: 

                               ��� �
�
�
���� � ��� �∑ ����

��� ���� �
�
�
�∑ ���

�
��� ��� � ����                (3.6) 

and they constitute the tensor of lagrangian deformation �, symmetric by definition ���� �

����.Alternatively, assuming the deformed final state as the reference state, defined in this 

case, �� � ∑ ����
��� ��� and the displacement gradients���� � ���

���
�the deformation can be defined 

as: 

                                                 ���′�� � ����� � 2∑ ����������
�,���                                       (3.7) 

what allows to define the eulerian deformation tensor [3]: 

                                ��� �
�
�
����� � ���� � ∑ �����

��� ���� � � �
�
���� �∑ ����

��� ����                 (3.8) 

 At the limit of small deformations, the non-linear terms of the 

LagrangianandEulerian tensors cancel out, so that both definitions are equivalent and are 

reduced to the Cauchy strain tensor. 

 The fundamental difference between the tensors ε and η is the dependence of the 

former with the relative orientation of the deformed and original lattice, as opposed to the 

dependence with the metric tensor of the deformed lattice for the second, 

                                      � � �
�
���������� �������� � �� � �

�
���� � ����                     (3.9) 

where � and �′ are the matrices of orthonormalization of the original and deformed bases 

and � and �′ the respective metric tensors. 
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 When � is related to a change in the metric tensor of the unit cell geometry, it 

corresponds to a purely homogeneous deformation of the crystalline structure, leaving the 

fractional atomic coordinates fixed (network deformation). However, these coordinates may 

vary in addition to the deformation of the network. It arises, the internal deformation, defined 

by the coordinate changes ∆�� for all the atoms in the asymmetry unit. The relaxation of the 

atomic positions minimizes the energy of the deformed network and is, therefore, a function 

of the deformation of the network. The change of the interatomic distance can be broken 

down into two separate effects: 

����� �
�
� �����

�
� ���� � ����∆����� � ���� � ���� � �������∆��� � ∆���� � 

��∆��� � ∆�����′���� � ���� � �∆��� � ∆�����′�∆��� � ∆����                                                   (3.10) 

where ����  and ���are the distances between the atoms � and � before and after the deformation. 

The first term comes only from the deformation of the network, while the second from the 

internal deformation. 

 Another tensor necessary to define the elastic properties of the crystal is the stress 

tensor. The field of forces is presented by the vector �� (Force/Area), which is a function of the 

orientation of the surface element ��. Thus�� � �������, where��� is the unit vector perpendicular 

to ��. Moreover, the dependence is linear and is given by: 

                                                           �� � ∑ ����
��� ��                                                        (3.11) 

the coefficients ���are components of the second rank stress tensor ���, having a general 

component ��� the physical meaning of a pressure oriented along thedirection� and acting on 

the surface �� normal to the Cartesian direction �. The diagonal values ���are called normal 

components, while the components outside the diagonal are the tangential components of the 

stress. On the other hand, the tensor σ is symmetric ���� � ����and not involving rigid 

rotations. An important particular case of stress is that of isotropic pressure (hydrostatic), 

��� � �����that occurs when all eigenvalues (the stress tensor can be diagonalized and its 

eigenvalues are real) are equal (The sign-comes from the convention of considering negative 

compressions and positive tensions). 
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 In its original form, Hooke's law establishes a linear relationship between the 

longitudinal deformation � and the stress� of rods, � � ��(E=Young's modulus). The 

generalization of Hooke's law to crystals (anisotropic solids) is based on considering that each 

of the stress tensor components is a linear homogeneous function of the deformation 

components. Thus, 

                                                             ��� � ∑ ������
�,��� ���                                               (3.12) 

or, in the same way, 

                                                          ��� � ∑ ������
�,��� ���                                                 (3.13) 

�����has the physical meaning of the stress component ���that must be applied to the crystal so 

that this deformation range is characterized by a unit value component ��� .Similarly, the 

physical meaning of ����� is that of the deformation component ���resulting from the 

application of the unit stress���. The coefficients �����  and �����are components of the fourth-

rank tensors � and  �. � is denominated tensor of elastic constants or coefficients of stiffness, 

whereas � is the tensor of the elastic modules or compliances. The two tensors are related by 

this generalized relationship: 

                                                      ∑ �����
�
�,��� ����� � �

�
������� � �������                   (3.14)  

 In contrast with � and � which are field tensors, � and � are tensors dependent on the 

material and independent of the applied force field. As a consequence of the symmetry 

relations  ��� � ��� and ��� � ���for the tensors of strain and stress, respectively, the 

coefficients �����  (�����) are invariant against the exchange of indices (��), (��) and (��, ��)  

(symmetry of Voigt [4], thus fulfilling the relations: 

                           ����� � ����� � ����� � ����� � ����� � ����� � ����� � �����                       (3.15)  

Thus, the number of independent elements is reduced from 81 to 21. It is also possible to 
condense the pair of Cartesian indexes �, � by a single index ��according to the scheme:  
�� ≡ 1, �� ≡ 1, �� ≡ 1, ������ ≡ 1, ������ ≡ 1 and ������ ≡ 1, the elastic constants thus 
defined forming a symmetric matrix. The elastic constants ���with � � 3are called longitudinal 
elastic constants, the  ���  with  � � 3 are the tangential elastic constants. Those ���with � � 
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are the non-diagonal constants and those ���with � � 3  and   � � 3, which measure the 

tangential deformation produced by a longitudinal stress are the elastic mixing constants 

 The presence of crystalline symmetry further reduces the number of independent 

elastic constants. In principle, it is clear that certain constants will be equal to each other or 

will be related to being equivalent deformations in the crystal. In general, for each generator  

�  of the point group of a given crystalline class (excluding the inversion centre, since the 

elasticity is a center�symmetric property), the components ���are transformed into  ���� , and 

the condition must be fulfilled (by symmetry) ���� � ���, which forces the cancellation of 

certain elastic constants. 

 In particular, the number of independent elastic constants for hexagonal and cubic 

crystals (which will be treated in detail in our case) is reduced to 5 and 3, respectively. 

3.2.    ELASTIC CONSTANTS UNDER PRESSURE 

 The evaluation of elastic constants of materials under hydrostatic pressure [5] is not 

trivial. In fact, its description does not present a uniform nomenclature and the terminology 

used is confused. Thus, they can be defined as second derivatives of the internal energy � 

(adiabatic elastic constants) or free energy of Helmholtz (elastic isothermal constants) with 

respect to parameters of finite deformation �, homogeneous infinitesimal deformations �, or 

parameters of homogeneous finite deformation eulerians or lagrangians� and �. They also 

correspond to the coefficients of transformation between stress and homogeneous deformation 

for the different definitions of homogeneous deformation, or to the coefficients of the 

equations of motion. Moreover, some authors postulate that the elastic constants under 

pressure are given by secondary derivatives of the Gibbs free energy with respect to eulerians 

homogeneous deformations�. All these definitions are equivalent to zero pressure, but they 

differ from non-zero pressures.  

 We focus on the traditional definition of elastic constants as second derivatives of 

internal energy versus lagrangians homogeneous deformations �� [6]. We start from a glass 

compressed by hydrostatic pressure � to the density��. Before homogenous and small 

deformations each vector of the Bravais network  ��� of the original network passes to the new 

position  ���′ in the compressed or expanded network. 
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                                                          ��
� � ∑ ���� � ���� ���                                                 (3.16)     

Where ���are independent constants of  ��� (since the deformation is homogeneous), which 

satisfies that ��� � ��� , indicating the subindices � and � Cartesian components, taking, 

therefore, values1, 2 ��� 3. The expansion of internal energy per unit of mass of the crystal in 

terms of the lagrangian strain tensor (rotation excluded), 

                                                             ��� � ��� � �
�

∑ �������                                             (3.17) 

leads to the expression: 

                        ����, ���� � ����, 0� � �
��

∑ �������� � �
�

�∑ ������������ ��� � ⋯ �          (3.18)    

Where����, ���� is the energy of the deformed crystal (with relaxation of the atomic 

coordinates in the lattice of distorted Bravais lattice), the elements ���are the components of 

the deformation tensor before the deformation: 

                                                            ��� � �� ������,����
����

�
���

                                          (3.19) 

Which, in conditions of initial hydrostatic pressure are given by: 

                                                                         ��� � �����                                                (3.20) 

and �����are the elastic constants of the crystal at an arbitrary hydrostatic pressure  

�:����� � �� �������,����
��������

�
�����

. By expressing the deformation parameters ��� as a function 

of an infinitesimal parameter�, 

                                                                ��� � ��� � � ����� � ⋯                                      (3.21) 

and include equations 3.17 and 3.20 in equation 3.18, this can be written as: 

                                       ����, ���� � ����, 0� � �� � �
�

�� � ⋯                                  (3.22)    

where 
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                       � � �
��

∑ ����  and � � �
��

∑ �������� ������� � ��
��

∑ ��������� � ���
�

�
�              (3.23) 

It is clear, then, that the derivatives of the total energy with respect to ϒ lead to linear 

combinations of the elastic constants �����: 

                                ∑ ��������������� � 2� ∑ ������� � ���
�

�
��� � �� �������,��

��� �
���

              (3.24) 

 The equation is valid for any deformation, regardless of whether it retains the 

volume or not. It is clear, also, that under conditions of zero pressure, it is reduced to the 

traditional definition of elastic constants in the absence of pressure. Using the properties of 

symmetry of the matrices �̂ and �̂, the notation of Voigt: �� ≡ 1, �� ≡ 1, �� ≡ 1, ������ ≡

1, ������ ≡ 1 and ������ ≡ 1 and entering a parameter: 

�� � �1, � � 1,2,3;
2, � � 4,5,6.

� 

Equation 3.18 is rewritten as: 

              ∑ ������������ � 2� ∑ �2 � ����� � � ∑ �� ��
� � ���� �������,��

��� �
���

              (3.25)   

3.2.1 RELATIONSHIP BETWEEN THE COMPRESSIBILITY MODULUS AND THE 

ELASTIC CONSTANTS 

 The compressibility module of a crystal can be expressed as a certain linear 

combination of elastic constants. To obtain the relationship between the compressibility 

module and the elastic constants, it is only necessary to consider the application of hydrostatic 

pressure to the system. This leads to a homogeneous deformation of the type: 

                                                           ��� � ��������                                                            (3.26) 

in which the value of the functions�����is determined by the crystalline symmetry. Thus, in a 

hexagonal crystal, �� � �� � �and �� � ����, the value of����being specified with the 

volume of the parameter � �⁄ . 

                                                                     �
�

� ������
���

�����                                             (3.27) 
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Where�����is the value of � �⁄  corresponding to the density�� � �
��

to which the crystal has 

been compressed or expanded by the application of hydrostatic pressure. The value of � �⁄ can 

then be expanded as a function of the specific volume V,  

                                       �
�

� ���� � ����� �1 � �
��

�� � ��� � ⋯ �                                  (3.28) 

with 

                                                              � � ��
�����

������
��

�
����

                                             (3.29) 

 Comparing equations 3.27 and 3.28 and defining the volume associated with 

deformation 3.26 as a function ofϒ, 

                                                   � � ���1 � ϒ���1 � ��ϒ��                                             (3.30) 

We obtain: 

                                                            ��ϒ� � ��������ϒ�
������ϒ����

                                                (3.31) 

 As the energy associated with deformation 3.26 only worked on the specific volume, 

we arrived, after the inclusion of the compressibility module definitions and the pressure: 

                                                       � � � ���
���  and  � � � ��

��
                                             (3.32) 

to the expression: 

                            �� ����
�ϒ� �

ϒ��
� �

��
� ����

�ϒ
�

�
�
ϒ��

� �
��

����
�ϒ� �

ϒ��
� ��

������ � 6 ������
������ �        (3.33) 

As noted, in hexagonal crystals there are five independent elastic constants: 

���, ���, ���, ��� ��� ���; the rest of the elastic constants are determined by symmetry: 

                                  ��� � ���,��� � ���, ��� � ���, ��� � �
�

���� � ����                (3.34) 

or they are null. The first term of equality 3.33 is obtained through the substitution in equation 

3.25 of the parameters associated with deformation 3.25. 
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                              �� � �� � 1, �� � �� � 0, �� � ����
���

��� � ��������
������                           (3.35) 

These last two obtained by the Taylor series of �� � ��ϒ� and after considering the equalities 

between elastic constants 3.34. The general expression of the relationship between elastic 

constants and the compressibility module in hexagonal crystals is thus reached: 

                               2��� � 2��� � 4 ����
���

��� � �����
���

�
�

��� � ��
������ � 3 �����

������ �         (3.36) 

that under conditions of zero pressure is reduced to: 

                                      2��� � 2��� � 4 ����
���

��� � �����
���

�
�

��� � ��
������                       (3.37) 

 An alternative strategy to obtain the relation of the compressibility module with the 

elastic constants starts from equation 3.13. Before the application of hydrostatic pressure 

���� � ������, this equation can be written as: 

                                                                     ��� � � ∑ ��
��� �����                                        (3.38)  

Since the tensor of the deformations is symmetrical and considering that these are small, the 

relative change of volume of the solid is given by the sum of the principal components of the 

deformation tensor: 

                                                                ∆� ∑ ���
�
��� � � ∑ ��

��� �����                              (3.39) 

and, therefore, the compressibility  � � �∆
�

  is  ∑ �����
�
��� , corresponding, thus, the 

compressibility to the sum of the new coefficients in the upper left scheme of the compliances 

matrix. The compressibility module is obtained directly by being the reciprocal of the 

compressibility: 

                                                      � � �
�

� �
��������������������������

                                 (3.40) 

and, in hexagonal crystals, because of the equalities between compliances it is reduced to: 

                                                     � � �
������������������

                                                    (3.41) 
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 Moreover, using the relations between elastic constants and compliances, the 

compressibility module can be rewritten as: 

                                                      � � �����������������
�

�����������������
                                                     (3.42) 

 The connection between equations 3.37 and 3.42 comes from the definition of the 

parameter � (3.29). Developing the derivative, 

                                                      ��

��
��

�

��
��
�������

��
�� ��

��

� �� ���
�

��
��

� �
�

��
��

��
��

                    (3.43) 

and, after including the dependency of the parameters with the pressure: 

                                       �� ���
�

��
��

��
��

� �
�

��
��

��
��

��
��

� ���� � ��� � ���� � ���            (3.44) 

That is, the dependence on the quotient  �
�
is related to the difference between the 

linealcompressibilities along the ����� (��������.Under pressure, the deformation of a line 

in the direction of the unit vector ���is: 

                                                    ��� ������ � �� ∑ ������������
���                                               (3.45) 

and, therefore, the linear compressibility is: 

                                                           � � ∑ ����� ������  �
���                                                    (3.46) 

in a hexagonal system, 

                                               �� � ��� � ��� � ���  and   �� � 2��� � ���                      (3.47) 

or, depending on the elastic constants, 

                                         �� � �������
����������������

� �
   and    �� � ��������������

����������������
� �

                 (3.48) 

the combination of equations3.44, 3.42 and 3.48 allows the μ parameter to be rewritten as: 

                                                          � � �����������������
�����������������

                                               (3.49) 
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and, after its inclusion in equation 3.37, the equivalence with the equation 3.42 is checked. 

 If in equation 3.36 the requirement that  �
�
is independent of volume (μ = 0) is added, 

we arrive at: 

                                                � � �
�

�2��� � 2��� � 4��� � ��� � 3��                           (3.50) 

 This simple equation allows, therefore, to estimate the compressibility module in 

those systems in which  � �⁄  does not change appreciably with the volume and to fix a limit 

superior to the same in those with substantial change in the quotient. 

 Equation 3.36 also allows to obtain the real relation between elastic constants and 

compressibility module for a cubic crystal, considering constant the relation � �⁄ (in a cubic 

crystal:� � � � �) and introducing the cubic crystals own relationships��� � ���and 

��� � ���. So we get to the expression, 

                                                               � � �
�

���� � 2��� � ��                                       (3.51) 

which allows to evaluate the compressibility module under pressure conditions. 

3.2.2  MECHANICAL STABILITY OF CRYSTALS UNDER  HYDROSTATIC  PRESSURE 

Equation 3.22 can be written as: 

                                        ∆� � ����,ϒ� � ����, 0� � ��∆� � ∆���                               (3.52) 

where  ∆�  is the variation of the volume with the deformation: 

∆� � ���|� � �| � 1� 

                                � ��ϒ�∑ ���� � ��ϒ
�

�
�2�∑ ���� ��� �∑ �����

� � ∑ �����
��                       (3.53) 

and 

 

∆��� �
��ϒ�

2 �� �� ���
�

�
�

� 2� � ���
�

��

� � �����
����

������� � ⋯ 
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                         � ��ϒ
�

�
∑ ����� ����� � ���2 � ���2 � ��� � 2������� ���� � ⋯ 

                        � ��ϒ
�

�
∑ ����� ���� � ⋯                                                                            (3.54) 

and rewrite as: 

                                                        ∆��� � ��
�

∑ ������ ����                                               (3.55) 

where the �� are infinitesimal eulerian deformations and the ����  form a symmetric matrix and 

depend on the traditional elastic constants (defined as second derivatives of the energy with 

respect to lagrangian deformations ��). Unlike the latter, the new elastic constants ����  do not 

have the exchange symmetry (��) ↔ (στ), although they remain symmetric with respect to 

the exchanges (��� ∨ ����. Its relationship with the traditional elastic constants, extractable 

from Eq. 2.54, can be summarized in a set of expressions: 

���� � �� ������ � ��, � � 1,2, … . ,6; 

���� � �������, � � 1,2,3, � � 4,5,6; 

���� � ��� � �, ���� � ��� � �, ���� � ��� � �; 

                                         ���� � 4���, ���� � 4���, ���� � 4���.                                        (3.56) 

 An alternative approach to the problem of elasticity under pressure consists of using 

the Gibbs free energy  ���, �� � ���, �� � ����, �� instead of the energy to estimate the 

elastic constants. The reason given is that at fixed�����, the structure in equilibrium is given 

by a minimum of  �  and not of  �.  The elastic constants thus defined (effective elastic 

constants) take, therefore, the form: 

                                                                    ���� � �
��

� ���
������

�
�����

                                   (3.57) 

where ��are Eulerian deformations. Formally, at � � 0, the crystals subjected to deformation 

are not normally in equilibrium, so it is impossible to determine the free energy of Gibbs  �  

or any other thermodynamic potential. It is resorted, then, to consider the function 

                                      ���, ��, … , ��� � ���, ��, … , ��� � ����, ��, … , ���                    (3.58) 
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which allows the effective elastic constants  ����to be equivalent to the effective elastic 

constants  ����defined in equation 3.55. Given that both definitions are equivalent, the motive 

after the use in the realized calculations of the energy  �  instead of the free energy of Gibbs  

�  is only of computational type, since it is easier to determine the equilibrium parameters of 

a structure crystalline from  �  (at fixed  �, the minimum energy for the structure in 

equilibrium) than from  �. Moreover, the calculations at fixed  � are simpler than those 

atfixed�. It should also be noted that the elastic constants  ����  are equivalent to the 

previously defined stress-strain coefficients. 

 The requirement of crystalline mechanical stability [7] leads to the inequation   

∆��� � 0, which is fulfilled only if the symmetric matrix: 

 

�� �
�

�

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

�

�
 

has a positive determinant. 

 This leads, in turn, to different stability criteria. Depending on the symmetry of the 

crystal and shows that the mechanical stability under pressure conditions is not only a 

property of the material, but depends on the applied pressure, reducing in the limit of  � � 0 

to the Born criteria, which involve only the traditional elastic constants. 

 Thus, in a cubic crystal, the eigenvalues of the matrix  ��  are: 

�� � ���� � 2����, �� � �� � ���� � ���� ��� �� � �� � �� � ���� 

 Considering the fact that the annulment of the determinant implies mechanical 

instability, the criteria of mechanical instability, in terms of the traditional elastic constants, 

are: 

                                 ��� � 2��� � � � 0,   ��� � 2��� � 2� � 0  and ��� � � � 0, 
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associated with the deformation eigenvectors: 

            �ϒ,ϒ,ϒ, 0,0,0�;  �ϒ�� ,ϒ��, ϒ�� , 0,0,0� ;ϒ�� � ϒ�� � ϒ�� � 0  and   �0,0,0,ϒ, 0,0� 

 The interpretation of these criteria is clear, and is none other than the generalization 

under pressure conditions of the compressibility module and the two modules of transverse 

elasticity under conditions of zero pressure. 

 In this sense, the first criterion is related to a volumetric deformation as indicated by 

the associated eigenvector. The meaning of this instability is the decohesion of the net by pure 

dilatation. It is the spinodal instability since it involves the cancellation of the compressibility 

module, defined under pressure conditions such as:   

�� � �
�

����� � 2����� � �
�

���� � 2��� � ��. 

�� � �
�

����� � ����� � �
�

���� � ��� � ��. 

 Finally, the third instability is the transverse deformation, with volume conservation, 

along one of the directions of symmetry, being in this case the module associated with the 

transversal elastic. The complexity of � � ���� � 4��� � � stability condition increases in 

crystals of lower symmetry. Thus, in a hexagonal crystal the values of the determinant ��  are: 

�� � ���� � 2����, �� � �
�

������ � ���� � ����� � ������ � ���� � ������
� �8����

� �
�
��,   

�� � �
�

������
� � 2���� � ����� � ������ � ���� � ������

� 8����
� �

�
��,  �� � �� � ����  and  

�� � ����. For both  �� and �� to be positive, it is a necessary condition that  �� � �� and  

���� are positive. The stability conditions are then:       

���� � ���� � 0  ���� � 0  ���� � 0, 

���� � ���� � ���� � 0�de  �� � �� � 0� 

  11..    TThhee  sseeccoonndd  iinnssttaabbiilliittyy,,  kknnoowwnn  aass  BBoorrnn''ss  iinnssttaabbiilliittyy  [[88]],,  iinnvvoollvveess  bbrreeaakkiinngg  ssyymmmmeettrryy  
wwiitthh  vvoolluummee  ccoonnsseerrvvaattiioonn..  TThhee  mmoodduulluuss  tthhaatt  iiss  ccaanncceelleedd  iinn  tthhiiss  ccaassee  iiss  tthhee  tteettrraaggoonnaall  
ttrraannssvveerrssee  eellaassttiicc  mmoodduulluuss,,  ddeeffiinneedd  uunnddeerr  pprreessssuurree  ccoonnddiittiioonnss  ssuucchh  aass::  
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                                 and   ����� � ��������� � 2����
� � 0 ������� � 0� 

Expressions that can be simplified in the inequations: 

���� � 0, ���� � ���� ��� ��������� � ����� � 2����
�  

3.2.3    EVALUATION OF ELASTIC CONSTANTS 

 For a given crystal, it is possible to calculate all  �  independent elastic constants by 

imposing  � small deformations to the unit cell. Each one of the deformations is 

parameterized with a variable, (see equation 3.21). This allows estimating the total energy of 

the system for different variable values. The positions of the atoms must be redefined in each 

distorted configuration due to the appearance of internal deformation before the decrease in 

symmetry associated with the deformation. Assuming the validity of Hooke's law for small 

values of  ϒ, the numerical data  ��ϒ�is adjusted to the expansion of the Taylor order of 

equation 2.22, where  �� � �
��

 ,  ����, 0�  and  ����� are fitting parameters. Finally, the 

inclusion of the quadratic terms,   ���
�ϒ�  , in equation 3.25 allows access to a system of  �  

linear equations for the elastic constants, which allows extracting these.  

 In our case, we consider the calculation of the elastic constants of cubic (zinc 

benzene) phases of the SiC and ZnO, (NaCl) phase of ZnO, (CsCl) phase of ZnO and 

hexagonal (wurtzite) phases of the SiC and ZnO with the objective of examining its 

metastability. The parametrization of the deformations chosen in each case is shown in 

Table6.1. For each, we choose 11 values of ϒ in the interval [-0.05; 0.05] in order to remain in 

the elastic limit and avoid the contribution of terms of order higher than 2  in the expansion of 

the energy. Likewise, we relax the internal degrees of freedom in all cases where, by inducing 

a reduction in symmetry, the deformation causes the atoms to stop locating in special 

positions without free parameters, being, therefore, the optimization of these necessary. It 

should be noted that if the atoms are in inversion centers, these remain stable under small 

deformations. Then, it is unnecessary to relax the internal parameters in the deformed 

network, which greatly simplifies the calculations. It also ensures the convergence of energy 

versus the number of points �. We choose, thus, Monkhost-Pack grids with a number of 

points � in the irreducible part of the Brillouin area of 280, and 427 for the cubic zinc bende 

and hexagonal wurzite cells, respectively, extending this numbers in the structures of lower 

symmetry associated with deformations. We also verify the energetic convergence in ϒ � 0, 
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independently of the deformation and, therefore, of the different symmetries and grid points 

�. 

 Although the calculation of the three independent elastic constants of the cubic 

networks would only require the application of three independent deformations, we have 

included in Table 3.1 two additional deformations for the purpose of analyzing the precision 

of the calculations. 

 The first and third deformations correspond to tetragonal distortions of the lattice. In 

the first, the value of the axes  � ��� �  is modified in the same magnutid, keeping the fixed  

�  axis, while in the third only the axis  �  changes. From the combination of both we extract 

the value of the two independent constants ��� and ���.. The second deformation is an 

orthorhombical transversal distortion, through which the constant  ��� is accessed. It has the 

advantage, compared to the previous deformations, that in it the energy is an even function of 

the deformation ��ϒ� � ���ϒ� so that the number of calculations made is reduced by half.  

On the other hand, the advantages of the fourth and fifth deformations on the other three come 

from the conservation of the volume ���� ∨ � � � ∨ 1�since it is the same as before the 

deformations. In the first place, this allows the elimination of the term  �∆�  in equation  

3.52, with which we obtain, directly, the elastic constants  ���� . In second place, known the 

strong dependence of the energy with the volume, we avoid the separation of this contribution 

in the total energy. Thirdly, by keeping the volume we minimize the base changes and with it 

the computational uncertainties. In particular, the fourth deformation corresponds to an 

extension of the first deformation, to which is added the term of distortion  ��� in order to 

maintain the volume. This leads to a tetragonal distortion in which the axes � ��� � remain 

the same and different from the  �  axis.  The meaning associated with the variations of the 

parameter  ϒ  is that of the modification of the quotient � �⁄ of the new tetragonal structure at 

constant volume  �
�

� �
��ϒ�� . The only difficulty associated with distortion is the need to 

expand the deformation component ���in Taylor series to obtain the expansion values in 

powers of the infinitesimal ϒ,  ��� � �2 ,  ��� � 3.  The introduction of these in the equation 

3.2 leads to the linear combination of elastic constants shown in Table 3.1, coinciding with 

6(���� � �����.  The fifth distortion is an ortho-mast cross-sectional distortion of the network, 

which makes it possible to obtain the transverse elastic modulus  ���� directly. Using these last 
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two deformations and the relation 3.51, we obtain the three independent elastic constants, 

with a deviation of less than 3% with respect to those previously obtained. 

 It is also important to note that although the distortions are applicable independently 

of the space group and the number of non-equivalent atoms of the cubic cell, they do have an 

influence on the symmetry of the distorted lattice. Thus, in the simple cubic �1 lattice, 

distortions  1, 3, and 4 lead to simple tetragonal lattices and distortions,  2 and 5  to 

orthorhombic networks centered in the base, while in �1 spinel type all distortions lead to 

body centered lattices, regardless of whether they are tetragonal or orthorhombic.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                     CHAPTER III CRYSTAL ELASTICITY: Elastic Constants under Pressure 
 

94 
 

Table  3.1 Deformations used for the calculations of elastic constants in cubic and hexagonal 
structures. 

Symmetry           Deformation            Parameter                    �� �������,ϒ�
�ϒ� �

ϒ��
 

Cubic                          1                ��� � ��� � ϒ                     2���� � ��� � �� 

                                    2                ��� � ��� � ϒ                          4��� � 2� 

                                    3                ��� � ϒ                                       ��� � � 

                                    4                ��� � ��� � ϒ, 

                                                    ��� � �1 � ϒ���                   � 16���� � ���� � 12� 

                                    5                ��� � ��� � ϒ, 

                                                   ��� � �1 � ϒ��
��

                      � 14���� � �� 

 

Hexagonal                  1                ��� � ��� � ϒ                     2���� � ��� � ��� � 2� 

                                   2                ��� � ���� � ϒ               2(��� � ��� � �� 

                                   3                 ��� � ��� � ϒ                2(��� � ��� � �� 

                                   4                 ��� � ��� � ϒ                     4��� � 2� 

                                   5                  ��� � ϒ                                       ��� � � 

                                   6              ��� � ��� � ϒ,                           4���� � �� 

��� �
ϒ�

�1 � ϒ��
 

                                  7               ��� � ���� � ϒ,                          2(��� � ��� � 2�� 

��� �
ϒ�

�1 � ϒ��
 

 
             

       The elastic constants of the ecliptic graphite lattice are obtained through the 5 primary 
deformations of Table 3.1 the first corresponds to a modification of axes � ��� �. It is, 
therefore, an orthorhombic distortion. The second one (also orthorhombic) deforms the basal 
plane by elongation along  � and along �.  The third maintains the hexagonal symmetry, 
modifying in it the value of axes � ��� � in the same amount. The fourth, in which the energy 
is an even function of the deformation, decreases the hexagonal to monoclinic symmetry and 
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the fifth retains the hexagonal symmetry by compressing or expanding the  �  axis. In all these 

deformations, the volume changes. With verification effects, two other deformations were 

applied, in which the volume, the monoclinic deformation 6 and the orthorhombic 

deformation 7 were conserved. It was found that the modifications in the elastic constants 

were less than 4%. 
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4.1 INTRODUCTION            

             A clear understanding of cohesive and mechanical properties of technological 

materials is of capital importance especially when applications are demanded in hostile 

thermal, stress and chemical environments. Since the nature of the crystalline bonding 

networks is the ultimate responsible for the response of the compounds to these external 

conditions, it is rewarding and necessary investigating how macroscopic properties correlate 

with the chemical interactions at an atomic level. Covalent, ionic and layered solids constitute 

three crystal families currently displaying interest in a variety of areas suchas electronics and 

solar cell industries [1, 2 and 3]. These compounds provide a good target to examine how 

changes in strong and weak interactions affect the observed elastic stability of materials. To 

this end, computer simulations constitute a practical research route to microscopically analyze 

strainedstructures of solids since geometries optimized by minimizing the crystal energy can 

be accurately obtained from first-principles electronic structure calculations under different 

stress conditions (see for example, Ref. [4]). 

            Within the above three families of compounds, silicon carbide (SiC), zinc oxide 

(ZnO), graphite and molybdenum disulfide (MoS2) are pertinent examples because, besides 

their genuine bonding networks, they are materials with a variety of applications in several 

technological sectors as new semiconductor devices, field effect transistors [1,2,5,6,7 and 8], 

lubricants [9,10] and components of solar cell panels [3]. In the manufacturing processes of 

these materials, mechanical failure may occur as a result of the stresses induced during the 

heating cycles to which the compounds are subjected. In addition, the simultaneous existence 

of covalent and van der Waals interactions leads to preferential bi-dimensional and three-

dimensional atomic arrangements in their crystalline structures that result in a high 

anisotropic response of these materials under variable stress conditions which is worth to be 

explored. 

               The challenge consists in the accurate calculation of the limiting tension that these 

materials can support in particular directions. Considering perfect non-defective crystals, this 

maximum tension is known as the ideal or critical strength (σc) of the material for that 

direction. Both, experimentally and theoretically, the evaluation of strain-stress curves 

constitutes the usual strategy to access to this quantity since after this critical point a 

catastrophic scenario emerges in form of a crystal fracture or a phase transition. It seems then 

required to understand how the atomic level interactions correlate with the mechanism of 

failure in these environmental conditions and, if possible, anticipate the onset of the 

catastrophic scenario. 
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              A number of theoretical studies using first-principles calculations, mainly employing 

density functional theory (DFT) [11,12], have permitted a quantitative evaluation of the 

critical strength of various materials (see [13,14 and 15] and references therein to cite a few) 

showing that the effect of multi-axial stress obviously depends on the atomic species involved 

[16,17 and 18]. However, to the best of our knowledge, none of these studies have addressed 

the description of the observed or calculated stress-strain data by means of analytical 

functions as normally happens for example in high-pressure and related fields. Such equations 

of state would open the possibility of anticipating critical values for the strength and strain of 

materials without reaching the instability condition. At this regard, it is pertinent to recall the 

spinodal equation of state (SEOS) [19]. This analytical function was designed to describe the 

high-pressure behavior of condensed matter using as a reference state the onset of the elastic 

instability. It has been successfully applied not only to the description of experimental and 

theoretical pressure-volume data, but also to the pressure evolution of one dimensional unit 

cell parameters [20]. Along with this fact, the SEOS is particularly well suited for the 

description of both experimental and theoretical stress-strain data derived from variable stress 

tensile conditions since, in the limit, these conditions precisely lead to the elastic instability of 

the material, i.e, the reference state for this analytical EOS. 

            In this chapter, we present results from DFT calculations performed to obtain the 

critical strength of 3C- and 2H-polytypes of SiC, ZnO zinc blende and wurtzite, graphite and 

2H-MoS2 along their main crystallographic directions without and with superimposed 

transverse stress conditions. Results are analyzed in terms of the density of chemical bonds 

and atomic interactions in the investigated directions of these materials. We are particularly 

interested in general analytical functions able to represent the behavior of different types of 

compounds under these tensile conditions and to reproduce the critical parameters. For this 

end, we propose a new SEOS-form that uses the critical strain as the reference state and that 

can be easily used to fit both, experimental and calculated stress-strain data. 

            The chapter is divided in three more sections. In the next one, we present 

computational details of the electronic structure calculations and the algebra related with the 

new EOS. Section 4.2 contains the results and the discussion and is divided in three sub-

sections devoted, respectively, to the equilibrium properties of the four compounds, the 
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stress-strain calculated curves, and the energetic and Young moduli derived from the 

proposed SEOS. A summary of our main findings are given at the end of the chapter. 

 
4.2  COMPUTATIONAL  DETAILS 

4.2.1 Electronic Structure Calculations 

               First-principles electronic energy calculations and geometry optimizations under the 

Kohn-Sham DFT framework of 3C and 2H polytype structures of SiC, ZnO, ABA stacking of 

graphite and hexagonal  2H-MoS2 are carried out with the ABINIT code [21,22] using the 

Perdew-Burke-Ernzerhof (PBE)  exchange-correlation functional [23]. In order to take into 

account van der Waals forces, the correction (DFT-D2) to the exchange-correlation term, as 

proposed by Grimme [24], is used for graphite and MoS2. Although this pairwise approach 

does not capture many-body effects inherent to van der Waals interactions (see for example 

[25,26 and 27]), it has been proven to be accurate enough to determine optimized geometries 

involving the length scale (Å) of the tensile phenomena explored in this thesis. The so-called 

FHI atomic plane wave pseudo potentials [28] are adopted, while cutoff energies and 

Monkhorst-Pack grids [29] are set to 1000 eV and 6 x 6 x 6 and 6 x 6 x 4 for 3C-SiC and 2H-

SiC respectively; 1200 eV and 6 x 6 x 3 for graphite; 400 eV and 6 x 6 x 2 for 2H-MoS2 and 

600 eV and 8 x 8 x 8 and 8 x 8 x 6 for cubic- and hexagonal-ZnO, respectively. Atomic 

positions are optimized until the total energy converged within 0.1 meV. At the same time, all 

the strain components (except in the applied loading direction) were optimized so that the 

corresponding stress components turned out to be within 100 MPa from a predetermined 

value. The Broyden-Fletcher-Goldfarb-Shanno minimization scheme (BFGS) [30] was used. 

In this way, tensile-strain curves under controlled normal stress were obtained. Critical 

strength (ideal strength) was determined as the maximum value of tensile stress before the 

lattice loses stability and the forces diverge. Multi-axial stress calculations have been 

performed superimposing a transverse stress to the chosen stress direction. Atomic positions 

and movements through the different paths are analyzed using the visualization program for 

structural models (VESTA code) [31]. 

        For the cubic structure, we calculate how the stress increases along the [100], [110] and 

[111] symmetry directions. For the hexagonal one, an orthorhombic unit cell containing four 

atom pairs, calculations were performed along the normal-plane direction [001] perpendicular 

to the layers and two in-plane directions, one containing nearest neighbors (NN) [110], so-
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called zigzag direction and the other connecting second nearest neighbors (SNN) [1�10], so-

called armchair direction. 

        The stress tensor is calculated in ABINIT as the derivative of the total energy with respect 

to the strain tensor. The strain tensor, εαβ, can be calculated from the relation between the 

strain-free lattice vector of a given atom μ,rμ , and its strained lattice vector, r'μ , as follows 

[32]: 

                                                    �′� 
�  �  �� 

�  �  ∑���
� ��� ��

�                                                  (4.1) 

 

Where  � and � symbols denote the Cartesian components. 

              In the calculation of the second-order elastic constants in these cubic and hexagonal 

lattices, we follow an energy-strain scheme (see Refs.[33, 34]). The lattice was first relaxed to 

achieve a zero stress state and then strains were applied by multiplying the lattice vectors by 

the strain matrix. For a lattice initially under no stress, and using Voigt notation, the energy of 

the strained lattice can be expressed around the equilibrium position as: 

                                                    � � �� � ��
�

∑�� ����� ��                                                     (4.2) 

where E0 and V0 are, respectively, the energy and the volume of the unstrained lattice. There 

are three independent elastic constants for the cubic lattice (C11, C12, C44) and five 

independent elastic constants (C11, C12, C33, C13, C44) for the hexagonal one, thus three and 

five sets of finite strains were applied respectively. For each case, eleven equally-spaced 

strain values were applied between -0.05 and 0.05. The elastic constants were obtained from 

fitting a quadratic equation to the energy-strain calculated data points. The bulk modulus B0 

for each structure was calculated using its relationship with the elastic constants. A detailed 

description of elastic constants and their calculation are given in Chapter 3. 

 

4.1.2 Spinodal-like stress-strain equation of state 

            From a thermodynamic point of view, the elastic stability limit of a solid at thermal 

conditions is defined by the point where the second derivative of the internal energy with 

respect to the volume becomes zero. At the corresponding pressure, also named as the 

spinodal pressure (psp), the bulk modulus (B) of the substance tends to zero, and therefore any 

restoring force given by the chemical bonds is overcome, leading to a crystal rupture or a 

phase transition [35]. 

           The spinodal locus has been considered as an excellent reference to describe the 

thermodynamic behavior of solids under high pressure conditions [36, 37]. Polymers, metals, 
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covalent and ionic crystals have been analyzed showing that their (p-V) data is accurately and 

universally represented through the spinodal constrain. This follows from the fact that along a 

given isotherm, the isothermal bulk modulus depends on the pressure through the following 

universal relation [38, 39]: 

                                                           � �  �∗���� � ���
                                                    (4.3) 

 

where B* and β are, respectively, the amplitude and the pseudocritical exponent that 

characterize the pressure behavior of the isothermal bulk modulus. 

            The spinodal equation of state has not been used only in its volumetric form. For 

instance, Francisco et al. [40] studied the evolution under isotropic compression of the lattice 

parameters ofrutileTiO2, showing that a one dimensional (1D) spinodal equation of state (1D-

SEOS) can reproduce accurately their pressure dependence. To that, the authors define a linear 

bulk modulus, or equivalently a directional Young modulus (Yl, l specifies the direction), and 

applied the universal relation of Eq. (4.3). Considering both the physical significance and the 

directional behavior of this spinodal-like equation of state, in this thesis we introduce a 1D-

SEOS to analytically describe the stress-strain curves associated with tensile stress 

phenomena. Indeed, under directional stretching, the critical strength attained along the stress-

strain curve corresponds to the spinodal stress limit, σsp. The later parameter accounts for the 

maximum engineering stress at which the solid breaks, and therefore, represents the elastic 

limit of the material. Furthermore, at this spinodal point the directional Young modulus Yl has 

a value of zero, pointing out that there is no material resistance to a phase transition or 

rupture. Notice that these two parameters (σsp and Yl) are also the one-dimensional analogs of 

the spinodal pressure and the bulk modulus. Consequently, from this perspective, the spinodal 

constrain is clearly fulfilled. Accordingly, the stress dependence of Yl can be accurately 

described with an amplitude factor Yl
* and a pseudocritical exponent γ following an equivalent 

power law form as Eq. (4.3), and taking into account the engineering convention of signs (σ is 

positive for tensile and negative for compressive stress): 

                                                 ��  � ��
∗���� � ���

                                                               (4.4) 

 

Under these premises, an analytical stress-strain EOS can be derived. As the Young modulus 

is thermodynamically defined as the derivative of the stress with respect to the strain, the 

simple integration of  Eq. (4.4) leads to the following expression for a directional tensile 

curve: 
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                            � �  ��� � ���
∗�1 � ������ � � ����� � ����/��� ��

                                                (4.5) 

 

Eq. (4.5) provides an analytical relationship between the stress and the strain along a 

particular direction of a crystalline solid involving four characteristic parameters. However, it 

must be emphasized that only three are independent since the spinodal strength, the spinodal 

strain and the amplitude factor are related realizing that no strain is present at σ = 0: 

                                                               ��
∗�1 � �� �

���
�����

���
                                                  (4.6) 

 

Using this expression in Eq. (4.5), we arrive at our final stress-strain 1D-SEOS: 

 

                                                     � �  ��� �1 � ������
���

�
�/��� ��

�                                                            (4.7) 

 

An interesting feature of the proposed stress-strain SEOS is that it can be also expressed 

analytically in its energy form. In fact, considering the isotherm at 0 K and neglecting zero 

point vibrational contributions, the stress is related to the internal energy E and the zero-

pressure volume V0   by means of [40]: 

 

                                                                    � � �
��

��
��

                                                           (4.8) 

 

Consequently, the integrated energy-strain SEOS  is: 

 

                           ��� �  � �  ��������� � ��  �  ��
�����
�����

���
�/��� ��

���
���� � �� 

���
���                   (4.9) 

 

where ���is the internal energy of the solid at the spinodal strain, or equivalently the spinodal 

energy. This quantity must be understood as the energy needed to separate the 

crystallographic planes perpendicular to the stress-strain direction, and therefore to overcome 

the interatomic forces. Moreover, the spinodal energy can be expressed in terms of the 

spinodal stress and spinodal strain once we set to zero the internal energy at zero strain: 

                                                   ��� � �� ������� � �����
�����

����

���
�

�
���

�                                                 (4.10) 
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        An important feature of our current spinodal stress-strain EOS is that the spinodal energy 

give us the opportunity to connect the mechanical parameters along a given tensile direction 

with the cohesive interatomic interactions. 

       Some words of caution on the notation should be given. First, ��  and ��� both represent 

theoretical or ideal strength of the material along a given direction. The first symbol is 

obtained from ��� , ��) calculated or experimental data, whereas the second one comes from 

our 1D-SEOS fittings as we discuss later. The same applies to �� and  ���. Second, in our 

static simulations (zero temperature and zero point energy contributions neglected), the 

internal energy of the system � is reduced to theelectronic energy obtained in our DFT 

calculations. Finally, this symbol � is often used in other worksto design the Young modulus. 

To avoid confusion, here we have chosen �� for the directional Young modulus. 

 

4.1.3  Spinodal  Equation of State Fittings 

              The versatility of the proposed 1D-SEOS allows us fitting Young modulus-stress (Eq. 

(4.4)), stress-strain (Eq. (4.7)), and energy-strain (Eq. (4.10)) data. Since the spinodal 

hypothesis is based on the assumption that the universal relationship given in expression Eq. 

(4.3) can accurately describe stress-dependence of the directional Young modulus, it becomes 

first necessary to examine if the proposed power law can fit in a reliable manner the 

calculated data. To minimize numerical errors induced by the second strain derivative of the 

energy involved in the �� � � curves, a linear interpolation of the computed electronic energy 

has been performed. In all the cases, adjusted R-squares for the �� � � curves lie in the range 

between 0.97 and 0.99 and residuals are equally distributed between negative and positive 

values with a percentage of deviation lower than 7%. In order to test the reliability of our 

proposed 1D-SEOS, the pseudocritical exponent and the critical strength and critical strain 

have been used as fitting parameters to analytically construct the stress-strain curves and 

energy-strain curves for all the directions and materials studied in this thesis according to the 

expressions derived in subsection 4.1.2. Successfully, we obtain that the differences between 

the analytical curves and the calculated data are always below 1%. A summary of the fitting 

parameters are presented in Table 4.1. Notice that Eq. (4.6) and Eq. (4.10) can provide us the 

values of ��
∗�0� and �. 

             As we can see in Table 4.1, � parameter lies inside the 0.41�0.12 intervals, 

depending on the crystal and the direction considered (except for ZnO with few values up to 
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0.69). These � values are much lower than the universal β value of 0.85 assumed by Baonza et 

al. for the volumetric compression of solids [35]. Such a difference is attributed to the fact 

that here we are in the stretching region. Indeed, Brosh et al. [41] studied the dependence of 

the pseudocritical exponent as a function of the reduced volume both in the compressive and 

expansive regimens. These authors conclude that while the universal pseudocritical exponent 

of 0.85accurately describes the solid under high and moderate pressure, the exponent goes 

down to the value of 0.5 in the case of the negative pressure regime, which is within the range 

of the results obtained in our spinodal stress-strain equation of state. 
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Table  4.1 1D-SEOS parameters from the fittings to our computed stress-strain data. Units of 
��� are GPa. 

Material      Direction                          �                            ���                                      ��� 
 
3C-SiC        [100]                             0.29                      0.35                               90.5 

                    [110]                             0.49                      0.30                               52.3 

                    [111]                            0.36                      0.15                                45.1 
 
2H-SiC       [001]                             0.36                      0.15                                44.9 

                   [110]                             0.46                      0.29                                58.0 

                   [1�10]                            0.34                      0.17                                50.7 
 
Graphite      [001]                             0.35                     0.99                                 0.06 

                    [110]                            0.53                     0.26                                 85.8 

                    [1�10]                           0.37                     0.11                                 78.3 
 
2H-MoS2     [001]                           0.39                      0.05                                0.07 

                    [110]                           0.38                      0.27                                21.4 

                    [1�10]                          0.46                       0.20                               14.2 
 
 B1-ZnO     [100]                           0.63                       0.20                              7.98 

                   [110]                           0.63                       0.23                             14.31 

                   [111]                          0.29                       0.35                              57.60  
 
 B2-ZnO    [100]                           0.62                        0.36                              52.46 

                  [110]                          0.69                         0.16                              19.08 

                  [111]                               -                               -                                    -      
 
 B3-ZnO   [100]                               -                                -                                    - 

                 [110]                           0.49                          0.22                              12.98 

                 [111]                           0.45                         0.25                                30.00 
 
 B4-ZnO   [100]                              -                               -                                       - 

                 [110]                              -                               -                                        - 

                [1�10]                           0.32                          0.20                                 16.00 
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4.3  COVALENT MATERIALS: SILICON CARBIDE (SIC): Results and Discussions 

4.3.1  Bulk Properties 

               This subsection is restricted just to the summary of the equilibrium structural and 

elastic data of the two SiC polytypes. Computed lattice constants, bulk moduli and elastic 

constants are collected in Table 4.2 along with experimental and other calculated values. 

Overall, our results are found to be in good agreement with reported observed data, showing 

only slight differences due to the over estimation of the lattice constants and underestimation 

of the elastic constants inherent to the GGA level of calculations.  

 

Table  4.1  Zero pressure lattice and elastic constants of 3C- and 2H-SiC polytypes. All B0 
values calculated using Voigt elastic constants relationship. 

                                             This work                     Calculated                        Experimental 

 

      3C-SiC             a(Å)           4.39                     4.34 [42], 4.38 [43]                   4.34 [44] 

                            C11(GPa)        341                     390 [42], 385 [43]                      352 [45] 

                            C12(GPa)       130                       134 [42], 128 [43]                     140 [45] 

                           C44(GPa)        224                        253 [42], 264 [43]                    233 [45] 

                            B0(GPa)        200                              219, 213                                211 

 

        2H-SiC          a(Å)           3.085                    3.05 [46], 3.09 [43]                    3.076[47] 

                              c(Å)            5.060                   5.00 [46], 5.07 [43]                    5.224 [47] 

                        C11(GPa)         528                        541 [46], 536 [43]                     501 � 4[48] 

                        C12(GPa)         112                         117 [46], 78 [43]                    111 � 5 [48] 

                        C33(GPa)         565                         586 [46], 573 [43]                  553 � 4 [48] 

                       C13(GPa)           52                            61 [46], 31 [43]                     52 � 9 [48] 

                       C44(GPa)         156                           162 [46], 164 [43]                163 � 4 [48] 

                         B0(GPa)        228                                238, 214                                 220 

 

 

4.2.2  Ideal strength with and without transverse stress. 

               This subsection is devoted to the calculation of the strain-stress curves of the two 

structures considered in this part. First, we collect in Fig. 4.1 the results under vanishing 

transverse stress. For3C-SiC and 2H-SiC, calculated points are very similar to those reported 

by Umeno, Kubo and Nagao [43].  
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              It is usual to recall to the chemical bonding network to interpret at an atomic level 

differences in the strain-stress curves between compounds and/or directions. Without being 

strictly quantitative while keeping the basic chemical meaning, a simple and practical 

indicator able to account for the majority of these differences is proposed as follows. Each 

chemical bond in the unit cell is described by a vector connecting its two bound nearest-

neighbor atoms. The projection of this vector along the corresponding tensile direction is 

evaluated and the sum calculated over all the bonds in the unit cell is defined as the total 

effective bond length (EBL) associated to that direction. The two main structural effects 

induced in the chemical bonds by the tensile strain (changes in bonding lengths and angles) 

are essentially captured in this parameter. EBL values exhibit the expected trend always 

increasing as the strain increases up to the stability limit.  

            Fig. 4.1-a  shows that in 3C-SiC the slopes in the low strain region are nearly equal 

regardless the direction. However, the maximum stress value strongly depends on the 

direction of the deformation with an ideal strength nearly twice larger along the [100] axis 

(ϵc= 0.35 and σc = 91 GPa) as that found for [110] (ϵc = 0.30 and σc =53 GPa) and [111] (ϵc = 

0.15 and σc = 45 GPa). We notice that along [100] all tensile forces are equally distributed 

over the Si-C bonds. This is in contrast to the tension along [110] and [111] directions. For 

example, in the latter, one of the four C-nearest neighbors of a given Si- atoms stand along the 

same [111] direction and the corresponding Si-C bond suffers a pure stretching, whereas the 

stretching of the other three Si-C bonds is not so effective and involves bond angle 

modifications upon the tensile strain along this [111] direction (Table 4.3). At zero strain, the 

previously defined EBL parameter already has a value roughly twice greater for the [100] 

direction (17.5 Å) than for the [110] (9.3 Å) and [111] (9.5 Å) directions (Table 4.3). Thus, 

although the order between the [100] and [111] directions is not captured considering just the 

equilibrium structure, the EBL parameter catches the essential difference between the [100] 

direction and these two other directions. 

            The stress-strain curves during uniaxial tension with vanishing transverse stress in 2H-

SiC are shown in Fig. 4.1-b. Slopes in the low strain (harmonic) region are almost exactly 

equal whereas the maximum stress value strongly depends on the direction of the 

deformation. The stress-strain relation in 2H-SiC [001] (ϵc= 0.15 and  σc= 45 GPa) and 3C-

SiC [111] are nearly identical. It is so because of the similarity of the lattice planes normal to 

the stress direction, and so are the curves of 2H-SiC [100] (ϵc= 0.29 and σc= 58 GPa) and 3C-

SiC [110]. The stress-strain relation in 2H-SiC along [110] shows intermediate values (ϵc= 

0.20 and σc= 50 GPa). Again, these values correlate with the effective Si-C bond lengths 
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along the corresponding directions. Calculated EBL values in Å for the [110], [11�0] and [001] 

are, respectively, 21.3, 16.8, and 12.3 (Table 4.3), following the same trend as σc and in 

agreement also with previous interpretations in terms of next-nearest Si-C interactions by 

Umeno et al. [43]. 

         For all directions and structures, we now analyze new results coming from the proposed 

analytical 1D-SEOS. All the curves in the two panels of  Fig. 4.1 were obtained from the 1D-

SEOS fittings to the calculated strain-stress data. The performance of the 1D-SEOS is 

apparent and allows us to derive with confidence critical stress and critical strain values from 

the corresponding fitting parameters σsp and ϵsp, respectively. We have checked that the trends 

and specific values of these two key parameters compare with high accuracy with our first-

principles computed numerical values (see Table 4.1). Thus, we arrive to this interesting 

conclusion: the 1D-SEOS of Eq. (4.7) is an appropriate analytical function for describing 

stress-strain data. 

 

(a)                                                                       (b) 

 

 

 

 

 

 

 

 

 

Figure 4.1 Calculated and analytical strain-stress curves without transverse stress 
for: (a) 3C-SiC, (b) 2H-SiC. 
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Table 4.2 Effective Bond Length (EBL) vs strain at zero-transverse stress in SiC-polymorphs 

ε 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,33 0,35 

[100] (Si-C) 
[Å] 
� [GPa] 

17,4811 

-0.0006 

18,3550 

17.1351 

19,2291 

35.1621 

20,1032 

52.4546 

20,9772 

67.6626 

21,8512 

79.7698 

22,7253 

88.0570 

23,2497 

90.9083 

22,5497 

90.4528 

[110] (Si-C) 
[Å] 
� [GPa] 

9,2685 

0.0068 

9,7317 

19.8038 

10,1954 

34.1828 

10,6588 

43.8803 

11,1223 

49.7450 

11,4920 

51.5011 

11,2418 

52.8216 

- - 

 

[111] (Si-C) 
[Å] 
� [GPa] 

9,4839 

0.0025 

9,9581 

23.3517 

10,4323 

39.2249 

10,9065 

45.0364 

- - - - - 

[21́1́0] (Si-C) 
[Å] 
� [GPa] 

21,3395 

0.0020 

22,4065 

23.4965 

23,4734 

39.4081 

24,5404 

44.89345 

25,6074 

34.9075 

- - - - 

[1́21́0] (Si-C) 
[Å] 
� [GPa] 

16,8788 

0.0033 

17,7227 

21.7812 

18,5668 

39.0343 

19,4106 

49.7105 

19,6074 

49.7913 

- - - - 

[0001] (Si-C) 
[Å] 
� [GPa] 

12,3410 

0.0021 

12,9581 

23.4965 

13,5751 

39.4081 

14,1922 

44.8935 

13,5051 

34.9075 

- - - - 

 

           We have noticed earlier that multi-load conditions may be present in manufacturing 

processes combining thermal effects and epitaxial growth. As a particular situation of these 

conditions, we have studied in a second round of simulations the effects of superimposing 

transverse stress (both compressive and tensile) on the previous tensile directions for the two 

structures. The expected trend is a decreasing of the critical strength as we increase the 

superimposed transverse stress from negative to positive values. In fact, this is the computed 

behavior for the majority of situations we have studied. For example, the critical strength �c is 

lowered by the transverse stress σt in all the directions in 3C-SiC (except [110]), 2H-SiC 

(except [100]). All these results are displayed in Fig. 4.2 and are in complete agreement with 

the computed data in 3C- and 2H-SiC reported by Umeno et al.[43]. In general, the 

unexpected positive slope in the ideal strength-transverse stress curve appears at compressive 

transverse stress values. In the tensile regime, all the directions and structures show a 

modulated lowering of the ideal strength as the transverse tension increases which is 
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compatible with the overall weakening of the compounds as multi-load conditions are 

enhanced or, in Umeno et al. words, to the higher strain energy stored in the material. 

 

 (a)                                                                              (b) 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Calculated critical stress-transverse stress curves for: (a) 3C-SiC, (b) 2H-SiC. 

            

            Interestingly enough, we have observed an equivalent behavior when we analyze the 

computed EBL parameters. In all but the cases where we have detected an exception, the 

calculated effective bond length parameter at the critical strain condition decreases 

monotonically as we superimpose the transverse stress on the corresponding tensile strain 

direction. Thus, we found that the decreasing of the ideal strength value correlates with the 

decreasing in the EBL parameter (Table 4.4). For example, along the [111] direction in 3C-

SiC, EBL continuously decreases from 11.00 Å at σt = -30 GPa to 10.78 Å at σt= +30 GPa. 

The corresponding values at the same transverse stress conditions for the [100] direction are 

24.71 Å and 21.18 Å. Similar trends are found for the EBL parameter along the [11�0] and 

[001] directions in 2H-SiC (Table 4.4). On the contrary, in those cases where negative 

transverse stresses induce an unexpected behavior, this EBL parameter also shows an 

increasing as the transverse stress increases up to the condition of vanishing transverse stress. 

Thus, along [110] in 3C-SiC and [100] in 2H-SiC, the values of EBL at σt = -30 GPa are, 

respectively, 10.94 Å and 26.08 Å, increasing up to 11.49 Å and 26.24 Å at σt = 0 GPa, and 

finally decreasing to 10.97 Å and 24.13 Å at σt = +30 GPa. The reason why a reduction in the 

critical strength occurs as compressive transverse is superimposed has been explained by the 

appearance of a thermodynamic competitive phase as the rock-salt structure in 3C-SiC [43]. 
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Here, we also see that this reduction in the σc also correlates with the fact that the effective   

Si-C bond lengths along the [110] and [100] directions in 3C-SiC and 2H-SiC, respectively, 

show lower values at the critical conditions when the compressed transverse stress is 

increased, thus correlating with the trend followed by the critical strength. 

 

Table 4.3  Nearest neighbor (NN) distance at critical stress ��  and strain �� with transverse 
stress �� in SiC-polymorphs. 

transverse stress 
��[GPa] 

-30 -20 -10 00 10 20 30 

[100] (Si-C) [Å] 
�� 

��[GPa] 
EBL [Å] 

1.96272 
0.15 
96.62 
24,7133 

2.01172 
0.20 
97.30 
23,4034 

2.06202 
0.30 
95.28 
23,3384 

2.10596 
0.33 
90.91 
23,2494 

2.14464 
0.35 
88.99 
23,1959 

2.17361 
0.30 
66.95 
22,6794 

2.16158 
0.25 
49.79 
21,1812 

[110] (Si-C) [Å] 
�� 

��[GPa] 
EBL [Å] 

1.95934 
0.15 
24.15 
10,9445 

2.02010 
0.20 
36.99 
11,2954 

2.09804 
0.25 
47.43 
11,3335 

2.13927 
0.24 
52.82 
11,4920 

2.26173 
0.30 
52.75 
11,2153 

2.23878 
0.25 
49.51 
11,1741 

2.20402 
0.20 
43.51 
10,7919 

[111] (Si-C) [Å] 
�� 

��[GPa] 
EBL [Å] 

1.81346 
0.15 
51.67 
11,0044 

1.83253 
0.20 
49.30 
10,9737 

1.84472 
0.15 
47.08 
10,9414 

2.15407 
0.15 
45.04 
10,9065 

2.68545 
0.15 
43.20 
10,8707 

2.17677 
0.15 
41.43 
10,8294 

2.15407 
0.17 
39.94 
10,7812 

[21́1́0] (Si-C) [Å] 
�� 

��[GPa] 
EBL [Å] 

- 
0.10 
28.71 
26,0794 

- 
0.15 
41.61 
26,1141 

2.08796 
0.25 
56.16 
26,1507 

2.19351 
0.29 
58.04 
26,2433 

2.12411 
0.20 
52.85 
25,4628 

- 
0.22 
51.74 
25,3520 

- 
0.20 
44.76 
24,1372 

[1́21́0] (Si-C) [Å] 
�� 

��[GPa] 
EBL [Å] 

- 
0.20 
56.79 
19,97,76 
 

- 
0.20 
55.09 
19,8789 
 

1.89577 
0.20 
52.63 
19,6131 
 

1.93193 
0.20 
49.79 
19,6074 

1.93692 
0.15 
48.69 
17,7492 

- 
0.20 
44.41 
16,1153 

- 
0.20 
42.02 
16,0356 

[0001] (Si-C) [Å] 
�� 

��[GPa] 
EBL [Å] 

- 
0.15 
51.89 
14,4979 

- 
0.15 
49.40 
14,3639 

1.89549 
0.15 
47.05 
14,2584 

2.24228 
0.15 
44.89 
14,1922 

1.92884 
0.15 
42.94 
14,0992 

- 
0.15 
41.10 
14,0403 

- 
0.15 
38.96 
13,9958 

 

 

4.2.3. Other outcomes of the stress-strain SEOS: energetic and directional Young moduli  

               As stated in subsection 4.1.3, our analytical scheme allows us not only gathering 

information on the critical parameters, but also on the energetic of crystalline materials and on 

the Young moduli along specific tensile directions. From an experimental point of view, 

stress-strain data can be directly measured for particular directions whereas the corresponding 

energy-strain curves remain only accessible once an equation of state is proposed. Eq. (4.10) 

displays how, by simple integration of our stress-strain 1D-SEOS, analytical energy-strain 

curves can be derived using data either from experiments or from computer simulations. In 
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the previous subsection, we have shown that our calculated (ϵi , σi) data points are well 

described by the proposed 1D-SEOS. Here, the integrated SEOS for all the directions of 

materials studied in this part are represented in Fig. 4.3. The symbols correspond to the 

energy minima at selected strains obtained from our first-principles calculations. The 

calculated parameters associated with the integrated forms are collected in Table 4.5. 

              The analytical energy curves clearly reflect the good quality of the fittings (see Fig. 

4.3). Two parameters define the shape of each of these curves, ϵsp and Esp. The first one, 

previously discussed in relation to the stress-strain curves (see Table 4.1), identifies the 

abscissa of the inflexion point, where the directional Young modulus vanishes. The ordinate 

of this point is Esp (see Table 4.5) and correlates quite well with the critical/spinodal strength 

calculated along each of the directions explored for the materials under study in this part. The 

higher the strength, the higher the energy required to induce an elastic instability in the 

material. 

       As regards the directional Young modulus, we can easily derive a simple expression at 

zero stress ���0� involving the three parameters of the stress-strain 1D-SEOS by evaluating 

Eq. (4.4) at zero stress: 

                                                       ���0� �
���

��������
.                                                           (4.11) 

 

This parameter is discussed below. 

 

Table  4.4  Energy and Young modulus parameters from the integrated stress-strain SEOS 
fittings 

Material Direction                          Yl(0)(GPa)                                     Esp (kJ/mol) 

         3C-SiC[100]                              396                                                 219 

                     [110]                              407                                                 110 

                     [111]                              478                                                    50 

        2H-SiC[001]                               481                                                    50 

                    [110]                               437                                                   142 

                    [1�10]                               450                                                    66 

 

              In 3C-SiC, the directional Young moduli at zero stress are (in GPa) 396, 407, 478 

GPa for the [100], [110] and [111] directions, respectively. These results are in concordance 
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with the directional Young moduli calculated through the theory of representation surfaces 

[49]. For instance, in the case of the [111] direction 

                                       ���� � ���� � �
�

���� � ��� � �
�

�����
��

                                         (12) 

 

Where  ���, ���, and ��� are the compliance constants related to the elastic constants by: 

                       ��� � ���� ���
����� ��������������

 ,     ��� � � ���
����� ��������������

 ,    ��� � �
���

.             (13) 

 

According to the data from Table 4.2, and using the above equations, the calculated value for 

Y111 (0) is 489 GPa in good agreement with the parameter obtained from our 1D-SEOS. 

 

(a)                                                                            (b) 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Calculated and analytical energy-strain curves for: (a) 3C-SiC, (b) 2H-

SiC. 

            

                    In this case, the elastic behavior of the cubic SiC polytype is not entirely isotropic 

and ���0� slightly increases along the sequence [100] [110] and [111]. Yl (0) provides a 

quantitative measure of the initial slope of the stress-strain curve, thus representing the 

resistance of the material to a tensile distortion along a particular direction at equilibrium. 

Under this perspective, the values of ���0�in the [100], [110] and [111] series of 3C-SiC 

inform that the direction [111] offers the highest resistance to a strain stretching at zero stress. 

In 2H-SiC, the values of ���0�point out that all the directions studied present similar 

resistance to distortion. Here, the solid behaves less anisotropically than in the case of the  
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cubic polytype, expanding a narrower range of values, although both polytypes display 

similar zero stress Young moduli. 

 

4.4   IONIC MATERIALS (ZINC OXIDE ZnO): Results and Discussions 

4.4.1 Bulk Properties 

            This subsection is restricted just to the summary of the equilibrium structural and 

elastic data of the four ZnO phases studied in this Thesis. Computed lattice constants, bulk 

moduli and elastic constants are collected in Table 4.6 Overall, our results are found to be in 

good agreement with reported observed data, along with experimental and other calculated 

values [50,51], showing only slight differences due to the overestimation of the lattice 

constants and underestimation of the elastic constants inherent to the GGA level of 

calculation. 

 

Table  4.1  Zero pressure lattice and elastic constants of  ZnO-polytypes. All B0 values 
calculated using Voigt elastic constants relationship. 

 

                                           This work                  Calculated                       Experimental 

         

          B1-ZnO     a(Å)         4.37                      4.63[50],4.53[52]                       4.47[53] 

                        C11(GPa)     224.20               237.32[51],  226.90[50]                        - 

                        C12(GPa)    129.60                 145.18[51], 139.85[50]                        - 

                         C44(GPa)   74.10                     59.04[53],  82.19[51]                        - 

                           B0(GPa)   161.13                 164.91[51],  209.6[54]                 202.50[55] 

         

          B2-ZnO     a(Å)      2.71                    2.69[51], 3.29[54],2.67[56]                    - 

                     C11(GPa)    363.70                            433.47[51]                                   - 

                     C12(GPa)    49.50                               35.96[51]                                    - 

                     C44(GPa)    37.00                                69.04[51]                                   - 

                      B0(GPa)   154.23                      159.91[51], 205.4[54]                         - 

       

       B3-ZnO     a(Å)         4.67                         4.63[51],4.52[54]                       4.62[57] 

                     C11(GPa)    110.70                     167.36 [51],155.93[50]                      - 

                     C12(GPa)    127.50                      125.30[51],116.33[50]                      - 
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                     C44(GPa)    132.20                      112.88[51],128.13[38]                       - 

                       B0(GPa)   121.93                       139.32[51],157.28[56]                         - 

 

 

      B4-ZnO     a(Å)          3.32                         3.28 [51],3.21[54]                    3.25 [55] 

                          c(Å)        5.34                          5.32[51],5.16[34]                    5.20[59] 

                    C11(GPa)      222.10                      226[60],227.00[58]               209.70[61] 

                    C12(GPa)       90.40                      87.00[62],108.34[50]             102.00[63] 

                    C33(GPa)      238.30                     246.00[64], 225.00[65]           211.00[66] 

                    C13(GPa)       58.00                         60.95[51],93.00[58]               90.00[67] 

                    C44(GPa)       54.70                     57.49[61], 49.89[51]                   44.50[68] 

                      B0(GPa)      125.60                  129.19[51],164.36[56]                  142.6[55] 

 

4.4.2  Ideal strength with and without transverse stress. 
          This subsection is devoted to the calculation of the strain-stress curves of the four ZnO 

structures considered in this study. First, we collect in Fig. 4.4  the results under vanishing 

transverse stress. For B4-ZnO, calculated points are very similar to those reported by Li-Zhi 

Xu, Yue-Lin Liu and Hong-Bo Zhou [69]. 

             Fig. 4.4-a  shows that in B1-ZnO the slopes in the whole strain region are different for 

all directions. However, the maximum stress value strongly depends on the direction of the 

deformation with an ideal strength nearly four times larger along the [111] axis (ϵc = 0.35 and 

σc = 57.70 GPa) as that found for [110] (ϵc = 0.23 and σc = 14.34 GPa) and six times along the 

[100] (ϵc = 0.20 and σc = 8.06 GPa). We notice that along [111] all tensile forces are equally 

distributed over the Zn-O bonds. This is in contrast to the tension along [110] and [100] 

directions. For example, in the latter, one of the four O nearest neighbors of a given Zn atoms 

stand along the same [100] direction and the corresponding Zn-O bond suffers a pure 

stretching, whereas the stretching of the other three Zn-O bonds is not so effective and 

involves bond angle modifications upon the tensile strain along this [100] direction.  

          Fig. 4.4-c shows that in B3-ZnO the slopes in the whole strain region are different for 

all directions. However, the maximum stress value strongly depends on the direction of the 

deformation with an ideal strength nearly twice larger along the [100] axis (ϵc= 0.58 and σc = 

55.56 GPa) as that found for [111] (ϵc = 0.25 and σc = 29.74 GPa) and four times as that found 

for [110] (ϵc = 0.22 and σc = 12.91 GPa). We notice that along [100] all tensile forces are 
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equally distributed over the Zn-O bonds. This is in contrast to the tension along [110] and 

[111] directions. 

          The stress-strain curves during uniaxial tension with vanishing transverse stress in B4-

ZnO are shown in Fig. 4.4-d. Slopes in the low strain (harmonic) region are not equal whereas 

the maximum stress value strongly depends on the direction of the deformation. The stress-

strain relation in B4-ZnO [001] (ϵc = 0.15 and σc = 20.42 GPa) and B2-ZnO [110] are nearly 

identical. It is so because of the similarity of the lattice planes normal to the stress direction 

(ϵc = 0. 15 and σc = 19.07 GPa). The stress-strain relation in B4-ZnO along [1�10] shows 

intermediate values (ϵc = 0.20 and σc = 15.0 GPa).  

 

(a)                                                                                    (b) 
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Figure  4.1 Calculated and analytic strain-stress curves without transverse stress for: (a) B1-
ZnO, (b) B2-ZnO, (c) B3-ZnO and (d) B4-ZnO. 

 

          We have noticed earlier that multi-load conditions may be present in manufacturing 

processes combining thermal effects and epitaxial growth. As a particular situation of these 

conditions, we have studied in a second round of simulations the effects of superimposing 

transverse stress (both compressive and tensile) on the previous tensile directions for the four 

structures. The expected trend is a decreasing of the critical strength as we increase the 

superimposed transverse stress from negative to positive values. However, this is not the 

computed behavior for the majority of situations we have studied. For example, we can see in 

Fig. 4.5  that the critical strength σc is only lowered by the (positive) transverse stress σt in the 

[111] direction in B1-ZnO, is increased by σt for compression and tension in B3-ZnO and 

 B4-ZnO (except when the [001] direction is considered) and shows the expected decreasing 

trend in the two directions examined in the B2-phase. In general, the unexpected positive 

slope in the ideal strength-transverse stress curve appears in this ionic compound regardless if 

the compressive transverse stress has positive or negative values. A more detailed exploration 

of the bonding network is needed to explain this variety of results that should be understood 

as a consequence of the directionality of the nearest neighbor ionic bonds and their 

organization in the corresponding structures. Obviously, the overall weakening of the 

compounds as multi-load conditions are enhanced, i.e. the higher strain energy stored in the 

material, is always a general principle that is preserved in this compound. 

 

(a)                                                                           (b)  
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Figure  4.2 Calculated critical stress-transverse stress curves for: (a) B1-ZnO, (b) B2-ZnO, 
(c) B3-ZnO and (d) B4-ZnO. 

 

4.4.3 Other outcomes of the stress-strain SEOS: energetic and directional Young moduli  

            As stated in subsection 4.1.3, our analytical scheme allows us not only gathering 

information on the critical parameters, but also on the energetic of crystalline materials and on 

the Young moduli along specific tensile directions. From an experimental point of view, 

stress-strain data can be directly measured for particular directions whereas the corresponding 

energy-strain curves remain only accessible once an equation of state is proposed. Eq. [10] 

displays how, by simple integration of our stress-strain 1D-SEOS, analytical energy-strain 

curves can be derived using data either from experiments or from computer simulations. In 

the previous subsection, we have shown that our calculated (ϵi,σi) data points are well 

described by the proposed 1D-SEOS. Here, the integratedSEOS for all the directions of 

materials studied in this part are represented in Fig. 4.6  the symbols correspond to the energy 

minima at selected strains obtained from our first-principles calculations. The calculated 

parameters associated with the integrated forms are collected in Table 4.7. 
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 The analytical energy curves clearly reflect the good quality of the fittings (see Fig. 4.6. Two 

parameters define the shape of each of these curves, ϵsp and Esp. The first one, previously 

discussed in relation to the stress-strain curves (see Table 4.1), identifies the abscissa of the 

inflexion point, where the directional Young modulus vanishes. The ordinate of this point is 

Esp (see Table 4.7) and correlates quite well with the critical/spinodal strength calculated 

along each of the directions explored for the materials under study in this part. The higher the 

strength, the higher the energy required to induce an elastic instability in the material. 

 As regards the directional Young modulus, we can easily derive a simple expression at zero 

stress ���0�involving the three parameters of the stress-strain 1D-SEOS by evaluating Eq. 

(4.4) at zero stress: 

 

                                                                ���0� �
���

��������
.                                                     (11) 

 

This parameter is discussed below. 

 

Table   4.2 Energy and Young modulus parameters from the integrated stress-strain SEOS 
fittings 

 

 Material                    direction           Yl(0)(GPa)                                Esp (Ha)  
 
                   
  B1-ZnO                   [100]                  107.7                                    0.00557 
                                   [110]                 167.3                           0.01149 
                                   [111]                 232.9                                     0.05654 
                  
   B2-ZnO                  [100]                  391.2                                   0.06041 
                                   [110]                 382.3                                   0.01060 
                                   [111]                       -                                            -         
                  
  B3-ZnO                 [100]                         -                                             - 
                                 [110]                   116.0                           0.01106 
                                 [111]                    219.1                                  0.02830 
 

                
   B4-ZnO                [100]                           -                                            - 
                                [110]                           -                                            - 
                                [1�10]                     117.7                                   0.01114 
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 Figure  4.1 Calculated and analytical energy-strain curves for: (a) B1-ZnO, (b) B2-ZnO, (c) 
B3-ZnO and (d)  B4-ZnO. 

 

4.5  LAYERED MATERIALS: GRAPHITE AND 2H-MOS2. Results and Discussions 

4.5.1 Bulk Properties 

            This subsection is restricted just to the summary of the equilibrium structural and 

elastic data of the four structures. Computed lattice constants, bulk moduli and elastic 

constants are collected in Table 4.8. Along with experimental and other calculated values. 

Overall, our results are found to be in good agreement with reported observed data, showing 

only slight differences due to the overestimation of the lattice constants and underestimation 

of the elastic constants inherent to the GGA level of calculations. The introduction of the 
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DFT-D2 correction, which is intended to take into account the vdW inter-layer interactions, 

leads our results for graphite and molybdenum disulfide to be in good agreement with the 

experiments and improves in general other previous local density approximation (LDA) or 

(GGA) results. In addition, the controversial C12 parameter in 2H-MoS2, the higher 

discrepancy (less than 20%) is found in our calculation of C11 in graphite (see Table 4.8). We 

attribute this deviation to the above tendency of GGA results. Regarding C12 in 2H-MoS2, the 

situation is different. The discrepancy between the negative value reported in the experimental 

paper of Feldman [70] and the positive one obtained when the D2-Grimme correction is 

included in the calculations was discussed by Peelaers and Van de Walle [71]. We only notice 

here that C12 was not directly measured but derived by Feldman using linear compressibility 

reported in other works. Further details can be found in [71]. Overall, our calculated 

equilibrium properties provide the necessary reliable basis to undertake tensile stress 

simulations. 

 

Table 4.1  Zero pressure lattice and elastic constants of graphite and 2H-MoS2. All B0 values 
calculated using Voigt elastic constants relationship. 

                                             This work               Calculated                          Experimental 

           Graphite     a(Å)           2.521                     2.451 [72]                          2.464 [73] 

                              c(Å)           7.067                     6.582[74]                            6.712 [73] 

                      C11(GPa)             892                      1118 [75]                              1109 �16[73] 

                     C12 (GPa)             163                        235 [75]                               139 � 36 [73] 

                     C33 (GPa)               31                         29[75]                                 38.7 � 7 [73] 

                     C13 (GPa)               5                       8.5 [75]                                   0 � 3 [73] 

                     C44 (GPa)               6                       -2.8 [75]                                5 �3 [73] 

                      B0 (GPa)               240                        307                                        281 

      2H-MoS2      a(Å)              3.19                      3.16[76]                                3.163 [77] 

                            c(Å)            12.56                    12.296 [76]                           12.341 [77] 

                      C11 (GPa)          220                           218[76]                                238[70] 

                      C12 (GPa)           45                              38 [76]                               -54 [70] 

                      C33 (GPa)           40                              35 [76]                                52 [70] 

                      C13 (GPa)           16                              17[76]                                23 [70] 

                      C44 (GPa)          26                              15 [76]                                  19 [70] 

                       B0 (GPa)          75                                68                                         57 
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4.5.2. Ideal strength with and without transverse stress. 
                 This subsection is devoted to the calculation of the strain-stress curves of the two 

structures considered in this part. First, we collect in Fig. 4.7 the results under vanishing 

transverse stress. For graphite, our in-plane stress-strain curves show maxima at similar strain 

values to those reported by Liu al. [72] for graphene, although we compute critical strengths 

along these directions around 25 GPa lower than in their work. This is due in part to 

differences between LDA (Liu et al.) and GGA (ours) levels of calculation, and on the other 

hand, to differences in the system, single sheet (graphene) and the bulk (graphite). To the best 

of our knowledge, the corresponding curve for the c-direction has not been reported so far. 

Analogously, we have not found previous strain- stress curves along this direction for bulk 

2H-MoS2, whereas for the in-plane directions the previous reported studies refer to single- or 

few-layers 2H-MoS2 [78,79]. These results indicated a noticeable decreasing of σc as the size 

of the slab increases, which is also the expected trend according to our calculations. 

          It is usual to recall to the chemical bonding network to interpret at an atomic level 

differences in the strain-stress curves between compounds and/or directions. Without being 

strictly quantitative while keeping the basic chemical meaning, a simple and practical 

indicator able to account for the majority of these differences is proposed as follows. Each 

chemical bond in the unit cell is described by a vector connecting its two bound nearest-

neighbor atoms. The projection of this vector along the corresponding tensile direction is 

evaluated and the sum calculated over all the bonds in the unit cell is defined as the total 

effective bond length (EBL) associated to that direction. The two main structural effects 

induced in the chemical bonds by the tensile strain (changes in bonding lengths and angles) 

are essentially captured in this parameter. EBL values exhibit the expected trend always 

increasing as the strain increases up to the stability limit.  

          In Fig 4.7-a,b and Fig 4.7-c,d, the responses of graphite and 2H-MoS2 to tensile stress 

along the [110], [1�10], and [001] directions are displayed. Here, the laminar nature of these 

two compounds is clearly revealed by very low ideal strength values along the c-axis (ϵc = 

0.13 and σc = 0.063 GPa in graphite and ϵc = 0.05 and σc = 0.069 GPa in 2H-MoS2) which is in 

concordance with the weak Van der Waals nature of the inter-layer interaction. At low strains, 

the in-plane graphite strains reveal an isotropic 2D- elastic behavior in good agreement with 

previous DFT calculations [80]. At large in-plane strains, the lattice layers start to behave 

anisotropically and the critical stress along the next-nearest-neighbor [100] direction (ϵc = 

0.26 and σc = 86 GPa in graphite and ϵc = 0.27 and σc = 22 GPa in 2H-MoS2) becomes greater 
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than along the nearest-neighbor [120] direction (ϵc=0.11 and σc=78 GPa in graphite and 

ϵc=0.20 and σc=14 GPa in 2H-MoS2). Expected differences between stronger C-C than Mo-S 

interlayer bonds are also clearly manifested when comparing these data. 

            For all directions and structures, we now analyze new results coming fromthe 

proposed analytical 1D-SEOS. All the curves in the four panels of Fig 4.7 were obtained from 

the 1D-SEOS fittings to the calculated strain-stress data. The performance of the 1D-SEOS is 

apparent and allows us to derive with confidence critical stress and critical strain values from 

the corresponding fitting parameters ϵsp and ϵsp, respectively. We have checked that the trends 

and specific values of these two key parameters compare with high accuracy with our first-

principles computed numerical values (see Table 4.1). Thus, we arrive to this interesting 

conclusion: the 1D-SEOS of Eq. (4.7) is an appropriate analytical function for describing 

stress-strain data. 

(a)                                                                                   (b) 
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Figure  4.2 Calculated strain-stress curves without transverse stress for Graphite and for2H-
MoS2  (a),(c) in plane and (b),(d) normal plane. 

             We have noticed earlier that multi-load conditions may be present in manufacturing 

processes combining thermal effects and epitaxial growth. As a particular situation of these 

conditions, we have studied in a second round of simulations the effects of superimposing 

transverse stress (both compressive and tensile) on the previous tensile directions for the four 

structures. We detected convergence problems in some simulations that have hindered the 

calculations in the compressive  (negative) transverse stress range in 2H-MoS2, and also along 

the [100] direction in the positive range of this compound. The expected trend is a decreasing 

of the critical strength as we increase the superimposed transverse stress from negative to 

positive values. In fact, this is the computed behavior for the majority of situations we have 

studied. For example, the critical strength σc is lowered by the transverse stress σt in all the 

directions in graphite, and 2H-MoS2. In this two laminar compounds, we obtain just one value 

at the most negative transverse stress breaking the decreasing trend along the [1�10] direction. 

All these results are displayed in Fig. 4.8. In general, the unexpected positive slope in the 

ideal strength-transverse stress curve appears at compressive transverse stress values. In the 

tensile regime, all the directions and structures show a modulated lowering of the ideal 

strength as the transverse tension increases which is compatible with the overall weakening of 

the compounds as multi-load conditions are enhanced or, in other words, to the higher strain 

energy stored in the material. However, we would like to notice that the opposite behavior 

was also found by Sestak et al. [15] and Cerný et al. [18]. The increasing of the critical 

strength under super imposed positive lateral tensile stress obtained in their calculations might 

be due to the different nature of the chemical bonding network. These authors deal with 

metallic materials where directional bonds are not identified. 

(a)                                                                                (b) 
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Figure 4.3 Calculated critical stress-transverse stress curves for Graphite and 2H-MoS2  
(a),(c) in plane and (b),(d) normal plane. 

 

4.5.3 Other outcomes of the stress-strain SEOS: energetic and directional Young moduli  

            As stated in subsection 4.1.3, our analytical scheme allows us not only gathering 

information on the critical parameters, but also on the energetic of crystalline materials and on 

the Young moduli along specific tensile directions. From an experimental point of view, 

stress-strain data can be directly measured for particular directions whereas the corresponding 

energy-strain curves remain only accessible once an equation of state is proposed. Eq. (4.10) 

displays how, by simple integration of our stress-strain 1D-SEOS, analytical energy-strain 

curves can be derived using data either from experiments or from computer simulations. In 

the previous subsection, we have shown that our calculated (ϵi ,σi) data points are well 

described by the proposed 1D-SEOS. Here, the integrated SEOS for all the directions of 

materials studied in this part are represented in Fig. 4.9. The symbols correspond to the 

energy minima at selected strains obtained from our first-principles calculations. The 

calculated parameters associated with the integrated forms are collected in Table  4.9. 

             The analytical energy curves clearly reflect the good quality of the fittings (see Fig. 

4.9. Two parameters define the shape of each of these curves, ϵsp and Esp. The first one, 

previously discussed in relation to the stress-strain curves (see Table 4.1), identifies the 

abscissa of the inflexion point, where the directional Young modulus vanishes. The ordinate 
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of this point is Esp (see Table 4.9) and correlates quite well with the critical/spinodal strength 

calculated along each of the directions explored for the materials under study in this part. The 

higher the strength, the higher the energy required to induce an elastic instability in the 

material. 

As regards the directional Young modulus, we can easily derive a simple expression at zero 

stress ���0� involving the three parameters of the stress-strain 1D-SEOS by evaluating Eq. 

(4.4) at zero stress: 

                                                          ���0� �
���

��������
                                                            (11) 

This parameter is discussed below. 
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Figure 4.4 Calculated and analytic energy-strain curves for: (a,c) Graphite, and (b,d) 2H-
MoS2. 
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Table  4.2 Energy and Young modulus parameters from the integrated stress-strain SEOS 
fittings 

 

Material direction Yl(0)(GPa) Esp (kJ/mol) 

Graphite[001] 

              [110] 

             [1�10] 

0.99< 1 

746 

746 

- 

201 

113 

2H-MoS2[001] 

               [110]  

              [1�10]  

2.41< 1 

150 

140 

- 

69 

153 

 

            Let us finally conclude by analyzing these zero stress directional Young moduli in 

graphite and 2H-MoS2. Layered materials constitute a severe test for our model since weak 

and covalent interactions are simultaneously present. In both compounds, the van der Waals 

nature of the inter-layer interactions is revealed through the values of the directional Young 

modulus provided by the spinodal parameters. Y001(0) values (in GPa) are as low as 0.99 and 

2.40 for graphite and 2H-MoS2, respectively, in contrast with the values along the [100] and 

[120] directions which are, respectively, 748 and 728 for graphite, and 150 and 140 for 2H-

MoS2. The latter values can be compared with the intra-layer Young modulus reported for 

graphite and MoS2 by other authors. For instance, for graphite goes from 700 to 1100 GPa 

([81] and references therein), whereas for 2H-MoS2 the values range between 130 and 220 

GPa [82, 83 and 84] showing a good agreement with the results obtained in this work. At this 

point, it must also be emphasized that our Young modulus values reflect the expected 

different intralayer bond strengths between the C–C and Mo–S bonds, as we previously 

detected in the analysis of the 1D-SEOS  parameters (see Section 4.4.2). 
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CONCLUSIONS  

             The ideal strength of 3C- and 2H-SiC, ZnO-polymorphs, graphite, and 2H-MoS2were 

evaluated by means of first principles quantum-mechanical methodologies based on the DFT 

approximation. Both, vanishing and superimposed transverse stress over uniaxial tensile 

strains were considered in order to evaluate the ideal strength of the all crystalline structures. 

The ideal strength is found to depend on the particular crystallographic direction revealing the 

expected stronger mechanical anisotropy in the layered and ionic compounds. We introduced 

the DFT-2D correction which take into account the vdW interactions in graphite and 

molybdenum disulfide layers. After an isotropic behavior at the low strain regime, we observe 

a different behavior along the two in-plane directions, being the ideal tensile strength smaller 

in the nearest-neighbor than in the next-nearest-neighbor direction. In these crystals, the 

lowest value of σc is obtained in the c-direction as expected given the weak inter-layer vdW 

interactions. The ideal tensile strength is generally decreased by the transverse tension. 

Reduction in the ideal strength by large transverse compression occurs in some structures and 

orientations in concordance with an increasing on the effective bond lengths in those 

conditions. The critical stress in all directions at all transverses loads were related and 

explained in terms of Effective Bond Lengths for the SiC-polymorphs compound. 

 

               We present a new 1D-SEOS analytical function that was successfully applied to the 

computed strain-stress data points, and that can be also used to describe results from tensile 

stress experiments. The spinodal strain ϵsp along with the corresponding spinodal stress σsp 

fitting parameters have been calculated for the two covalent (SiC), the two layered (MoS2and 

Graphite)and the four ionic (ZnO) compounds. These parameters are identified with the 

critical strength and strain values provided they appear at the instability elastic limit. In 

addition, the integrated energy-strain SEOS reveals to be an interesting equation enclosing 

information on the energy stored in the material along tensile processes and providing data on 

the required energy to reach the instability elastic limit. 
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OUTLOOK 

           Several extensions can be foreseen as regards the current study. We enumerate here the 

most straightforward directions that can be considered for future work. 

 Ideal shear strength evaluation in some planes along specific directions.  

 N-Layer study for graphite and molybdenum disulfide.  

 Comparison of hydrostatic and non-hydrostatic conditions effects. 

 Extension of the 1D-SEOS analytical function to the take into account transverse stress 

effects. 

 Simulation and computation of the impact of defects on the mechanical properties of 

these prototypical materials. 
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 النھج النظري والحسابي للخصائص الفیزیائیة للمواد البلوریة
 

) MoS2(والجرافیت وثاني كبریتید المولیبدینوم ) ZnO(وأكسید الزنك ) SiC(كربید السیلیكون        
ذات أھمیة كبیرة كمواد ذات تطبیقات تكنولوجیة لتطویر الأجھزة الإلكترونیة الجدیدة ، على وجھ 

أو ). PSD(الجدید من أشباه الموصلات التي تسمى أجھزة أشباه الموصلات الكھربائیة الخصوص الجیل 
أحد أكبر التحدیات ھو فھم الفشل المیكانیكي الذي یحدث في ).FET(الترانزستورات ذات التأثیر المیداني 

وبالتالي ، . عملیة تصنیع ھذه المواد بسبب الضغوط التي تسببھا أثناء دورات التسخین التي تتعرض لھا
فإن الھدف الأساسي من ھذه الرسالة ھو التقییم والتحلیل من حیث العلاقات الكیمیائیة الفیزیائیة لعلاقات 

توفر المحاكاة .من ھذه العلاقات ، یمكن تحدید حد الاستقرار المیكانیكي لھذه الأنظمة. الإجھاد والانفعال
. ي توفیر معلومات یصعب الوصول إلیھا ، وأحیانًا تجریبیًاالعددیة وصولاً كمیاً إلى ھذه العلاقات ، وبالتال

للمبادئ الأولى التي تأخذ في ) DFT(في ھذه الدراسة ، نقدم نتائج حسابات نظریة الكثافة الوظیفیة 
على وجھ الخصوص ، . الاعتبار كمیا استجابة المواد التساھمیة والأیونیة والطبقیة لظروف الإجھاد العامة

،  SiCمن  H2و   C3لبلوریة الرئیسیة لأنواع البولي قوة الكسر على طول الاتجاھات اقمنا بتقییم 
تم أخذ الإجھاد العرضي المتراكب على .H-MoS22و   ZnOمن الجرافیت و  ABAوكومة سداسیة 

بشكل . إجھاد الشد في الاعتبار من أجل تقییم كیفیة تأثر المقاومة الحرجة بھذه الظروف متعددة التحمیل
عام ، تؤدي الزیادة في الضغط العرضي من القیم السلبیة إلى الإیجابیة إلى الانخفاض المتوقع في المقاومة 

بالاتجاھات في كثافة  ألانضغاطيناءات القلیلة الموجودة في منطقة الضغط ترتبط بعض الاستث. الحرجة
بالإضافة إلى ذلك ، نقترح معادلة عرضیة معدلة .الروابط على طول الاتجاھات مع السلوك غیر المتوقع

ھذه الوظیفة التحلیلیة ذات استخدام . للحالة قادرة على وصف منحنیات الإجھاد والانفعال المحسوبة بدقة
عام ویمكن أیضًا تطبیقھا على البیانات التجریبیة التي تتوقع القوى الحرجة وقیم الإجھاد، ولتوفیر 

 .معلومات عن الطاقة المخزنة في عملیات الإجھاد الشد
 

كربید السیلیكون ، أكسید الزنك ، ثاني كبریتید المولیبدینوم ، الفشل المیكانیكي ، إجھاد : الكلمات الرئیسیة
 .المبادئ الأولى ، نظریة الكثافة الوظیفیة ، المعادلة اللفافة الإجھاد ،
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RESUMEN 

           El carburo de silicio (SiC), el óxido de zinc (ZnO), el grafito y el desulfuro de 

molibdeno (MoS2) son de gran interés como materiales con aplicaciones tecnológicas para el 

desarrollo de nuevos dispositivos electrónicos, en particular La nueva generación de 

semiconductores llamada Power Semiconductor Devices (PSD). o transistores de efecto de 

campo (FET).Uno de los mayores desafíos es comprender la falla mecánica que ocurre en el 

proceso de fabricación de estos materiales debido a las tensiones inducidas durante los ciclos 

de calentamiento a los que están sujetos. En consecuencia, el objetivo fundamental de esta 

tesis es la evaluación y el análisis en términos químico-físicos de las relaciones de estrés-

deformación. A partir de estas relaciones, se puede determinar el límite de estabilidad 

mecánica de estos sistemas. La simulación numérica proporciona acceso cuantitativo a estas 

relaciones, proporcionando así información de difícil acceso, a veces experimentalmente. En 

este estudio, presentamos los resultados de los cálculos de la teoría de la densidad funcional 

(DFT) de los primeros principios que tienen en cuenta cuantitativamente la respuesta de los 

materiales covalentes, iónicos y en capas a las condiciones generales de estrés. En particular, 

evaluamos la resistencia a la rotura a lo largo de las principales direcciones cristalográficas de 

los tipos de poli 3C y 2H de SiC, pila hexagonal ABA de grafito, ZnO y 2H-MoS2.Se tuvo en 

cuenta una tensión transversal superpuesta a la tensión de tracción para evaluar cómo la 

resistencia crítica se ve afectada por estas condiciones de carga múltiple. En general, el 

aumento de la tensión transversal de valores negativos a positivos conduce a la disminución 

esperada de la resistencia crítica. Pocas excepciones encontradas en la región de tensión 

compresiva se correlacionan con las tendencias en la densidad de enlaces a lo largo de 

direcciones con comportamiento inesperado. Además, proponemos una ecuación de estado 

espinodal modificada capaz de describir con precisión las curvas de tensión-deformación 

calculadas. Esta función analítica es de uso general y también se puede aplicar a datos 

experimentales que anticipan fuerzas críticas y valores de deformación, y para proporcionar 

información sobre la energía almacenada en los procesos de tensión de tracción. 
 

Palabras clave: carburo de silicio, óxido de zinc, desulfuro de molibdeno, falla mecánica, 

tensión-deformación, primeros principios, teoría funcional de la densidad, ecuación espinodal. 

 



                                                                                                                                      RESUME 
 

139 
 

RESUME 

            Le carbure de silicium (SiC), l'oxyde de zinc (ZnO), le graphite et le disulfure de 

molybdène (MoS2) suscitent beaucoup d'intérêt en tant que matériaux ayant des applications 

technologiques pour le développement de nouveaux appareils électroniques, en particulier la 

nouvelle génération de semi-conducteurs appelés Power Semiconductor Devices (PSD). ou 

transistors à effet de champ (FET). L'un des plus grands défis est de comprendre la défaillance 

mécanique qui se produit dans le processus de fabrication de ces matériaux en raison des 

contraintes induites lors des cycles de chauffe auxquels elles sont soumises. Par conséquent, 

l'objectif fondamental de cette thèse est l'évaluation et l'analyse en termes chimique-physiques 

des relations contrainte-déformation. A partir de ces relations, la limite de stabilité mécanique 

de ces systèmes peut être déterminée. La simulation numérique permet d'accéder à ces 

relations de manière quantitative, fournissant ainsi des informations difficilement accessibles, 

parfois expérimentalement. Dans cette étude, nous présentons les résultats des calculs de la 

théorie fonctionnelle de la densité (DFT) des premiers principes qui tiennent compte 

quantitativement de la réponse de matériaux covalents, ioniques et en couche aux conditions 

de stress générales. En particulier, nous avons évalué la résistance a la rupture le long des 

principales directions cristallographiques des poly types 3C et 2H du SiC, empilement 

hexagonal ABA de graphite, ZnO et 2H-MoS2. Une contrainte transversale superposée à la 

contrainte de traction a été prise en compte afin d'évaluer comment la résistance critique est 

affectée par ces conditions multichargés. En général, l'augmentation de la contrainte 

transversale de valeurs négatives à positives conduit à la diminution attendue de la résistance 

critique. Peu d'exceptions trouvées dans la région de contrainte de compression sont en 

corrélation avec les tendances de la densité des liaisons le long des directions avec le 

comportement inattendu. De plus, nous proposons une équation d'état spinodale modifiée 

capable de décrire avec précision les courbes contrainte-déformation calculées. Cette fonction 

analytique est d'utilisation générale et peut également être appliquée à des données 

expérimentales anticipant les forces critiques et les valeurs de déformation, et pour fournir des 

informations sur l'énergie stockée dans les processus de contrainte de traction. 

Mots clés: carbure de silicium, oxyde de zinc, bisulfure de molybdène, défaillance 

mécanique, contrainte-déformation, premiers principes, théorie fonctionnelle de la densité, 

équation spinodale. 
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Prof. SEBAIS  Miloud                                        Constantine  le 17 / 06 / 2020 

Laboratoire de Cristallographie 

Département de Physique 

Faculté des Sciences Exactes 

Université Frères Mentouri–Constantine1 

Rapport sur la thèse de Doctorat en Sciences de Mr Hocine CHORFI 

Intitulé de la thèse : Approche théorique et computationnelle des                      

propriétés   physiques des matériaux cristallins 

Les avancées réalisées dans le domaine de la fabrication des matériaux et 

particulièrement des semi-conducteurs ont permis un développement considérable de 

l’électronique et par conséquent de l’informatique. Grace à la rapidité d’exécution des 

calculs informatiques et la capacité atteinte de stockage des données ainsi qu’aux 

nouveaux algorithmes proposés ces derniers temps, un axe de recherche scientifique 

basé sur des approches théoriques  est entrain de se développer à grande vitesse. Il 

consiste à développer des théories pour expliquer des phénomènes physiques en 

utilisant une modélisation et une simulation de ces phénomènes. Cette démarche a 

permis d’expliquer plusieurs propriétés découvertes chez divers matériaux et même de 

prédire certaines propriétés lorsque ces matériaux sont soumis soit naturellement soit 

volontairement à des contraintes internes ou externes. La simulation numérique 

permet d’accéder à des informations sur les propriétés des matériaux lorsqu’ils sont 

dans des conditions critiques difficiles à atteindre dans un environnement de 

laboratoire de recherche. Dans plusieurs domaines les résultats obtenus sont précis et 

permettent ainsi d’économiser le temps et les moyens. 

Le travail réalisé par Mr Hocine CHORFI est une contribution à la mise au 

point de stratégies de calcul pour simuler les contraintes de traction multi-charges 

dans des matériaux solides cristallins et explorer leur comportement dans des 

conditions non hydrostatiques. Les matériaux qui ont fait l’objet de la recherche 

menée par Mr Hocine CHORFI sont : Le carbure de silicium (SiC), l'oxyde de zinc 

(ZnO), le graphite et le disulfure de molybdène (MoS2) qui bénéficient d’un grand 

intérêt technologique. Ces matériaux peuvent manifester des défaillances mécaniques 

qui sont produites lors du processus de fabrication. Pour résoudre ce problème, le 

candidat a effectué l'évaluation et l'analyse des relations contrainte-déformation à 

partir des quelles la limite de stabilité mécanique de ces matériaux peut être 

déterminée. Dans cette étude le candidat  présente les résultats des calculs de la 

théorie fonctionnelle de la densité (DFT) pour évaluer la résistance à la rupture le long 

des principales directions cristallographiques des polytypes 3C et 2H du SiC, de 

l’empilement hexagonal ABA du graphite, du ZnO et du polytype 2H-MoS2.  

Une contrainte transversale a été ajoutée à la contrainte de traction et  prise en 

compte dans les calculs pour évaluer les effets des conditions multi-charges sur la 

résistance critique. Aussi le candidat propose une équation d'état spinodale modifiée 

pour décrire avec précision les courbes contrainte-déformation calculées. 

Le manuscrit de la thèse est structuré comme suit : 

-Une introduction dans laquelle le candidat évoque les motivations et les objectifs 

pour entreprendre le présent travail. 

-Dans le 1er chapitre,  il donne un aperçu sur les notions fondamentales de la 

cristallographie et qui sont indispensables à l’exécution du travail réalisé. 



-Dans le 2ème chapitre,   il présente les outils théoriques et informatiques (la méthode 

Hartree-Fock (HF), la théorie fonctionnelle de la densité (DFT),  la structure 

électronique dans les solides, les méthodes computationnelles, les codes de calcul) 

nécessaires à la réalisation du  travail de la thèse 

-Dans le 3ème chapitre, il définit l’élasticité dans les solides, les constantes élastiques, 

la stabilité mécanique des cristaux et le procédé d’évaluation des constantes 

élastiques. 

-Dans le 4ème chapitre, il donne les résultats de sa modélisation appliquée aux 

matériaux SiC (covalent), ZnO (ionique) ainsi que graphite et MoS2  (en couches). Les 

résultats obtenus ont été interprétés et expliqués en termes de liaisons chimiques.  La 

relation contrainte-déformation a été mise en évidence et  étudiée le long des 

directions cristallographiques principales, la résistance critique à la rupture a été 

déterminée et la limite de la stabilité thermodynamique a été estimée en utilisant 

l’équation  spinodale d’état. 

Le travail réalisé par le candidat lui a certainement permis d’acquérir des 

connaissances théoriques et un savoir faire dans le domaine de la modélisation et la 

simulation des propriétés des matériaux solides. Les résultats obtenus ont fait l’objet 

d’un article publié dans un journal scientifique de fort impact. 

Vu le travail considérable réalisé et l’importance des résultats scientifiques 

obtenus ainsi que les avis positifs émis par les autres membres du jury, je suis 

favorable pour que le travail de la thèse de Mr Hocine CHORFI soit défendu devant 

un jury pour obtenir le diplôme de Doctorat en sciences des matériaux.  

 

Signature 

Prof.   SEBAIS  Miloud 

 







 

 

 

It cannot be in other way that with pleasure that I write this report on the investigation that 

Mr. Chorfi Hocine has been carrying out during the last four years in order to complete his 

Doctoral Thesis. It has been a great challenge for him and I am quite sure that the long journey 

to ultimately achieve this outstanding piece of research has been very worthwhile. The 

introduction of computational strategies to simulate multi-load tensile strains in families of 

crystalline solids is the genuine contribution of this Thesis to the field of Materials Science. It 

opens new lines of exploration of the behavior of solids under non-hydrostatic conditions. The 

possibility of adding to this area of research new understanding along with efficient 

computational procedures was one of the most important motivations to initiate this work. 

The Thesis is well structured in two blocks, one gathering all the theoretical fundaments, the 

other with the applications to specific materials displaying covalent, ionic and weak van der 

Waals interactions. Crystallography, elasticity, electronic structure and basic thermodynamics 

constitute the first block. All this theoretical background along with the corresponding 

computational methodologies and the details of the parameters used in the calculations are 

presented in order to make a self-contained document. Strain-stress curves are computed for 

SiC polytypes, ZnO, graphite and MoS2. The important critical or ideal strength parameter was 

obtained for relevant directions and under multi-load conditions that mimic real synthesis 

conditions in laboratories. The description of the calculated energy-strain curves with 

analytical spinodal-like functions allows the anticipation of the critical state and the evaluation 

of the energy stored when the material is under a given tensile condition. This interesting 

investigation was illustrated in the above prototypical crystalline polymorphs and the resulting 

report was published in an international research journal of high impact factor. 

As a direct participant in the research of Chorfi Hocine in the last four years, I can say that it 

has been a privilege for me to have him in my group at the University of Oviedo. All of the 

members of our team has benefit from his savoir fair and his implication in opening new 

avenues within our research fields. I am completely sure that his Doctoral Thesis will be a 

reference for other incoming students in our group. For all these reasons I give my strong 

support for this Thesis to be defended. 

Oviedo, 16 June 2020 

 

Fdo.: José Manue Recio 
Prof. of Chemical Physics 

University of Oviedo (Spain) 
 



BOUDINE Boubekeur          

Département de Physique 

Faculté des Sciences Exactes 

Université Mentouri – Constantine 

 

Rapport sur la thèse de Doctorat en Sciences de M
r  

Hocine CHORFI 

Intitulé : « Approche théorique et computationnelle des propriétés physiques 

des matériaux  » 

  

 Le carbure de silicium (SiC), l'oxyde de zinc (ZnO), le graphite et le disulfure de 

molybdène (MoS2) suscitent beaucoup d'intérêt en tant que matériaux ayant des applications 

technologiques pour le développement de nouveaux appareils électroniques, en particulier la 

nouvelle génération de semi-conducteurs appelés Power Semiconductor Devices (PSD). ou 

transistors à effet de champ (FET). L'un des plus grands défis est de comprendre la défaillance 

mécanique qui se produit dans le processus de fabrication de ces matériaux en raison des 

contraintes induites lors des cycles de chauffe auxquels elles sont soumises. Par conséquent, 

l'objectif fondamental de cette thèse est l'évaluation et l'analyse en termes chimique-physiques 

des relations contrainte-déformation. A partir de ces relations, la limite de stabilité mécanique 

de ces systèmes peut être déterminée. La simulation numérique permet d'accéder à ces 

relations de manière quantitative, fournissant ainsi des informations difficilement accessibles, 

parfois expérimentalement. Dans cette étude, nous présentons les résultats des calculs de la 

théorie fonctionnelle de la densité (DFT) des premiers principes qui tiennent compte 

quantitativement de la réponse de matériaux covalents, ioniques et en couche aux conditions 

de stress générales. En particulier, nous avons évalué la résistance a la rupture le long des 

principales directions cristallographiques des poly types 3C et 2H du SiC, empilement 

hexagonal ABA de graphite, ZnO et 2H-MoS2. Une contrainte transversale superposée à la 

contrainte de traction a été prise en compte afin d'évaluer comment la résistance critique est 

affectée par ces conditions multichargés. En général, l'augmentation de la contrainte 

transversale de valeurs négatives à positives conduit à la diminution attendue de la résistance 

critique. Peu d'exceptions trouvées dans la région de contrainte de compression sont en 

corrélation avec les tendances de la densité des liaisons le long des directions avec le 



comportement inattendu. De plus, nous proposons une équation d'état spinodale modifiée 

capable de décrire avec précision les courbes contrainte-déformation calculées. Cette 

fonction analytique est d'utilisation générale et peut également être appliquée à des données 

expérimentales anticipant les forces critiques et les valeurs de déformation, et pour fournir des 

informations sur l'énergie stockée dans les processus de contrainte de traction. 

 Pour cela la candidate présente une thèse comprenant trois parties développant les 

aspects suivants :  

 Partie 0 : Introduction,  M
r  

Hocine CHORFI a présenté (i)- les motivations, (ii)- les 

objectifs et la structure de la thèse. 

 Partie 1: le candidat a consacré cette partie à la présentation  de la théorie et la 

méthodologie nécessaires à l’élaboration de ce travail a savoir (i)- structure cristalline (sous 

contraintes). (ii)- le comportement élastique, l’attraction et la compression, l’effet de la 

pression hydrostatique. (iii)- La structure électronique: les fondations théoriques, la théorie de 

la fonctionnelle densité (DFT), les pseudos potentiels et les méthodes de la structure 

électronique dans les solides.     

 Partie 2: M
r  

Hocine CHORFI a appliqué sa modélisation aux matériaux covalent 

(SiC), ionique (ZnO) et en couche (graphite et MoS2). La relation contrainte-déformation a 

était évalué le long des directions cristallographiques importantes, la résistance critique a été 

calculée et les résultats ont été interprétées et expliquées en termes de liaisons chimiques et la 

limite de la stabilité thermodynamique utilisant l’équation  spinodale d’état. 

              Au terme de cette étude,  M
r 
Hocine CHORFI, a pu maîtriser son sujet de recherche. 

Il a bien rédigé sa thèse. Le travail rapporté est important et a nécessité l’utilisation de 

plusieurs techniques que M
r 

Hocine CHORFI maîtrise parfaitement. Elle constitue une 

contribution scientifique remarquable.  

 En conséquence, je donne un avis favorable  à la présentation de ces travaux devant un 

jury en vue de l'obtention du diplôme de Doctorat en Sciences en physique spécialité 

cristallographie et matériaux. 

 

 

         BOUDINE Boubekeur 
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Professor Tarik Ouahrani 

Email: tarik.ouahrani@gmail.com 

 

Thesis report of Mr. Hocine Chorfi  

  Entitled: Theoretical and computational approach to the physical properties of 

crystalline materials (Approche théorique et computationnelle des propriétés physiques 

des matériaux cristallins) 

 

1. The issue (context, originality, importance of the subject) 

The scientific work undertaken by Mr. Hocine Chorfi concerns a topical subject, which 

concerns a theoretical study examining the Computational Modeling of Tensile Stress Effects 

on the Structure and Stability of Prototypical Covalent and Layered Materials. The originality 

of the work relates to the presentation of a new analytical function to provide information on 

the energy stored in tensile stress processes. 

2. Methodology (consistency with the subject, logic of the presentation) 

The context of the thesis is quickly given in the introduction as well as the thesis outline. This 

part gives an overview of the subject of the thesis. The expected contribution is the 

methodological analysis of some ionic, layered and covalent binary compounds under tensile 

and compressive strain and then established a new function to fit this trend. The choice fell on 

the use of the simulation method based on first principles technic. The second chapter gives 

the theoretical concepts of DFT theory, the latter discusses and presents the theoretical 

concept on which this thesis is based: The candidate gives the different tools and laws that 

govern its theoretical background. In this chapter, the electronic density is treated by the use 

of abinit. the next chapter deal with some crystallographic concept, that I don't see exactly its 

usefulness. However, the second part of this one gives a useful concept namely the calculation 

of elastic components used in this thesis. 

The result chapter is quite consistent because it has more than 30 pages; each result is 

weighted by a theoretical approach. Each time the candidate offers physical interpretations 

reinforced by data or calculations. In this chapter, four binary compounds are studied from a 

global point of view. Here, the tensile, as well as the compressive strain, are applied in 

different directions on SiC, ZnO Graphite, and 2H-MoS2. The chapter also includes a rather 

interesting study on the directional Young moduli and its use to fit the curve of non-

hydrostatic energy vs tensile strain. The analytical energy curves clearly reflected its quality 

to fit such plots. A mosaic of results that supports this analysis supports this conclusion. 

Taking this approach should also help to be used in a full of systems in other systems. 

mailto:tarik.ouahrani@gmail.com
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3. Sources and books (old, recent, doctoral student's review)  

The bibliography is exhaustive and well represents the state of current knowledge in the 

various areas of knowledge of a multidisciplinary thesis. The bibliographic references are 

exact but the precise reference to the pages of the cited work would have been appreciated for 

the purpose of verification of the sources by the examiner or a future researcher. 

4. Research results (accuracy of presentation of results, criticism of results) 

The quality of the general presentation of the thesis in word style is acceptable. The author 

demonstrates his mastery of the English language in a structured and rigorous argument. This 

thesis of 158 pages may seem at first glance not bulky but the synthetic style; factual and 

perfectly adapted to the words makes it a captivating reading. The illustrations, tables, and 

diagrams are used efficiently and always relevant to the subject. They are mostly made or 

adapted by the author, which adds graphic consistency to the document. The choice and 

detailed presentation format of the methodologies used supports the main text and allows a 

very good understanding of the reader. The results obtained are well illustrated by well-

commented curves, which shows great scientific rigor. The whole constitutes an excellent 

quality thesis work, which opens up interesting perspectives. Therefore, I give a very 

favorable opinion to the defense of the doctoral thesis of Mr. Chorfi. 

5. Publication (scientific rigor and relation to the thesis) 

The originality of the subject; consistency in the structure of the thesis and the articulation of 

the parts; correct use of relevant documentation; appropriate methodology; rigor in the 

argumentation and treatment of sources and data as well as in the analysis of results and their 

interpretation; scope and innovative nature of the results and conclusions. This thesis has been 

the subject of a high-level international publication with a very good IP factor; this 

publication is the result of several years of work in an innovative field. 

6. Additional comments 

  This thesis demonstrates the candidate's excellent ability to pursue original research in the 

field of solid-state physics. Given the multidisciplinary nature of this field and the complexity 

of the variables to be considered, the author has managed to extract disparate information and 

integrate it into a comprehensive study of the properties of crystalline solids. This thesis is 

without any of the first that deals with this kind of subject.   

For all these reasons, therefore, I give a favorable opinion to the defense of this thesis. 

 



Professeur ZAABAT Mourad                         Oum el Bouaghi    le 17/06//2020 

Institut de Technologie 

Université Oum el Bouaghi 

 

 

RAPPORT SUR LA THESE DE DOCTORAT EN SCIENCE 

 

de M
r  

Hocine CHORFI 

                                                                                                     

Intitulée: « Approche théorique et computationnelle des propriétés physiques 

des matériaux »  . 
 

 En matière condensée, les modèles servants au traitement des problèmes 

atomiques, moléculaires et des solides sont développés pour permettre un calcul avec un 

nombre réduit d’atomes non-équivalents tout en intégrant le plus grand nombre possible 

d’interactions. Les méthodes mises en œuvre pour ce type de calcul sont entièrement 

basées sur la mécanique quantique et les constantes physiques fondamentales. Elles sont 

largement utilisées en chimie quantique et permettent de résoudre l’équation de 

Schrödinger associée à un Hamiltonien moléculaire.  

 

 Ce travail de thèse a pour vocation de contribuer à une meilleure compréhension 

de ce type de problème, le manuscrit comporte une introduction générale, deux parties  et 

une conclusion générale développant les aspects suivants : 

Dans son introduction,  le candidat a présenté  un état de l’art du problème traité, 

de plus les différents molécules étudiés. 

 

  Dans la première partie,  M
r  

Hocine CHORFI  présente les principes 

fondamentaux des méthodologies utilisées dans la thèse, également divisé en deux 

parties selon le caractère statique ou dynamique des propriétés étudiées. En premier lieu, 

il étudie  la structure cristalline et la structure électronique (chapitres 1 et 2). Cette partie 

contient les bases qui lui permette d'étudier les observables fondamentaux des solides 

ainsi que ceux de l'accès prototypique du point de vue informatique. Dans la deuxième 

partie, il s’intéresse à  la réponse du système cristallin aux forces exercées sur la cellule 



ou sur les atomes (chapitre 3). Il considére uniquement la réponse linéaire. la cellule 

changer de forme (pas seulement de taille) et les atomes se déplacer. Il étudie brièvement 

les concepts et les procédures de calcul de l'élasticité. 

Le deuxième partie est consacré à la discussion des résultats de simulations de 

mécanique quantique dans une collection de solides cristallins sélectionnés. Ils sont  

divisé en quatre chapitres. Les chapitres 4, 5, 6 et 7 traitent respectivement des quatre 

matériaux étudiés, SiC, Graphite, ZnO et MoS2. Ils sont organisés en sections similaires: 

(i) - description de la structure cristalline, (ii) - détails de calcul dans les calculs d'énergie 

totale, y compris l'étude de convergence (bases, points k, fonction d'échange-corrélation, 

corrections des interactions faibles, etc.) , (iii) -résultats et discussion. Cette dernière 

section est divisée en sous-sections contenant notre discussion sur (1) -les constantes 

structurelles, EOS et élastiques observables, (2) -l'évaluation de la résistance idéale avec 

et sans effets de contrainte transversale, et (3) -l'analyse au-delà de la limite de stabilité: 

transition de phase et rupture de liaison. 

 

  Sur le plan général nous pouvons noter la variété de ce travail de recherche qui  a 

été consolider par des publications internationales, pour cela je donne un avis favorable 

pour la présentation de cette thèse  devant le jury proposé de Monsieur Hocine 

CHORFI en vue de l’obtention du diplôme de docteur en sciences en physique, 

spécialité sciences des matériaux option cristallographie. 

 

Professeur ZAABAT Mourad 
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SPECIFIC AGREEMENT REGARDING PhD THESIS CO-SUPERVISION  
 

 
BETWEEN 

 
On the one part, Mr. Vicente Gotor Santamaría, Rector of the University of Oviedo in the name 
and on behalf of this University, under Decree 31/2012 of 22 March 2012, by virtue of which he 
was appointed, and with the competences  conferred upon letter l) of article 60 of the Statutes of 
the University of Oviedo, approved by Decree 12/2010 of 3 February 2010 of the Principality of 
Asturias (Official Gazette of the Principality of Asturias – BOPA – no. 34, of 11 February). 
 
And on the other part, the University of Constantine1, Algeria, legally represented by its 
Rector/President Mr. Abdelhamid Djekoun  
Both parties recognize each other’s legal capacity to enter into this agreement and hence  
 

DECLARE 
 

That the promotion and development of the scientific collaboration between research groups 
from both institutions is a common goal for both universities; therefore, both institutions are 
willing to promote the mobility of PhD students from both institutions. Exchanges shall be 
developed on a reciprocal basis, trying to keep them balanced. However, if exchanges are not 
balanced each academic period, both parties will try to reach balance throughout the Program. 
In accordance with this common interest, both parties 

AGREE 
 

To execute this specific co-supervision agreement of the doctoral thesis of the student Ms/Mr. 
Chorfi Hocine, entitled “Study of the physical properties of materials” which will be carried out 
under joint responsibility of both institutions, according to the following terms: 

CLAUSES 
 

1-The development of the doctoral thesis in co-supervision will start in the academic year   
2015-2016, and will be carried for a period of at least two years. The working period will be 
distributed between the two institutions as follows: 11 months at the University of Oviedo and 
13 months at the University of Constantine1, Algeria. 
 
2- PhD students shall be admitted to the PhD Program of each institution in accordance with the 
legislation of each signatory. 
 
3- PhD students shall register their PhD theses in both Universities. Registration fees will be 
paid to the University of Constantine1, Algeria; and therefore, the student will be exempt from 
paying fees at the University of Oviedo. 
 
4- During his/her stay at the University of Oviedo, the PhD student will enjoy the following 
social coverage: Spain Social Security. 
 
5- The PhD student will carry out his/her research work under the supervision and responsibility 
of the following Thesis supervisors in each of the two universities:   
 



 
 

 

 

  
 
Plaza de Riego, s/n. Edificio Histórico. 2ª planta 
33003 Oviedo 
Tfno. 985 10 3938. Fax 985 10 40 24 
E-mail: vicinterpost@uniovi.es 

Vicerrectorado de 
Internacionalización y Postgrado 

 
 

On behalf of the University of Oviedo: 
Professor: José Manuél Recio Muñiz 
Department:  Química Física y Analítica 
 
On behalf of the University of Oviedo: 
Professor: Ruth Álvarez-Uría Franco 
Department:  Química Física y Analítica 
 
On behalf of the University of Constantine1, Algeria  
Professor: Fahima Boudajada 
Department: Physics 
 
These professors agree to exercise full, coordinated and joint supervision of the afore-mentioned 
Doctoral Thesis.   
 
6-Upon the signature of the present Agreement, a Mixed Follow Up Commission will be set up, 
with representatives of both institutions on equal terms. This Commission will be in charge of 
monitoring the actions resulting from this Agreement. 
 
7- The PhD Board of Examiners will be appointed by mutual agreement by both Universities 
and will comply with the regulations of the country where the defense of the Thesis will be 
held.   
 
8- The PhD student will carry out a single defense of the Thesis, which will be recognized by 
both parties and which will take place  at the University de Constantine1, Algeria. 
 
9- The Thesis shall be written and defended in French. The candidate will submit a summary of 
the Thesis, which must include the conclusions, in English  
 
10- Once the thesis has been successfully defended and upon payment of the corresponding 
fees, both universities agree to issue their corresponding PhD Diploma, which shall include 
mention of the Joint supervision. 
 
11.- The PhD student agrees to comply with existing regulation in each of the countries 
regarding enrolment procedures, registration of copyright and reproduction of the Thesis. 
 
12- Costs related to the organization of the Thesis presentation and the travel costs of the PhD 
Board of Examiners shall be borne by the University de Constantine1, Algeria, where the thesis 
will be read. 
 
13- The Framework Agreement may be terminated on the following grounds: 
   -End of the established validity period 
   -Achievement of the purpose of the agreement 
   -Mutual agreement between the parties 
   -Failure to comply with any of the clauses of this agreement by any of the signatories  
 
14- This Agreement is administrative in nature, and will be regulated by the terms established in 
its own clauses, or, failing these, by the terms established by the general legislation.  



 
 

 

 

  
 
Plaza de Riego, s/n. Edificio Histórico. 2ª planta 
33003 Oviedo 
Tfno. 985 10 3938. Fax 985 10 40 24 
E-mail: vicinterpost@uniovi.es 

Vicerrectorado de 
Internacionalización y Postgrado 

 
 

Should any differences in the implementation or interpretation of this agreement arise, they 
must be solved by mutual agreement between the parties through the Mixed Follow Up 
Commission, as established in the sixth clause. 
In case discrepancies cannot be solved, they will be subject to Contentious-Administrative Law, 
in accordance with Law 29/1998, July, 13. 
 
15- This agreement is drawn up in four copies, two in Spanish and two in English, all legally 
valid. It shall enter into force on the date of its signature by the representatives of both 
institutions, and it shall be valid until the co-supervised thesis is defended.  
 
Algeria, on November 16th 
On behalf of the University of Constantine1, Algeria. 
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Universidad de Oviedo
Uniuersidd d'Uui6u
Uniuersity of Ouiedo

EUTONIZACION PARA LA PRESEIITACTON DE TESIS DOCTORAL

Afio
Acad6mico= 2019 I 2020_

Autoriza la presentaci6n de la tesis doctoral en cumplimiento de lo establecido en el
Art. 32 del Reglamento de los Estudios de Doctorado, aprobado por el Consejo de
Gobierho, en su sesi6n del dia 20 de julio de 2018 (BOPA del 9 de agosto de 2018)

Oviedo, 14 de junio de 2020

Fdo.: Jos6 Manuel Recio y , Fahima Boudjada Fdo.:Jos6 Manuel Recio
SR. PRESIDENTE DE LA COMISION ACADEMIGA DEL PROGRAMA DE DOCTORADO
EN

Director/es de la Tesis

.', l" :,1

/

Tutor de la Tesis

' :' .i I

r', i.,..,,. \,i,t '.,-
,/

//

1.- Dato-s personales del autor de la Tesis
Apellidos:
HOCINE

Nombre: CHORFI

DN|/Pasaporte/Nl E: 1 55907655 Tel6fono:985103036 Correo electr6nico:
za hraoviedo@q ma i l.com

2.- Datos acad6micos
Programa de Doctorado cursado:
Programa de Doctorado en Andlisis Quimico, Bioquimico y Estructural y Modelizaci6n
Computacional
Organo responsable:Comisi6n Acad6mica

Departamento/lnstituto en el que presenta la Tesis Doctoral:
DEPAR;I-AMENTO DE QUIMICA FISICA Y ANALITICA
Titulo definitivo de la Tesis

Espafi ol/Frances: Relaciones tension-
deformaci6n en s6lidos cristalinos2D y 3Dl
Relation contrainte-allongement pour les solides

cristallines 2D et 3D

lngl6s: Stress-strain relationships in 2D and
3D crystalline materials

Rama de conocimiento:
Quimica Fisica

3.- Autorizaci6n del Director/es y Tutor de la tesis
D. JOSE MANUEL RECIO MUNIZ DN l/Pasaporte/Nl E: 0935681 2

Departqmento/l nstituto :

QUIMICA FiSICA Y ANALITICA

DA: FAHIMA BOUDJADA DN l/Pasaporte/N I E: 1 557 1 1 832
Departamento/l nstituto/l nstituci6n :

UNIVERSITE DE CONSTANTINE 1

Autorizaci6n del Tutor de la tesis
D. JOSE MANUEL RECIO MUNIZ DNI/Pasaporte/NlE:

09356812
Departamento/l nstituto:
QUIMICA FISICA Y ANALITICA



Universidad de Oviedo
Uniuersidd d'Uuidu
Uniuersity of Ouiedo

solrcruD DE AUToRtzAct6N pARA LA pREsENTActoN DE TESts
DOCTORAL

prevista
en la memoria de verificaci6n del Programa de Doctorado

Asimismo, declara que una parte de su Tesis Doctoral estS redactada en lengua_INGLESA

1.- Datos pensonales del autor de la Tesis Doctoral
Apellidos: HOCINE Nombre: CHORFI

DN|/Pasaporte/NlE: 155907655 Tel6fono: 985103036 Correo electr6nico:
za hraoviedo@q mai l.com

2.- Titulo de la Tesis Doctoral
Espaffol/Frances: Relaciones tension-deformaci6n en s6lidos cristalinos 2D y 3Dl
. Relation contrainte-allonqement pour les solides cristallines 2D et 3D

lngl6s:
Tension-strain relationships in 2D and 3D crystalline solids

Programa de doctorado: Programa de Doctorado en An6lisis Quimico, Bioquimico y Estructuraly
Model izaci6n Computacional

soLtctTA
La autorizacion para la presentaci6n de su Tesis Doctoral, aportando los siguientes documentos:

X Dos ejemplares de la Tesis Doctoral (uno en papel y otro en soporte electr6nico)
X Resumen en formato electr6nico del contenido de la Tesis Doctoral en espafiol e ingl6s
x Autorizaci6n para la presentaci6n de tesis doctoral del Director y del Tutor
x Curriculum vitae y documento de actividades (pdf. resumen del Cuaderno de Actividades)

Adem6s, en el caso de que la tesis se presente como un compendio de publicaciones, se aporta
los siguientes documentos:

tr lnforme del Director de la Tesis
tr Aceptaci6n de los coautores
tr fenuncia de los coautores a presentar los. mismos trabajos como parte de otra tesis

Si se aspira a la menci6n de Doctor lnternacional, ser6 preciso aportar los siguientes documentos:
tr Solicitud de menci6n de Doctor lnternacional
tr Acreditaci6n de la estancia seg(n lo sefialado en el articulo 29a
tr lnformes de los expertos extranjeros seg[n lo seffalado en el articulo 29c

que en el Cuademo de Actividades obra la documentaci6n acreditativa de la formaci6n

Oviedo, 18 de junio de2020

FIRMA: ChorfiHocine

SR. PRESIDENTE DE LA coMlsloN AcADEMtcA DEL pRocRAMA DE DocToRADo EN Programa de
Doctorado en AnSlisis Quimico, Bioquimico y Estructuraly Modelizaci6n Computacional

De acuerdo con lo establecido en la L.O. 1511999, de 13 de diciembre, de Protecci6n de Datos de car6cter Personal, se informa al interesado que los
datos personales suministrados pasardn a fonnar parte de una base de datos cuya finalidad es la elaboraci6n, matricula y lectura de la Tesis Doctoral.
En ningun aso la Universidad ceder6 a terceros datos personales del interesa{o salvo que 6ste lo consienta en los t6rminos establecidos en la citada
L.O. 15/1999, de 13 de diciembre, salvo las excepciones previstas en los articulos I I y 21 de laLey 1511999, de 13 de diciembre, de Protecci6n de los
Datos Personales. El responsable del tratamiento de estos datos es la Universidad de Oviedo. Los derechos de acceso, rectificaci6n, cancelaci6n de los
datos personales y oposici6n a su tratamiento se ejercitardn ante la Universidad de Oviedo, Secretaria Generat, Calle Principado nirm.3, 3u planta,
Oviedo 33007.
En la p6gina web w.uniovi.es o en las dependencias del registro General y Auxiliares, y de la Secretaria General tiene a su disposici6n formularios
para el ejercicio de estos derechos. Existe a su disposici6n una copia gratuita del C6digo de Buenas Pr6cticas del Sistema de Protecci6n de Datos de la
Universidad de Oviedo en el que se relacionan los ficheros de la Instituci6n, su finalidad y contenido. Tambi6n puede obtenerlo en la direcci6n de

Intemet





http://cbs.wondershare.com/go.php?pid=5239&m=db


http://cbs.wondershare.com/go.php?pid=5239&m=db


http://cbs.wondershare.com/go.php?pid=5239&m=db
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Oviedo June 2016, in the office 77, Physical and Anatycal Chemistry 
(Mohammad is a Tunisian PhD-Student) 


