

Remercîements

Ce travail a été effectué au sein du laboratoire de Cristallographie du département de physique, faculté des sciences exactes, université Constantine 1 sous la direction de Monsieur A.BOUDJADA Professeur à l'Université Constantine 1.

Je tiens tout d'abord à exprimer mes vifs remerciements et ma profonde gratitude à Monsieur A.BOUDJADA professeur à l'université Constantine 1, qui m'a encadrée et pour les conseils éclairés qu'il m'a prodigués durant toute la période de réalisation de mon sujet de thèse. C'est grâce à son aide permanente, ses encouragements et sa disponibilité et ses qualités humaines que ce travail a été mené à bien.

Ce travail a été fait en collaboration avec le laboratoire des sciences chimiques de l'Université de Rennes 1, dirigé par le professeur J.MEINNEL, qu'il trouve ici toute notre gratitude pour sa contribution et ses conseils précieux pour la réalisation de ce travail.

Je remercie vivement Madame O. Halimi professeur à l'université Constantine1 pour m'avoir fait l'honneur d'accepter de présider le jury de soutenance de cette thèse et pour les encouragements qu'elle m'a toujours réservés durant tout mon parcours.

Mes remerciements les plus sincères sont également adressés à Monsieur R, BENSAHA professeur à l'université Constantine1, Monsieur T. BENLECHEHEB Maître de conférences à l'universitaire Abbas Laghrour de Khenchla, Monsieur M. Zaabat professeurs à l'Université Larbi Ben Mhidi Oum El Bouaghi et Monsieur A. CHELLOUCHE Maître de conférences à l'Université d'Abderrahmane Mira de Bejaia pour avoir accepté de participer au jury de cette thèse.

J'adresse mes remerciements les plus respectueux à Monsieur B. BOUDINE professeur à l'université Constantine1 et Monsieur F. Saidi ingénieur du laboratoire de Cristallographie pour l'aide qui m'on apportées au cours de ce travail.

Un chaleureux remerciement est destiné à toute ma famille, en particulier mes chers parents, mon oncle, mes sœurs, mes frères, et mon beau-frère H.Bouzitouna et son fils Mohamed Wassim, A.Bouchoucha et sa femme Rabiha pour leurs encouragements et patience.

Enfin, je remercie tous ceux qui ont contribué de près ou de loin à la réalisation de ce travail, en particulier H. Benelmadjat pour son aide précieuse et son amitié

Table des matières

Titre	i
Remerciements	i
Table des matières	ii
Introduction générale	1
Chapitre I: Techniques expérimentales	
I.1. Introduction	
I.2. Classification des solides cristallins	(
I.2.1. Les cristaux macromoléculaires	6
I.2.2. Les cristaux macromoléculaires	(
I.3. Nature des cristaux et classification périodique	(
I.4. Les liaisons intermoléculaires dans les cristaux covalents et dans les cristaux Moléculaire	
I.4.1. Les liaisons de Van der Waals	
I.4.2. La liaison hydrogène	9
I.4.3. La liaison carbone-halogène	
I.5. Interaction des rayons X avec la matière	1
I.5.1. Production des rayons X pour la diffraction	1
I.5.2. Propriétés des rayons X	1
I.5.3. Détermination structurale par diffraction des rayons X sur monocristal	1
I.5.4. Affinement de la structure	1
I.6. Quelques notions sur la spectroscopie infrarouge et Raman	1
I.6.1. Micro spectroscopie infrarouge	1
I.6.2. Techniques expérimentales en spectroscopie infrarouge	1
I.6.3. Micro spectroscopie Raman	1
I.6.4. Principe de l'effet Raman	1
I.6.5. Origine des spectres IR et Raman	1
L6.6. Modes de vibrations moléculaires.	2

Chapitre II: Aperçu sur les méthodes de mécanique quantique (DFT)

II.1. Introduction	27
II.2. Méthodes basées sur la détermination de la fonction d'onde (dites classique)	28
II.3. Les méthodes de la fonctionnelle de la densité	29
II.3.1. Fonctionnelles d'échange-corrélation	30
II.3.1.1. Approximation de la densité locale (LDA)	30
II.3.1.2. L"approximation du gradient généralisé (GGA)	31
II.3.1.3. Fonctionnelles hybrides	33
II.3.2. Codes de DFT	33
II.3.3. Bases d ^{ec} orbitales atomiques	33
II.3.3.1. Orbitales de Slater et gaussiennes	34
II.3.3.2. Bases étendues	34
II.3.4. Les succès et limites de la DFT	38

Chapitre III: La structure cristalline de quelques cristaux moléculaires

 III.2. Rappel sur quelques molécules monocycliques benzéniques. III.2.1. La structure de benzène. III.2.2. La structure cristalline de quelques uns de dérivés de benzène. III.2.2.1. La structure cristalline de 1,3,5- trihalogéno-2,4,6- triméthylbenzènes (THM). III.2.3. La structure cristalline de tétramethylbenzène ou durène et quelques uns de ses dérivés. III.2.3.1. La structure cristalline de 1,4- dihalogéno-2,3,5,6 - tétraméthylbenzènes (DHD). III.2.3.2. La structure cristalline de 1- halogéno-2,3,5,6 - tétraméthylbenzènes (MHD). 	III.1. Introduction	40
III.2.1. La structure de benzène. 41 III.2.2. La structure cristalline de quelques uns de dérivés de benzène. 41 III.2.2.1. La structure cristalline de 1,3,5- trihalogéno-2,4,6- triméthylbenzènes 41 III.2.3. La structure cristalline de tétramethylbenzène ou durène et quelques uns de ses 42 III.2.3. La structure cristalline de tétramethylbenzène ou durène et quelques uns de ses 43 III.2.3.1. La structure cristalline de 1,4- dihalogéno-2,3,5,6 - tétraméthylbenzènes 45 III.2.3.2. La structure cristalline de 1- halogéno-2,3,5,6 - tétraméthylbenzènes 45 III.2.3.2. La structure cristalline de 1- halogéno-2,3,5,6 - tétraméthylbenzènes 47	III.2. Rappel sur quelques molécules monocycliques benzéniques	41
III.2.2. La structure cristalline de quelques uns de dérivés de benzène. 41 III.2.2.1. La structure cristalline de 1,3,5- trihalogéno-2,4,6- triméthylbenzènes 42 III.2.3. La structure cristalline de tétramethylbenzène ou durène et quelques uns de ses 43 III.2.3.1. La structure cristalline de 1,4- dihalogéno-2,3,5,6 - tétraméthylbenzènes 43 III.2.3.2. La structure cristalline de 1- halogéno-2,3,5,6 - tétraméthylbenzènes 45 III.2.3.2. La structure cristalline de 1- halogéno-2,3,5,6 - tétraméthylbenzènes 47	III.2.1. La structure de benzène	41
III.2.2.1. La structure cristalline de 1,3,5- trihalogéno-2,4,6- triméthylbenzènes 42 III.2.3. La structure cristalline de tétramethylbenzène ou durène et quelques uns de ses 43 III.2.3.1. La structure cristalline de 1,4- dihalogéno-2,3,5,6 - tétraméthylbenzènes 43 III.2.3.2. La structure cristalline de 1 - halogéno-2,3,5,6 - tétraméthylbenzènes 45 III.2.3.2. La structure cristalline de 1 - halogéno-2,3,5,6 - tétraméthylbenzènes 47	III.2.2. La structure cristalline de quelques uns de dérivés de benzène	41
III.2.3. La structure cristalline de tétramethylbenzène ou durène et quelques uns de ses dérivés. 43 III.2.3.1. La structure cristalline de 1,4- dihalogéno-2,3,5,6 - tétraméthylbenzènes (DHD). 45 III.2.3.2. La structure cristalline de 1- halogéno-2,3,5,6 - tétraméthylbenzènes (MHD). 47	III.2.2.1. La structure cristalline de 1,3,5- trihalogéno-2,4,6- triméthylbenzènes (THM).	42
III.2.3.1. La structure cristalline de 1,4- dihalogéno-2,3,5,6 - tétraméthylbenzènes (DHD)	III.2.3. La structure cristalline de tétramethylbenzène ou durène et quelques uns de ses dérivés	43
III.2.3.2. La structure cristalline de 1 - halogéno-2,3,5,6 - tétraméthylbenzènes(MHD)	III.2.3.1. La structure cristalline de 1,4- dihalogéno-2,3,5,6 - tétraméthylbenzènes (DHD)	45
	III.2.3.2. La structure cristalline de 1- halogéno-2,3,5,6 - tétraméthylbenzènes (MHD).	47

Chapitre IV: Etude structurale cristalline de produits aromatiques de type

(C₁₀ H₁₃ X): iododurène et bromodurène

IV.1. Introduction	49
IV.2. Détermination de la structure cristalline de l'iododurène et bromodurène à 293 K par la	
diffraction des rayons X	50

IV.2.1. Détermination de la structure cristalline de l''iododurène à 293K par la diffraction des rayons X	50
IV.2.1.1. Préparation des monocristaux	50
IV.2.1.2.Collecte des intensités	50
IV.2.1.3.Détermination et affinement de la structure	52
IV.2.1.4. Description et discussion de la structure cristalline	53
IV.2.2. La spectroscopie optique infrarouge et Raman de l''iodurène (C ₁₀ H ₁₃ I)	64
IV.2.3. Détermination de la structure cristalline du bromodurène à 293K par la diffraction des rayons X	68
IV.2.3.1. Préparation des monocristaux	68
IV.2.3.2.Collecte des intensités	68
IV.2.3.3.Détermination et affinement de la structure	70
IV.2.3.4. Description et discussion de l'unité asymétrique	71
IV.2.4. La spectroscopie optique infrarouge et Raman du bromodurène (C ₁₀ H ₁₃ Br)	82
3. Conclusion	85

Chapitre V: Etude théorique (DFT) du durène et quelques uns de ses

dérivés: CD, BD et ID

V.1. Introduction	88
V.2. Calcul de la conformation moléculaire du durène et quelques uns de ses dérivés par la théorie de la fonctionnelle de la densité (DFT).	89
V.3. Description des calculs effectués à partir de la DFT	96
V.3.1. Description de la conformation moléculaire du durène calculées avec les méthodes B3LYP/DGDZVP et MPW1PW91/DGDZVP	96
V.3.2. Description de la conformation moléculaire du chlorodurène obtenue à partir de la DFT (B3LYP/DGDZVP et MPW1PW91/DGDZVP)	98
V.3.3. Description de la conformation moléculaire du bromodurène obtenue à partir de la DFT (B3LYP/DGDZVP et MPW1PW91/DGDZVP)	100
V.3.4. Description de la conformation moléculaire de l'iododorène obtenue à partir de la DFT (B3LYP/DGDZVP et MPW1PW91/DGDZVP)	101
V.4. Comparaison de conformations moléculaires obtenues par la DFT (en symétrie C_{2v}) du BD et l''ID avec les résultats expérimentaux	106
V.5. Modes internes de vibration du monohalogènodurène calculés à partir de la DFT	110
V.5.1. Modes internes de vibration du bromodurène calculés à partir de la DFT	111

V.5.1.1. Attributions de quelques modes normaux du BD obtenus à partir du calcul de la DFT	120		
V.5.2. Modes internes de vibration de l''iododurène calculés à partir de la DFT	123		
V.6. Comportement de la stabilité moléculaire à partir de la rotation d'un méthyle			
V.7. Conclusion	137		
Conclusion générale	140		
Références bibliographiques	145		

Introduction générale

Lors des dernières années, des travaux sur des produits halogéno-méthylebenzène ont fait l'objet d'étude intensive, pour mieux comprendre le comportement du radical méthyle.

Les résultats obtenus par les benzènes hexasubstitués avec un même substituant donnent bien l'image d'un noyau aromatique hexagonal, mais ne permettent pas d'obtenir toute la précision souhaitée par suite de la forte agitation thermique à laquelle sont soumises ces molécules qui sont sujettes à des mouvements rapides de réorientation à 300K (et parfois à des températures bien inférieures).

Dans notre groupe, nous nous intéressons à l'examen de la structure cristalline, la conformation moléculaire et au comportement spectroscopique de certains dérivés du benzène. L'étude des halogénotétraméthylbenzènes ou halogénodurènes constituera l'essentiel de ce travail de thèse. Constamment en développement, ces composés ont fait et font l'objet de nombreuses études théoriques et expérimentales.

Au cours de notre travail, nous avons fait une étude expérimentale cristallographique à partir de la diffraction des rayons X à température ambiante (293K) pour déterminer la structure cristalline du bromodurène ou 1-bromo-2,3,5,6-tétraméthylebenzène appelé communément (BD) et de l'iododurène ou 1-iodo-2,3,5,6-tétraméthylebenzène (ID).

L'expérience montre que le bromodurène (C10 H13Br) et l'iododurène(C10 H13 I) cristallise dans le même groupe d'espace P2₁2₁2₁ avec quatre molécules par maille.

Ainsi, nous avons enregistré au laboratoire de Cristallographie, Université Constantine 1 le spectre IR du bromodurène et l'iododurène dans la gamme (500 et 3500 cm-1) grâce au spectromètre Jasco (FT/IR-6300). Le spectre Raman de ces composés a été obtenu avec un spectromètre de type Bruker Senterra à température ambiante, ce qui a permis de repérer les bandes internes les plus intenses en IR et Raman. Parallèlement, les calculs notamment ceux utilisant la chimie quantique et entre autre la théorie de la fonctionnelle de la densité DFT sont capables de trouver très précisément des conformations moléculaires et peuvent fournir un certain nombre de propriétés spectroscopiques telles que les fréquences de phonons (modes externes ou modes de réseau) et les fréquences des modes internes moléculaires [1] [2]. La région (500-3500 cm⁻¹) sera analysée dans ce travail, car c'est dans cette région qu'on trouve la plupart des modes de vibration interne de ces molécules. Notre étude porte aussi sur les modes de torsion (0-200cm⁻¹) des rotors (mouvement de rotation des méthyles) faiblement gênés qui sont fréquemment rencontrés dans les benzènes substitués.

Dans l'état solide, le changement de la conformation du méthyle observé dans des molécules hautement symétriques peut être dû au champ cristallin qui modifiera les spectres de torsion du méthyle. Par conséquent, les fréquences de modes de torsion indiqueraient simultanément la conformation du méthyle et son potentiel gêné. Aussi les modes de torsion des méthyles qui appartiennent aux domaines des basses fréquences (<200 cm⁻¹), leur couplage avec les autres vibrations moléculaires rajoutent des difficultés dans leurs investigations.

Dans nos calculs de chimie quantique nous avons utilisé deux fonctionnelles d'échange corrélation MPW1PW91 et B3LYP dans la chaîne de programme GAUSSIAN03 et des bases suffisamment étendues pour déterminer les conformations moléculaires du durène (C_{10} H₁₄) et quelques-uns de ces dérives. Nous avons effectué l'optimisation de la géométrie, puis calculé le spectre IR et Raman afin de confirmer l'absence de fréquence(s) imaginaire(s).

L'optimisation des géométries à l'aide de bases de fonctions telles que DGDZVP et des fonctionnelles d'échange corrélation « B3LYP » et « MPW1PW91 » a permis de faire une étude complète de l'influence du choix de la base sur les géométries et les fréquences de vibration.

Les résultats de calcul théorique obtenus à partir de la chimie quantiques seront comparés aux résultats expérimentaux.

Les techniques spectroscopiques, la diffraction des rayons X (DRX), et les calculs théoriques (DFT) ont permis de mieux comprendre la nature et les mécanismes des interactions halogènes avec son environnement. Dans le cadre de cette thèse, le premier chapitre présente des généralités relatives à la détermination de structures à partir des rayons X et quelques notions théoriques sur la spectroscopie IR et Raman.

Le deuxième chapitre comprend des rappels sur les méthodes théoriques de calcul de la fonctionnelle de la densité (DFT) que nous avons utilisées lors de notre travail.

Dans le troisième chapitre, nous présentons des rappels bibliographiques sur des produits aromatiques de la famille des benzènes substitués par des méthyles et des halogènes.

Puis, dans le quatrième chapitre, nous présentons les résultats expérimentaux concernant la détermination de la structure cristalline de l'iododurène ($C_{10}H_{13}I$) et du bromodurène ($C_{10}H_{13}Br$) à partir de la diffraction des rayons X à la température ambiante.

Dans la dernière partie de ce travail il est présenté les résultats essentiels concernant la conformation moléculaire du durène et de quelques-uns de ses dérivés (CD, BD, ID) comparés avec les résultats cristallographique ainsi que des modes normaux calculés et expérimentaux pour chacun de ces composés.

CHAPITRE I

Techniques expérimentales

Sommaire

I.1. Introduction	5
I.2. Classification des solides cristallins	6
I.2.1. Les cristaux macromoléculaires	6
I.2.2. Les cristaux macromoléculaires	6
I.3. Nature des cristaux et classification périodique	6
I.4. Les liaisons intermoléculaires dans les cristaux covalents et dans les cristaux Moléculaire	7
I.4.1. Les liaisons de Van der Waals	7
I.4.2. La liaison hydrogène	9
I.4.3. La liaison carbone-halogène	9
I.5. Interaction des rayons X avec la matière	11
I.5.1. Production des rayons X pour la diffraction	12
I.5.2. Propriétés des rayons X	12
I.5.3. Détermination structurale par diffraction des rayons X sur monocristal	13
I.5.4. Affinement de la structure	15
I.6. Quelques notions sur la spectroscopie infrarouge et Raman	16
I.6.1. Micro spectroscopie infrarouge	16
I.6.2. Techniques expérimentales en spectroscopie infrarouge	17
I.6.3. Micro spectroscopie Raman	18
I.6.4. Principe de l'effet Raman	19
I.6.5. Origine des spectres IR et Raman	19
I.6.6. Modes de vibrations moléculaires	24

I.1. Introduction

La matière telle que nous la rencontrons le plus couramment se présente sous trois formes principales : l'état solide, l'état liquide et l'état gazeux (Figure I-1) [3]. La forme sous la quelle se trouve la matière est déterminée par les interactions entre ses particules constitutives (atomes, molécules ou ions).

Le passage de l'état solide à l'état liquide s'appelle la fusion, celui de l'état liquide à l'état gazeux l'évaporation. Dans le sens contraire, nous avons la liquéfaction ou condensation qui ramène un corps de l'état gazeux à l'état liquide, puis la solidification qui le fait passer à l'état solide. Sous certaines conditions, les corps peuvent passer directement de l'état solide à l'état gazeux et, réciproquement, de l'état gazeux à l'état solide. On parle dans les deux cas de sublimation.

Figure I-1: Les trois états de la matière

Les liquides et les gaz sont des fluides, déformables sous l'action de forces très faibles, ils prennent la forme du récipient qui les contient.

Les solides ont une forme propre, leur déformation exige des forces importantes.

Les solides peuvent exister sous deux états différents :

- l'état désordonné caractérisé par une structure non ordonnée c'est le cas des systèmes amorphes comme le verre.
- l'état ordonné caractérisé par une structure ordonnée correspond aux solides cristallins.

Un cristal est constitué d'un assemblage périodique de particules. Il peut être décrit par translation suivant les trois directions de référence d'une entité de base qu'on appelle la maille. La description du cristal nécessite la connaissance du réseau et du motif.

I.2. Classification des solides cristallins

Il existe deux types de solides cristallisés :

- les cristaux macromoléculaires
- les cristaux moléculaires

I.2.1. Les cristaux macromoléculaires

Dans les cristaux macromoléculaires, la notion de molécule en tant qu'entité chimique indépendante est remplacée par le cristal qui constitue ainsi une molécule.

On classe parmi les cristaux macromoléculaires :

- les cristaux ioniques (NaCl, CsCl, CaF₂...).
- les cristaux covalents (carbone à l'état graphite et diamant, Si, Ge....).
- les cristaux métalliques (Na, Fe, Cu.....).

I.2.2. Les cristaux moléculaires

Les cristaux moléculaires sont des solides cristallisés constitués par des atomes (gaz rares) ou des molécules simples (H2, N2, O2, I2, CO2...) entre les quelles les forces d'attraction sont de faible intensité. Les molécules ont la même structure qu'à l'état gazeux.

Ils sont formés par des empilements ordonnés de molécules; c'est le cas par exemple du diiode I2, du dioxyde de carbone CO2, du benzène, etc.

Les cristaux moléculaires sont non conducteurs car les électrons sont attachés aux molécules. L''énergie de cohésion du réseau est faible. La température de fusion et l'enthalpie de fusion des cristaux moléculaires sont donc peu élevées.

I.3. Nature des cristaux et classification périodique

Parmi les non-métaux : C, Si, Ge, As, Sb, Se conduisent comme des cristaux covalents **(Tableau I.1)**. Les autres corps simples (H₂, dihalogènes, gaz rares...) cristallisent sous forme de cristaux moléculaires.

Pour les corps composés, si la différence d'électronégativité entre les éléments est importante, il y aura formation de cristaux ioniques. Par contre si la différence d'électronégativité est faible, les cristaux seront covalents ou moléculaires.

Н						He
						m
	В	С	N	0	F	Ne
	М	М	m	m	М	m
		Si	Р	S	Cl	А
		М	m, M	m, M	М	m
		Ge	As	Se	Br	Kr
		М	m, M	m, M	М	m
			Sb	Те	Ι	Xe
			m, M	М	М	m

Fableau I.1:	Type d	es cristaux	des non	métaux
--------------	--------	-------------	---------	--------

m : cristaux moléculaires

M : cristaux macromoléculaires

I.4. Les liaisons intermoléculaires dans les cristaux covalents et dans les cristaux Moléculaires

Les solides cristallins sont classés en fonction du type de liaisons existantes entre leurs unités de croissance.

La cohésion des cristaux covalents et moléculaires est assurée par des liaisons de Van der Waals ou par des liaisons hydrogène, qui sont dues à des interactions entre atomes ou molécules neutres.

I.4.1. Les liaisons de Van der Waals

Les forces de Van der Waals, interactions de van der Waals ou liaisons de van der Waals sont faibles par rapport aux autres types de liaisons, mais elles sont toujours présentes dans les composés chimiques solides, liquides ou gazeux. Elles sont des interactions électrostatiques de type dipôle - dipôle électrique et elles sont dues à trois effets différents [4] :

i) L'effet d'orientation ou effet Keesom

Lorsque les molécules possèdent un moment dipolaire permanent (molécules polaires), les dipôles s''orientent de manière que leur énergie mutuelle d'interaction soit minimale, c''est l''effet d''orientation.

L'énergie potentielle moyenne d'attraction dite énergie de Keesom [4] est:

$$E_{K} = -\frac{2}{3kT} \left(\frac{\mu^{2}}{4\pi\epsilon_{o}}\right)^{2} \frac{1}{d^{6}}$$
(I.1)

Où :

- μ est le moment dipolaire de la molécule polaire
- d est la distance entre les molécules
- k est la constante de Boltzman
- T est la température absolue

ii) L'effet d'induction ou effet Debye [4]

L''effet d''induction est dû à des interactions entre des molécules polaires-polaires ou molécules polaires-non polaires: le dipôle électrique permanent d''une molécule polaire crée un champ électrique qui déforme le nuage électronique d''une autre molécule polaire ou apolaire voisine: il se forme alors un moment dipolaire induit.

L''énergie d''interaction (énergie de Debye) entre la molécule polaire de moment μ et une molécule voisine de polarisabilité α est :

$$E_{\rm D} = -\frac{2\alpha\mu^2}{(4\pi\epsilon_{\rm o})^2} \frac{1}{d^6}$$
 (I.2)

iii) L'effet de dispersion ou effet London

Les électrons d'une molécule sont en mouvement continu : donc à chaque instant la molécule possède un moment dipolaire non nul. Ce moment dipolaire instantané induit un moment dipolaire dans une molécule voisine, ce qui explique l'existence de forces attractives entre molécules neutres non polaires.

L'énergie de dispersion (énergie de London) [4] calculée pour deux particules identiques est:

$$E_{L} = -\frac{3}{4} \frac{W_{L} \alpha^{2}}{(4\pi\varepsilon_{0})^{2}} \frac{1}{d^{6}}$$
(I.3)

Où :

- Wiest l'énergie d'ionisation des molécules

L'attraction de Van der Waals Evan est la somme des énergies dues aux trois effets :

$$E_{Van} = E_K + E_D + E_L \tag{I.4}$$

Cette énergie d''attraction est diminuée par un terme répulsif E_R dû à la répulsion entre les nuages électroniques des atomes. En toute rigueur l''énergie d''interaction totale est :

$$\mathbf{E}_{\text{tot}} = \mathbf{E}_{\mathbf{K}} + \mathbf{E}_{\mathbf{D}} + \mathbf{E}_{\mathbf{L}} + \mathbf{E}_{\mathbf{R}} \tag{I.5}$$

Avec

$$\mathbf{E}_{\mathbf{R}} = \frac{\mathbf{k}^*}{\mathbf{d}^n} \tag{I.6}$$

Où :

- k" c"est une constante
- d est la distance entre les molécules
- $n \ge 10$

Les liaisons de Van der Waals sont faibles par rapport aux autres types de liaisons, mais elles sont toujours présentes dans les composés chimiques solides, liquides ou gazeux.

I.4.2. La liaison hydrogène

La liaison de Van der Waals ne permet pas seule d'interpréter les propriétés physiques de certains cristaux. On explique celle-ci par l'existence d'une liaison de faible énergie néanmoins plus forte que celle de Van der Waals appelée liaison hydrogène. Elle peut exister soit entre deux molécules : liaison hydrogène intermoléculaire ; soit à l'intérieur d'une même molécule: liaison hydrogène intramoléculaire.

I.4.3. La liaison carbone-halogène

Les dérivés halogénés sont des composés qui possèdent une liaison carbone-halogène. L'halogène dans notre cas peut être le fluor, le chlore, le brome ou l'iode. La liaison halogène est liée à la présence d'un trou sigma sur l'axe carbone-halogène due à la polarisabilité des atomes d'halogènes, en particulier l'iode et le brome. Plus l'atome d'halogène est gros et plus la liaison carbone-halogène est faible et donc facile à rompre.

Les applications pratiques et potentielles de la liaison halogène sont aussi vastes que celles de son analogue, la liaison hydrogène.

Tableau I.2: Quelques caractéristiques électroniques de la liaison carbone- hydrogène et la liaison carbone-halogène [5].

Liaison	Longueur (pm)	χ _p (pauling)	μ(Debye)	E _{liaison} (kj.mol ⁻¹)	$\alpha_{\text{relatif}} = \frac{\alpha_{C-X}}{\alpha_{C-C}}$
C-F	135	4,0	1,51	485	1,19
C-Cl	177	3,2	1,57	327	4,92
C-Br	194	3,0	1,48	285	7,0
C-I	214	2,7	1,29	213	10,9
С-Н	109	2,2	0,4	410	1,29
C-C	154	2,5	0	345	1

- La liaison C-F est très forte, plus qu'une liaison C-C ou C-H, beaucoup plus courte que les autres liaisons C-X et très peu polarisable (**Tableau I.2**). Les dérivés fluorés sont donc très peu réactifs et donc quasiment jamais utilisés.
- On remarque que le moment dipolaire varie peu quand on passe de C-F à C-I [5]: χ_p diminue et donc les charges partielles diminuent mais la longueur de liaison augmente et μ reste donc à peu près constant.
- Une liaison est d'autant plus polarisable que la déformation du nuage électronique du doublet de liaison est importante sous l'action d'un champ électrique. Ainsi,
- Quand on passe de C-Cl à C-Br puis à C-I, l'énergie de liaison diminue et la polarisabilité augmente : la réactivité augmente car la liaison est plus faible et plus déformable C-F << C-Cl < C-Br < C-I (Tableau I.2).
- Plus un atome ou un composé est riche en électron plus sa polarisabilité α est élevée et plus les forces de van der Waals augmentent.

I.5. Interaction des rayons X avec la matière

Découverts en 1895 par le physicien allemand Wilhelm Röntgen [6], les rayons X sont à la base de différentes techniques d'analyse comme la radiographie, la spectroscopie et la diffractométrie. Ces radiations électromagnétiques ont une longueur d'onde de l'ordre de l'Angström (1 Å = 10^{-10} m).

Un cristal est un agencement d'atomes, d'ions ou de molécules, avec un motif se répétant périodiquement dans les trois dimensions. Les distances interatomiques sont de l'ordre de l'Angström (Å), du même ordre de grandeur que les longueurs d'onde des rayons X : un cristal constitue donc un réseau 3D qui peut diffracter les rayons X (**Figure I-2**).

Figure I-2: Diffraction des rayons X sur monocristal

Nous utilisons la diffraction des rayons X pour obtenir des informations sur les paramètres de maille, ainsi que sur leur qualité cristalline.

Cette analyse permet aussi de déterminer les distances interatomiques et l'arrangement des atomes dans les réseaux cristallins. Comme les rayons X sont diffractés de façon différente par les éléments du réseau suivant la construction de ce dernier, l'irradiation de

la matière par rayons X permet de connaître sa nature cristallographique. L'étude des structures cristallines est effectuée avec des échantillons monocristallins, par contre pour la caractérisation des matériaux on utilise plus souvent des échantillons polycristallins ou des poudres. Elle sert aussi à identifier et quantifier les différentes phases cristallisées contenues dans un échantillon de matière.

I.5.1. Production des rayons X pour la diffraction

La production des rayons X se fait généralement suivant le même procédé que celui utilisé en imagerie médicale. Des électrons arrachés à un filament de tungstène chauffé électriquement sont accélérés sous l'effet d'un champ électrique intense (tension de 50 kV) pour bombarder une anode (ou anticathode) faite de matériaux différents selon les applications visées (Figure I-3) [7]. Les deux métaux couramment utilisés pour l'anode sont le cuivre, qui produit des rayons X de longueur d'onde $\lambda = 1,54$ Å et le molybdène, $\lambda = 0,709$ Å.

On utilise le cuivre dans le cas des macromolécules (comme une protéine) et pour les analyses de poudres car il permet une meilleure séparation des taches de diffraction.

I.5.2. Propriétés des rayons X

Les caractéristiques principales des rayons X sont les suivantes:

- ils sont facilement absorbés par l'air et par l'atmosphère; de ce fait, les télescopes à rayons X (qui détectent les rayons X émis par les étoiles) doivent être placés dans des satellites, et pour les radiographies médicales, la source de rayons X doit être proche du patient ;
- Ils pénètrent facilement la matière molle, la matière solide peu dense et constituée d'éléments légers comme le carbone, l'oxygène et l'azote, et ils sont facilement
- absorbés par la matière dure; matière solide dense constituée d'éléments lourds, c'est ce qui permet l'imagerie médicale (radiographie, scanner): ils traversent la chair et sont arrêtés par les os ;

du fait de l'énergie importante des photons, ils provoquent l''ionisation des atomes, ce sont des rayonnements dits « ionisants » ; ceci donne naissance au phénomène de fluorescence X, qui permet une analyse chimique, mais cela modifie aussi les cellules vivantes, une exposition prolongée aux rayons X peut provoquer des brûlures (radiomes) mais aussi des cancers; les personnes travaillant avec des rayons X doivent suivre une formation spécifique et être protégés et suivis médicalement (ces mesures peuvent être peu contraignantes si l'appareil est bien « étanche » aux rayons X).

I.5.3. Détermination structurale par diffraction des rayons X sur monocristal

Le cristal sélectionné est monté sur le diffractomètre, soit à l'aide d'un lasso, soit à l'aide de pâte à modeler pour les plus gros monocristaux (de l'ordre du cm). L'ensemble est fixé sur une tête goniométrique, ce qui va permettre de faire tourner le cristal dans les 3 dimensions et ainsi faire varier l'angle θ . Si le cristal est sensible à l'air, on l'insère dans un tube capillaire rempli de sa solution mère. Cela évite tout contact avec l'oxygène et l'humidité de l'air. On peut également envoyer un flux d'azote liquide grâce à une canne de réfrigération pour travailler à la fois à basse température et sous atmosphère inerte (**Figure I-4**) [7].

Lors de l'enregistrement, le cristal sélectionné (Figure I-4(a)) est collé par une colle liquide sur un lasso (Figure I-4(b)) ou capillaire, lui-même fixé sur une tige de montage.

L'ensemble est monté sur une tête goniométrique (Figure I-4 (c)), ce qui va permettre de faire tourner le cristal dans les 3 dimensions et ainsi faire varier l'angle θ . Le but de cette opération est d'aligner le cristal avec le centre du diffractomètre.

Si le cristal est sensible à l'air, on l'insère dans un tube capillaire rempli de sa solution mère. Cela évite tout contact avec l'oxygène et l'humidité de l'air. On peut également envoyer un flux d'azote liquide grâce à une canne de réfrigération pour travailler à la fois à basse température et sous atmosphère inerte.

Figure a: Comment Choisir et manipuler le monocristal

Figure c: Monocristal monté sur le diffractomètre

Figure e: Image obtenue lors d'une exposition d'un monocristal à un faisceau de ravons X

Figure f: Les premières images : une coupe du réseau réciproque

Figure h: Vue d'ensemble du dispositif

Figure I-4: Etude expérimentale par diffractomètre Kappa CCD

Figure b: Monocristal monté sur un lasso

Figure d: La position du détecteur CCD lors de la mesure

Figure g: Cliché de diffraction de rayons X par un cristal.

14

L'analyse des cristaux par diffraction des rayons X est aussi appelée

radiocristallographie, car elle permet de caractériser des cristaux et de connaître leur structure, on travaille alors en général avec des monocristaux (0,3 à 0,05 mm). C'est aussi un outil de chimie, très utilisé en chimie organique pour déterminer non seulement la structure du cristal, mais aussi, et surtout la structure de la molécule.

Cette technique permet d'obtenir une image tridimensionnelle de la molécule, de voir toutes les interactions interatomiques et de déterminer sans ambiguïté la configuration absolue d''un composé.

I.5.4. Affinement de la structure

Les affinements des coordonnées et des facteurs d'agitation thermique isotopiques et anisotropiques **[8]** sont réalisés par la méthode de moindres carrés en minimisant l'expression:

$$\sum w (|F_0| - K|F_C|)^2$$
 (I.7)

Où

L''indice 0 ou c indique que le facteur de structure est observé ou calculé et w désigne le poids statistique que l''on attribue à l''observation F_0 .

• Pondération : La pondération attribuée à la réflexion mesurée dépend de la précision de la mesure et fournit un schéma fiable pour l'attribution directe des poids empiriques lors de l'affinement par moindres carrés quand les erreurs sont fonction de F_0 .

 Facteurs d''accord : Les quantités minimisées au cours de l''affinement sont le résidu Rw (pondéré) et R (non pondéré)

$$R_{w} = \left\{ \frac{\sum w(|F_{0}| - |F_{C}|)^{2}}{\sum w|F_{0}|^{2}} \right\}^{\frac{1}{2}}$$
(I.8)

$$R = \frac{\sum (|F_0| - |F_c|)}{\sum |F_0|}$$
(I.9)

• Facteur de qualité S: L'accord entre le modèle choisi et la structure réelle est évalué par le facteur S (Goodness of fit) ou qualité:

$$GOF = \left\{ \frac{\sum w(|F_0| - |F_C|)^2}{n - m} \right\}^{\frac{1}{2}}$$
(I.10)

Avec :

- n : nombre de réflexions dans l''affinement
- m : nombre de paramètres dans l'affinement

I.6. Quelques notions sur la spectroscopie infrarouge et Raman

Les différences entre les divers types de spectromètres portent sur la manière dont le spectre est extrait de l'expérience proprement dite. Mais certains éléments sont nécessaires quelle que soit la technique utilisée : la source de radiation et le détecteur de signal.

I.6.1. Microspectroscopie infrarouge

Au débutles microscopes infrarouge étaient réalisées à partir de petits microscopes conçus pour le visible auxquels on avait substitué les lentilles classiques par une optique en KBr [`9]. Le résultat n'était pas fabuleux surtout à cause des problèmes d'aberrations chromatiques car il est pratiquement impossible de les corriger sur une gamme spectrale très étendue.

Finalement ce type de microscope était surtout utilisé pour examiner des petites pastilles de KBr de 0,5 à 2 mm de diamètre. L'utilisation d'un condenseur de faisceau permettait à moindre frais l'examen de petits échantillons tout en donnant d'assez bons résultats. Avec les appareils IRTFil a fallu attendre la commercialisation de détecteurs sensibles et rapides, du type MCT (mercure, cadmium, tellure) [`9], pour avoir des performances acceptables étant donné la faible quantité d'énergie qui atteint le détecteur après le passage à travers le cache du microscope.

Le spectromètre à transformée de Fourier est basé sur un interféromètre de Michelson **[10]**. Lors de l'acquisition du spectre, un miroir mobile coulisse régulièrement conduisant à une figure d'interférence qui est enregistrée par le détecteur en fonction de la différence de marche p.

I.6.2. Techniques expérimentales en spectroscopie infrarouge

Deux techniques principales sont utilisées pour l'obtention des spectres infrarouge. La première, et la plus ancienne, est dite à onde continue (Continuous Wave ou CW) et est relativement simple à mettre en œuvre et à comprendre, la seconde est dite à transformée de Fourier (Fourier's Transform ou FT) (**Figure I-5**). L'avantage de cette technique est que l'ensemble des longueurs d'onde est étudié simultanément, ce qui conduit à un gain de temps important et permet l'acquisition de plusieurs spectres augmentant le rapport signal/bruit de celui-ci. La résolution est aussi meilleure : il est possible de montrer que la résolution est inversement proportionnelle à la différence de chemin optique maximale entre les deux bras de l'interféromètre. Ainsi, une résolution de 0,1 cm⁻¹ ne nécessite qu'un déplacement du miroir que de 5 cm.

Figure I-5: Montage optique d''un spectromètre à transformer de Fourier (TF)

Actuellement, la microspectroscopie dans l'infrarouge moyen est largement utilisée dans de nombreux domaines et le développement d'objectifs permet de travailler non seulement en transmission et réflexion mais aussi en réflexion à angle rasant. Cependant l'analyse classique en transmission, où la préparation des échantillons nécessite une épaisseur ne devant pas être supérieure à une vingtaine de microns, s'avère parfois longue et requiert un personnel qualifié et expérimenté. Par contre, la région proche infrarouge a été très peu utilisé et l'examen d'échantillons épais de plusieurs mm peut se faire assez facilement en transmission et peut apporter de précieuses informations, même si l'identification d'impuretés ou d'inclusions semble pour l'instant exclus. En utilisant un appareillage prévu pour l'infrarouge moyen il est généralement possible d'obtenir des spectres de qualité acceptable entre 4000 et 6000 cm⁻¹ à condition d'examiner des objets de taille supérieure à 100 mm ce qui est souvent utile pour des contrôles de routine. Evidemment, l'utilisation d'un banc optique proche infrarouge (mais encore peu répandu) améliore fortement la qualité des spectres.

I.6.3. Microspectroscopie Raman

Depuis sa découverte en 1928, l'effet Raman a été reconnu comme un outil analytique puissant.

Il est important de mentionner que les microscopes FT Raman qui ont été développés dans les dix dernières années ont perdu un peu de leur intérêt dû à la mauvaise sensibilité des détecteurs PIR et à la limite de résolution spatiale à 5 microns (laser PIR) [9]. Par contre, les microscopes Raman conventionnel de beaucoup plus petite taille qu'il y a une dizaine d'années reviennent en force avec les avantages du détecteur CCD, des filtres holographiques, de l'accessoire confocal couplé à un système fibre optique et des possibilités d'utilisation de plusieurs longueurs d'ondes excitatrices (réduction de la taille des lasers sources) sur le même banc optique (**Figure I-6**).

Figure I-6: Spectromètre Raman (Bruker Senterra)

I.6.4. Principe de l'effet Raman

La spectroscopie Raman, ou spectrométrie Raman, est une méthode non destructive permettant de caractériser la composition moléculaire et la structure d'un matériau. La diffusion Raman est issue de l'interaction lumière-matière et résulte des vibrations moléculaires et cristallines au niveau des phonons. Les raies Raman (Stokes et anti-Stokes) sont caractéristiques de la composition chimique du matériau, de sa structure cristalline ainsi que de ses propriétés électroniques.

La technique Raman étudie des transitions vibrationnelles (déplacement en nombre d'ondes = 0 à 4000 cm⁻¹) à partir du processus de diffusion inélastique de la lumière. L'intensité Raman n'est pas directement reliée à la concentration du composé. Cette particularité rend très difficile la mise en place d'études quantitatives par spectroscopie Raman.

I.6.5. Origine des spectres IR et Raman

Les transitions vibrationnelles peuvent être observées sur des spectres infrarouges et Raman.

En infrarouge, on mesure l'absorption de l'échantillon en fonction de la longueur d'onde.

La molécule absorbe une quantité d'énergie égale à $\Delta E = hv$ de la source infrarouge pour chaque transition vibrationnelle.

L'intensité absorbée est gouvernée par la loi de Beer-Lambert [11] :

$$I = I_0 \ e^{(-\epsilon cd)} \tag{I.11}$$

Où :

- I_0 et I correspondent à l'intensité incidente et transmise
- ε est le coefficient d'extinction moléculaire
- c est la concentration de l'échantillon
- d est la longueur traversée par le faisceau, dans des unités cohérentes.

✓ L''énergie du rayonnement IR est suffisante pour produire des changements dans l''énergie de vibration des molécules, mais elle ne peut pas provoquer des transitions électroniques.

✓ Le domaine de l''infrarouge correspond à des longueurs d'onde comprises entre 0,78.10⁻⁶ m et 10⁻³ m, que l''on peut diviser en trois régions.

Région		Longueur d'onde λ (m)		
IR proche	Near IR (NIR)	$0,78 \ 10^{-7} - 2,5 \ 10^{-6}$		
IR moyen	Mid IR (MIR)	$2,5 \ 10^{-6} - 5 \ 10^{-5}$		
IR lointain	Far IR (FIR)	5 10^{-5} - 1 10^{-3}		

- ✓ Le rayonnement infrarouge dispense suffisamment d'énergie pour stimuler les vibrations moléculaires à des niveaux d'énergie supérieurs.
- ✓ La spectrométrie infrarouge s'utilise principalement pour l'analyse qualitative d'une molécule en mettant en évidence la présence de liaisons entre les atomes (fonctions et groupements).

- ✓ La majorité des applications se situe entre 2,5 et 15 µm soit en nombre d'ondes de 4000 cm⁻¹ à 670 cm⁻¹ (IR moyen).
- ✓ Un spectre infrarouge est traditionnellement présenté en transmission (fraction de l'intensité transmise par rapport à l'intensité incidente) exprimée en pourcentage et l'axe des abscisses en fonction du nombre d'onde (inverse de la longueur d'onde), sur un axe dirigé vers la gauche.

L'origine des spectres Raman est différente de celle des spectres infrarouges. La diffusion est issue de l'interaction lumière-matière et résulte des vibrations moléculaires et cristallines. Le rayonnement incident de fréquence v est très grand par rapport à la transition vibrationnelle v_0 . Sous l'effet de l'excitation, la molécule diffuse la lumière dans toutes les directions de l'espace, laquelle est composée de deux types de rayonnement :

- ✓ un rayonnement diffusé élastiquement (la diffusion Rayleigh). Les photons incidents et réémis ont la même énergie.
- ✓ un rayonnement diffusé inélastiquemen*t*. Ce dernier se compose de 2 contributions : la diffusion Raman-Stokes et Anti-Stokes. La fréquence des photons diffusés est décalée en fréquence par rapport à la fréquence de la lumière excitatrice (- v_0) pour la diffusion Stokes et de (+ v_0) pour la diffusion Anti-Stokes.

La lumière diffusée (Stokes et Anti-Stokes) contient une information unique et caractéristique des vibrations des liaisons sondées. L'intensité de la lumière diffusée (signal Raman) est très faible par rapport à celle de la lumière incidente (~ 10^{-5} fois inférieure par rapport au faisceau incident).

La diffusion Raman est liée à la variation de la polarisabilité de la molécule lors d'une transition vibrationnelle d'un état *i* vers un état *j*. Pour que la transition soit possible, il est nécessaire que la norme du moment de transition de diffusion P_{ij} soit non nulle :

$$P_{ij} = \int \Psi_i \cdot \vec{p} \cdot \Psi_j \,\mathrm{d}Q \tag{I.12}$$

Avec

$$\vec{p} = \vec{\vec{\alpha}} \vec{E} \tag{I.13}$$

Où :

- Ψ la fonction d'onde.
- Q sont les coordonnées normales.
- \vec{p} est le moment dipolaire induit.
- $\vec{\alpha}$ la polarisabilité qui est une grandeur tensorielle.
- \vec{E} le vecteur champ électrique, il est associé à l'onde incidente (faisceau laser).

Le système étant soumis au champ électrique \vec{E} de fréquence v, on peut alors écrire le moment dipolaire induit sous la forme :

$$\vec{P} = \vec{\vec{\alpha}}\vec{E} = \vec{\vec{\alpha}}\vec{E}_0\cos\left(2\pi\nu t\right) \tag{I.14}$$

Avec :

$$\vec{E} = \vec{E}_0 \cos\left(2\pi\nu t\right) \tag{I.15}$$

Où :

- E_0 est l'amplitude maximale.
- *v* est la fréquence du laser.

Au cours d'une vibration moléculaire de fréquence v_v , le nuage électronique est périodiquement déformé en fonction de la distance des atomes induisant un changement de la polarisabilité moléculaire. Lors de la vibration moléculaire v_v , la coordonnée normale de vibration varie selon la relation :

$$q = q_0 \cos\left(2\pi\nu_v t\right) \tag{I.16}$$

Où

• q_0 est l'amplitude de vibration maximale.

Pour une vibration de faible amplitude, α est une fonction linéaire de q :

$$\vec{\vec{\alpha}} = \vec{\vec{\alpha}}_0 + \left(\frac{\partial \vec{\vec{\alpha}}}{\partial q}\right)_0 q_0 + \cdots$$
 (I.17)

Avec :

• α_0 est la polarisabilité à la position d'équilibre.

•
$$\left(\frac{\partial \vec{\alpha}}{\partial q}\right)$$
 est la vitesse de variation de α en fonction de q .

En combinant les équations précédentes, on obtient l'expression du moment dipolaire induit :

$$\vec{p} = \vec{\vec{\alpha}}_0 \vec{E}_0 \cos(2\pi\nu t) + \left(\frac{\partial \vec{\vec{\alpha}}}{\partial q}\right)_0 \frac{q_0 \vec{E}_0}{2} [\cos(2\pi(\nu_0 + \nu_v)t) + \cos(2\pi(\nu_0 - \nu_v)t)]$$
(I.18)

Dans cette expression, on retrouve les trois composantes de la lumière diffusée par une molécule ayant une transition vibrationnelle v_v . Les termes en cos $(2\pi vt)$, cos $(2\pi(v_0 + v_v)t)$, cos $(2\pi(v_0 - v_v)t)$ représentent respectivement la diffusion Rayleigh, Raman Anti-Stokes et Raman Stokes.

Figure I-7: Interaction entre un photon incident et la matière dans le cas où $v_0 >> v_{vib}$

Une vibration est active en Raman si le moment de transition de diffusion est différent de zéro ou encore :

- $\left(\frac{\partial \vec{\alpha}}{\partial q}\right) \neq 0$
- Ψ et q doivent être de même espèce de symétrie.

Chaque bande Raman est caractérisée non seulement par son déplacement en nombre d'onde mais aussi par son intensité, ses caractéristiques de polarisation et sa forme ainsi que sa largeur à mi-hauteur.

La spectroscopie Raman est une technique complémentaire à l'infrarouge. Toute les deux sont basées sur la même origine physique : la vibration des liaisons entre atomes d'une molécule qui correspond à des transitions permises entre les différents niveaux d'énergie vibrationnelle.

La nature différente des deux processus d'interaction à l'origine de l'effet Raman et de l'infrarouge (absorption, réflexion ou émission) font que certaines vibrations seront seulement actives en infrarouge et d'autres seulement actives en Raman (règle d'exclusion mutuelle), d'autres le seront pour les deux ou ni l'une ni l'autre. Par conséquent, pour construire une image vibrationnelle complète d'une molécule il faut utiliser les deux techniques.

I.6.6. Modes de vibrations moléculaires

Une molécule n''est pas un assemblage rigide d''atomes mais ressemble à un assemblage de sphères (les atomes) liées par des ressorts de constantes de raideur variables (les liaisons de covalence). L''absorption d''une radiation infrarouge aura pour effet de faire vibrer cet assemblage en modifiant les distances interatomiques ou les angles de liaisons (les angles et longueurs de liaisons oscillent autour de valeurs moyennes, qui correspondent au minimum d''énergie potentielle du système, donc à son état d''équilibre ; même à 0 K, il existe un mouvement vibratoire. La durée de vie des états excités est très courte (de l''ordre de 10^{-13} s) et l''ensemble revient à son état fondamental en restituant l''énergie absorbée sous forme de chaleur.

L'absorption du rayonnement IR par les composés organiques correspond à deux types principaux de vibrations:

• Vibrations d'allongement (stretching) ou vibrations de valence notée v

Une vibration de valence (d'allongement ou d'élongation) est un mouvement des atomes le long de l'axe de la liaison. Ce mouvement implique une variation de la distance interatomique.

Ces vibrations de valence v_s et v_{as} sont observées dans le domaine de plus grande énergie (pour les plus grandes valeurs de v) (Figure I-8).

Avec :

- \checkmark (v_s) : vibration symétrique avec conservation de la symétrie moléculaire.
- ✓ (v_{as}): vibration asymétrique avec perte d'un ou plusieurs éléments de symétrie de la molécule qui exige plus d^{**}énergie.

Figure I-8: Vibrations de valence (v)

• Vibrations de déformation (bending) notée δ

Les vibrations de déformations ont des intensités plus faible que celle des vibrations de valence. Ces vibrations correspondent à une modification des angles des liaisons et constituent la région du spectre dite «empreinte digitale» (1000 à 600 cm⁻¹), elles peuvent se réaliser dans le plan ou perpendiculairement au plan (hors du plan) (Figure I-9).

Elles sont nombreuses et beaucoup plus sensibles à l'environnement car elles ont besoin pour se produire d'un volume plus important et risquent donc d'être entravées par la présence d'atomes voisins. Elles sont souvent difficiles à attribuer.

Figure I-9: Vibrations de déformation (δ): dans le plan on utilisera abusivement toujours δ ; hors plan on utilisera la notation γ

En milieu liquide, pur ou en solution, la structure fine des bandes de rotation n'est pas visible et seule l'enveloppe du spectre de rotation-vibration est enregistrée. Cela est du à la largeur des bandes, elle-même reliée à la durée de vie de l'état excité. A l'état gazeux la durée de vie est grande, la relaxation est lente, et les bandes sont fines. A l'état condensé, les chocs sont plus fréquents, les interactions de molécule à molécule plus importantes facilitent le retour à l'état fondamental, relaxation rapide, et les bandes sont plus larges rendant invisible la structure fine du spectre.

Dans le cas des composés organiques usuels, comportant un très grand nombre d'atomes, l'interprétation complète est très délicate en raison de sa complexité. On remarque cependant que certains groupes d'atomes donnent des absorptions dont la fréquence varie peu en fonction du reste de la nature de la molécule. On les appelle bandes caractéristiques du groupe. C'est assez compréhensible si on considère la relation donnant la fréquence.

Aperçu sur les méthodes de mécanique quantique (DFT)

Sommaire

II.1. Introduction	27
II.2. Méthodes basées sur la détermination de la fonction d'onde (dites classique)	28
II.3. Les méthodes de la fonctionnelle de la densité	29
II.3.1. Fonctionnelles d''échange-corrélation	30
II.3.1.1. Approximation de la densité locale (LDA)	30
II.3.1.2. L'approximation du gradient généralisé (GGA)	31
II.3.1.3. Fonctionnelles hybrides	33
II.3.2. Codes de DFT	33
II.3.3. Bases d"orbitales atomiques	33
II.3.3.1. Orbitales de Slater et gaussiennes	34
II.3.3.2. Bases étendues.	34
II.3.4. Les succès et limites de la DFT	38

II.1. Introduction

La modélisation moléculaire a pour but de prévoir la structure et la réactivité des molécules ou des systèmes de molécules. Les méthodes de la modélisation moléculaire comprennent : les méthodes quantiques, la mécanique moléculaire et la dynamique moléculaire.

Lorsqu'on approche de façon théorique un système moléculaire, deux types de méthodes sont employés. Le premier type de méthode, dite de mécanique moléculaire, permet l'optimisation de la structure des molécules mais ne décrit pas le nuage électronique. Le second type fait intervenir, de façon plus ou moins complexe, les électrons du système étudié et inclut les méthodes semi-empiriques, celles de type Hartree-Fock (HF), Post-HF (appelées ab-initio) ainsi que celles basées sur la théorie de la fonctionnelle de la densité (DFT).

L'utilisation des méthodes ab-initio (HF et post-HF) est très ancienne en chimie théorique et elle repose sur la détermination d'une fonction d'onde polyélectronique, solution de l'équation de Schrödinger. Par contre, les méthodes basées sur la DFT consistent à remplacer la fonction d'onde polyélectronique en tant que quantité de base pour les calculs.

II.2. Méthodes basées sur la détermination de la fonction d'onde (dites « classique »)

Le but des méthodes ab initio et semi-empiriques est de résoudre l'équation de Schrödinger [12]. Cette équation consiste à décrire la structure électronique d'un système à plusieurs noyaux et électrons :

$$H\Psi = E.\Psi \tag{II.1}$$

Où :

 $H \square$ est l'hamiltonien du système ; $E \square$ est son énergie et $\Psi \square$ est sa fonction d'onde polyélectronique. Un certain nombre d'approximations est introduit et la résolution des équations obtenues permet d'avoir une première fonction d'onde pour l'état fondamental d'un système (appelée fonction HF).

La fonction HF possède certains défauts qui limitent son utilisation d'une manière brute. D'un côté, elle décrit toute liaison mononucléaire comme étant à 50% covalente et 50% ionique, et ceci à toutes distances, ce qui conduit à de très mauvais résultats concernant la dissociation des liaisons. D'un autre côté, la répulsion entre électrons n'est traitée que de façon moyenne sur tout l'espace exercé par les autres électrons. Ceci conduit à une augmentation de la probabilité d'avoir deux électrons au même endroit et augmente par conséquent le terme de répulsion inter- électronique. On dit que la fonction HF néglige, en partie, la corrélation entre le mouvement des électrons. Les méthodes post-HF tentent de corriger ces problèmes en introduisant des fonctions d'onde basées sur la fonction d'onde HF mais en tenant compte des configurations électroniques autres que celles de l'état fondamental (dites « configurations excitées »).

Or, ces deux méthodes sont très couteuses en temps de calcul et deviennent vite impraticables pour de grosses molécules ayant un intérêt chimique, ne pouvant traiter que des systèmes contenant une centaine d'atomes. Une alternative très efficace à ces méthodes consiste à utiliser des méthodes DFT qui permettent de tenir compte d'une partie des effets de

corrélation électronique et avec un coup de calcul moins élevé que celui des méthodes post-HF.

II.3. Les méthodes de la fonctionnelle de la densité

La DFT est la méthode de calcul des propriétés chimiques la plus utilisée en chimie théorique, car elle permet de traiter la corrélation de systèmes comprenant un nombre important d'électrons, quasiment au coût d'un calcul Hartree-Fock .

En 1964, Hohenberg et Kohn [13] ont défini un théorème qui démontre que l'énergie d'un système, dans son état fondamental, est complètement déterminé par sa densité électronique ρ (r). Par contre, il n'y a pas de forme analytique connue permettant de relier l'énergie à la densité électronique.

Dans le cadre de l'approximation de Born-Oppenheimer [14], l'hamiltonien nonrelativiste et indépendant du temps est écrit sous la forme :

$$H_{el} = T_e + T_{Ne} + V_{ee} \tag{II.2}$$

Ici, assumant que tous les opérateurs peuvent être une fonction de la densité, l'énergie d'un système s'écrit :

$$E = T(\rho) + V_{Ne}(\rho) + V_{ee}(\rho)$$
(II.3)
Où :

- T est l'énergie cinétique.
- V_{Ne} est l'énergie potentielle noyaux –électrons.
- Vee est l'énergie potentielle électrons –électrons.

Les méthodes de la DFT se sont popularisées après que Kohn et Sham [15] aient proposé un développement faisant intervenir la notion d'orbitale. L'idée sous-jacente de Kohn-Sham était de séparer l'énergie cinétique en deux parties, l'une pouvant être calculée exactement, T_s , et l'autre apparaissant comme une petite correction à apporter à l'énergie. Dans ce deuxième terme, apparaît alors la corrélation électronique. L'énergie totale DFT s'écrit alors :

$$E_{DFT}[\rho(r)] = T_s[\rho(r)] + E_{Ne}[\rho(r)] + J[\rho(r)] + E_{xc}[\rho(r)]$$
(II.4)

Où :

- $T_s[\rho(r)] = \sum_i -\frac{\hbar^2}{2m} \int \psi_i \Delta \psi_i dr^3$ est l'énergie cinétique des électrons n'interagissant pas entre eux et ayant la densité électronique totale représentée à l'énergie cinétique des orbitales monoélectronique $\{\psi, (r)\}$
- $\rho(r) = \sum_{i}^{N} |\psi_{i}(r)|^{2}$ N est le nombre d'électrons dans le système.
- $E_{Ne}[\rho(r)] = \int \rho(r) V_{ion} dr^3$ présente le terme d'attraction entre le nucléon

et l'électron.

-
$$J[\rho(r)] = \frac{1}{2} \iint \frac{\rho(r)\rho(r')}{|r-r'|} dr^3 dr'^3$$
: le terme d''interaction coulombienne des électrons entre eux.

L'énergie DFT (E_{DFT}) atteindra l'énergie exacte si et seulement si le terme E_{xc} (énergie d'échange-corrélation) est calculé exactement. Tout le but des développements récents dans le cadre des méthodes de la Fonctionnelle de la Densité est donc de calculer au mieux cette partie d'échange-corrélation.

II.3.1. Fonctionnelles d'échange-corrélation

Historiquement, on trouve différentes classes de fonctionnelles résultantes d'approches successives pour évaluer la fonctionnelle d'échange-corrélation exacte (ou plutôt tenter de s'en approcher).

II.3.1.1. Approximation de la densité locale (LDA)

La première approche porte le nom de LDA pour Local Density Approximation : on y considère qu'on a un gaz infini d'électrons de densité constante. C'est un modèle simpliste qui donne de très bons résultats pour les solides, en particulier pour le sodium.

$$E_{X_c}^{LDA} = \int \boldsymbol{e}_{xc}(\rho) dr \tag{II.5}$$

De plus, elle peut être considérée comme la somme d'une contribution d'échange et de corrélation :
$$E_{xc}(\rho(r)) = E_{x}(\rho(r)) + E_{c}(\rho(r))$$
(II.6)

Le terme d'échange, communément appelé "échange de Dirac" **[16]** (symbolisé par S du fait que cette expression fut reprise par Slater) est connu exactement:

$$E_x^{S} = -\frac{3}{4} \sqrt[3]{\frac{3\rho(r)}{\pi}}$$
(II.7)

La partie corrélation $E_c(\rho(r))$ ne peut être exprimée de manière exacte.

L'approximation de ce terme établie par Vosko, Wilk et Nussair (VWN) **[17]** a obtenu le plus de succès. Elle est basée sur une interpolation des résultats de calculs Monte-Carlo quantiques très précis sur le gaz uniforme d'électrons réalisés par Ceperley et Alder **[18]**.

L'idée de base de la LDA est qu'il est possible d'estimer l'énergie d'échangecorrélation d'un système inhomogène en utilisant sur des portions infinitésimales les résultats d'un gaz homogène d'électrons de densité égale à la densité locale du système inhomogène. Cette approximation est raisonnable pour un système où la densité varie lentement mais cette condition n'est pas satisfaite en pratique. Cependant, la LDA est étonnamment efficace et son application aux atomes et aux molécules se justifie par le succès de ses applications numériques.

II.3.1.2. L'approximation du gradient généralisé (GGA)

Une augmentation de la précision de la méthode LDA passe alors par l'utilisation d'un gaz d'électrons non uniforme. Dans ce cadre, la fonctionnelle décrivant l'échange-corrélation ne dépend plus uniquement de la densité électronique mais aussi des dérivées de la densité.

Dans le cadre des méthodes GGA, la dérivée première de la densité est introduite comme une variable dans la fonctionnelle décrivant l'échange-corrélation.

L'extension des méthodes GGA est alors de permettre que ce terme dépend de dérivées de la densité électronique de plus haut ordre.

On écrit en général E_X sous la forme :

$$E_{x}^{GGA}(\rho, \nabla \rho) = E_{x}^{LDA} - \int F(s(r))\rho^{\frac{4}{3}}(r)dr$$
(II.8)

Où :

$$s(r) = \frac{\left|\nabla\rho(r)\right|}{\rho^{\frac{4}{3}}(r)}$$
 est le terme de densité réduite

On rencontre différentes formes pour *F*, se répartissant en deux grandes familles. La première a été développée par Becke en 1988 et porte le nom de B ou B88 **[19]** :

$$F^{B88}(s) = \frac{\beta s^2}{1 + 6\beta sx \sinh^{-1}(s)} \quad \text{avec} \quad \beta = 0,0042 \quad (\text{II.9})$$

 β est un paramètre empirique déterminé par une analyse des moindres carrés des énergies d'échange des six atomes de gaz rares (de He à Rn).

On trouve aussi dans cette famille la fonctionnelle de Perdew et Wang PW91 [20]. L'autre grande famille pour F est un développement en fonction rationnelle du gradient de densité réduite. On y trouve les fonctionnelles de Perdew 1986 (P86) [21] ou de Lee-Yang-Par 1988 [22] (LYP, basée sur l'énergie de corrélation de l'hélium) par exemple. Ainsi, la forme de F^{P86} est :

$$F^{P86}(s) = (1+1,296(\frac{s}{(24\pi^2)^{\frac{1}{3}}})^2 + 14(\frac{s}{(24\pi^2)^{\frac{1}{3}}})^4 + 0,2(\frac{s}{(24\pi^2)^{\frac{1}{3}}})^6)^{\frac{1}{15}}$$
(II.10)

Comme pour l'approche LDA, les formes analytiques des fonctionnelles de corrélation sont beaucoup plus compliquées et ne seront donc pas présentées ici. On ne peut associer deux fonctionnelles E_X et E_C données que si leur somme E_{XC} vérifie certaines propriétés physiques comme le comportement asymptotique par exemple.

En associant la fonctionnelle d''échange B88 à la fonctionnelle de corrélation P86 on forme une fonctionnelle d''échange-corrélation du nom de BP86 et en associant B88 à LYP on forme BLYP. Le terme de fonctionnelle PW91 se réfère en fait à la fonctionnelle BPW91 associant B88 à PW91.

II.3.1.3. Fonctionnelles hybrides

Une troisième classe de fonctionnelles (très utilisées de nos jours) est ce qu'on appelle les fonctionnelles hybrides : on ajoute un certain pourcentage de l'énergie d''échange Hartree-Fock à E_X^{GGA} , E_X^{HF} étant calculable de manière exacte et le pourcentage étant empirique. La plus connue d'entre elles est B3LYP **[23]** (le 3 signifiant trois paramètres) mais on rencontre aussi B3PW91, O3LYP ou encore PBE. L''énergie totale d''échange corrélation de B3LYP peut être représentée par l''équation suivante **[24]** :

$$E_{xc}^{B3LYP} = E_{xc}^{LDA} + a_0 (E_x^{HF} - E_x^{LDA}) + a_x (E_x^{GGA} - E_x^{LDA}) + a_c (E_c^{GGA} - E_c^{LDA})$$
(II.11)

- Les indices x et c désignent l'énergie d'échange et de corrélation respectivement.
- LDA et GGA désignent les termes énergétiques calculées par la DFT.
- HF désigne la contribution calculée par la théorie HF.
- a_0 , a_x et a_c sont des coefficients constants définis empiriquement fixant le poids de chaque terme (0,2 ; 0,72 et 0,81 respectivement).

Les fonctionnelles LSDA sont des fonctionnelles dérivées des fonctionnelles LDA dans lesquelles le spin est pris en compte ; les formes analytiques des deux types de fonctionnelles sont très similaires.

II.3.2. Codes de DFT

Un code de DFT est caractérisé par :

- Ses conditions aux limites (périodiques ou non).
- Le traitement des électrons de cœur (pseudo-potentiel).
- ✤ Les bases des fonctions d'onde.
- L"expression du terme d"échange- corrélation utilisé.

II.3.3. Bases d'orbitales atomiques

Le choix de la base d''œbitales utilisée pour un calcul est le deuxième paramètre ayant une influence sur les résultats et sur le temps de calcul, le premier étant la méthode utilisée (DFT, Hartree-Fock, post Hartree-Fock...).

II.3.3.1. Orbitales de Slater et gaussiennes

Les méthodes de calcul communes font toutes des combinaisons linéaires de fonctions initiales appelées orbitales atomiques (notées OA) pour calculer la fonction d'onde. Les orbitales moléculaires obtenues par les méthodes ab-initio ou DFT sont exprimées comme des combinaisons linéaires d'orbitales atomiques (OA). Pour représenter ces OA, le plus simple est d'utiliser des ensembles préexistants de fonctions mathématiques qu'on appelle "bases d'orbitales". On cherche à utiliser des fonctions mathématiques pouvant représenter le mieux possible les OA tout en ayant une souplesse mathématique importante (toutes les fonctions mathématiques ne s''intègrent pas avec la même facilité) [24]. Ces fonctions mathématiques sont classiquement soit de la forme de l'équation (II.12), on parle alors des orbitales de type Slater (STO) soit de la forme de l'équation (II.13), on parle des orbitales de type Gaussian (GTO) [25].

$$\chi\xi, n, l, m(r, \theta, \varphi) = NY_{l,m}(\theta, \varphi)r^{n-1}e^{-\xi r}$$
(II.12)

$$\chi\xi, n, l, m(r, \theta, \varphi) = NY_{l,m}(\theta, \varphi)r^{2n-2-l}e^{-\xi r^2}$$
(II.13)

La solution exacte de l'équation de Schrödinger pour l'atome d'hydrogène est proportionnelle à $exp[-\Box r]$. Donc les STO permettent de retrouver la forme des OA en ne combinant qu'un nombre limité d'entres elles. Cependant elles ont un gros inconvénient à savoir qu'on ne peut pas calculer analytiquement des intégrales bi-électroniques, ce qui impose alors l'utilisation d'algorithmes numériques plus lourds à gérer. De nos jours, la plupart des calculs, en particulier pour la chimie organique, sont faits en utilisant des orbitales de type Gaussian GTO.

II.3.3.2. Bases étendues

Dans les bases les plus utilisées, la partie radiale de chaque OA est représentée par une combinaison linéaire de n gaussiennes :

$$\sum_{i=1}^{n} d_i e^{-\alpha_i r^2} \qquad (\text{II.14})$$

Les OA sont adaptées aux atomes, de symétries sphériques. Il n'est pas étonnant qu'elles le soient moins à des systèmes de symétrie quelconque ou sans symétrie, dès qu'on s'éloigne du noyau. Pour comprendre les stratégies d'amélioration des bases, on peut découper l'espace en trois zones (Figure II-1).

Figure II-1: Les zones à traiter dans la conception d'une base.

• Les orbitales internes

Les électrons y sont proches d''un seul noyau : le potentiel nucléaire est pratiquement à symétrie sphérique. Les orbitales atomiques sont donc bien adaptées, mais l''énergie étant très sensible à la position de l''électron au proche voisinage du noyau, il sera préférable de prendre un nombre élevé de gaussiennes.

• La zone de valence

C'ést la région « délicate » de la molécule, où la densité électronique est délocalisée entre plusieurs atomes, loin de la symétrie sphérique. On utilisera donc pour la décrire au mieux :

- la démultiplication de la couche de valence, ou multiple zêta de valence (ou, en anglais split valence). Par exemple, pour le carbone, une base « double zêta » utilisera deux orbitales s de valence, 2s et 2s[°] et six orbitales p, 2p et 2p[°]. Les bases usuelles de bonne qualité sont double zêta (DZ) ou triple zêta (TZ).
- l"ajout d"orbitales de polarisation. Il faut donner à la densité électronique un maximum de plasticité. Ceci se fait en ajoutant à la couche de valence des fonctions de l supérieur : orbitales p, d ...pour H, d, f, gpour les atomes de la deuxième période etc. En effet, au voisinage d"un atome d"hydrogène ne possédant qu"une orbitale 1s, aucune direction de l"espace ne peut être privilégiée. Avec les orbitales p, on peut particulariser une direction, et avec un mélange sp, une direction et un sens, et ainsi de suite avec les hybrides sd, spd etc.

La zone diffuse

Au-delà de la couche de valence, loin des noyaux, l'écart à la symétrie sphérique s'estompe à nouveau. On peut ajouter des orbitales diffuses, c''est-à-dire d''exposant α faible, qui diminuent lentement quand on s''éloigne du système. Ces OA ne sont pas indispensables dans les systèmes usuels, mais le deviennent quand on s''intéresse à des interactions à longue distance (complexes de Van der Waals), ou quand on a un anion.

Dans ce cas l'électron supplémentaire tend à s'éloigner sensiblement du noyau et il faut fournir les fonctions permettant d'optimiser cette situation. La polarisation est moins importante pour ces OA, et un ensemble s et p est en général suffisant.

Plusieurs catégories de base peuvent être distinguées, les plus développées sont:

- Les bases minimales : dans ces bases, les orbitales de cœur et de valence comprennent le même nombre de primitives gaussiennes. Les résultats obtenus sont moins couteux en temps de calculs mais restent insuffisants pour la recherche et les comparaisons avec les analyses expérimentales. Les bases les plus utilisées dans cette catégorie sont la STO-3G, la STO-4G.
- Pople et al. ont proposé une famille de bases d'orbitales notées N-MLG [26,27], particulièrement utilisées pour les molécules organiques. Dans ces familles, chaque orbitale de cœur (peu importantes lors des processus chimiques) est représentée par une contraction de N gaussiennes. Les orbitales de valence sont quant à elles représentées par deux contractions, une de M gaussiennes proches du noyau et une de L gaussiennes plus loin du noyau (L est toujours inférieure à M), le G signifiant que les primitives sont des gaussiennes. La base 6-31G est un exemple très connu de cette famille. Le fait que les orbitales de valence soient représentées par deux contractions vaut à ces bases le nom de double-zêta ; on rencontre aussi des bases triple-zeta comme la base 6-311G. Une contraction de cœur est donc censée représenter une OA de cœur (1s pour le carbone par exemple) alors que pour représenter une OA de valence, deux contractions sont nécessaires pour une base double- zêta et trois pour une triple- zêta. Les bases DZ et TZ sont usuellement utilisées sur des systèmes de l'ordre de 10 à 20 atomes.
- Une autre famille de bases de bonne qualité est celle de Dunning. Elles sont codées cc-PVDZ, cc-PVTZ, cc-PVQZ, cc-PV5Z, cc-PV6Z :

- cc signifie corrélation consistent
- PV pour Polarisation Valence
- XZ, pour Double, Triple, Quadruple ... Zêta.

Ces méthodes offrent maintenant pour la plupart des complexes des métaux de transition, une description satisfaisante et cohérente des systèmes moléculaires et de leurs observables physiques associés **[28, 29]**. Quelques exemples sont donnés ci-dessous.

• La densité électronique

La densité électronique d''un atome de carbone par exemple, déterminée dans le cadre d''approximation locale est, comparée à l''expérience, trop faible dans la zone de coeur (r < 0,1Å) et dans la zone de queue de valence (r > 0,4Å). Les corrections non locales permettent de rétablir la situation en transférant une partie de la densité électronique de la zone de valence intermédiaire (0,1 < r < 0,4Å) vers les zones de cœur et de queue de valence. Cette remarque peut être étendue aux atomes dans une molécule, comme on peut le voir sur la **Figure II-2** dans le cas de la molécule d''eau **[30]**. Précisons que l''ordre de grandeur du changement de la densité atomique consécutive à des corrections non locales est de 2 à 3 fois plus faible que celui qui est consécutif à la formation de liaison chimique. La surestimation de la densité de queue de valence dans le modèle HF et sa sous-estimation dans les modèles LDA conduisent au fait que HF sous-estime les énergies de liaisons tandis que le modèle LDA les surestime.

Figure II-2 : Changement de la densité électronique induite par des corrections non

locale pour la molécule d'éau [30].

Les énergies de liaison

A l''inverse des méthodes HF ou post-HF qui sous-estiment les énergies de liaison, les méthodes DFT locales conduisent généralement à une surestimation de l'ordre de 100% [30]. Les corrections non locales permettent d''améliorer les résultats LDA et d''obtenir des valeurs qui s''accordent à l''expérience à environ 5 Kcal/mol prés [31].

• Les structures moléculaires

Les résultats obtenus en DFT sont souvent de meilleure qualité que ceux obtenus dans le cadre de HF. Comparées à l'expérience, les longueurs de liaisons prédites par des fonctionnelles locales sont systématiquement trop courtes. Les corrections non locales qui allongent les distances métal-non-métal et non-métal-non-métal respectivement de 0,05 et 0,01 Å, corrigent cette erreur. Typiquement, l''écart à l''expérience n''excède plus alors les 0,02 Å, et les erreurs maximum sur les angles de liaison et de torsion sont respectivement d''environ 1° et 3° **[32]**.

• Les fréquences de vibration

Les fréquences de vibration sont généralement bien reproduites en DFT, tout particulièrement pour les complexes organométalliques. Une revue de Wong **[33]**, montre que les calculs DFT sont de meilleure qualité que les calculs HF ou post-HF. Une statistique réalisée sur 122 systèmes moléculaires établit que les déviations moyennes à l'expérience sont de 64 cm⁻¹ pour les résultats post-HF(MP2), mais seulement de 34 à 38 cm⁻¹pour les calculs DFT de type local. En terme de pourcentage, les fonctionnelles locales commettent une erreur de l'ordre de 2% qui est ramenée à 1% par l'utilisation de corrections de gradient. L'erreur HF est généralement supérieure à 10%.

II.3.4. Les succès et limites de la DFT

Le succès et la popularité de la DFT sont relativement récents **[34]**. W. Kohn a obtenu le prix Nobel pour ses travaux sur cette théorie en 1998. Depuis le début des années 90, le nombre de publications scientifiques dans différents domaines de la chimie et de la physique utilisant la DFT a connu une ascension véritable.

Donnant des résultats comparables à ceux obtenues au moyen des méthodes HF et post-HF à un coût en temps de calcul nettement moindre (dans un rapport de 1 à 5 en moyenne), les méthodes DFT sont de plus en plus utilisées.

Cependant, la DFT souffre encore d'un certain nombre de faiblesses **[35]**. Etant une méthode mono-déterminantale, elle ne permet pas la description correcte des systèmes multiconfigurationnels des états excités. En raison de sa limitation par l'approximation de la fonctionnelle d'échange-corrélation, l'énergie du système peut varier dans de très larges limites selon la fonctionnelle utilisée. De plus, il n'existe pas de critère pour choisir une fonctionnelle plutôt qu'une autre ; comme il est difficile de trouver des critères permettant l'amélioration d'une fonctionnelle donnée.

Néanmoins, les travaux se poursuivent pour corriger ces défauts. Les développements récents utilisent un formalisme dépendant du temps (TD-DFT de l'anglais Time Dependant Density Functional Theory) qui permet de décrire les états excités.

La structure cristalline de quelques cristaux moléculaires

Sommaire

III.1. Introduction	40
III.2. Rappel sur quelques molécules monocycliques benzéniques	41
III.2.1. La structure de benzène	41
III.2.2. La structure cristalline de quelques uns de dérivés de benzène	41
III.2.2.1. La structure cristalline de 1,3,5- trihalogéno-2,4,6- triméthylbenzènes (THM)	42
III.2.3. La structure cristalline de tétramethylbenzène ou durène et quelques uns de ses dérivés.	43
III.2.3.1. La structure cristalline de 1,4- dihalogéno-2,3,5,6 - tétraméthylbenzènes (DHD)	45
III.2.3.1. La structure cristalline de 1- halogéno-2, 3,5,6 - tétraméthylbenzènes (MHD)	47

III.1. Introduction

Un composé aromatique possède un ensemble de propriétés : grande stabilité, tendance à subir des réactions de substitution plutôt que d'addition. Le composé aromatique le plus simple est le benzène mais il en existe de nombreux autres. Tous présentent des caractéristiques communes. Ils ont une structure cyclique plane, non saturée et conjuguée. De plus, le nombre d'électrons délocalisés est égal à 4n + 2 (n = 0, 1, 2, ...). Cette dernière caractéristique est connue sous le nom de règle de Huckel.

Les dérivés du benzène sont nommés en faisant précéder le mot benzène par le préfixe du substituant mais certains composés ont des noms usuels par exemple : toluène, durène,.....Les composés substitués du benzène sont nommés en utilisant les préfixes ortho-, méta-, para- (souvent abrégé en o-, m-, p-). Pour les benzènes poly substitués, comme les halogénures benzylique (Cl, I, Br, F, At), le système numéroté est utilisé. Les résultats obtenus par les benzènes hexasubstitués avec un même substituant donnent bien l''image d''un noyau aromatique hexagonal, mais ne permettent pas d''obtenir toute la précision souhaitée par suite de la forte agitation thermique à laquelle sont soumises ces molécules qui sont sujettes à des mouvements rapides de réorientation à 300K (et parfois à des températures bien inférieures). Les molécules de ces composés sont soumises à une agitation thermique intense qui limite le nombre de réflexions observées.

Dans notre groupe, nous nous intéressons à l'examen de la structure cristalline, la conformation moléculaire et au comportement spectroscopique de certains de ces dérivés hexasubstitués du benzène. L'étude du halogénotétraméthylbenzène ou halogénodurène constituera l'essentiel de ce travail de thèse.

III.2. Rappel sur quelques molécules monocycliques benzéniques

Dans ce chapitre nous rappellerons certains résultats relatifs aux structures cristallines de cristaux moléculaires aromatiques déterminées à partir de la diffraction des rayons X et des neutrons.

III.2.1. La structure de benzène

Pour les produits aromatiques monocycliques ou benzéniques, la connaissance de structure cristalline du benzène et sa conformation moléculaire aux rayons X à été relativement tardive. En 1928, Cox [36] avait établi que la molécule du benzène avait un noyau centro - symétrique et de largeur égale à 2.49A°. Mais il a fallu attendre 1958, pour préciser la structure aux rayons X à 270 K (Soit 7 degrés seulement au dessous de la température de fusion) (Figure III-1). La conformation était compatible avec la symétrie 6/mmm pour noyau carboné.

Figure III-1: La structure de Benzène

III.2.2. La structure cristalline de quelques uns de dérivés de benzène

Des travaux de notre groupe dirigé par le Professeur A.Boudjada de l'université de Constantine 1 et du groupe de Rennes (Pr. J.Meinnel) de l'université de Rennes 1 France ont porté sur le benzène hexasubstitués par des halogènes et des méthyles.

III.2.2.1. La structure cristalline de 1,3,5- trihalogéno-2,4,6-triméthylbenzènes (THM)

• Le 1,3,5-trichloro-2,4,6-triméthylbenzène aussi appelés trichloromésitylène ou (TCM)

La structure cristalline du TCM a été déterminée à la température ambiante 297K par M. Tazi (1990) **[37]**. Ce composé cristallise dans le système triclinique avec les données expérimentales suivant les paramètres ci-après:

Le groupe spatial est : P-1

Z=2

$$a = 7.738(6)$$
 Å $b = 8.842(4)$ Å $c = 8.880(3)$ Å
 $\alpha = 59.74(3)^{\circ}$ $\beta = 66.51(5)^{\circ}$ $\gamma = 73.04(4)^{\circ}$

Les valeurs moyennes des liaisons sont Car-Car=1.389(4) Å, Car-Cl=1.75 A° et Car-Cme=1.53 Å

M. Tazi a montré que les molécules sont ordonnées et les centres de symétrie de la maille cristalline sont situés entre deux molécules et l'agitation thermique est significativement différente pour chacun des substituant de même nature d'une même molécule.

• Le 1,3,5-tribromo-2,4,6-triméthylbenzène (tribromomésitylene ou TBM)

Mani [38], Meinnel et al [39] ont obtenu à 293K ainsi qu''à 14K à partir de la diffraction des neutrons, une structure ordonnée cristallisant dans le système P-1 avec deux molécules par maille.

Avec :

 $\begin{aligned} & - & a = 7.81(1) \text{ Å, } b = 9.12(1) \text{ Å, } c = 9.15(1) \text{ Å,} \\ & \alpha = 59.78^{\circ} (2), \ \beta = 67.95^{\circ}(2), \qquad \gamma = 73.21^{\circ}(2) \text{ à } 293 \text{ K.} \\ & - & a = 7.60 (2) \text{ Å, } b = 9.01(2) \text{ Å, } c = 9.01 (2) \text{ Å,} \\ & \alpha = 59.99 (2), \ \beta = 67.27(2), \qquad \gamma = 72.54(2)^{\circ} \text{ à } 14 \text{ K.} \end{aligned}$

L''empilement des molécules se fait comme dans le TCM suivant l''axe *a*, dont les centres de gravité sont distants de 0.43 Å par rapport à l''axe *a* ce qui donne un empilement en Zig-Zag.

Cette différence dans l'empilement moléculaire entre TCM et TBM est importante et peut expliquer leur comportement différent en fonction de la température. En effet, le nombre de phases cristallines **[40]** observées pour le TCM est plus grand que pour le TBM et le TIM.

• Le 1,3,5-triiodo-2,4,6-triméthylbenzène (triiodomésitylène ou TIM)

Un exemple de dérivés benzéniques poly substitués le triiodométhylebenzene ou TIM où la structure à été résolue par A. Boudjada & al (2002) [41].

La structure cristalline du TIM a été déterminée à 293 et 100 K par la diffraction des rayons X et à 60 et 15 K par la diffraction de neutrons. Elle est triclinique (P-1 et Z=2).

A 293 K, le cycle benzénique hexagonal est significativement déformé avec des angles endocycliques moyens de $123.0(8)^\circ$ et $116.2(3)^\circ$ respectivement en face des atomes d''iode et des groupements méthyles. Aucun désordre n''a été décelé dans la gamme de température 0 - 300K. Sur la **figure III-2**, sont présentées les projections de TCM, TBM et TIM sur le plan bc.

Figure III -2 : Projection d''une molécule sur le plan (100): (a) Trichloromésitylène,

(b) Tribromomésitylène et (c)Triiodomésitylène

III.2.3. La structure cristalline du tétramethylbenzène ou durène et quelques uns de ses dérivés

Le groupe de Moscou s''est intéressé aussi aux benzènes hexasubstitués par des halogènes et montré que dans la plupart des cas, ces composés cristallisaient dans le groupe $P2_1/c$ avec Z = 2, c''est-à-dire avec une molécule «moyenne » sur un centre de symétrie. Dans tous les cas l''axe *b* est très court (proche de 4 Å) indiquant que les molécules sont empilées suivant cette direction. Les structures s''interprètent en tenant compte de molécules placées en un centre de symétrie et statistiquement également réparties entre six positions à 60° **[42]**.

En 1933 Robertson **[43]** a établi la structure cristalline du durène (C_{10} H₁₄) avec des données remarquables sur la position et les distances entre atomes de carbone.

Prince 1973 **[44]** a raffiné cette structure grâce à des mesures de diffusion neutronique. 485 réflexions indépendantes ont permis de localiser les hydrogènes de CH_{3.}

Le groupe spatial est : $P2_1/a$

Z=2

$$a = 11,57 \text{\AA}$$
 $b = 5,77 \text{\AA}$ $c = 7,03 \text{\AA}$ $\alpha = 90.0000^{\circ}$ $\beta = 112^{\circ}93'$ $\gamma = 90.0000^{\circ}$

Baudour 1974 **[45]** a amélioré le traitement des donnés de Prince en tenant compte des mouvements vibrationnels de grande amplitude des CH_3 ainsi que le mouvement interne de déformation hors du plan des liaisons C_{ar} – CH_3 et obtenu un facteur d'accord final R=0.086. Le résultat concernant la configuration moléculaire **(Figure III-3)** confirme l'influence des groupes CH_3 plus électropositifs que l'hydrogène: l''angle de liaison interne du cycle en face de l'hydrogène est significativement supérieur à celui placé vis-à-vis d''un CH_3 . 122°9 au lieu de 118°6. La liaison des carbones internes est allongée à 1.412 Å pour les carbones portant les CH_3 par rapport aux liaisons H-(C-C)- CH_3 qui font 1.393 Å **(Figure III-3)**.

Figure III -3: Géométrie de la molécule de durène (C₁₀ H₁₄)

III.2.3.1. La structure cristalline de 1,4- dihalogéno-2,3,5,6-tétraméthylbenzènes (DHD)

• La structure de dichlorodurène (DCD)

La structure a été déterminée à la température ambiante 293 K par C. Messager un membre du groupe de Rennes [46].

Le dichlorodurène cristallise dans le système monoclinique avec les données expérimentales suivant:

Le groupe spatial est : $P2_1/a$

Z=2 $a = 17.05 \pm 0.05$ Å $b = 3.96 \pm 0.02$ Å $c = 8.26 \pm 0.03$ Å $\alpha = 90.0000^{\circ}$ $\beta = 117.83 \pm 0.10^{\circ}$ $\gamma = 90.0000^{\circ}$

C. Messager [46] a montré que le dichlorodurène se caractérise par la présence d'un désordre réorientationnel d'origine dynamique. La molécule occupe trois sites équivalents avec possibilité de saut d'un site à l'autre. Les trois substituants indépendants devenant une distribution statistique d'un atome de chlore et de deux atomes de carbone méthyle. Ce qui donne une molécule ayant la symétrie sensiblement hexagonale où tous les substituants sont équivalents, occupé chacun à la fois par 1/3 de Cl et 2/3 de C_m.

• La structure de diiododurène (DID)

En 2002 Britton & al. [47], ont déterminé la structure cristalline du diiododurène $C_{10}H_{12}I_2$ (DID). Ce produit cristallise dans le groupe d'éspace triclinique P-1 avec quatre molécules par maille.

<i>a</i> = 8.152(2) Å	<i>b</i> = 15.622(4) Å	c = 18.080(5) Å
$\alpha = 86.60(1)^{\circ}$	β=86.93(1)°	γ=75.57(1)°
V=224.1(10) Å ³ .		

La structure cristalline du diiododurène se caractérise par la présence d''un désordre d''origine à priori dynamique qui se fait par des sauts de la molécule dans son plan moyen. Parmi la plupart des atomes d''iode (I) en contact avec d''autres atomes I, seulement six des distances de contact I...I sont inférieures à 4.2 Å. De ces six contacts, trois forment un triangle dans lequel toutes les distances I...I sont inférieures à 3.9Å.

La **figure III-4** montre la désignation et les paramètres de déplacement anisotropes des paires désordonnées, la numérotation et les ellipsoïdes pour la molécule restante sont similaires.

Figure III-4 : La structure cristalline du diiododurène (DID)

• La structure de dibromodurène (DBD)

Notre groupe (2008) **[48]** a montré à partir de la diffraction des rayons X à 293 k que la structure du DBD cristallise dans le système monoclinique ($P2_1/m$) avec deux molécules par maille et les paramètres :

$$a = 8.9379 (3)$$
Å $b = 7.373(3)$ Å $c = 9.3217 (4)$ Å $\beta = 118.873^{\circ}$

L''empilement moléculaire se fait suivant l''axe cristallographique le plus court *b* comme déjà observé dans la plupart des benzènes hexasubstitués par des halogènes isotypes au dibromodurène.

La structure cristalline de ce composé à 293K présente un désordre réorientationnel qui se manifeste par des sauts de $2\pi/3$ de la molécule dans son plan moléculaire autour de l''axe C3 perpendiculaire à ce plan moyen et passant par son centre. Ce désordre est similaire à celui déjà observé dans le dichlorodurène (DCD) et le diiododurène (DID).

III.2.3.2. La structure cristalline de 1- halogéno-2,3,5,6-tétraméthylbenzènes (MHD)

• La structure du chlorodurène

La structure cristalline de 1-chlo-2,3,5,6-tétramethylbenzène ou chlorodurène C10 H13Cl a été résolue par les rayons X à température ambiante en 1964 **[49]** par Charbonneau et al qui ont montré qu'elle cristallise dans le système monoclinique sous forme d'aiguilles plates, allongées suivant l'axe b.

Les données cristallographiques de ce composé sont:

Le groupe spatial est: $P2_1/a$

$a = 15.89 \pm 0.03$ Å	$b = 5.80 \pm 0.02$ Å	$c = 11.17 \pm 0.03$ Å
<i>α</i> =90.0000°	β =109,63 ±0.16 °	γ=90.0000°
V=960 Å ³		

• La structure de bromodurène

L'étude diélectrique de Balcou et coll **[50, 51]** sur le bromodurène a montré, vers 37°C (310 K), la possibilité d'un changement de phase, avec obtention d'une phase à permittivité élevée.

Charbonneau a montré à partir de la diffraction des rayons X sur des poudres, que la structure du BD cristallise dans le système orthorhombique $(P2_12_12_1)$ au-dessous de 310 K et dans le système monoclinique $P2_1/a$) au-dessus de cette température.

Nous avons cependant repris l'étude cristallographique et spectroscopique à température ambiante du bromodurène (BD) et de l'iododurène (ID) et nous présenterons un calcul théorique basé sur la chimie quantique faisant appel à des techniques très récentes

Ce travail fait l'objet de cette thèse et sera présenté dans les chapitres quatre et cinque.

Etude structurale cristalline de produits aromatiques de type

(C₁₀ H₁₃ X): iododurène et bromodurène

Sommaire

IV.1.Introduction	49
IV.2.Détermination de la structure cristalline de l'iododurène et bromodurène à 293Kpar la diffraction des rayons X	50
IV.2.1.Détermination de la structure cristalline de l'iododurène à 293Kpar la diffraction des rayons X	50
IV.2.1.1.Préparation des monocristaux	50
IV.2.1.2.Collecte des intensités	50
IV.2.1.3.Détermination et affinement de la structure	52
IV.2.1.4. Description et discussion de la structure cristalline	53
IV.2.2. La spectroscopie optique infrarouge et Raman de l''iodurène $(C_{10} H_{13} I)$	64
IV.2.3.Détermination de la structure cristalline du bromodurène à 293Kpar la diffraction des rayons X	68
IV.2.3.1.Préparation des monocristaux	68
IV.2.3.2.Collecte des intensités	68
IV.2.3.3.Détermination et affinement de la structure	70
IV.2.3.4. Description et discussion de l'unité asymétrique	71
IV.2.4. La spectroscopie optique infrarouge et Raman du bromodurène $(C_{10} H_{13}Br)$	82
IV.3. Conclusion	85

IV.1. Introduction

La liaison halogène est une interaction non covalente qui est formée entre un atome halogène et un accepteur ou un donneur d'électrons. Parmi les différents types d'interactions intermoléculaires, la liaison halogène est l'une des plus directionnelles qui existent. Elle est aussi efficace que la liaison hydrogène pour guider l'assemblage moléculaire, ce qui est mis à profit dans les domaines de l'ingénierie cristalline et de la chimie supramoléculaire, car l'orientation des molécules à l'état solide peut se prédire raisonnablement.

Très récemment, en 2008, Pigge et col **[52]** ont utilisé les liaisons halogène pour construire des structures poreuses. Cette architecture est due aux interactions entre des amines, des hétérocycles azotés ou des groupements carbonyle et des molécules organiques halogénées.

La structure cristalline des produits benzéniques $C_{10}H_{13}X_1$ substitués par des méthyles et des halogènes (X=Cl,Br,I.....) appelés 1-halogéno-2,3,5,6-tétramethylbenzène ou halogénodurène a fait l''objet de plusieurs études cristallographiques par notre groupe du Laboratoire de Cristallographie de l'Université de Constantine 1 en collaboration avec une équipe dirigée par le professeur J. Meinnel de l'Université de Rennes 1 (France).

Parmi ces produits halogéno-méthyle-benzéne en cours d''étude par notre groupe et le groupe dirigé par le Pr. J.Meinnel de l'Université de Rennes 1 France, nous présentons une étude de la structure cristalline de 1-iodo -2, 3, 5, 6-tétraméthylbenzene ($C_{10}H_{13}$ I) et 1-bromo -2, 3, 5, 6-tétraméthylbenzene ($C_{10}H_{13}$ Br) aussi connu comme iododurène (ID) et bromodurène(BD)établie par la diffraction des rayons X à 293 K pour des molécules empilées dans un cristal. Nous aurons alors l''information au sujet des interactions entre le rotor méthyle, le squelette auquel il est lié et l''influence du champ cristallin sur la configuration du méthyle. La structure de ces molécules observée par les rayons X sera comparée à la conformation moléculaire trouvée par les calculs de la DFT présentés dans le dernier chapitre.

En parallèle à ce travail d'optimisation géométrique (DFT) et cristallographique (expérimental) de l'iododurène et dubromodurène, nous avons mené une étude spectroscopique IR et Raman que nous avons comparé aux résultats expérimentaux. Il est connu que les techniques de la DFT utilisant les fonctionnelles d'échange corrélation et les jeux de base disponibles conduisent à des prédictions de la conformation moléculaire

à partir de l'optimisation de la géométrie des longueurs et angles de liaison avec des précisions acceptables comparées aux résultats expérimentaux.

IV.2. Détermination de la structure cristalline de l'iododurène et bromodurène à 293K par la diffraction des rayons X

IV.2.1. Détermination de la structure cristalline de l'iododurène à 293K par la diffraction des rayons X

IV.2.1.1. Préparation des monocristaux

Le produit a été synthétisé par iodation directe de durène ($C_{10}H_{14}$). La réaction se fait à la température de 70° (343 K).

On introduit 14cm^3 de durène dans 200cm^3 d''acide acétique pur CH₃CO₂H et 36g d''iode pulvérisé dans un ballon tricol. On ajoute lentement goutte à goutte, une sol*ution contenant 22.5* cm³ de HNO₃, 18.5 cm³ de H₂SO₄ et 400 cm³ de CH₃CO₂H purs. La durée de la réaction est d''environ 3 heures. L''iododurène précipité par dilution de solution avec l''eau qui neutralise les acides. Le matériau brut obtenu est purifié par recristallisations successives dans une solution alcoolique. Les monocristaux obtenus sont très transparents et se subliment peu à la température ordinaire.

IV.2.1.2. Collecte des intensités

L''enregistrement des intensités des raies diffractées à partir des rayons X à la température ambiante par un monocristal de dimension 0.10 x 0.05 x 0.04 mm a été effectué au moyen d''un diffractomètre Nonius Kappa CCD utilisant un détecteur bidimensionnel CCD. Nous avons utilisé la longueur d''onde $\lambda_{MoK\alpha} = 0.71073$ Å et un monochromateur de graphite. Ces données sont traitées en utilisant les programmes d''analyses du Kappa CCD [53]. Une correction d''absorption de type semi empirique Multiscan [54] a été faite à partir du programme SORTAV (Blessing, 1995 [55]. Les données expérimentales cristallines sont résumées dans le (Tableau IV.1)

ChapitreIVEtude structurale cristalline de produits aromatiques de type (C10 H13 X):iododurène et bromodurène

Tableau IV.1 : Les données expérimentales pour la détermination de la structure cristalline

 d''iododurène à température ambiante.

Données cristallographiques				
Formule chimique	$C_{10}H_{13}I$			
Masse molaire	260.11			
Système cristallin	Orthorhombique			
Groupe d'éspace	P 2 ₁ 2 ₁ 2 ₁			
a(Å)	5.5099(3)			
b(Å)	11.8839(5)			
c(Å)	15.1704(6)			
Z	4			
$V(Å^3)$	993.34(8)			
Taille du cristal (mm)	0.10x0.05x0.04			
Densité calculée (Mg m ⁻³)	1.739			
Nombre de réflexions pour la détermination de la maille	8232			
Forme du cristal	Aiguille			
Couleur du cristal	Transparent			
F(000)	503.986			
$\mu \text{ mm}^{-1}$	3.16			
Collecte des don	nées			
Radiation utilisée	Rayons X			
Longueur d''onde MoKa((Å)	0.71073			
Monochromateur	Cristal de graphite			
Diffractomètre	Nonius Kappa CCD			
Méthode de collection de données	CCD			
Correction d"absorption	Multi-Scan (SADABS; Sheldrick, 1996)			
Nombre de réflexions mesurées	26027			
Nombre de réflexions indépendantes	2271			
$R_{int\%}$	0.047			
$\Theta_{min}(^{\circ})$	3.7			
$\Theta_{max}(^{\circ})$	27.5			
h	$-7 \rightarrow h \rightarrow 7$			

k	$-15 \rightarrow k \rightarrow 15$		
l	<i>-19→l→19</i>		
Données de l'affine	ement		
Méthode de détermination de la structure	Méthodes directes		
Affinement sur	F		
Nombre de réflexions utilisées	3272		
Nombre de paramètres affinés	101		
Critère sur les réflexions utilisées	I \geq 3 $\sigma_{(I)}$		
Traitement des hydrogènes	Positions idéales en « riding »		
Schéma de pondération utilisé	Polynôme de Chebychev avec 3 paramètres		
	(1.80, 0.29, 1.53)		
Facteur d ^{sc} affinement R%	3.5		
Facteur d''affinement pondéré Rw%	3.9		
S	1.04		
(Δ/ζ) max	0.001		
$\Delta \rho max(e \text{\AA}^{-3})$	0.84		
$\Delta \rho \min (e \text{\AA}^{-3})$	-0.71		
Résolution de la structure	SIR92(Cascarano et al. 1996)		
Affinement de la structure	CRYSTALS (Betteridge&al,2003)		
Représentation graphique	CAMERON (Watkin& al. 1996)[56]		

<u>ChapitreIV</u> Etude structurale cristalline de produits aromatiques de type (C_{10} H₁₃ X):

iododurène et bromodurène

IV.2.1.3. Détermination et affinement de la structure

La résolution de la structure de l''iododuène a été faite par les méthodes directes grâce au programme WINGX **[57]**, SIR92 (Cascarano et al. 1996) **[58]**.

Les affinements de la structure ont été faits avec les méthodes de moindres carrés à matrice carrée et ont été exécutés avec le programme CRYSTALS **[59]** et ont porté sur 101 paramètres. Ces derniers correspondent à 11 atomes (les atomes de carbone et de l''iode), chacun avec 3 coordonnées puis 6 termes de déplacement atomique et un facteur d''échelle. Après affinement du facteur d''échelle, plusieurs cycles d''affinement des coordonnées atomiques et des paramètres de déplacements atomiques isotropes, des 11 atomes de l''unité asymétrique sans les atomes d''hydrogènes, ont été entrepris et suivis

d'autres cycles d'affinement des positions atomiques et des paramètres de déplacements atomiques anisotropes.

Une fois toutes les positions des atomes non hydrogène affinées, on introduit dans l'affinement les coordonnées des atomes d'hydrogène. Ces derniers sont introduits dans leurs positions idéales en utilisant le programme hydro ou Hydrogens de CRYSTALS et sont entraînés au cours de leurs affinements par les atomes de carbone avec lesquels ils sont liés en ""riding"".

Le dernier cycle d'affinement des 11 paramètres de l'unité asymétrique(sans tenir compte des paramètres des déplacements isotropes des atomes d''hydrogènes et de leur positions atomiques) et de l''extinction secondaire Larson (1970) **[60]** avec 2036 réflexions ayant des intensités I >3 ζ (I) a conduit aux facteurs de reliabilité pondérés et non pondérés suivant: R_w = 3.9%, R= 3.5%.

Ainsi l''accord entre le modèle proposé et les données de diffraction est satisfaisant, et l''analyse d''une dernière synthèse de Fourier différence n''a pas révélé de résidus significatifs $(\Delta \rho_{min} = -0.71 \text{ e } \text{Å}^{-3} \text{ et } \Delta \rho_{max} = 0.84 \text{ e } \text{Å}^{-3}).$

IV.2.1.4. Description et discussion de la structure cristalline

La conformation moléculaire moyenne de symétrie $P2_12_12_1$ d'iododurène (ID) obtenue à partir de la diffraction des rayons X à 293 K est représentée sur la **(Figure IV-1)** où chacun des groupements méthyle présente une liaison C-H éclipsée dans le plan du cycle aromatique. Deux des quatre liaisons C-H sont orientées vers l'atome H₄₁et aucune liaison n'est orientée vers l''atome d''halogène.

Figure IV-1: Conformation moléculaire de l'ID à 293 K avec des ellipsoïdes de déplacements atomiques représentés à 50% de probabilité donnant les longueurs et les angles de liaison intramoléculaires

Figure IV-2: Représentation du motif de la maille de l'iododurène à 293 K.

La conformation est principalement caractérisée par une distorsion significative des angles endocycliques du cycle benzénique : 125. 0 (3)° en face de l"atome d"iode contre 117.4 (4)° en moyenne pour les angles en face des groupes méthyles. Les angles exocycliques sont: 117.5 (3)° et 117.6 (3)° pour C_{ar}-C_{ar}-I et 117.0° et 118.0° pour C_{ar}-C_{ar}-H₄₁ et on trouve que C₆-C₅-C₉= C₅-C₆-C₁₀= 121.2 (4) °, C₃-C₂-C₇= C₂-C₃-C₈= 121.3 (4) et C₁-C₆-C₁₀= C₁-C₂-C₇= 121.5 (4)°.

ChapitreIV Etude structurale cristalline de produits aromatiques de type (C₁₀ H₁₃ X): iododurène et bromodurène

La longueur de la liaison carbone-iode a été trouvée égale à 2.139(3) Å, la moyenne des distances carbone-carbone du noyau benzénique est de 1.400(6) Å, et la moyenne des distances carbone (méthyle)-carbone (benzène) est de 1.498(7) Å. Toutes ces valeurs correspondent aux valeurs habituellement trouvées dans la littérature (Figure IV-1) (Tableaux IV.2 et IV.3).

C ₁₀ H ₁₃ I					
Angles	Valeurs(°)	Angles	Valeurs(°)		
$I_1-C_1-C_2$	117.6 (3)	C ₅ -C ₆ -C ₁₀	121.2 (4)		
I ₁ -C ₁ -C ₆	117.5 (3)	C ₃ -C ₄ -H ₄₁	118.0		
$C_2-C_1-C_6$	125.0 (3)	C5-C4-H41	117.0		
C_1 - C_2 - C_3	117.2 (4)	C2-C7-H71	109.0		
C ₂ -C ₃ -C ₄	117.6 (4)	C2-C7-H72	109.0		
C ₃ -C ₄ -C ₅	125.4 (4)	C ₂ -C ₇ -H ₇₃	110.0		
C ₄ -C ₅ -C ₆	117.6 (4)	C ₃ -C ₈ -H ₈₁	111.0		
C ₁ -C ₆ -C ₅	117.3 (3)	C3-C8-H82	109.0		
C ₁ -C ₂ -C ₇	121.5 (4)	C ₃ -C ₈ -H ₈₃	110.0		
C ₃ -C ₂ -C ₇	121.3 (4)	C5-C9-H91	109.0		
C ₂ -C ₃ -C ₈	121.3 (4)	C5-C9-H92	109.0		
C ₄ -C ₃ -C ₈	121.1 (4)	C5-C9-H93	110.0		
C ₄ -C ₅ -C ₉	121.2 (4)	C ₆ -C ₁₀ -H ₁₀₁	111.0		
C ₆ -C ₅ -C ₉	121.2 (4)	C ₆ -C ₁₀ -H ₁₀₂	109.0		
C ₁ -C ₆ -C ₁₀	121.5(4)	C ₆ -C ₁₀ -H1 ₀₃	110.0		

Tableau IV.2: Angles de liaison en (°) de l'iododurène obtenus par la DRX à 293K

ChapitreIVEtude structurale cristalline de produits aromatiques de type ($C_{10}H_{13}X$):iododurène et bromodurène

C ₁₀ H ₁₃ I					
Longueurs	Valeurs(Å)	Longueurs	Valeurs(Å)		
I ₁ -C ₁	2.139 (3)	C ₇ -H ₇₁	0.960		
C ₁ -C ₂	1.397 (6)	C ₇ -H ₇₂	0.950		
C_1 - C_6	1.401 (5)	C ₇ -H ₇₃	0.960		
C ₂ -C ₃	1.416 (6)	C ₈ -H ₈₁	0.960		
C ₃ -C ₄	1.386 (7)	C ₈ -H ₈₂	0.950		
C ₄ -C ₅	1.392 (7)	C ₈ -H ₈₃	0.970		
C5-C6	1.410 (6)	C ₉ -H ₉₁	0.960		
C2-C ₇	1.517 (8)	C ₉ -H ₉₂	0.950		
C3-C8	1.488 (7)	С9-Н93	0.960		
C5-C9	1.487 (7)	C_{10} - H_{101}	0.970		
C ₆ -C ₁₀	1.500 (7)	C_{10} - H_{102}	0.950		
C ₄ -H ₄₁	0.940	C ₁₀ -H ₁₀₃	0.960		

Tableau IV.3:Longueurs de liaison en(Å) de l'iododurène obtenues par la DRX à 293K.

Nous avons calculé par affinement des moindres carrés le meilleur plan moyen passant à travers tous les atomes, les atomes d'hydrogène non compris, avec le sous-programme MOLAX de CRYSTALS**[59].**L''angle entre la normale à ce plan moléculaire est de 50.14° par rapport à l''axe *a*, 44.82° par rapport à l''axe *b* et 74.47° par rapport à l''axe *c*. Il apparait que l''atome de l''iode I est significativement hors du plan 0,100 (5) A° comparé aux dix atomes de C [écart maximal = 0,018 (6) A°]. Cet effet est couramment rencontré dans des composés benzéniques.

L''empilement des molécules se fait parallèlement entre elles suivant le plus court axe cristallographique *a* donc suivant la direction [100] (**Figure IV-3**).

Les figures **IV-4**et **IV-5** présentent l'empilement moléculaire de l'iododurène selon les directions [010] et [001]. La figure **IV-6 et** la figure **IV-7**donnent une vue selon le plan (100) et les plans : a) (011); b) (101); c) (110).

Figure IV-3: Empilement de la structure moléculaire de l'iododurène selon la direction [100] à 293K.

Figure IV-4: L'émpilement moléculaire dans l'iododurène selon la direction [010].

Figure IV-5: L'émpilement moléculaire de l''ID selon la direction [001].

Figure IV-6:Représentation de la structure cristalline de l'ID suivant le plan (100).

Figure IV-7:Structure cristalline de l"ID suivant les plans :a) (011) ;b) (101) et c) (110).

Dans le cristal, les molécules de l''iododurène s''empilent suivant l''axe *a*. Le long de cette direction, les molécules interagissent entre elles par des interactions de type $I_1 \cdots I_1$, $C_m \cdots I_1$, $C_m \cdots C_m$ et $C_m \cdots C_{ar}$ (Figure IV-8).

Figure IV-8: Vue des interactions $I_1 \cdots I_1$, $I_1 \cdots Cm$, $Cm \cdots Cm$ et $Cm \cdots Car$ (entre des molécules parallèles de couches différentes) dans la structure cristalline de $C_{10}H_{13}I$. (Codes de symétrie : i) x, y, z; ii) 1+x y, z. Dans l'empilement moléculaire inter-couches la plus courte distance de contact est **C8**... **C5 (3.729 Å)**.

Les distances intermoléculaires qui se situent dans des plans parallèles et juxtaposés se présentent comme suit : les liaisons halogènes C_{ar} -I... C_m =4,465 Å - 4,502 Å sont un peu plus longues que la somme des rayons de Van der Waals (VdW) (ri+ rc=3,68 Å) comparées C_{ar} - C_{ar} ...Cm= 3.729 Å - 3,786Å (3,55 Å (VdW)) (**Tableau IV.4**).Donc La liaison C_{ar} - C_{ar} ... C_m dictent la cohésion du cristal dans la direction [100].

La plus courte distance de contact entre des plans intermoléculaires selon la direction [100] est C₃-C₈··· C₅ (3,729 Å) (Figure IV-8).

Atome	$(r^{X}_{w}+r^{y}_{w})$	Distance d'interaction	Différences
Χ, Υ	(Å)	d (Å)	(Å)
	Dans l	a même couche	
I_1 - I_1	3,96	8,747	4,787
I_1 - I_1	3,96	7,606	3,646
I_1 - I_1	3,96	6,012	2,052
$C_{2}-I_{1}$	3,68	4,143	0,462
C ₃ - I ₁	3,68	4,043	0,363
C ₈ - I ₁	3,68	4,017	0,337
C ₉ -C ₁₀	3,4	3,899	0,499
C ₇ -C ₉	3,4	3,795	0,395
C ₁₀ -C ₉	3,4	3,783	0,383
C ₁₀ -C ₅	3,4	3,742	0,342
	Dans des	couches différentes	
I_1 - I_1	3,96	5,510	1,550
$I_1 - C_{10}$	3,68	4,465	0,785
C_7 - I_1	3,68	4,502	0,822
C ₃ -C ₉	3,4	3,786	0,386
$C_{2}-C_{10}$	3,4	3,757	0,357
C ₈ -C ₉	3,4	3,750	0,350
C ₈ -C ₅	3,4	3,729	0,392

Tableau IV.4: Distances des interactions intermoléculaires dans la structure cristalline de l''iododurène.

 r_w : Rayon de Van der Waals ; $r_w^C = 1.70 \text{ Å}, r_w^I = 1.98 \text{ Å}.$

Par ailleurs, à l'intérieur de chaque couche, la molécule centrale considérée comme « molécule sonde » est entourée de six molécules voisines plus proches (**Figure IV-9**).

Les distances de contact intermoléculaire les plus courtes au niveau d'un même plan moléculaire Car-Car...Hal (halogéné) se situent entre 4.017 et 4.143Å et correspondent aux distances $C_2 \cdots I_1$ (4,143Å), $C_3 \cdots I_1$ (4,043Å) et $C_8 \cdots I_1$ (4,017Å) (VdWrc+ r= 3,68 Å). Les plus courtes distances de contact au niveau d'une couche moléculaire sont du type Cm...Cm, se situent entre 3,742 Å et 3,795 Å et correspondent à C10····C9 (3,783Å), C7···C9(3,795Å) et C10····C5 (3,742Å) (VdWrc+ rc=3,55 Å) (Figure IV-9) (Tableau IV.4). La croissance du cristal au niveau des plans moléculaires (100) est dictée par la nature des forces de contact du

<u>ChapitreIV</u> Etude structurale cristalline de produits aromatiques de type (C₁₀ H₁₃ X): iododurène et bromodurène

type C_{ar} - C_{m} ... C_{m} , et expliquent la nature du monocristal en forme d''aiguilles. On notera la distance éloignée des deux atomes de l''iode (supérieure à 6 Å, ri+ ri= 3,96 Å).

Figure IV-9: Vue d''une couche moléculaire de l''iododurène projetée dans le plan (100) à 293K. L''empilement moléculaire dans la même couche est assuré par la distance C₈ – I₁ (4,017 Å).

Donc l''interaction de type C_{ar} - C_m C_{ar} joue un rôle important dans l''empilement cristallin de ce composé.

Les tableaux ci-dessous (IV.5, IV.6) regroupent les coordonnées atomiques fractionnaires avec les facteurs de déplacement atomiques équivalents moyens et taux d''occupations ainsi que les paramètres de déplacement anisotropes.

Atome	X	Y	Z	U _{iso}	Occupation
I ₁	0.9385 (1)	0.8045 (4)	0.2703 (3)	0.0686	1.0000
C ₁	0.9383 (7)	0.9098 (3)	0.1559 (2)	0.0428	1.0000
C_2	0.7711 (8)	0.9981 (4)	0.1533 (3)	0.0473	1.0000
C ₃	0.7637 (8)	1.0638 (3)	0.0755 (3)	0.0482	1.0000
C ₄	0.9270 (1)	1.0376 (4)	0.0091 (3)	0.0506	1.0000
C 5	1.0976 (8)	0.9513 (4)	0.0123 (2)	0.0462	1.0000
C ₆	1.1033 (7)	0.8838 (3)	0.0887 (3)	0.0423	1.0000
C ₇	0.5997 (1)	1.0208 (5)	0.2295 (4)	0.0709	1.0000
C ₈	0.5866 (1)	1.1574 (5)	0.0651 (4)	0.0676	1.0000
C9	1.2673 (1)	0.9310 (5)	-0.0622	0.0646	1.0000
C ₁₀	1.2821 (1)	0.7894 (5)	0.0980(3)	0.0597	1.0000
H_{41}	0.92110	1.08070	-0.04290	0.0610	1.0000

Tableau IV.5 : Coordonnées atomiques fractionnaires et paramètres de déplacement atomiques à 293K.

TableauIV.6: paramètres de déplacement anisotropes en $(Å^2)$.

Atome	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
I ₁	0.0831 (3)	0.0727 (3)	0.0500 (2)	0.0120(2)	-0.0036 (2)	-0.0082 (2)
C ₁	0.046 (2)	0.044 (2)	0.0387 (19)	0.0006(17)	-0.004 (2)	-0.006 (2)
C_2	0.047 (3)	0.044 (2)	0.051 (3)	-0.009(2)	0.000 (2)	-0.005 (2)
C ₃	0.046 (3)	0.040 (2)	0.059 (3)	-0.007(2)	-0.011 (2)	-0.004 (2)
C ₄	0.055 (3)	0.045 (2)	0.052 (3)	0.0031(19)	-0.011 (3)	-0.007 (3)
C 5	0.047 (3)	0.048 (2)	0.043 (2)	-0.0036(18)	-0.001 (2)	-0.010 (2)
C ₆	0.041 (3)	0.041 (2)	0.045 (2)	-0.0043(17)	-0.0062 (18)	-0.0034 (18)
C_7	0.070 (4)	0.071 (3)	0.072 (4)	-0.021(3)	0.013 (4)	0.000 (3)
C ₈	0.063 (4)	0.052 (3)	0.087 (4)	-0.005(3)	-0.019 (4)	0.008 (3)
C9	0.060 (4)	0.077 (4)	0.056 (3)	-0.011(3)	0.005 (3)	-0.009 (3)
C ₁₀	0.056 (3)	0.053 (3)	0.070 (4)	-0.008(3)	-0.006 (3)	0.011 (3)

<u>ChapitreIV</u> Etude structurale cristalline de produits aromatiques de type (C₁₀ H₁₃ X): iododurène et bromodurène

Le résultat montre que les facteurs de déplacement atomiques des atomes du cycle aromatique sont significativement faibles par rapport à ceux des atomes substituants avec des valeurs égales à $U_{eq} \approx 0.0489 \text{Å}^2$, et des valeurs égales à $U_{eq} \approx 0.0831$ pour l''iode. Les valeurs des facteurs de déplacement atomiques moyens des atomes du carbone méthyle sont nettement plus grandes comparées à celles des atomes du cycle aromatique.

L'affinement des occupations des groupements substitués d'atome de l'iode et des groupes méthyles n'a pas révélé un écart significatif de la multiplicité des sites de symétrie. Nous pouvons alors conclure qu'aucun désordre n'a pu être détecté dans l'iododurène à 293K **(Tableau IV.5)**.

Nous observons que les paramètres de déplacement atomiques anisotropes sont significativement différents pour chacun des substituants de même nature et que l''atome I₁ est fortement agité suivant la diagonale de l''ellipsoïde de $(U_{11}=0.0831(3)\text{Å}^2 U_{22}=0.0727 (3)\text{Å}^2$ et $U_{33}=0.0500 (2)\text{Å}^2$) (Tableau IV.6). Le méthyle C_{m8} présente une forte agitation thermique U₃₃= 0.087(4) Å² plus importante comparée aux autres valeurs diagonales de l''ellipsoïde thermique U₂₂= 0.052 (3) Å², U₁₁= 0.063 (4) Å². Les autres carbones méthyles présentent aussi une grande agitation thermique suivant la diagonale de l''ellipsoïde avec un paramètre de déplacement important suivant U₂₂ pour l''atome C_{m9}= 0.077(4) Å² et suivant l''axe U₃₃ pour l''atome C_{m10}= 0.070(4) Å².

Le terme d'agitation thermique déterminé représente l'action de l'ensemble des modes de vibrations dans le cristal qui était le nuage de densité électronique lié à chaque atome.

IV.2.2.La spectroscopie optique infrarouge et Raman de l'iodurène (C₁₀ H₁₃I)

Dans cette partie du travail, il sera présenté essentiellement les résultats expérimentaux relatifs à la spectroscopie IR et Raman de l''iododuréne. Ce travail sera repris dans le prochain chapitre où seront entrepris des calculs des modes normaux à partir de la mécanique quantique pour identifier et attribuer chacun des mouvements de la molécule.

Le spectre d''absorption infrarouge sur des échantillons de l''iododurène a été enregistré sur un spectromètre IR à transformée de Fourier de type Jasco(FT/IR-6300) au laboratoire de cristallographie à l''universitéConstantine1 (Figure IV-10) dans la région 500-3500 cm⁻¹. Chaque bande est caractérisée par sa valeur de v au maximum d''absorption.

Figure IV-10 : Spectromètre à transformée de Fourier de type Jasco(FT/IR-6300) utilisé dans ce travail (Laboratoire de Cristallographie, Université Constantine1, Algérie).

Le spectre Raman de ce composé a été obtenu avec un spectromètre de type Bruker Senterra à température ambiante (Figure IV-11).

Figure IV-11:Spectromètre Raman de type Bruker Senterra utilisé dans ce travail (laboratoire de cristallographie, université Constantine1, Algérie)

Les spectres obtenus sont reproduits en partie dans les **figures IV-12(a)** et **IV-12(b)**. Les données brutes collectées à partir des spectromètres sont analysées et traitées par le programme ORIGINE [61].

La spectroscopie optique (infrarouge et Raman) aide à mettre en évidence et identifier les divers types de mouvements de la molécule dans le cristal et des atomes individuellement dans la molécule. En effet, chaque type de mouvement est caractérisé par une fréquence propre et des propriétés de symétrie. C'est donc dans le but d'identifier les différents mouvements atomiques et moléculaires que nous avons réalisé des mesures d'absorption infrarouge et de diffusion Raman sur des monocristaux de l'iododurène.

Cette identification des différents modes normaux de la molécule sera détaillée dans le prochain chapitre.

iododurène et bromodurène

Figure IV-12:Illustration des spectres expérimentaux de l''ID: (a) spectre IR, (b) spectre Raman.

IV.2.3. Détermination de la structure cristalline du bromodurène à 293K par la diffraction des rayons X

IV.2.3.1. Préparation des monocristaux

Le composé 1-bromo -2, 3, 5, 6-tétraméthylbenzene ou bromodurène (BD) a été synthétisé au laboratoire de chimie dirigé par le professeur J.Meinnel de l''université de Renne1 France, à partir du durène par la méthode de Smith et Tohl **[62]**. Le produit obtenu a été purifié après plusieurs recristallisations successives, à partir d''une solution alcoolique, puis soumis à une série de cycles de fusion de zone jusqu''à l''obtention de cristaux parfaitement transparents sous forme d''aiguilles.

Ces aiguilles font plusieurs millimètres de longueur et ont une section de quelques centièmes de mm². L''examen des monocristaux au microscope polarisant et aux rayons X a révélé que les cristaux obtenus à partir de solutions sont généralement maclés et il a fallu en conséquence examiner un grand nombre de cristaux pour trouver des monocristaux vraiment uniques.

IV.2.3.2. Collecte des intensités

Les mesures de diffraction des rayons X sur monocristal ont été réalisées à T = 293K sur un diffractomètre à quatre cercles de type X Calibur du laboratoire de cristallographie de l''université Constantine1 en utilisant un détecteur bidimensionnel CCD[«] charge couple device [»] et un monochromateur de graphite. Une correction d''absorption de type semi empirique Multiscan a été faite à partir du programme SORTAV (Blessing, 1995) **[53].**

Les données expérimentales se rapportant au cristal ainsi que la collecte des données des intensités relatives aux facteurs de structure observés et les paramètres utilisés dans l''affinement sont résumées dans le (Tableau IV.7).

Tableau IV.7 : Les données expérimentales pour la détermination de la structure cristalline du bromodurène à température ambiante.

Données cristallographiques			
Formule chimique	C ₁₀ H ₁₃ Br		
Masse molaire	213.12		
Système cristallin	Orthorhombique		
Groupe d''espace	P 2 ₁ 2 ₁ 2 ₁		
a(Å)	5.4241(7)		
b(Å)	12.0361(12)		
$c(\text{\AA})$	14.6106 (18)		
Ζ	4		
$V(Å^3)$	953.85 (19)		
Taille du cristal (mm)	0.10x0.08x0.06		
Densité calculée (mg m ⁻³)	1.48		
Nombre de réflexions pour la détermination de la maille	495		
Forme du cristal	Aiguille		
Couleur du cristal	blanche		
F(000)	432		
$\mu \text{ mm}^{-1}$	4.25		
Collecte des don	nées		
Radiation utilisée	Rayons X		
Longueur d''onde MoKa((Å)	0.71073		
Monochromateur	Cristal de graphite		
Diffractomètre	X Calibur		
Méthode de collection de données	CCD		
Correction d ^{**} absorption	Multi-Scan (SADABS; Sheldrick, 1996)		
Nombre de réflexions mesurées	2772		
Nombre de réflexions indépendantes	1264		
R _{int %}	0.068		
$\Theta_{min}(^{\circ})$	3.7		
$\Theta_{max}(^{\circ})$	28.5		
69			

iododurène et bromodurène			
h	$-7 \rightarrow h \rightarrow 7$		
k	$-14 \rightarrow k \rightarrow 14$		
l	<i>-19→1→19</i>		
Données de l'affi	nement		
Méthode de détermination de la structure	Méthodes directes		
Affinement sur	F		
Nombre de réflexions utilisées	919		
Nombre de paramètres affinés	101		
Critère sur les réflexions utilisées	I \geq 3 $\sigma_{(I)}$		
Traitement des hydrogènes	Positions idéales en « riding »		
Schéma de pondération utilisé	Polynôme de Chebychev avec 3		
	paramètres (1.80, 0.25, 1.55)		
Facteur d''affinement R%	4.8		
Facteur d''affinement pondéré Rw%	5.9		
S	1.14		
(Δ/ζ) max	1.736		
$\Delta \rho max(e \text{\AA}^{-3})$	0.42		
$\Delta \rho min (e \text{\AA}^{-3})$	-0.29		
Résolution de la structure	SIR92(Cascarano et al. 1996)		
Affinement de la structure	CRYSTALS (Betteridge&al,2001)		
Représentation graphique	CAMERON (Watkin& al. 1996)[56]		

IV.2.3.3. Détermination et affinement de la structure

La structure cristalline du bromodurène a été résolue à partir des méthodes directes grâce au programme WINGX **[57]**, SIR92 (Cascarano et al. 1996) **[58]**, puis les affinements des facteurs de structure ont été menés par affinements des moindres carrés avec le programme CRYSTALS **[59]** et ont porté sur 101 paramètres, ces derniers correspondent à 11 atomes (les atomes de carbone et de brome), chacun avec 3 coordonnées, 1 (puis 6) paramètres de déplacements atomiques, un facteur d'échelle.

Nous avons utilisé une pondération polynomiale de Chebychev avec trois paramètres [63]. Parmi les 2772 réflexions mesurées, 919 réflexions observées dont les

intensités satisfont à I \geq 3 $\sigma_{(l)}$ ont été conservées pour les affinements et affectées d'un poids unitaire (w =1) au début de l'affinement et d'un poids w = 1/(1+w F₀) en fin d'affinement.

Après affinement du facteur d''échelle, plusieurs cycles d''affinement des coordonnées atomiques et des paramètres de déplacements atomiques isotropes et anisotropes des 11 atomes de l''unité asymétrique, sans les atomes d''hydrogènes, conduisent à R=4.8%, $R_W=5.9\%$.

Une fois toutes les positions des atomes non hydrogène affinées, on introduit dans l'affinement les coordonnées des atomes d'hydrogène. Ces derniers sont introduits dans leurs positions idéales en utilisant le programme hydro de CRYSTALS et sont entraînés au cours de leurs affinements par les atomes de carbone avec lesquels ils sont liés en ""riding"".

Un dernier cycle d'affinement des coordonnées atomiques, des paramètres de déplacement atomiques anisotropes, (sans tenir compte des paramètres des déplacements isotropes des atomes d'hydrogènes et de leur postions atomiques)et de l'extinction du paramètre de Larson (1970) **[60]** dans le calcul du facteur de structure a conduit aux résultats finaux rassemblés dans le (Tableau IV.6).

Ainsi l''accord entre le modèle proposé et les données de diffraction est satisfaisant, et l''analyse d''une dernière synthèse de Fourier différence n''a pas révélé de résidus significatifs $(\Delta \rho_{max} = 0.42 \text{ e } \text{Å}^{-3} \text{ et } \Delta \rho_{min} = -0.29 \text{ e } \text{Å}^{-3}).$

IV.2.3.4. Description et discussion de l'unité asymétrique

Le 1-bromo -2, 3, 5, 6-tétraméthylbenzene ($C_{10}H_{13}Br$) aussi connu comme bromodurène (BD) cristallise dans le système orthorhombique (groupe d'espace P2₁2₁2₁) avec 4 molécules par maille (**Figure IV-13**). A 293K, les paramètres de maille (a = 5.4241(7)Å, b =12,0361(12) Å, c = 14,6106 (18) Å, sont proches de ceux trouvés par Charbonneau et al [49] pour la structure cristalline déterminée également dans le système orthorhombique avec Z = 4.

La **figure IV-14** montre une vue de la molécule après affinement de la structure cristalline où chacun des groupements méthyle présente une liaison C-H éclipsée dans le plan du cycle aromatique. Deux des quatre liaisons C-H sont orientées vers l''atome H_{41} et aucune liaison n'ést orientée vers l''atome du brome.

Figure IV-13: Vue de la maille cristalline du bromodurène obtenue par la DRX à 293K.

Figure IV-14: Conformation moléculaire du bromodurène à 293 K avec des ellipsoïdes de déplacement atomique tracé à 50% de probabilité donnant les longueurs et les angles de liaison intramoléculaires

La longueur de la liaison Car – Br égale à 1.914(7) Å, la longueur des liaisons moyennes Car – Car du cycle aromatique est de l'ordre de 1. 388 (4) Å et la distance moyenne des liaisons Car – Cm est de 1.505(4) Å. Cette longueur de liaison C_{ar}-C_m est légèrement plus longue comparée à celles trouvées pour la structure déjà décrite C₁₀H₁₃I et correspondent aux valeurs habituellement admises (Figure IV-14).

ChapitreIVEtude structurale cristalline de produits aromatiques de type (C_{10} H₁₃ X):iododurène et bromodurène

Les angles endocycliques Car-Car-Car en face des méthyles ne sont pas équivalents, comme il est observé dans la structure moléculaire de l'iododuréne. Un écart de 3.1° est observé pour ces deux angles situés de part et d'autre de la liaison C_{ar}-Br. Pour une molécule présentant une symétrie hexagonale cet écart de 2.7° est retrouvé toujours pour les angles endocycliques C_{ar}-C_{ar}-C_{ar} mais cette fois de part et d'autre de la liaison C_{ar}-H. Les plans passant perpendiculairement au plan moyen du cycle aromatique définis par les atomes C₉, C₅, C₂ et C₅, C₂et C₇ fond un angle de 17.2°. Les liaisons C₁₀-C₆ et C₃-C₈fond un angle de 37.7°. La distorsion de la molécule par rapport à sa forme hexagonale trouve son explication dans ces grands écarts d'angle de 17.2 et 37.7° justifiant la non linéarité des liaisons (C₁₀-C₆ et C₃-C₈)et (C₉-C₅ et C₂-C₇) (Figure IV-14) (Tableaux IV.8 et IV.9). Parmi les quatre liaisons Cm-H généralement éclipsées dans le plan moyen de la molécule comme il est généralement trouvé dans la littérature dans des produits isotypes comme le chloroduréne et l'iododuréne, il est observé un écart de 10.28° pour l'angle de torsion de C₅-C₆-C₁₀-H₁₀₂ comparé aux autres angles dièdres C₃-C₂-C₇-H₇₂, C₄-C₅-C₉-H₉₂ et C₄-C₃-C₈-H₉₂ qui font respectivement 1.61, 1.76 et 0.81°.

C ₁₀ H ₁₃ Br				
Angles	Valeurs(°)	Angles	Valeurs(°)	
Br1-C1-C2 Br1-C1-C6	117 1 (6) 119.0 (6)	C5-C6-C10 C3-C4-H41	1193(8) 118.0	
$C_2-C_1-C_6$	123.9 (7)	C ₅ -C ₄ -H ₄₁	118.0	
C_1 - C_2 - C_3	115.6 (7)	C2-C7-H71	109.0	
C ₂ -C ₃ -C ₄	120.1 (8)	C2-C7-H72	110.0	
C ₃ -C ₄ -C ₅	124.3 (7)	C ₂ -C ₇ -H ₇₃	109.0	
C ₄ -C ₅ -C ₆	117.4 (8)	C ₃ -C ₈ -H ₈₁	109.0	
C_1 - C_6 - C_5	118.7 (7)	C ₃ -C ₈ -H ₈₂	110.0	
C_1 - C_2 - C_7	121.8 (8)	C ₃ -C ₈ -H ₈₃	111.0	
C ₃ -C ₂ -C ₇	122.6 (8)	C5-C9-H91	109.0	
C ₂ -C ₃ -C ₈	119.8 (9)	C5-C9-H92	110.0	
C ₄ -C ₃ -C ₈	120.0 (9)	C5-C9-H93	111.0	
C ₄ -C ₅ -C ₉	119.8 (8)	C ₆ -C ₁₀ -H ₁₀₁	111.0	
C ₆ -C ₅ -C ₉	122.7 (8)	C ₆ -C ₁₀ -H ₁₀₂	111.0	
C1-C6-C10	121.9(8)	C6-C10-H103	110.0	

C ₁₀ H ₁₃ Br				
Longueurs	Valeurs(Å)	Longueurs	Valeurs(Å)	
Br ₁ -C ₁	1.914(7)	C ₇ -H ₇₁	0.962	
C_1 - C_2	1.409(4)	C ₇ -H ₇₂	0.957	
C ₁ -C ₆	1.387(4)	C7-H73	0.958	
C ₂ -C ₃	1.407(4)	C ₈ -H ₈₁	0.957	
C ₃ -C ₄	1.349(4)	C ₈ -H ₈₂	0.961	
C ₄ -C ₅	1.392(4)	C ₈ -H ₈₃	0.958	
C ₅ -C ₆	1.385(4)	C ₉ -H ₉₁	0.958	
C2-C ₇	1.487(4)	C ₉ -H ₉₂	0.960	
C ₃ -C ₈	1.523(4)	C9-H93	0.954	
C5-C9	1.484(4)	C_{10} - H_{101}	0.961	
C ₆ -C ₁₀	1.526(4)	C_{10} - H_{102}	0.959	
C ₄ -H ₄₁	0.927	C_{10} - H_{103}	0.959	

Tableau IV.9:Longueurs de liaison en (Å) du bromodurène obtenus par la DRX à 293K

Les atomes de ce composé sont légèrement en dehors du plan moyen de la molécule.

Ce plan est décrit par l'équation :

3.64320 X + 7.16676 Y + 6.44049 Z - 10.648 = 0

X Y Z sont en Å les axes de référence étant a, b, c.

Les écarts des atomes à ce plan sont donnés dans le **tableau IV.10.**

Tableau IV.10: Distance en (Å) des atomes au plan moyen de la molécule du bromodurène

Atome	Distance (Å)
Br ₁	-0.070
C ₁	-0.012
C ₂	0.001
C ₃	0.009
C ₄	-0.011
C 5	-0.014
C ₆	0.008
C_7	0.020
C ₈	-0.012
C9	0.005
C ₁₀	0.006

<u>ChapitreIV</u> Etude structurale cristalline de produits aromatiques de type (C₁₀ H₁₃ X): iododurène et bromodurène

Nous avons calculé par affinement des moindres carrés le meilleur plan moyen passant à travers tous les atomes, les atomes d'hydrogène non compris, avec le sous-programme MOLAX de CRYSTALS **[59]**. L''angle entre la normale à ce plan moléculaire est de 47.45° par rapport à l''axe a, 72.85° par rapport à l''axe b et 24.42° par rapport à l''axe c.

L''empilement des molécules se fait parallèlement entre elles suivant le plus court axe cristallographique *a* donc suivant la direction [100] (**Figure IV-15**).

Les figures **IV-16** et **IV-17** présentent l'empilement moléculaire dans le bromodurène selon les directions [010] et [001], la figure **IV-18 et IV-19** donne une vue selon le plan (100) et les plans :e) (011);f) (101); g) (110).

Figure IV-15: Empilement de la structure moléculaire du bromodurène selon la direction [100] à 293K.

Figure IV-16: L'émpilement moléculaire dans le bromodurène selon la direction [010].

Figure IV-17: L'empilement moléculaire de bromodurène selon la direction [001].

Figure IV-18: Production de la structure du BD suivant le plan (100).

Figure IV-19: Production de la structure du BD suivant les plans :e) (011); f) (101) et g(110).

La structure du BD peut être décrite comme un empilement de couches moléculaires le long de l''axe *a*. A l''intérieur de chaque couche, les plus courtes distances intermoléculaires étant comme suit : **4.015**Å pour Br₁...C_{ar}, **3.878**Å pour Br₁...C_m(r_{Br}+ rc= 3,55Å (VdW)), **3.778** Å pour C_{ar}...C_m(rc+ rc= 3,4 Å(VdW)) (**Figure IV-20**).

La distance de contact minimale observée Cm...Cm est **3.712** Å (rc+rc=3,4 Å (VdW)) est l'origine de la cohésion du cristal au niveau des couches empilées le long de l'axe *a*.

La géométrie de l''interaction $Br_1 \cdots Br_1$ dans le bromodurène, est semblable à celle observée dans l''iododurène, cette distance est plus importante que la somme des rayons de Van der Waals ($r_{Br}= 1,85$ Å) (**TableauIV.11**).

Tableau IV.11: Distances des interactions intermoléculaires dans la structure cristalline du bromodurène.

Distance				
Atome	$(r^{x}_{w}+r^{y}_{w})$	d'interaction	Différences	
Х, Ү	(Å)	d (Å)	(Å)	
	Dan	s la même couche		
Br_1 - Br_1	3,7	7,473	3,773	
Br_1 - Br_1	3,7	6,082	2,382	
Br_1 - C_3	3,55	4,015	0,465	
Br_1 - C_8	3,55	3,878	0,328	
C ₅ -C ₁₀	3,4	3,778	0,378	
C9-C7	3,4	3,712	0,312	
Dans des couches différentes				
Br_1 - Br_1	3,7	5,424	1,724	
Br_1 - C_7	3,55	4,437	0,887	
C_{10} -Br ₁	3,55	4,239	0,689	
C ₉ -C ₃	3,4	3,74	0,34	
C_6-C_7	3,4	3,734	0,334	
$C_{10}-C_2$	3,4	3,732	0,332	

 r_w : Rayon de Van der Waals ; $r_w^C = 1.70 \text{ Å}, r_w^{Br} = 1.85 \text{ Å}.$

Figure IV-20: Vue d''une couche moléculaire du bromodurène projetée dans le plan (100) à293K. L''empilement moléculaire dans la même couche est assuré par la distance $C_9 \cdots C_7$ (3,712 Å, $r_c = 1,70$ Å).

Pour les molécules dans des couches différentes, les distances de contact intermoléculaires les plus courtes par rapport à des molécules dans la même couche sont significativement plus faibles pour les distances Br_1-Br_1 (5,424 Å, $r_{Br}+r_{Br}=3,70$ Å).Cette dernière distance est plus importante que la somme des rayons de Van der Waals (**Tableau IV.11**), légèrement plus courtes pour les distances $C_{ar}-C_m$ (3,737Å) et significativement augmentées pour Br_1-C_m (4,437 Å) (**Figure IV-21**). Il se trouve que la cohésion cristalline est assurée par les interactions entre un atome C_m du carbone methyle et un atome C_{ar} du cycle benzénique $C_{10} - C_2$ (3,732 Å). Cette distance est légèrement plus longue que la distance $C_9 - C_7$ (3,712 Å) qui se trouve à l'intérieur de chaque couche (**Figure IV-21**).Toutes ces distances sont en accord avec les interactions normales de Van der Waals.

Figure IV-21: Vue des interactions $Br_1 \cdots Br_1$, $Br_1 \cdots C_m$, $C_m \cdots C_m$ et $C_m \cdots C_{ar}$ (entre des molécules parallèles de couches différentes) dans la structure cristalline de C₁₀H₁₃Br. (Codes de symétrie : i) x, y, z; ii) 1+xy, z. l'empilement moléculaire dans des couches Différentes est assuré par la distance C₁₀ \cdots C₂ (3,732 Å, r_c = 1,70 Å).

Donc l''interaction de type $C_m \dots C_m$ dans la même couche joue un rôle important dans l''empilement cristallin de ce composé et dans l''iododurène, et l''interaction de type $C_m \dots C_{ar}$ dans des couches différentes joue un rôle important dans l''empilement cristallin.

Cette différence dans l'empilement moléculaire entre ces deux dérivés est importante et peut expliquer leur comportement différent en fonction de la température. En effet, le nombre de phases cristallines observées pour le BD est plus grand que le CD et l''ID.

Les coordonnées atomiques fractionnaires avec les facteurs de déplacement atomiques équivalents moyens et les taux d'occupation des atomes de la molécule sont données dans le (**Tableau IV.12**). Les atomes du cycle benzénique ainsi que les atomes de C_m et du Br voient leurs paramètres de déplacements atomiques équivalents moyens se stabiliser respectivement à 0.0502, 0.0771 et 0.0873Å². Les atomes de cycle benzénique présentent des paramètres de déplacements atomiques plus faibles que ceux des atomes substituants. L''analyse des paramètres de déplacement anisotropes (**Tableau IV.13**) montre une agitation thermique plus importante selon les axes de l''ellipsoïde U_{11} et U_{22} pour l''atome du brome qui sont respectivement de 0.1108(9) Å² et 0.0837(7) Å². Le carbone méthyle C_{m9} présente une forte agitation thermique U_{22} = 0.081(7)Å² plus importante comparée aux autres valeurs diagonales de l''ellipsoïde thermique U_{11} = 0.069(7)Å², U_{33} = 0.072(6) Å². Il est intéressant de noter que les atomes de carbone méthyle C_{m7} , C_{m8} et C_{m10} , présentent les agitations les plus importantes dans la même direction de l'ellipsoïde U_{33} avec des valeurs respectives de 0.087(6)Å², 0.111(8) Å² et 0.102(7) Å². Nous pouvons alors conclure qu''aucun désordre n''a pu être détecté dans le bromodurène à 293K.

Le terme d'agitation thermique déterminé représente l'action de l'ensemble des modes de vibrations dans le cristal qui étaient le nuage de densité électronique lié à chaque atome.

Tableau IV.12: Coordonnées ator	niques et fractionnaires e	et paramètres de	déplacements
atomiques du bromodurène à 293k	×.		

Atome	X	Y	Ζ.	Uiso	Occupation
Br1	0.9334(2)	0.3119 (1)	0.7672 (7)	0.0873	1.0000
C1	0.9466(2)	0.4074(7)	0.6626(5)	0.0463	1.0000
C2	0.7791(2)	0.4967(7)	0.6600(6)	0.0504	1.0000
C3	0.7895(2)	0.5634(7)	0.5811(6)	0.0539	1.0000
C4	0.9506(2)	0.5392(6)	0.5138(5)	0.0545	1.0000
C5	1.1173(2)	0.4515(7)	0.5167(5)	0.0499	1.0000
C6	1.1167(1)	0.3853(6)	0.5941(6)	0.0460	1.0000
C7	0.6052(2)	0.5190(8)	0.7365(7)	0.0792	1.0000
C8	0.6119 (2)	0.6604(7)	0.5703(7)	0.0790	1.0000
С9	1.2920(2)	0.4344(9)	0.4398(7)	0.0741	1.0000
C10	1.2962(2)	0.2880(8)	0.6005(7)	0.0762	1.0000
H41	0.9509(2)	0.5843(6)	0.4623(5)	0.0650	1.0000

ChapitreIVEtude structurale cristalline de produits aromatiques de type ($C_{10}H_{13}X$):iododurène et bromodurène

Atome	U11	U22	U 33	U23	U13	U12
Br1	0.1108(9)	0.0837(7)	0.0673(6)	0.0205(5)	-0.0128(6)	0.0205(5)
C1	0.038(4)	0.050(5)	0.051(4)	-0.005(3)	-0.008(5)	-0.005(3)
C2	0.039(5)	0.052(5)	0.061(5)	-0.018(4)	0.003(4)	-0.018(4)
C3	0.054(6)	0.033(5)	0.074(6)	-0.011(4)	-0.018(5)	-0.011(4)
C4	0.059(6)	0.047(5)	0.058(5)	0.002(4)	-0.014(5)	0.002(4)
C5	0.045(6)	0.046(5)	0.058(5)	-0.008(4)	-0.009(4)	-0.008(4)
C6	0.033(5)	0.034(4)	0.071(5)	-0.010(4)	-0.015(4)	-0.010(4)
C7	0.074(7)	0.077(6)	0.087(6)	-0.029(5)	0.003(7)	-0.029(5)
C8	0.074(8)	0.053(6)	0.111(8)	-0.015(5)	-0.021(6)	-0.015(5)
C9	0.069(7)	0.081(7)	0.072(6)	-0.013(6)	0.009(5)	-0.013(6)
C10	0.068(7)	0.059(6)	0.102(7)	-0.017(5)	-0.024(6)	-0.017(5)

Tableau IV.13: paramètres de déplacement anisotropes en (Å²).

IV.2.4.La spectroscopie optique infrarouge et Raman du bromodurène (C10 H13 Br)

Nous avons enregistré au laboratoire de cristallographie, université Constantinel le spectre IR du bromodurène dans la gamme (500 et 3500 cm⁻¹) grâce au spectromètre Jasco (FT/IR-6300). La région (400-4000 cm-1) sera particulièrement analysée dans ce travail, car c'est dans cette région qu'on trouve la plupart des modes de vibration interne des molécules organiques. Le spectre Raman de ce composé a été obtenu avec un spectromètre de type Bruker Senterra à température ambiante, ce qui a permis de repérer les bandes internes les plus intenses en IR et Raman.

Les spectres obtenus sont reproduits en partie dans les (figures IV-22-a et IV-22-b). Les données brutes collectées à partir des spectromètres sont analysées par le programme ORIGINE [61].

La spectroscopie optique (IR et Raman) doit permettre de mettre en évidence et de séparer les divers types de mouvement de la molécule dans la maille et des atomes individuels vibrant dans la molécule: chaque type de mouvement est en effet caractérisé par une fréquence propre et des propriétés de symétrie.

Figure IV-23: Illustration des spectres expérimentaux du D: (a) spectre IR, (b) spectre Raman.

L'attribution des différents mouvements moléculaires de monohalogénodurène (ID, BD) est faite en s'aidant des résultats des calculs obtenus à partir de la DFT (Chapitre V).

A partir des spectres expérimentaux nous avons retrouvé de manière générale les fréquences calculées avec des écarts de quelques cm⁻¹ qui seront détaillées dans le cinquième chapitre avec la fonctionnelle MPW1PW91et la base DGDZVP. Ces écarts sont dus à l'agitation thermique dont sont animés les atomes à la température ambiante qui sont les conditions dans lesquelles s'est déroulée notre manipulation.

IV.3.Conclusion

Ce chapitre s'inscrit dans le cadre de la détermination de la structure cristalline de produits aromatiques de type C_{10} H₁₃ X (X= Br,I) initiée au chapitre 3 à l'aide de la diffraction des rayons X à la température ambiante.

- ✓ L'expérience montre que le 1-iodo -2, 3, 5, 6-tétraméthylbenzene (C₁₀H₁₃I) aussi connu comme iododurène (ID) cristallise dans le même groupe d'espace que le 1-bromo -2, 3, 5, 6-tétraméthylbenzene (C10H13 Br) aussi connu comme bromodurène (BD) P2₁2₁2₁ du système orthorhombique avec quatre molécules par maille.
- ✓ Les groupements méthyles des molécules de la maille élémentaire de l'iododurène et du bromodurène, ont chacun une liaison C-H éclipsée dans le plan du cycle aromatique. Deux des quatre liaisons C-H sont orientées vers l'atome H₄₁et aucune liaison n'est orientée vers l'atome d'halogène (I ou Br).
- ✓ La structure plane des molécules constituant l'unité asymétrique de deux composés a été confirmée par la diffraction des rayons X comparée avec celles des produits iso types (produits benzéniques substitués par des halogènes et des méthyles) déjà trouvées dans la littérature.
- ✓ L'affinement des positions atomiques et des paramètres de déplacements atomiques anisotropes du cristal de l'iododurène conduisent à R= 3.5% et R_w= 3.9%.
- ✓ L'empilement des molécules de ce composé, se fait suivant l'axe cristallographique le plus courte a.

- ✓ L'angle entre la normale au plan moléculaire est de 50.14° par rapport à l'axe a,
 44.82° par rapport à l'axe b et 74.47° par rapport à l'axe c.
- ✓ Dans l'iododurène, l'interaction entre couches de molécules et plus importante que celle entre molécules d'une même couche.
- ✓ La cohésion du cristal est assurée par les forces d'interaction $C_m C_{ar}$ qui présentent les plus courtes distances de contact dans des couches différentes et dans l'empilement moléculaire.
- ✓ Pour le bromodurène, l'affinement des positions atomiques et des paramètres de déplacements atomiques anisotropes du cristal de BD conduisent à R= 4.8% et R_w= 5.9%.
- ✓ Les longueurs de liaison carbone-carbone du noyau benzénique sont légèrement plus courtes à celles trouvées pour la structure cristalline de l'iosodurène, et correspondent aux valeurs habituellement admises.
- ✓ L'empilement des molécules de ce composé, se fait suivant l'axe cristallographique le plus court a.
- ✓ L'angle entre la normale au plan moléculaire est de 47.45° par rapport à l'axe a,
 72.85° par rapport à l'axe b et 24.42° par rapport à l'axe c.
- ✓ Dans le bromodurène, l'interaction entre molécules d'une même couche et plus importante que celle entre différentes couches de molécules.
- ✓ La cohésion du cristal est assurée par les forces d'interaction C_m C_m qui présentent les plus courtes distances de contact dans une même couche et dans l'empilement moléculaire.
- ✓ Au cours de notre travail, nous avons utilisé la spectroscopie optique IR et Raman pour étudie
- ✓ r les modes de vibration interne de l'iododurène (ID) et du bromodurène (BD).
- ✓ A partir des spectres expérimentaux nous avons retrouvé de manière générale les fréquences calculées avec des écarts de quelques cm⁻¹ qui seront détaillées dans le cinquième chapitre avec la fonctionnelle MPW1PW91 et la base DGDZVP.

Sommaire

V.1. Introduction	88
V.2. Calcul de la conformation moléculaire du durène et quelques uns de ses dérivés par la théorie de la fonctionnelle de la densité (DFT)	89
V.3. Description des calculs effectués à partir de la DFT	96
V.3.1. Description de la conformation moléculaire du durène calculée avec les méthodes B3LYP/DGDZVP et MPW1PW91/DGDZVP	96
V.3.2. Description de la conformation moléculaire du chlorodurène obtenue à partir de la DFT (B3LYP/DGDZVP et MPW1PW91/DGDZVP)	98
V.3.3. Description de la conformation moléculaire du bromodurène obtenue à partir de la DFT (B3LYP/DGDZVP et MPW1PW91/DGDZVP)	100
V.3.4. Description de la conformation moléculaire de l'iododorène obtenue à partir de la DFT (B3LYP/DGDZVP et MPW1PW91/DGDZVP)	101
V.4. Comparaison des conformations moléculaires obtenues par la DFT (en symétrie C_{2v}) du BD et l''ID avec les résultats expérimentaux	106
V.5. Modes internes de vibration du monohalogènodurène calculés à partir de la DFT	110
V.5.1. Modes internes de vibration du bromodurène calculés à partir de la DFT	111
V.5.1.1. Attributions de quelques modes normaux du BD obtenus à partir du calcul de la DFT	120
V.5.2. Modes internes de vibration de l''iododurène calculés à partir de la DFT	123
V.6. Comportement de la stabilité moléculaire à partir de la rotation d'un méthyle	133
V.7. Conclusion.	137

V.1. Introduction

Il existe plusieurs méthodes de calculs de la structure électronique des solides. Celles-ci possèdent des avantages et des inconvénients, de différentes précisions et détails numériques (vitesse de calcul et mémoire de stockage d'informations) et elles sont basées sur différentes approximations.

Les nombreux travaux réalisés ces dernières années, montrent que les calculs basés sur la DFT donnent de bons résultats pour les états fondamentaux de divers systèmes, particulièrement les systèmes moléculaires complexes relativement gros, contenant plusieurs centaines d'électrons (systèmes métalliques, ioniques, organométalliques...) pour de nombreuses propriétés (structures moléculaires, fréquences de vibration, potentiels d'ionisation...).

Dans cette thèse, nous utiliserons les possibilités du programme GAUSSIAN 03 [64] et des calculs basés sur la théorie de la fonctionnelle de densité (DFT) pour déterminer les conformations probables adoptées par la molécule isolée des produits aromatiques de type C_{10} H₁₃X (X= Cl, Br, I) ou monohalogénodurène (MHD). Le programme permet également d'obtenir en plus du calcul d'optimisation de prédire les modes normaux de vibrations internes de ces composés.

Notre groupe s'est particulièrement intéressé à l'étude des spectres de vibration du groupement méthyles (Me), spécialement les modes de torsion des rotors (mouvement de rotation des méthyles) faiblement gênés qui sont fréquemment rencontrés dans les benzènes substitués.

Dans l'état solide, le changement de la conformation du méthyle observé dans des molécules hautement symétriques peut être dû au champ cristallin qui modifiera les spectres de torsion du méthyle. Par conséquent, les fréquences de modes de torsion indiqueraient simultanément la conformation du méthyle et son potentiel gêné. Aussi les modes de torsion des méthyles qui appartiennent aux domaines des basses fréquences (<200 cm⁻¹), leur couplage avec les autres vibrations moléculaires rajoutent des difficultés dans leurs investigations.

Dans nos calculs de chimie quantique nous avons utilisé deux fonctionnelles d'échange corrélation « MPW1PW91 [18] » et « B3LYP [19] » dans la chaîne de programme GAUSSIAN03 et des bases suffisamment étendues pour déterminer les conformations moléculaires de MHD. Nous avons effectué l'optimisation de la <u>Chapitre V Etude théorique (DFT) du durène et quelques uns de ses dérivés: CD, BD et ID</u> géométrie, puis calculé le spectre IR et Raman afin de confirmer l'absence de fréquence(s) imaginaire(s).

Les résultats de calcul théorique obtenus à partir de la chimie quantique seront comparés aux résultats expérimentaux. Constamment en développement, ces composés ont fait et font l'objet de nombreuses études expérimentales et théoriques.

V.2. Calcul de la conformation moléculaire du durène et quelques uns de ses dérivés par la théorie de la fonctionnelle de la densité (DFT)

Nous avons réalisé une série de calculs en méthode DFT pour déterminer les conformations moléculaires des composés organiques de type C_{10} H₁₄ et C_{10} H₁₃ X (X= I, Br, Cl) ou 1-halogéno-2,3,5,6-tétraméthylebenzene . L''ensemble des calculs a été réalisé à l''aide du programme Gaussian 03 en méthode DFT avec deux fonctionnelles d''échange corrélation « B3LYP » et « MPW1PW91 » et la base DGDZVP, qui peut conduire à des prédictions très précises pour l''optimisation géométrique des angles et des longueurs de liaisons. Les structures de départ ont été construites théoriquement grâce au programme GaussView [65].

Les calculs nous ont permis de trouver des conformations de symétrie D_{2h} , C_s , C_{2h} et C_{2v} pour le durène et des conformations de symétrie C_s et C_{2v} pour le (CD), le bromodurène (BD) et l'iododurène (ID) avec des énergies de formation minimales voisines (**Tableaux V.1, V.2, V.3 et V.4**).

Tableau V.1: Energies minimales de formation obtenues à partir des calculs de la DFT avec les fonctionnelles MPW1PW91 et B3LYP correspondant aux différentes géométries moléculaires de durène.

Composé Type de calcul Méthode de calcul Jeu de base	Durène (C10 H14) OPT MPW1PW91 DGDZVP				
	Figure. I	Figure. II	Figure. III	Figure. IV	Figure.V
E(mPW+HF-PW91)					
a.u.	-389.44151945	-389.43983078	-389.43808247	-389.43808175	-389.43340702
Freq imaginaire	0	0	0	0	0
Moment dipolaire					
Debye	0.0	0.0696	0.0	0.1375	0.0
Symétrie	D_{2h}	Cs	C_{2h}	C_{2V}	$\mathbf{C}_{2\mathbf{V}}$
Méthode de calcul Jeu de base			B3LYP DGDZVP		
	Figure. I	Figure. II	Figure. III	Figure. IV	Figure.V
E(RB+HF-LYP)					
a.u.	-389.54614049	-389.54441062	-389.54262193	-389.54262010	-389.53807789
Freq imaginaire	0	0	0	0	0
Moment dipolaire					
Debye	0.0	0.0708	0.0	0.1406	0.0
Symétrie	D_{2h}	Cs	C_{2h}	C_{2V}	$\mathbf{C}_{2\mathrm{V}}$

Tableau V.2: Energies minimales de formation obtenues à partir des calculs de la DFT avec les fonctionnelles MPW1PW91 et B3LYP correspondant aux différentes géométries moléculaires de chlorodurène (CD).

Composé	Chlorodurène (C ₁₀ H ₁₃ Cl)				
Type de calcul	Optimisation				
Méthode de calcul	MPW1PW91				
Jeu de Base	DGDZVP				
	Figure. I	Figure. II	Figure. III	Figure. IV	Figure. V
E(mPW+HF-PW91)	8	8	9	8	8
a.u.	-849.00860323	-849.00805320	-849.00732225	-849.00594493	-849.00586057
Freq imaginaire	0	0	0	0	0
Moment dipolaire					
Debye	1.6987	1.7716	1.8464	1.8457	1.7755
Symétrie	C _{2V} Figure. VI	C _s Figure. VII	C _{2V} Figure. VIII	C _s Figure. IX	C _s Figure. X
E(mPW+HF-PW91)	8	8	8	8	8
a.u.	-849.00527769	-849.00517900	-849.00307004	-849.00298097	-849.00296341
Freq imaginaire	0	0	0	0	0
Moment dipolaire					
Debye	1.8520	1.9196	1.9264	1.8531	1.9962
Symétrie	C_{S}	C_8	C_8	C_{2V}	C_{2V}
Méthode de calcul			B3LYP		
Jeu de base			DGDZVP		
	Figure. I	Figure. II	Figure. III	Figure. IV	Figure.V
E(RB+HF-LYP)					
a.u.	-849.10647388	-849.10599536	-849.10536186	-849.10383067	-849.10377902
Freq imaginaire	0	0	0	0	0
Moment dipolaire					
Debye	1.7284	1.8015	1.8732	1.8773	1.8098
Symétrie	C _{2V} Figure.VI	C _s Figure.VII	C _{2V} Figure.VIII	C _s Figure. IX	C _s Figure.X
E(RB+HF-LYP)					
a.u.	-849.10327546	-849.10316698	-849.10101222	-849.10094792	-849.10090064
Freq imaginaire	0	0	0	0	0
Moment dipolaire					
Debye	1.8848	1.9529	1.9606	1.8893	2.0263
Symétrie	C_{S}	C_{S}	C_{S}	C_{2V}	C_{2V}

Tableau V.3: Energies minimales de formation obtenues à partir des calculs de la DFT avec les fonctionnelles MPW1PW91 et B3LYP correspondant aux différentes géométries moléculaires de bromodurène (BD).

Composé		Bromod	urène (C ₁₀ H ₁₃ Br)		
Type de calcul	Optimisation				
Méthode de calcul			MPW1PW91		
Jeu de Base			DGDZVP		
	Figure. I	Figure. II	Figure. III	Figure. IV	Figure. V
E(mPW+HF-PW91)					
a.u.	-2962.68411415	-2962.68342222	-2962.68256931	-2962.68127432	-2962.68126272
Freq imaginaire	0	0	0	0	0
Moment dipolaire					
Debye	1.7895	1.8670	1.9483	1.9429	1.8684
Symétrie	C_{2V}	C_{S}	C_{2V}	Cs	C_{S}
	Figure. VI	Figure. VII	Figure. VIII	Figure. IX	Figure. X
E(mPW+HF-PW91)					
a.u.	-2962.68052737	-2962.68037108	-2962.67827290	-2962.67826938	-2962.67808502
Freq imaginaire	0	0	0	0	0
Moment dipolaire					
Debve	1.9513	2.0257	2.0282	1.9501	2.1017
Svmétrie	C_8	C_8	C_8	C_{2V}	C_{2V}
Méthode de calcul			B3LYP		
Jeu de base			DGDZVP		
	Figure. I	Figure. II	Figure. III	Figure. IV	Figure.V
E(RB+HF-LYP)					
a.u.	-2962.63019249	-2962.62958985	-2962.62885705	-2962.62737633	-2962.62738161
Freq imaginaire	0	0	0	0	0
Moment dipolaire					
Debye	1.8327	1.9087	1.9886	1.9861	1.9954
Symétrie	C_{2V}	Cs	C_{2V}	Cs	Cs
	Figure.VI	Figure.VII	Figure.VIII	Figure. IX	Figure.X
E(RB+HF-LYP)					
a.u.	-2962.62674849	-2962.62659974	-2962.62442935	-2962.62443153	-2962.62425880
Freq imaginaire	0	0	0	0	0
Moment dipolaire					
Debye	1.9151	2.0675	2.0739	1.9984	2.1479
Symétrie	C_{S}	C_{S}	Cs	C_{2V}	C_{2V}

Tableau V.4: Energies minimales de formation obtenues à partir des calculs de la DFT avec les fonctionnelles MPW1PW91 et B3LYP correspondant aux différentes géométries moléculaires de l'iododurène (ID).

Composé	Iododurène (C ₁₀ H ₁₃ I)				
Type de calcul Méthode de calcul			Optimisation MPW1PW91		
Jeu de Base			DGDZVP		
	Figure. I	Figure. II	Figure. III	Figure. IV	Figure. V
E(mPW+HF-PW91) a.u.	-7309.12565669	-7309.12487653	-7309.12386893	-7309.12259623	-7309.12263026
Freq imaginaire	0	0	0	0	0
Moment dipolaire					
Debye	1.9580	1.7716	1.8464	1.8457	1.8520
Symétrie	C_{2V}	C_{S}	C_{2V}	C_{S}	Cs
	Figure. VI	Figure. VII	Figure. VIII	Figure. IX	Figure. X
E(mPW+HF-PW91)					
a.u.	-7309.12182112	-7309.12160620	-7309.11946925	-7309.11944454	-7309.1191828
Freq imaginaire	0	0	0	0	0
Moment dipolaire Debve	1.8467	1.8534	1.8474	1.8455	1.8533
Symétrie	Cs	C_{S}	C_{2V}	C_{S}	C_{2V}
Méthode de calcul			B3LYP		
Jeu de base			DGDZVP		
	Figure. I	Figure. II	Figure. III	Figure. IV	Figure.V
E(RB+HF-LYP)					
a.u.	-7308.79828073	-7308.79762054	-7308.79676774	-7308.79525956	-7308.79528416
Freq imaginaire	0	0	0	0	0
Moment dipolaire		4 004 =	4.0=00	4.0==0	4 0000
Debye	1.7284	1.8015	1.8732	1.8773	1.8098
Symetrie	C _{2V} Figure.VI	C _s Figure.VII	C _{2V} Figure.VIII	C _s Figure. IX	C _s Figure.X
E(RB+HF-LYP)					
a.u.	-7308.79460206	-7308.79441267	-7308.79217063	-7308.79218316	-7308.79191502
Freq imaginaire	0	0	0	0	0
Moment dipolaire Debye	2.1250	1.9529	1.9606	2.0263	1.8893
Symétrie	Cs	Cs	C_{2V}	Cs	C _{2V}

La **figure V-1**, représente les différentes conformations moléculaires données par les deux fonctionnelles et le jeu de base DGDZVP pour la molécule isolée du durène et quelques uns de ces dérivés : le chlorodurène, le bromodurène et l'iododurène.

Figure V-1: Les différents conformations moléculaires possibles du :a) durène ;b) chlorodurène ; c) bromodurène ; d) iododurène obtenues à partir de la DFT (B3LYP/DGDZVP; MPW1PW91/DGDZVP).

Les calculs ont confirmé que la conformation moléculaire de symétrie D_{2h} (Figure V -1(a)) obtenue à partir de la fonctionnelle B3LYP/ DGDZVP est la forme la plus stable de cette molécule avec une énergie de conformation égale -389.54614049 a.u alors que calculée à partir de la fonctionnelle MPW1PW91/ DGDZVP elle a une énergie minimale de -389.44151945 a.u (TableauV.1).

Pour les monohalogénodurènes ou 1-halogéno-2,3,5,6-tétraméthylebenzene (CD,BD, ID), on trouve que la conformation moléculaire du chlorodurène (CD) présente une symétrie C_{2v} (Figure V-1(b)) obtenue à partir de deux fonctionnelles B3LYP et MPW1PW91 et la base DGDZVP correspond respectivement à une énergie minimale -849.10647388 a.u et -849.00860323 a.u (TableauV.2). La conformation moléculaire du BD et ID présente la même symétrie C_{2v} (Figure V-1(c)) et (Figure V-1(d)) et correspond à une énergie minimale -2962.68411415 a.u et -7309.12565669 u.a respectivement calculées avec la méthode MPW1PW91/DGDZVP et elle a une énergie minimale -2962.63019249 a.u et -7308.79828073 respectivement a.u obtenues par B3LYP/DGDZVP (Tableaux V.3 et V.4).

V.3. Description des calculs effectués à partir de la DFT

V.3.1. Description de la conformation moléculaire du durène calculée avec les méthodes B3LYP/DGDZVP et MPW1PW91/DGDZVP

Comme déjà mentionné dans le paragraphe précédent, la géométrie du durène $(C_{10}H_{14})$ calculée par les deux fonctionnelles B3LYP et MPW1PW91 et le jeu de base DGDZVP correspond à la symétrie D_{2h} avec une liaison C-H éclipsée dans le plan moyen de la molécule pour chaque groupe méthyle (Figure V-1(a)). La molécule de durène $(C_{10} H_{14})$ avec les distances et les angles interatomiques est illustrée dans la figure V-2 et la figure V-3. Le groupe D_{2h} contient l'identité, un axe de rotation d'ordre 2, 2 axes d'ordre 2 et un miroir ζ_h .

Figure V-2: Représentation de la conformation la plus stable du durène de symétrie D_{2h} calculé par la DFT (B3LYP/DGDZVP).

Figure V- 3: Représentation de la conformation la plus stable du durène de symétrie D_{2h} calculé par la DFT (MPW1PW91/DGDZVP).

Nous observons le bon agrément de calcul entre les deux méthodes bien que les longueurs de liaison de la B3LYP soient systématiquement légèrement plus grandes que celles obtenues par la méthode MPW1PW91. En effet le périmètre 8.39 Å du cycle aromatique calculé à partir de la fonctionnelle MPW1PW91 est légèrement plus court de 0.03 Å par rapport à celui trouvé par la B3LYP (Figures V-2 et V-3). Dans le groupe méthyle, il est trouvé une petite mais significative différence entre les longueurs de liaison C-H éclipsées et déclinées, C-H_{écl} =1.094 Å dans la B3LYP et 1.091 Å dans la MPW1PW91 et C-H_{décl} et égale à 1.097 Å dans la B3LYP, 1.095 Å pour la fonctionnelle MPW1PW91.

Aussi les résultats de calcul obtenus à partir des deux fonctionnelles prouvent que le plus grand angle endocyclique en face du carbone lié à l'atome de l'hydrogène est 122.95° dans la B3LYP et 123.36° dans la MPW1PW91.Un accroissement de l'angle C_5 - C_6 - C_{10} de 121.18° à 122.70° compensé par la diminution de l'angle adjacent C_1 - C_6 - C_{10} de 120.30° à 118.94°.

V.3.2. Description de la conformation moléculaire du chlorodurène obtenue à partir de la DFT (B3LYP/DGDZVP et MPW1PW91/DGDZVP)

Figure V-4 : Conformation moléculaire du chlorodurène (symétrie C_{2v}) obtenue à partir des calculs de la DFT (B3LYP/DGDZVP).

Figure V-5 : Conformation moléculaire du chlorodurène (symétrie C_{2v}) obtenue à partir des calculs de la DFT (MPW1PW91/DGDZVP).

Dans les tableaux V.5 et V.6 sont rassemblés les principaux résultats obtenus par la méthode de la théorie de la fonctionnelle de la densité (DFT) avec deux fonctionnelles MPW1PW91 et B3LYP et la base DGDZVP. La conformation moléculaire obtenue

présente une symétrie C_{2v} où chacun des groupements méthyle présente une liaison C-H éclipsée dans le plan du cycle aromatique. Deux des quatre liaisons C-H contenues dans le plan moyen de la molécule sont orientées vers l'atome d'hydrogène (Figures V-4 et V-5). Le groupe C_{2v} est un sous groupe du groupe D_{2h} est contient:

- L'identité E.
- Un axe de rotation d'ordre 2 C₂ (180° autour de l'axe C₂ ne change pas la molécule axe C₂ =axe z).
- Réflexion par rapport au plan ζv (plan moléculaire ou encore ζ_{zy}) et
- ζ'_v (plan perpendiculaire au plan moléculaire passant par l'axe C₂ ou encore ζ_{zx}).

Les résultats de calcul prouvent que les longueurs de liaison correspondant à la conformation moléculaire du CD calculées avec la méthode B3LYP/ DGDZVP sont légèrement plus longues par rapport à celles trouvées par la fonctionnelle MPW1PW91 et la même base DGDZVP. Cette différence dans les longueurs de liaison est de 0.63% pour le cycle aromatique est de 0.95 % pour la liaison C_{ar} - C_m des groupements méthyles. Les plus courtes longueurs de liaison C_{ar} - C_{ar} du cycle aromatique sont adjacentes à la liaison C_{ar} - H_{41} et correspondent à C_3 - C_4 = C_4 - C_5 = 1.400 Å pour la B3LYP mais elles sont légèrement courtes pour la MPW1PW91avec C_3 - C_4 = C_4 - C_5 = 1.394 Å (**Tableau V.5**).

Dans le groupe méthyle, il est trouvé une petite mais significative différence entre les longueurs de liaison C-H éclipsées, C_8 - H_{82} = C_9 - H_{92} =1.093Å et C_7 - H_{72} = C_{10} - H_{102} = 1.090 Å dans la B3LYP et égales à 1.091 et 1.089 Å respectivement dans la MPW1PW91.

Nous observons que les angles de liaison calculés avec la méthode B3LYP/ DGDZVP sont similaires à celle trouvé par la fonctionnelle MPW1PW91 et la base DGDZVP.

Les plus grands angles exo-cycliques $C_3-C_2-C_7$ ont les valeurs 122.04°dans la B3LYP, 122.10° pour la fonctionnelle MPW1PW91 et $C_2-C_3-C_8=$ 121.81° et 121.65° respectivement et ils sont situés du même côté de la liaison éclipsée C_7 -H₇₂ et C_{10} -H₁₀₂.

Pour les angles endocycliques, on trouve que l'angle C_5 - C_6 - C_1 (117.15°) obtenu par la B3LYP est légèrement plus petit que celui trouvé par la MPW1PW91 (117.20°), les autres angles sont légèrement plus grands (**Tableau V.6**).

La conformation du chlorodurène, proche de la symétrie C_{2V} obtenue à partir de la fonctionnelle B3LYP et le jeu de base DGDZVP correspond à l'énergie de formation la plus faible pour la conformation la plus stable.

V.3.3. Description de la conformation moléculaire du bromodurène obtenue à partir de la DFT (B3LYP/DGDZVP et MPW1PW91/DGDZVP)

Les géométries les plus stables pour la molécule du bromodurène (C_{10} H₁₃ Br) calculées avec les méthodes B3LYP et MPW1PW91 confirment la planéité de la molécule généralement trouvée dans des produits iso-types de benzène substitué par des halogènes et des méthyles et correspondent aux énergies minimales E(B3LYP) = -2962.63019249 a.u et E(MPW1PW91)= - 2962.68411415 a.u respectivement. Dans les **Figures V- 6 (a)** et **V- 6 (b)** sont illustrées les deux conformations moléculaires du BD obtenues à partir des deux fonctionnelles.

Figure V- 6: Conformation moléculaire du bromodurène (symétrie C_{2v}) obtenue à partir de calcul de la DFT : a) B3LYP/DGDZVP; b) MPW1PW91/DGDZVP.

Les valeurs moyennes des longueurs de liaison C_{ar} - C_{ar} et C_{ar} - C_m sont respectivement de 1.405 Å et 1.515 Å pour la conformation obtenue par la B3LYP.

Ces mêmes valeurs sont légèrement supérieures à celles trouvées pour la conformation obtenue par la MPW1PW91 (1.400 Å et 1.506Å) (Tableau V.5).

Les valeurs des longueurs de liaison C_3 - C_8 = C_5 - C_9 sont de 1.516 (Å), elles sont plus longues que C_2 - C_7 et C_{10} - C_6 (1.513 (Å)) (B3LYP/DGDZVP). Ces distances sont similaires à celles trouvées pour la conformation moléculaire du chlorodurène calculées par la même méthode.

On observe un léger écart dans les valeurs des angles endocycliques et exocycliques du cycle benzénique pour un hexagone régulier (Figure V-6 (a) et Figure V-6 (b)) pour chacune des deux conformations. Le plus grand angle endocyclique est 124.77° en face du carbone lié à l"atome du brome pour la B3LYP et 124.67° pour la MPW1PW91. Dans chacune des deux conformations sont calculés des angles C_{ar} - C_{ar} en face des méthyles très voisins avec un écart de l"ordre de 2° (Tableau V.6). Le plus grand angle exo-cyclique C_2 - C_3 - C_8 = 121.85° autour de la liaison C_3 - C_8 dans la B3LYP et C_2 - C_3 - C_8 = 121.71° autour de la même liaison C_3 - C_8 dans la MPW1PW91 (Figure V-6).

La stabilité de la conformation du BD obtenue à partir de la fonctionnelle MPW1PW91 et la base DGDZVP correspond à la plus basse énergie de formation. En conséquence, le calcul des modes normaux a été entrepris à partir de cette fonctionnelle après optimisation de la géométrie la plus stable du bromodurène.

Dans la suite de notre travail, nous prenons en compte les résultats de calcul de la fonctionnelle MPW1PW91/DGDZVP dans notre comparaison avec les résultats expérimentaux cristallographiques et spectroscopiques.

V.3.4. Description de la conformation moléculaire de l'iododorène obtenue à partir de la DFT (B3LYP/DGDZVP et MPW1PW91/DGDZVP)

La conformation moléculaire de l'iododuène calculée à partir de deux fonctionnelles B3LYP et MPW1PW91 et le jeu de base DGDZVP avec les distances et les angles interatomiques est illustrée dans la **figure V-7(c)** et la **figure V-7(d)**. Les paramètres géométriques trouvés par nos analyses des résultats de calcul sont donnés dans les tableaux **V.6** et **V.7**.

Figure V-7: Conformation moléculaire de l'iododurène (symétrie C_{2v}) obtenue à partir de calcul de la DFT : c) B3LYP/ DGDZVP; d) MPW1PW91/ DGDZVP

Les résultats de calcul obtenus à partir des deux fonctionnelles prouvent que le périmètre du cycle aromatique obtenu à partir de la fonctionnelle MPW1PW91 est 8.402 Å et est légèrement plus petit que celui trouvé par la B3LYP 8.436 Å (Figure V-7).

Les valeurs moyennes des longueurs de liaison $C_{ar}-C_{ar}$ et $C_{ar}-C_{m}$ sont respectivement de 1.406Å et 1.516 Å pour la conformation obtenue par la B3LYP. Ces mêmes valeurs sont légèrement supérieures à celles trouvées pour la conformation obtenue par la MPW1PW91 (1.400 Å et 1.506Å) (**Tableau V.5**), la longueur de liaison C_1 -I₁= 2.133 Å obtenue par la MPW1PW91 est légèrement plus courte que celle trouvée par la B3LYP (C_1 -I₁= 2.159 Å. Ces valeurs sont très proches des celles prévues dans la littérature.
Les deux plus longues liaisons $C_{ar}-C_{ar}$ pour chacune des deux conformations correspondent aux liaisons quiénales $C_2-C_3 = C_5-C_6$ et sont égales à 1.412 Å dans la B3LYP et 1.406 Å dans la MPW1PW91.

Dans le groupe méthyle, il est trouvé une petite différence entre les longueurs de liaison C-H éclipsées, C_8 - H_{82} = C_9 - H_{92} = 1.093 Å et C_2 - H_{72} = C_{10} - H_{102} = 1.090 Å dans la B3LYP et sont égales à 1.091 et 1.088 Å respectivement dans la MPW1PW91. Ces mêmes écarts sont constatés dans les résultats d'optimisation de la conformation moléculaires du chlorodurène (CD) et bromodurène (BD). Elles sont légèrement plus longues que celles trouvées dans la conformation du durène.

Aussi les résultats de calcul obtenus à partir des deux fonctionnelles prouvent que le plus grand angle endocyclique en face du carbone lié à l'atome d''iode est 124.21° dans la B3LYP et 124.22° dans la MPW1PW91. Un accroissement des angles adjacents C₂-C₃-C₈ = C₅-C₆-C₁₀ de 120.73° à 120.93° compensé par la diminution des angles C₂-C₃- C₈ = C₆-C₅- C₉ de 122.00° à 121.86° (Figure V-7) (Tableau V.6).

Dans la suite de ce travail nous reprenons ce calcul de la conformation moléculaire de l'iododurène avec la fonctionnelle MPW1PW91 et le jeu de base DGDZVP, pour évaluer le modèle de calcul précédent, ensuite faire une comparaison entre les résultats obtenus à partir de ces deux fonctionnelles.

Tableau V.5: Longueurs de liaison en (Å) calculées pour la molécule du BD, en utilisant les fonctionnelles B3LYP et MPW1PW91 et la base DGDZVP.

Distances (Å)	B3LYP C2v géométrie	MPW1PW91 C2v géométrie	Distances (Å)	B3LYP C2v géométrie	MPW1P W91 C2v géométrie
		Chlorodurèn	e (C ₁₀ H ₁₃ Cl)		
Cl ₁ - C ₁	1.775	1.755	C ₇ - H ₇₁	1.095	1.093
C ₁ - C ₂	1.405	1.399	C ₇ - H ₇₂	1.090	1.089
C ₁ - C ₆	1.405	1.399	C ₇ - H ₇₃	1.095	1.093
C ₂ - C ₃	1.411	1.405	C ₈ - H ₈₁	1.096	1.094
C3 - C4	1.400	1.394	C ₈ - H ₈₂	1.093	1.091
C ₄ - C ₅	1.400	1.394	C ₈ - H ₈₃	1.096	1.094
C ₅ - C ₆	1.411	1.405	C9 - H91	1.096	1.094
C ₂ - C ₇	1.513	1.504	C9 - H92	1.093	1.091
C ₃ - C ₈	1.516	1.508	C9 - H93	1.096	1.094

C ₅ - C ₉	1.516	1.508	C ₁₀ - H ₁₀₁	1.095	1.093						
C ₆ - C ₁₀	1.513	1.504	$C_{10} - H_{102}$	1.090	1.089						
C ₄ - H ₄₁	1.088	1.087	C ₁₀ - H ₁₀₃	1.095	1.093						
Bromodurène (C ₁₀ H ₁₃ Br)											
Br ₁ - C ₁	1.941	1.916	C ₇ - H ₇₁	1.095	1.093						
C ₁ - C ₂	1.405	1.400	C7- H72	1.090	1.089						
C ₁ - C ₆	1.405	1.400	C7-H73	1.095	1.093						
C ₂ - C ₃	1.412	1.405	C ₈ - H ₈₁	1.0946	1.094						
C ₃ - C ₄	1.399	1.394	C ₈ - H ₈₂	1.093	1.091						
C ₄ - C ₅	1.399	1.394	C ₈ - H ₈₃	1.096	1.094						
C ₅ - C ₆	1.412	1.405	C9 - H91	1.096	1.094						
C ₂ - C ₇	1.513	1.504	C9 - H92	1.093	1.091						
C ₃ - C ₈	1.516	1.507	C9 - H93	1.096	1.094						
C ₅ - C ₉	1.516	1.507	C ₁₀ - H ₁₀₁	1.095	1.093						
C ₆ - C ₁₀	1.513	1.504	C ₁₀ - H ₁₀₂	1.090	1.089						
C ₄ - H ₄₁	1.088	1.087	C ₁₀ - H ₁₀₃	1.095	1.093						
		Iododurène	e (C ₁₀ H ₁₃ I)								
I ₁ - C ₁	2.159	2.133	C ₇ - H ₇₁	1.095	1.093						
C ₁ - C ₂	1.408	1.402	C ₇ - H ₇₂	1.090	1.088						
C ₁ - C ₆	1.408	1.402	C ₇ - H ₇₃	1.095	1.093						
C ₂ - C ₃	1.412	1.406	C ₈ - H ₈₁	1.096	1.094						
C3 - C4	1.398	1.393	C ₈ - H ₈₂	1.093	1.091						
C ₄ - C ₅	1.398	1.393	C ₈ - H ₈₃	1.096	1.094						
C ₅ - C ₆	1.412	1.406	C9 - H91	1.096	1.094						
C ₂ - C ₇	1.514	1.504	C9 - H92	1.093	1.091						
C ₃ - C ₈	1.517	1.508	C9 - H93	1.096	1.094						
C5 - C9	1.517	1.508	C ₁₀ - H ₁₀₁	1.095	1.093						
$C_6 - C_{10}$	1.514	1.504	$C_{10} - H_{102}$	1.090	1.088						
C ₄ - H ₄₁	1.088	1.087	$C_{10} - H_{103}$	1.095	1.093						

Tableau V.6: Angles de liaison en (°) calculés pour la molécule du BD, en utilisant les fonctionnelles B3LYP et MPW1PW91 et la base DGDZVP

Angles (°)	B3LYP C2v géométrie	MPW1PW91 Angles C2v (°) géométrie		B3LYP C2v géométrie	MPW1P W91 C2v géométrie
		Chlorodure	ne (C ₁₀ H ₁₃ Cl)		
C ₂ - C ₁ - C ₆	124,62	124,55	$C_1 - C_6 - C_{10}$	120,81	120,69
$C_1 - C_2 - C_3$	117,15	117,20	$C_3 - C_4 - H_{41}$	118.46	118.47
$C_2 - C_3 - C_4$	119,00	118,99	$C_5 - C_4 - H_{41}$	118.46	118.47
$C_3 - C_4 - C_5$	123,08	123,07	C ₂ - C ₇ - H ₇₂	111.78	111.74

Г			1		
C ₄ - C ₅ - C ₆	119,00	118,99	C ₂ - C ₇ - H ₇₁	111.18	111.12
$C_5 - C_6 - C_1$	117,15	117,20	C ₂ - C ₇ - H ₇₃	111.18	111.12
$C_2 - C_1 - Cl_1$	117,69	117,73	$C_3 - C_8 - H_{82}$	110.56	110.60
$C_6 - C_1 - Cl_1$	117,69	117,73	C ₃ - C ₈ - H ₈₁	111.96	111.86
$C_1 - C_2 - C_7$	120,81	120,69	C3 - C8 - H83	111.96	111.86
$C_3 - C_2 - C_7$	122,04	122,10	C ₅ - C ₉ - H ₉₂	110.56	110.60
$C_2 - C_3 - C_8$	121,81	121,65	C ₅ - C ₉ - H ₉₁	111.96	111.86
$C_4 - C_3 - C_8$	119,19	119,14	C ₅ - C ₉ - H ₉₃	111.96	111.86
C ₄ - C ₅ - C ₉	119,19	119,14	$C_6 - C_{10} - H_{102}$	111.78	111.74
$C_6 - C_5 - C_9$	121,81	121,65	$C_6 - C_{10} - H_{101}$	111.18	111.12
$C_5 - C_6 - C_{10}$	122,04	122,10	$C_6 - C_{10} - H_{103}$	111.18	111.12
		Bromodurè	ne (C ₁₀ H ₁₃ Br)		
$C_2 - C_1 - C_6$	124,77	124,67	$C_1 - C_6 - C_{10}$	121,46	121,27
$C_1 - C_2 - C_3$	117,02	117,09	C ₃ - C ₄ - H ₄₁	118.45	118.45
$C_2 - C_3 - C_4$	119,05	119,02	$C_5 - C_4 - H_{41}$	118.45	118.45
C ₃ - C ₄ - C ₅	123,1	123,10	C ₂ - C ₇ - H ₇₂	111.76	111.74
C ₄ - C ₅ - C ₆	119,05	119,02	C ₂ - C ₇ - H ₇₁	111.18	111.11
$C_5 - C_6 - C_1$	117,02	117,09	C ₂ - C ₇ - H ₇₃	111.18	111.11
$C_2 - C_1 - Br_1$	117,61	117,67	C ₃ - C ₈ - H ₈₂	110.52	110.55
$C_6 - C_1 - Br_1$	117,61	117,67	C ₃ - C ₈ - H ₈₁	111.97	111.88
$C_1 - C_2 - C_7$	121,46	121,27	C ₃ - C ₈ - H ₈₃	111.97	111.88
$C_3 - C_2 - C_7$	121,52	121,64	C ₅ - C ₉ - H ₉₂	110.52	110.55
C ₂ - C ₃ - C ₈	121,85	121,71	C5 - C9 - H91	111.97	111.88
C ₄ - C ₃ - C ₈	119,1	119,26	C ₅ - C ₉ - H ₉₃	111.97	111.88
$C_4 - C_5 - C_9$	119,1	119,26	$C_6 - C_{10} - H_{102}$	111.76	111.74
$C_6 - C_5 - C_9$	121,85	121,71	$C_6 - C_{10} - H_{101}$	111.18	111.11
$C_5 - C_6 - C_{10}$	121,52	121,64	$C_6 - C_{10} - H_{103}$	111.18	111.11
		Iododurèn	e (C ₁₀ H ₁₃ I)		
$C_2 - C_1 - C_6$	124,21	124,22	$C_1 - C_6 - C_{10}$	121,99	121,78
$C_1 - C_2 - C_3$	117,28	117,30	C3 - C4 - H41	118.46	118.45
$C_2 - C_3 - C_4$	119,07	119,04	C ₅ - C ₄ - H ₄₁	118.46	118.45
C ₃ - C ₄ - C ₅	123,08	123,11	C ₂ - C ₇ - H ₇₂	111.80	111.81
$C_4 - C_5 - C_6$	119,07	119,04	C ₂ - C ₇ - H ₇₁	111.26	111.16
$C_5 - C_6 - C_1$	117,28	117,30	C ₂ - C ₇ - H ₇₃	111.26	111.16
$C_2 - C_1 - I_1$	117,89	117,89	C ₃ - C ₈ - H ₈₂	110.47	110.50
C ₆ - C ₁ - I ₁	117,89	117,89	C ₃ - C ₈ - H ₈₁	112.00	111.91
$C_1 - C_2 - C_7$	121,99	121,78	C ₃ - C ₈ - H ₈₃	112.00	111.91
$C_3 - C_2 - C_7$	120,73	120,93	C ₅ - C ₉ - H ₉₂	110.47	110.50
$C_2 - C_3 - C_8$	122.00	121,86	C ₅ - C ₉ - H ₉₁	112.00	111.91
C ₄ - C ₃ - C ₈	118,93	119,10	C ₅ - C ₉ - H ₉₃	112.00	111.91
C ₄ - C ₅ - C ₉	118,93	119,10	$C_6 - C_{10} - H_{102}$	111.80	111.81
$C_6 - C_5 - C_9$	122.00	121,86	C ₆ - C ₁₀ - H ₁₀₁	111.26	111.16
$C_5 - C_6 - C_{10}$	120,73	120,93	$C_6 - C_{10} - H_{103}$	111.26	111.16

Quand on compare les résultats de la géométrie obtenus pour la molécule isolée du durène avec ceux de la molécule du chlorodurène (CD), bromodurène (BD) et l'iododurène (ID), on constate que les molécules sont rigoureusement planes avec une moyenne des longueurs de liaison des cycles de l'ordre de 1.400 Å (**Tableau V.7**).

Tableau V.7: Périmètres et longueurs de liaison moyennes du cycle aromatique C_{ar} - C_{ar} en (Å) du durène et quelques uns de ses dérivés : CD, BD et ID obtenus à partir de calcul de la DFT : B3LYP/DGDZVP; MPW1PW91/DGDZVP

	B3LYI	MPW1PW91/DGDZVP			
Composé	Périmètre du C _{ar} -C _{ar}	Distance moyenne du C _{ar} -C _{ar}	Périmètre du C _{ar} -C _{ar}	Distance moyenne du C _{ar} -C _{ar}	
$C_{10}H_{14}$ (D _{2h})	8,428	1,405	8,394	1,399	
$C_{10} H_{13} Cl (C_{2v})$	8,432	1,405	8,396	1,399	
C ₁₀ H ₁₃ Br (C _{2v)}	8,432	1,405	8,398	1,400	
$C_{10} H_{13} I (C_{2v})$	8,436	1,406	8,402	1,400	

V.4. Comparaison de conformations moléculaires obtenues par la DFT (en symétrie C_{2v}) du BD et l'ID avec les résultats expérimentaux

L'optimisation des géométries à l'aide de bases de fonctions telles que DGDZVP et des fonctionnelles d'échange corrélation « B3LYP » et « MPW1PW91 » a permis de faire une étude complète de l'influence du choix de la base sur les géométries et les fréquences de vibration. Les géométries optimisées des C_{10} H₁₃X (X= Br et I) sont comparées à celles des structures caractérisées expérimentalement par diffraction des rayons X sur monocristal.

Les paramètres géométriques trouvés par les calculs de la DFT et les résultats de la diffraction des rayons X sont rassemblés dans les (**Tableaux V.8 et V.10**).

Tableau V.8: Longueurs de liaison en (Å) calculées par la DFT (B3LYP et MPW1PW91) et celles obtenues par la diffraction des rayons X à 293 K pour la molécule du C_{10} H₁₃X (X= Br et I).

Distances (Å)	Expérim- -entales	B3LYP C2v géométrie	MPW1PW91 C2v géométrie	Distances (Å)	Expérim- -entales	B3LYP C2v géométrie	MPW1P W91 C2v géométrie					
	Bromodurène (C ₁₀ H ₁₃ Br)											
Br ₁ - C ₁	1.914(7)	1.941	1.916	C ₇ - H ₇₁	0.962	1.093	1.093					
$C_1 - C_2$	1.409(4)	1.405	1.400	$C_7 - H_{72}$	0.957	1.090	1.086					
C ₁ - C ₆	1.387(4)	1.405	1.400	C ₇ - H ₇₃	0.958	1.093	1.093					
$C_2 - C_3$	1.407(4)	1.412	1.405	$C_8 - H_{81}$	0.957	1.094	1.094					
C3 - C4	1.349(4)	1.399	1.394	$C_8 - H_{82}$	0.961	1.093	1.091					
C ₄ - C ₅	1.392(4)	1.399	1.394	$C_8 - H_{83}$	0.958	1.094	1.094					
C ₅ - C ₆	1.385(4)	1.412	1.405	C9 - H91	0.958	1.094	1.094					
$C_2 - C_7$	1.487(4)	1.513	1.504	C9 - H92	0.960	1.093	1.091					
C ₃ - C ₈	1.523(4)	1.516	1.507	C9 - H93	0.954	1.094	1.094					
C ₅ - C ₉	1.484(4)	1.516	1.507	C_{10} - H_{101}	0.961	1.093	1.093					
$C_6 - C_{10}$	1.526(4)	1.513	1.504	C_{10} - H_{102}	0.959	1.090	1.086					
C_4 - H_{41}	0.927	1.088	1.087	C_{10} - H_{103}	0.959	1.093	1.093					
			Iododurène	(C ₁₀ H ₁₃ I)								
I ₁ - C ₁	2.139 (3)	2.159	2.133	C ₇ - H ₇₁	0.960	1.093	1.093					
$C_1 - C_2$	1.397 (6)	1.408	1.402	C7 - H72	0.950	1.090	1.088					
$C_1 - C_6$	1.401 (5)	1.408	1.402	C7 - H73	0.960	1.093	1.093					
$C_2 - C_3$	1.416 (6)	1.412	1.406	$C_8 - H_{81}$	0.960	1.094	1.094					
C ₃ - C ₄	1.386 (7)	1.398	1.393	$C_8 - H_{82}$	0.950	1.093	1.091					
C4 - C5	1.392 (7)	1.398	1.393	$C_8 - H_{83}$	0.970	1.094	1.094					
C ₅ - C ₆	1.410 (6)	1.412	1.406	C9 - H91	0.960	1.094	1.094					
$C_2 - C_7$	1.517 (8)	1.514	1.504	C9 - H92	0.960	1.093	1.091					
C ₃ - C ₈	1.488 (7)	1.517	1.508	C9 - H93	0.960	1.094	1.094					
C ₅ - C ₉	1.487 (7)	1.517	1.508	C ₁₀ - H ₁₀₁	0.970	1.093	1.093					
C ₆ - C ₁₀	1.500 (7)	1.514	1.504	C_{10} - H_{102}	0.950	1.090	1.088					
$C_4 - H_{41}$	0.940	1.088	1.087	C ₁₀ - H ₁₀₃	0.960	1.093	1.093					

Les résultats de calcul prouvent que les longueurs de liaison correspondant à la conformation moléculaire du BD calculées avec la méthode B3LYP/ DGDZVP sont légèrement plus longues par rapport à celles trouvées par la fonctionnelle MPW1PW91/ DGDZVP et comparées à l'expérience.

Les plus courtes longueurs de liaison C_{ar} - C_{ar} du cycle aromatique sont adjacentes à la liaison C_{ar} - H_{41} et correspondent à C_3 - C_4 = C_4 - C_5 = 1.399 Å pour la B3LYP et 1.394 Å

pour la MPW1PW91 mais elles sont légèrement plus longues à celles trouvées expérimentalement (1.349 (4) Å et 1.392 (4) Å (Tableau V.8).

Le périmètre du cycle aromatique expérimental est **8.329**Å alors que celui calculé par les deux fonctionnelles (B3LYP et MPW1PW91) est respectivement **8.432** Å et **8.398**Å.

La valeur moyenne des longueurs de liaison C_{ar} - C_{ar} , C_{ar} - C_m et la distance C_{ar} -X est donnée dans le **tableau V.9**. Les distances optimisées de la conformation du bromodurène sont en moyenne supérieures d'environ respectivement 1.2, 0.7 et 1.4% pour la B3LYP et 0.9, 0.1 et 0.1% pour la MPW1PW91 aux moyennes des distances expérimentales.

Tableau V.9: La valeur moyenne des longueurs de liaison calculées par la DFT et celles obtenues par la diffraction des rayons X à 293 K pour la molécule du C_{10} H₁₃X (X= Br et I)

	, the exp										
			X = B	r			X = I				
	Exp	B3LYP C2v géométrie	YP 2vAccordMPW1PW91 C2vAccordB3LYP C2v géométrieAnétrie%%ExpB3LYP C2v géométrieA				Accord %	MPW1PW91 C2v géométrie	Accord %		
			DC	GDZVP			DGDZVP				
C _{ar} -C _{ar}	1.388	1.405	1.2	1.400	0.9	1.400	1.406	0.43	1.400	0.00	
Car-Cm	1.505	1.515	0.7	1.506	0.1	1.498	1.515	1.2	1.506	0.5	
Car-X	1.914	1.941	1.4	1.916	0.1	2.139	2.159	0.9	2.133	0.3	

 $ACC = \frac{Val_{exp} - val_{th\acute{e}}}{val_{exp}} * 100$

On observe un bon accord avec l'expérience pour les longueurs de liaison calculées par la fonctionnelle MPW1PW91. Ces mêmes écarts sont constatés dans les résultats d'optimisation de la conformation moléculaires de l'iododurène obtenus à partir de la fonctionnelle MPW1PW91/DGDZVP et donnent des valeurs de longueurs de liaison plus petites que celles obtenues par la B3LYP/DGDZVP toujours par rapport à l'expérience.

Nous observons que les angles de liaison (sans les atomes d'hydrogènes) calculés avec les deux fonctionnelles sont légèrement plus grands à ceux trouvées expérimentalement.

Pour le boromodurène, la principale différence concerne l'angle endocyclique en face du carbone lié à l'atome du méthyle Cm₇ (117.02° dans la B3LYP et 117.09° dans la MPW1PW91) (Tableau V.10).

Chapitre VEtude théorique (DFT) du durène et quelques uns de ses dérivés: CD, BD et IDTableau V.10: Les angles de liaison en (°) calculés par la DFT (B3LYP et MPW1PW91)et ceux obtenus par la diffraction des rayons X à 293 K pour la molécule du C_{10} H₁₃X

(X=Br et I).

	$C_{10} H_{13}$	Br (C _{2v})							
Expérimen- -tales	B3LYP/ DGDZVP	Acc %	MPW1PW91/ DGDZVP	Acc %					
Angles endocycliques									
123,9 (7)	124,77	0,70	124,67	0,62					
115,6 (7)	117,02	1,23	117,09	1,29					
120,1(8)	119,05	0,87	119,02	0,90					
117,4 (8)	119,05	1,41	119,02	1,38					
118,7 (7)	117,02	1,42	117,09	1,36					
124,3 (7)	123,1	0,97	123,10	0,97					
	Angles exo	ocycliques							
117,1 (6)	117,61	0,44	117,67	0,49					
119.0 (6)	117,61	1,17	117,67	1,12					
121,8 (8)	121,46	0,28	121,27	0,44					
122,6 (8)	121,52	0,88	121,64	0,78					
119,8 (9)	121,85	1,71	121,71	1,59					
120.0 (9)	119,10	0,75	119,26	0,62					
119,8 (8)	119,10	0,58	119,26	0,45					
122,7 (8)	121,85	0,69	121,71	0,81					
119,3 (8)	121,52	1,86	121,64	1,96					
121,9 (8)	121,46	0,36	121,27	0,52					
	C ₁₀ H ₁₃	I (C _{2v})							
Expérimen-	B3LYP/		MPW1PW91/						
-tales	DGDZVP	Acc	DGDZVP	Acc					
	A 1	<u>%</u>		%					
	Angles end	ocycliques							
125 (3)	124,21	0,63	124,22	0,62					
117,2 (4)	117,28	0,07	117,30	0,09					
117,6 (4)	119,07	1,25	119,04	1,22					
117,6 (4)	119,07	1,25	119,04	1,22					
117,3 (3)	117,28	0,02	117,30	0,09					
125,4 (4)	123,08	1,85	123,11	1,83					
	Angles exc	ocycliques							
117,6 (3)	117,89	0.25	117,89	0.25					
117,5 (3)	117,89	0.33	117,89	0.33					
121,5 (4)	121,99	0.40	121,78	0.23					
121,3 (4)	120,73	0,47	120,93	0,31					
	Expérimen- -tales 123,9 (7) 115,6 (7) 120,1(8) 117,4 (8) 117,4 (8) 118,7 (7) 124,3 (7) 124,3 (7) 124,3 (7) 117,1 (6) 119.0 (6) 121,8 (8) 122,6 (8) 119,8 (9) 120.0 (9) 119,8 (8) 122,7 (8) 119,3 (8) 122,7 (8) 119,3 (8) 121,9 (8) 121,9 (8) 121,9 (4) 117,6 (4) 117,6 (4) 117,6 (3) 117,5 (3) 121,3 (4)	C10 H13Expérimen- talesB3L YP/ DGDZVP123,9 (7)124,77115,6 (7)117,02120,1(8)119,05117,4 (8)119,05117,4 (8)119,05118,7 (7)117,02124,3 (7)123,1Angles ext117,1 (6)117,61119.0 (6)117,61121,8 (8)121,46122,6 (8)121,52119,8 (9)121,85120.0 (9)119,10122,7 (8)121,85120,0 (9)119,10122,7 (8)121,85119,3 (8)121,46C10 H13C10 H13Expérimen- talesB3LYP/ DGDZVPAngles end125 (3)124,21117,6 (4)119,07117,6 (4)119,07117,6 (3)117,89117,5 (3)117,89117,5 (3)117,89121,3 (4)120,73	C10 H13 Br (C2v)Expérimen- -talesB3LYP/ DGDZVPAcc %123,9 (7)124,770,70115,6 (7)117,021,23120,1(8)119,050,87117,4 (8)119,051,41118,7 (7)117,021,42124,3 (7)123,10,97Angles exocycliques117,1 (6)117,610,44119.0 (6)117,611,17121,8 (8)121,460,28122,6 (8)121,520,88119,8 (9)121,851,71120.0 (9)119,100,75119,8 (8)121,850,69119,3 (8)121,850,69119,3 (8)121,850,69119,3 (8)121,460,36C10 H13 I (C2v)%Angles endocycliques125 (3)124,210,63117,2 (4)117,280,07117,6 (4)119,071,25117,6 (4)119,071,25117,6 (4)119,071,25117,6 (3)117,890,33121,5 (4)121,990,40121,3 (4)120,730,47	$ \begin{array}{ c c c c c c } \hline C_{10}H_{13}Br\ (C_{2s}) \\ \hline Expérimen-tales \\ DGDZVP \\ DGDZVP \\ C \\ \hline DGDZVP \\ C \\ \hline DGDZVP \\ \hline C \\ \hline$					

		i j uu uur ene ee	queiques uns e		
C ₂ -C ₃ -C ₈	121,3 (4)	122.00	0,58	121,86	0,46
$C_4 - C_3 - C_8$	121,1 (4)	118,93	1,79	119,10	1,65
C ₄ -C ₅ -C ₉	121,2 (4)	118,93	1,87	119,10	1,73
C6-C5-C9	121,2 (4)	122.00	0,66	121,86	0,54
$C_5-C_6-C_{10}$	121,2 (4)	120,73	0,39	120,93	0,22
$C_1 - C_6 - C_{10}$	121,5	121,99	0,40	121,78	0,23

Chapitre V Etude théorique (DFT) du durène et quelques uns de ses dérivés: CD, BD et ID

Les plus grands écarts des calculs par rapport aux résultats expérimentaux dans les angles de liaison sont observés dans les $C_{ar}-C_{ar}-C_m$. La plus grande différence obtenue par les deux fonctionnelles (1.86° B3LYP) et (1.96° MPW1PW91) est trouvée pour l'angle $C_5-C_6-C_{10}$. Pour l'iododurène, les plus grands écarts des calculs par rapport aux résultats expérimentaux dans les angles de liaison sont aussi observés dans les $C_{ar}-C_{ar}-C_m$. La plus grande différence obtenue par les deux fonctionnelles (1.87° B3LYP) et (1.73° MPW1PW91) est trouvée pour l'angle $C_4-C_5-C_9$ (Tableau V.10).

Donc les paramètres géométriques montrent seulement de petites fluctuations, bien que nous observions une variation plus importante pour les angles de liaison que pour les longueurs de liaison. Les légers écarts qui existent entre les valeurs expérimentales moyennes et celles obtenues à partir de la mécanique quantique peuvent être attribués aux interactions intermoléculaires. Concernant les variations structurales selon la nature de l'halogène, les changements observés de géométrie des MHD optimisés sont en accord avec celles des géométries expérimentales.

Toutes les géométries optimisées à partir de la chimie quantiques sont planes. Néanmoins, la stabilité de la conformation des deux composés aromatiques BD et ID obtenue à partir de la fonctionnelle MPW1PW91/DGDZVP correspond à la plus basse énergie de formation. En conséquence, les calculs des modes normaux ont été entrepris à partir de cette fonctionnelle.

V.5. Modes internes de vibration du monohalogènodurène calculés à partir de la DFT

Au cours de notre travail, nous allons utiliser la spectroscopie optique IR et Raman pour obtenir les différents types de vibrations dans le bromodurène et l''iododurène. La région (400-4000 cm-1) sera particulièrement analysée dans ce travail, car c''est dans cette région qu''il est trouvé la plupart des modes de vibration interne de ces molécules. Les fréquences des modes de réseau et des modes de torsion difficiles à discerner sont situées dans la gamme 0-200 cm⁻¹. Dans notre cas nous ne disposons pas de la partie expérimentale relative à cette gamme de fréquences sauf pour la spectroscopie Raman.

Les calculs théoriques de ces modes de vibration ont été faits après optimisation de la molécule à partir de la mécanique quantique en s''aidant de la DFT. Ils nous serviront par la suite à analyser les modes de vibration, à les compléter et à les comparer avec les études expérimentales de spectroscopies vibrationnelles (IR et Raman). C''est donc dans le but de collecter les fréquences relatives aux mouvements moléculaires et d''attribuer les symétries correspondantes aux différents modes normaux de la molécule que nous avons réalisé des mesures d''absorption IR et diffusion Raman sur les deux composés aromatiques.

V.5.1. Modes internes de vibration du bromodurène calculés à partir de la DFT

Nous avons utilisé la fonctionnelle MPW1PW91 et la base DGDZVP pour déterminer les 3n-6 modes normaux de vibration du bromodurène. Chaque type de mouvement est caractérisé par une fréquence propre et des propriétés de symétrie.

Nous rappelons que le choix de cette fonctionnelle n'est pas «fortuit», mais correspond à la fonctionnelle qui présente l'énergie de formation la plus basse et qui donne la conformation moléculaire calculée la plus proche de la structure cristalline expérimentale.

Les données spectrales des modes fondamentaux internes dans le BD, avec leurs symétries et activités optiques sont regroupées dans le **tableau V.11** avec les valeurs des fréquences expérimentales. Dans la description de ces mouvements, nous avons pris en considération en premier lieu les fréquences trouvées à partir de l'expérience et retrouvées en partie par les calculs, en second lieu on s'est occupé du reste des modes de vibration retrouvés par la DFT (infrarouge et Raman).

	$C_{10}H_{13}Br(C_{2y})$											
NºSym.MPW1PW91/DGDZVP(Exp.)Nature												
		v (cm ⁻¹)	Intensi	tés	v (ci	m ⁻¹)						
			IR	Raman	IR	Raman						
1	B_1	84.0606	0.0104	0.1061		67	CH3 twist					
2	A_2	103.2428	0.0000	0.0153		110	Cm-H Car-Br, Car-Hand ring wagging					
3	B_1	128.2006	1.2566	0.5684			Cm-H ,Car-Hand ring rocking					
4	A_2	128.5509	0.0000	0.3089			Cm-H and ring rocking					

Tableau V.11: Comparaison entre les fréquences calculées à partir de la DFT et les résultats expérimentaux observés en IR et Raman du bromodurène.

5	\mathbf{B}_1	165.7681	4.2878	0.0019			Cm-H stretching and ring breathing
6	A_2	200.5049	0.0000	0.1457			Cm-H and ring rocking
7	B_2	200.9571	0.0000	0.8059		209	Cm-H ,Car-Br and ring rocking
8	B_1	216.5089	0.2594	0.3855			Cm-H, ring rocking
9	A_1	251.3294	2.1505	3.3086		252	Car-Br stretching, Ring breathing
10	B_1	283.4961	1.2857	1.4098		297	Cm-H Car-H and ring Rocking
11	A_1	323.9574	0.1617	0.2397			Car-Br stretching, CH3 rocking and ring breathing
12	B_2	352.7649	0.2929	0.5065		352	Cm-H Rocking, ring breathing
13	A_2	357.0154	0.0000	3.0892			Cm-H twisting, ring bending
14	A_1	367.3943	0.0010	2.5438			Car-Br stretching, Car-H Rocking, ring breathing
15	B_2	443.0147	0.0441	5.6083		441	Cm-H, Car-H and ring wagging
16	A1	525.9558	3.4579	26.0735			Cm-H and ring breathing
17	B1	540.4284	1.8892	0.7185			Cm-H Car-Hand ring wagging
18	B_2	561.3335	0.6771	0.0585			Cm-H, Car-H and ring rocking
19	A_2	588.9529	0.0000	0.1737			Cm-H and ring wagging
20	A_1	688.0848	0.8123	3.3986		674	Cm-H and ring breathing
21	B_1	729.5574	0.5436	2.0383			Cm-H,Car-H and ring rocking
22	\mathbf{A}_1	821.9191	24.3407	9.5339	796	798	Car-Br, Car-H stretching, Cm-H and ring wagging
23	B2	845.7277	0.0227	0.1173			Cm-H ,Car-H rocking and ring stretching
24	B_1	887.6289	9.4274	0.4110	874		Cm-H twisting ,Car-H rocking
25	A_1	1014.7537	21.9110	3.4933	984		Cm-H and Car-H twisting, ring breathing
26	A_1	1023.0117	21.6908	4.3553		1020	CH3and ring wagging
27	B_2	1038.4989	7.1753	0.0204			Cm-H ,Car-H and ring rocking
28	A_2	1042.9516	0.0000	2.6121			Cm-H scissors and Ring bending
29	B_1	1047.5653	3.8804	0.3034			Cm-H, Car-Hand Ring rocking
30	\mathbf{B}_1	1067.0520	0.5863	1.0970			Cm-H ,Car-H and ring wagging
31	A_2	1071.1199	0.0000	0.0047			Cm-H ,Car-H and ring wagging
32	B_2	1071.3350	1.9658	0.0126			Cm-H Car-Hand ring wagging
33	B_2	1104.3573	1.2371	1.1370			Cm-H, Car-Hand Ring rocking
34	A_1	1219.2187	9.3070	2.7040	1177		CH3 rockine, Ring ip deformation
35	B_2	1274.8221	0.8211	1.2108		1270	Car-H bending Ring stretching
36	A_1	1324.7388	5.7667	22.4944		1385	Ring breathing
37	B_2	1341.2491	2.0075	6.0218		1390	Cm-H,Car-H rocking ,Ring ip deformation
38	A_1	1413.2391	0.1870	0.4943			Cm-H ,Car-H wagging,Ring ip deformation
39	B_2	1426.2567	0.4397	15.6473			CH3 umbrella deformation
40	B_2	1433.2715	1.9650	0.1550			CH3 umbrella deformation, Ring rocking
41	A_1	1435.9367	2.4761	27.0137			CH3 umbrella deformation ,Car-H, Ring rocking
42	A_1	1451.3961	8.7200	2.9251		1444	CH3 umbrella deformation,Car-H and ring wagging
43	A_1	1496.1981	2.4685	7.8481	1472		Cm-H rocking, Car-H ip bend, ring deformation
44	B ₂	1496.2998	0.1837	2.2942			Cm-H wagging

45	A_2	1503.1126	0.0000	18.4107			Car-H bending
46	B_1	1503.5450	31.6382	3.9746			Cm-H wagging
47	B_2	1523.2487	4.3025	1.0874			CH3 umbrella defor,Car-H ip bend,Ring wagging
48	B_1	1526.8543	0.3151	10.4071			Cm-H rocking
49	A_2	1527.1415	0.0000	0.6247			Cm-H rocking
50	A_1	1534.9278	37.1130	4.6761			CH3 umbrella deformation
51	B_2	1540.1443	37.7712	0.2666	1542	1545	CH3 umbrella deformation, Car-H, Ring rocking
52	A_1	1627.1472	14.7772	25.6044		1604	CH3 umbrella deformation, Ring stretching
53	B_2	1680.7028	5.0846	30.4701	1655		Car-H ip bending, Ring stretching
54	B_2	3064.3835	52.0728	20.3204			Cm-H stretching
55	A_1	3064.8542	20.9083	366.260			Cm-H stretching
56	B_2	3075.6026	33.0369	18.5560		2921	Cm-H stretching
57	A_1	3076.1546	8.0217	335.846	2922	2947	Cm-H stretching
58	A_2	3144.6064	0.0000	150.950			Cm-H twisting
59	B_1	3144.7614	29.4766	1.4079			Cm-H twisting
60	B_1	3151.7089	12.9848	77.6739			Cm-H twisting
61	A_2	3151.8504	0.0000	26.6873			Cm-H twisting
62	A_1	3169.0695	31.5998	103.114			Cm-H stretching
63	B_2	3169.1403	2.6707	0.1135			Cm-H stretching
64	B_2	3197.8002	27.2286	47.7201			Cm-H stretching
65	A_1	3198.1098	5.6922	50.8362			Cm-H stretching
66	A_1	3203.8991	23.2356	95.5097			Car-H stretching

Chapitre V Etude théorique (DFT) du durène et quelques uns de ses dérivés: CD, BD et ID

La molécule du BD est constituée de 24 atomes, c'est-à-dire 66 modes propres de vibration. Ce composé est caractérisé par la présence de quatre groupements méthyles, ce qui rend l'attribution de leurs modes vibrationnelles difficile à cause de la présence des modes basse fréquence attribués aux mouvements de torsion CH₃, et aussi la gamme de fréquences allant de 3000 à 3200 cm⁻¹ qui correspond aux autres modes de vibration de la molécule.

Parmi les 66 modes de vibration, 41 modes sont dans le plan et les 25 autres sont hors du plan. Les modes de vibration dans le plan sont spécifiés par des symétries A_1 et B_2 , c'est-à-dire les mouvements tangentiels et d'étirement (mouvements contenus dans le plan moyen de la molécule) et les modes de vibration hors du plan par A_2 et B_1 : Γ_{3N-6} = 21 A_1 + 20 B_2 + 11 A_2 + 14 B_1 .

Les spectres obtenus sont reproduits en partie dans les **figures V-8 et V-9**. Dans l'ensemble, les vibrations internes se divisent en trois catégories: La première correspond aux vibrations des déformations planes des angles et les déformations des angles de

torsion, la deuxième correspond aux vibrations d'élongation (étirement) ou de valence (variation des longueurs de liaison) et la dernière à celles des déformations hors du plan.

Figure V-8: Illustration du spectre Raman expérimental et du spectre calculé à partir de DFT du BD : (a) spectre observé à 293 K, (b) spectre calculé avec MPW1PW91/DGDZVP

Les bandes supérieures à 3000 cm⁻¹ observées en IR sont larges, car les mesures sont effectuées à la température ambiante, alors que les spectres calculés montrent de toute évidence l'existence de plusieurs pics qui sont bien distincts (Figure V-9). Dans cette

gamme le spectre Raman montre deux bandes de faibles intensités, cependant les spectres calculés montrent bien des bandes intenses (Figure V-8).

Au cours de l'exploitation des résultats des calculs (DFT) et ceux obtenus expérimentalement (IR, Raman) nous avons séparé entre les fréquences de vibration dans le plan et hors du plan moléculaire.

• Vibration dans le plan

Dans le **tableau V.12**, nous comparons les fréquences expérimentales (IR et Raman) avec celles trouvées par le calcul de la DFT dans la gamme 1681 cm⁻¹ - 251 cm⁻¹ que nous attribuons aux différents mouvements radiaux ou tangentiels de la molécule.

Tableau V.12: Fréquences calculées (DFT) en (cm⁻¹) et observées (IR et Raman) des modes internes attribuées aux mouvements radiaux et tangentiels.

Nº	Mode	MPW1PW91/DGDZVP		DZVP	(Exp.)		Nature
		υ (cm ⁻¹)	Intensités		υ (cm ⁻¹)		-
			IR	Raman	IR	Raman	_
			al				
9	A_1	251.3294	2.1505	3.3086		252	Car-Br stretching, Ring breathing
20	A_1	688.0848	0.8123	3.3986		674	Cm-H and ring breathing
22	A_1	821.9191	24.3407	9.5339	796	798	Car-Br , Car-H stretching, Cm-H and ring wagging
34	A_1	1219.2187	9.3070	2.7040	1177		CH3 rockine, Ring ip deformation
36	A ₁	1324.7388	5.7667	22.4944		1385	Ring breathing
52	A ₁	1627.1472	14.7772	25.6044		1604	CH3 umbrella deformation, Ring stretching
				Mouveme	nt tangen	tiel	
12	B ₂	352.7649	0.2929	0.5065		352	Cm-H Rocking, ring breathing
15	B ₂	443.0147	0.0441	5.6083		441	Cm-H, Car-H and ring wagging
35	B ₂	1274.8221	0.8211	1.2108		1270	Car-H bending Ring stretching
37	B ₂	1341.2491	2.0075	6.0218		1390	Cm-H,Car-H rocking ,Ring ip deformation
44	B ₂	1496.2998	0.1837	2.2942	1472		Cm-H wagging
51	B ₂	1540.1443	37.7712	0.2666	1542	1545	CH3 umbrella deformation, Car-H, Ring rocking
53	B ₂	1680.7028	5.0846	30.470	1655		Car-H ip bending, Ring stretching

a) Mouvement radial

Ces vibrations englobent les vibrations propres aux liaisons de valences (étirements / contractions), dans ce cas les atomes du cycle aromatique et les substituants se meuvent de façon radiale en phase en gardant identiques les longueurs de liaison ou en opposition de phase où il y a variation de longueurs de liaison.

Dans notre cas, les mouvements radiaux des différentes liaisons sont spécifiés par la symétrie A₁ et correspondent aux fréquences suivantes : 251, 688, 822, 1219, 1325 et 1627 cm⁻¹. Aux fréquences 1325 cm⁻¹ et 1627 cm⁻¹ calculées et observées dans le spectre Raman (1385cm⁻¹ et 1604 cm⁻¹) et correspondent à la respiration du noyau benzénique (**Figure V-10 (a)**) et aux mouvements d'étirement C_{ar} - C_{ar} et mouvement de parapluie du CH₃ (**Figure V-10 (b)**).

Figure V-10: Deux mouvements radiaux calculés et observés dans le spectre Raman (symétrie A_1 : a) respiration du noyau benzénique, b) mouvements d''étirement C_{ar} - C_{ar} et parapluie du CH₃.

b) Mouvement tangentiel

Dans la région 353- 1681 cm⁻¹, les modes internes du BD observés en IR et Raman et calculés par la DFT sont attribués aux mouvements de déplacement tangentiels du cycle aromatique et les liaisons C-H et C_{ar} -Hal, ils sont spécifiés par la symétrie B_2 . La **figure V-11** montre quelques modes de vibration calculés et observés dans cette gamme.

Figure V-11: Mouvement tangentiel très prononcé des carbones du cycle et la liaison Car-H

• Modes propres aux CH₃

L'attribution des vibrations du groupe méthyle peut être attribuée par comparaison entre les spectres du BD observés à l'IR et Raman et ceux calculés à partir de la DFT.

Dans la gamme de fréquences (84 cm⁻¹, 3200 cm⁻¹), les écarts entre les fréquences observées et calculées sont assez significatifs, ceci peut être expliqué par les erreurs dues à l'approximation harmonique et aussi par la limitation de l'approximation de Born-Oppenheimer dans le cas de traitement des atomes légers comme les atomes d'hydrogène par exemple. Dans le **tableau V.13** sont regroupés les donnés spectrales ainsi que les attributions des modes méthyles.

a) Modes de torsion

Les données spectroscopiques ont montré que dans la région 84 à 200 cm⁻¹ on trouve à la fois des excitations d'origine torsionnelle des groupes méthyles, des modes de réseau et quelques modes internes de vibration moléculaire. Ces excitations d'origines diverses ne facilitent pas leurs attributions ainsi que leur couplage, en particulier entre les rotateurs méthyles et les vibrations moléculaires ou cristallines.

b) Modes de balancements (Wagging)

Pour les produits aromatiques, les harmoniques fondamentales qu'elles soient dans le plan ou hors du plan moléculaire, la littérature les localise dans le domaine 840-980 cm⁻¹. Les fréquences et les intensités de ces modes sont légèrement sensibles à la stœchiométrie des atomes du proche voisinage. Pour notre cas le balancement dan le plan des CH₃, la respiration (breathing) du noyau aromatique ainsi que le rocking des CH₃ se manifestent entre 846 et 1023 cm⁻¹ (symétrie A₁et B₂). Les bandes observées à

l''IR (835 et 984 cm⁻¹) sont assez intenses mais faibles au Raman (1020 cm⁻¹). Une fréquence 874 cm⁻¹ trouvé en IR correspond aux balancements des C-H hors du plan, elle est significativement proche de celle prévue par le calcul de la DFT 888 cm⁻¹.

c) Etirements (stretching)

Lors de ces vibrations les atomes d'hydrogène se meuvent de façon radiale dans des directions soient opposées (étirement symétrique) soient en phase (contraction ou étirement antisymétrique). Dans notre cas, les bandes caractéristiques sont situées à 3065 cm⁻¹ et 2922 cm⁻¹ dans le spectrogramme IR et à 2921 et 2947 cm⁻¹. Les fréquences calculées par la DFT sont globalement intenses et supérieures à celles observées expérimentalement.

Tableau V.13: Fréquences calculées (DFT) en (cm⁻¹) et observées (IR et Raman) des modes internes attribuées au mouvement de déformations spécifiques aux CH3.

N ^o	Mode	MPW1PW91/DGDZVP		ZVP	(Exp.)		Nature
		υ (cm ⁻¹)	Intens	ités	υ (cm ⁻¹)		
			IR	Raman	IR	Raman	
			Μ	ouvements l	hors du p	olan	
1	B_1	84.0606	0.0104	0.1061		67	CH3 twist
2	A_2	103.2428	0.0000	0.0153		110	Cm-H Car-Br, Car-Hand ring wagging
10	B_1	283.4961	1.2857	1.4098		297	Cm-H Car-H and ring Rocking
24	B_1	887.6289	9.4274	0.4110	874		Cm-H twisting ,Car-H rocking
			Μ	ouvements	dans le p	lan	
7	B_2	200.9571	0.0000	0.8059		209	Cm-H ,Car-Br and ring rocking
23	B2	845.7277	0.0227	0.1173	835		Cm-H ,Car-H rocking and ring stretching
25	A_1	1014.7537	21.9110	3.4933	984		Cm-H and Car-H twisting, ring breathing
26	A_1	1023.0117	21.6908	4.3553		1020	CH3and ring wagging
42	A_1	1451.3961	8.7200	2.9251	1458	1444	CH3 umbrella deformation,Car-H and ring wagging
54	B_2	3064.3835	52.0728	20.3204	2922	2921	Cm-H stretching
55	A_1	3064.8542	20.9083	366.2606		2947	Cm-H stretching

Dans la suite, nous présentons les modes internes du BD et l'attribution de certains de ces modes de vibration retrouvés par la DFT (IR et Raman).

V.5.1.1. Attributions de quelques modes normaux du BD obtenus à partir du calcul de la DFT

La méthode de DFT permet de calculer les fréquences de vibration, les intensités IR, les activités Raman et donc de les comparer avec les résultats expérimentaux. Les calculs ont été faits en utilisant la chaîne de programme GAUSSIAN03 et la fonctionnelle MPW1PW91 et le jeu de base DGDZVP. Nos calculs sur le BD ont montré que la théorie de la fonctionnelle de la densité permet de faire une bonne suggestion sur le domaine de fréquences avec des intensités raisonnables IR et Raman.

Une description détaillée a été faite au paragraphe précédent décrivant uniquement les modes de vibration observés dans les spectrogrammes expérimentaux IR et RAMAN (Voir le tableau V.11). Pour pouvoir observer toutes les fréquences obtenues à partir de la DFT, des expériences à basse température sont nécessaires en spectroscopie IR, Raman et la diffusion inélastiques des neutrons.

Parmi les 3n-6 modes de vibration de la molécule c'est-à-dire les 66 fréquences vibrationnelles de la molécule du BD, 24 modes sont actifs dans IR et Raman, 10 sont actifs uniquement en Raman, 8 sont actifs uniquement en IR, les 24 autres ne sont pas actifs. D''un point de vue global, trois domaines fréquentiels peuvent être distingués : 18 modes de fréquences inférieures à 600 cm⁻¹, 35 comprises entre 600 et 1700 cm⁻¹, et 13 modes de fréquences supérieures à 1700 cm⁻¹(**Tableau V.11**).

• Modes de vibration internes des groupes méthyles CH₃

La molécule du BD possède quatre groupes méthyles, et grâce aux résultats théoriques, il est possible d'attribuer tous les modes propres des CH₃. Dans la région basse fréquence de 84 à 200 cm⁻¹, les modes internes calculés par la DFT sont attribués aux librations des méthyles. Supérieures à 3000 cm⁻¹, on observe des mouvements des groupements méthyles qui correspondent uniquement aux élongations symétriques et anti-symétriques de la liaison C-H. Dans le **(Tableau V.14)** sont rassemblées les fréquences du groupement méthyle indiquant les modes dans et hors du plan.

Tableau V.14: Quelques mouvements tangentiels et radiaux du groupement méthylecalculés par la DFT (MPW1PW91/DGDZVP)

Nº	Mode	MPW1I	PW91/DGE	DZVP	(Exp.)		Nature
		υ (cm ⁻¹)	Intens	sités	υ (cm ⁻¹)		
			IR	Raman	IR	Raman	
3	B ₁	128.2006	1.2566	0.5684			Cm-H, Car-Hand ring rocking
4	A_2	128.5509	0.0000	0.3089			Cm-H and ring rocking
6	A_2	200.5049	0.0000	0.1457			Cm-H and ring rocking
45	A_2	1503.1126	0.0000	18.4107			Car-H bending
46	B_1	1503.5450	31.6382	3.9746			Cm-H wagging
48	B_1	1526.8543	0.3151	10.4071			Cm-H rocking
49	A_2	1527.1415	0.0000	0.6247			Cm-H rocking
58	A_2	3144.6064	0.0000	150.9507			Cm-H twisting
59	B_1	3144.7614	29.4766	1.4079			Cm-H twisting
60	B_1	3151.7089	12.9848	77.6739			Cm-H twisting
61	A_2	3151.8504	0.0000	26.6873			Cm-H twisting
			e plan				
50	A_1	1534.9278	37.1130	4.6761			CH3 umbrella deformation
56	B_2	3075.6026	33.0369	18.5560			Cm-H stretching
57	A_1	3076.1546	8.0217	335.846			Cm-H stretching
63	B ₂	3169.1403	2.6707	0.1135			Cm-H stretching
64	B ₂	3197.8002	27.2286	47.7201			Cm-H stretching

• Modes de vibration internes du reste du squelette de la molécule

Les modes vibrationnels du cycle aromatique et les substituants dans et hors du plan moyen de la molécule, sont compris entre 201 et 1681 cm⁻¹ et correspondent aux mouvements d'élongation (stretching) C_{ar} - C_{ar} , de respiration (breathing) C_{ar} - C_{ar} , d'élongation (bending) C_{ar} -Br, C_{ar} -H et trigonal bending C_{ar} - C_{ar} .

Dans le **tableau V.15** sont rassemblés les types de mouvements et les fréquences correspondantes.

Tableau V.15: Fréquences calculées par la DFT (MPW1PW91/DGDZVP) correspondant

 aux différents mouvements du cycle aromatique et les substituants.

N ^o	Mode	MPW1F	W91/DGD	ZVP	(Exp.)		Nature		
		υ (cm ⁻¹)	Intens	ités	υ	(cm ⁻¹)			
			IR	Raman	IR	Raman			
Mouvements hors du plan									
5	B_1	165.7681	4.2878	0.0019			Cm-H stretching and ring breathing		
8	\mathbf{B}_1	216.5089	0.2594	0.3855			Cm-H, ring rocking		
13	A_2	357.0154	0.0000	3.0892			Cm-H twisting, ring bending		
17	B1	540.4284	1.8892	0.7185			Cm-H Car-Hand ring wagging		
19	A_2	588.9529	0.0000	0.1737			Cm-H and ring wagging		
21	B ₁	729.5574	0.5436	2.0383	-		Cm-H,Car-H and ring rocking		
28	A_2	1042.9516	0.0000	2.6121			Cm-H scissors and Ring bending		
29	B_1	1047.5653	3.8804	0.3034			Cm-H, Car-Hand Ring rocking		
30	B_1	1067.0520	0.5863	1.0970			Cm-H ,Car-H and ring wagging		
31	A_2	1071.1199	0.0000	0.0047			Cm-H ,Car-H and ring wagging		
			Μ	ouvements	s dans le	e plan			
11	\mathbf{A}_1	323.9574	0.1617	0.2397			Car-Br stretching,CH3 rocking and ring breathing		
14	\mathbf{A}_1	367.3943	0.0010	2.5438			Car-Br stretching, Car-H Rocking, ring breathing		
16	A1	525.9558	3.4579	26.0735			Cm-H and ring breathing		
18	B_2	561.3335	0.6771	0.0585			Cm-H, Car-H and ring rocking		
27	B ₂	1038.4989	7.1753	0.0204			Cm-H ,Car-H and ring rocking		
32	B_2	1071.3350	1.9658	0.0126			Cm-H Car-Hand ring wagging		
33	B_2	1104.3573	1.2371	1.1370			Cm-H, Car-Hand Ring rocking		
38	A_1	1413.2391	0.1870	0.4943			Cm-H ,Car-H wagging,Ring ip deformation		
39	B_2	1426.2567	0.4397	15.6473			CH3 umbrella deformation		
40	B_2	1433.2715	1.9650	0.1550			CH3 umbrella deformation, Ring rocking		
41	A_1	1435.9367	2.4761	27.0137			CH3 umbrella deformation ,Car-H, Ring rocking		
43	A_1	1496.1981	2.4685	7.8481			Cm-H rocking, Car-H ip bend, ring deformation		
47	B ₂	1523.2487	4.3025	1.0874			CH3 umbrella defor,Car-H ip bend,Ring wagging		
62	A_1	3169.0695	31.5998	103.114			Cm-H stretching		
65	A_1	3198.1098	5.6922	50.8362			Cm-H stretching		
66	A ₁	3203.8991	23.2356	95.5097			Car-H stretching		

V.5.2. Modes internes de vibration de l'iododurène calculés à partir de la DFT

Après la détermination de la conformation moléculaire d''iododurène (optimisation), on fait vibrer la molécule, c'est-à-dire en calculant les modes internes relatifs aux différents états de stabilité de cette dernière. Les valeurs relatives aux fréquences Raman et Infrarouge sont le résultat de ces calculs. Les calculs ont été toujours menés en utilisant la méthode de DFT avec la fonctionnelle MPW1PW91 et le jeu de base DGDZVP.

Comme nous l'avons vu précédemment, dans le cas de la molécule du BD, le but principal est de faire une comparaison des fréquences calculées avec celles observées par les mêmes techniques spectroscopiques expérimentales que nous avons utilisées avant, et d'attribuer les symétries correspondantes aux différents modes normaux de la molécule d'iododurène (ID). Les spectres expérimentaux et calculés sont reproduits en partie dans les figures V-12 et V-13.

Figure V-12 : Comparaison du spectre Raman expérimental de l''ID avec le spectre calculé à partir de DFT : (a) spectre observé à 293 K, (b) spectre calculé avec MPW1PW91/DGDZVP

Figure V-13 : Comparaison du spectre IR expérimental de l''ID avec le spectre calculé à partir de DFT : (a) spectre observé à 293 K, (b) spectre calculé avec MPW1PW91/DGDZVP.

Tous ces spectres présentent une grande analogie avec celui du bromodurène, certaines bandes ont des fréquences très voisines d'autres se déplacent vers les basses fréquences lorsqu'augmente la masse du substituant halogène.

Les résultats obtenus pour les types de vibrations et les attributions de la molécule d'iododurène peuvent donc être étendus sans ambiguïté à la molécule du bromodurène.

Parmi les 3n-6 modes de vibration de la molécule d'iododurène c'est-à-dire les 66 fréquences vibrationnelles de la molécule **(Tableau V.16)**, 21 modes sont actifs dans IR et Raman, 11 sont actifs uniquement en Raman, 11 sont actifs uniquement en IR, les 23 autres ne sont pas actifs.

Tableau. V.16: Comparaison entre les fréquences calculées à partir de la DFT et les résultats expérimentaux observés en IR et Raman de l'iododurène.

	$C_{10}H_{13}I(C_{2v})$									
N ^o	Sym.	MPW1	PW91/DGD2	ZVP	(E	Exp.)	Nature			
		v (cm ⁻¹)	Intensi	tés	υ (cm ⁻¹)				
			IR	Raman	IR	Raman				
1	B_1	72.5124	0.0056	0.0995		67	CH3 twist			
2	A_2	98.5415	0.0000	0.0163			Cm-H, Car-I, Car-H and ring wagging			
3	B_1	125.8567	1.1227	0.6937		110	Cm-H Rocking			
4	A_2	128.4119	0.0000	0.3362			Cm-H and ring Rocking			
5	B_1	166.1550	4.6263	0.0006			Cm-H and ring Rocking			
6	B ₂	179.9057	0.1457	0.7134			Cm-H ,Car-Iand ring rocking			
7	A_2	207.9175	0.0000	0.1234		211	Cm-H and ring Rocking			
8	A_1	216.9651	0.6419	5.0549			Car-I stretching, Ring breathing			
9	B_1	223.2690	0.1386	0.3611		252	Cm-H and ring Rocking			
10	B_1	279.9217	1.4544	1.4031		297	Cm-H, Car-H and ring Rocking			
11	A_1	321.3581	0.0196	0.4330			CH3 rocking and ring breathing			
12	A_2	359.4364	0.0000	3.0475		352	Cm-H Rocking, ring breathing			
13	B_2	360.7717	0.1490	0.8439			Cm-H twisting, ring bending			
14	A_1	364.2664	0.1988	1.7491			Cm-H twisting, ring bending			
15	B_2	442.3405	0.0247	5.1628		441	Cm-H,C-H(ring) and ring wagging			
16	A_1	522.0312	3.9794	27.2665			Cm-H and ring breathing			
17	B_1	529.6911	1.4713	0.8380		515	Cm-H, Car-H and ring wagging			
18	B_2	557.9405	0.4461	0.0673			Cm-H,C-H(ring) and ring rocking			
19	A_2	589.8917	0.0000	0.1576			Cm-H and ring wagging			
20	A1	684.8598	1.4625	3.3163	672	674	Cm-H and ring breathing			
21	B_1	728.3433	0.7416	1.9022			Cm-H,Car-H and ring Rocking			
22	A_1	803.5454	23.2374	7.6776	778	798	Car-I, Car-H stretching, Cm-H and ring wagging			
23	B_2	843.0656	0.1884	0.0212			Cm-H ,Car-H rocking and ring stretching			
24	\mathbf{B}_1	890.4359	9.0345	0.5140	873		Cm-H twisting ,Car-H Rocking			
25	A_1	1007.6053	29.6497	4.9172	976		Cm-H and Car-H twisting, ring breathing			
26	A_1	1022.8177	10.5407	4.6691		1020	CH3and ring wagging			
27	B_2	1039.3213	7.2461	0.0240			Cm-H, Car-H and ring rocking			
28	A_2	1041.2286	0.0000	2.6487			Cm-H scissors and Ring bending			
29	B_1	1046.6114	3.7287	0.2935			Cm-H,Car-H and ring rocking			
30	B_1	1067.4837	0.6792	1.2089			Cm-H, Car-H and ring wagging			
31	B_2	1069.1709	2.3401	0.0240			Cm-H, Car-Hand ring wagging			
32	A_2	1070.9609	0.0000	0.0074			Cm-H,Car-H and ring wagging			
33	B_2	1102.9411	0.9111	1.4077			Cm-H, Car-H and ring rocking			

34	A_1	1213.1623	11.2980	6.1131	1176	1183	CH3 rockine, ring ip deformation
35	B_2	1274.6224	0.6809	1.0885		1270	Car-H bending Ring stretching
36	A_1	1320.5078	2.8180	24.5637			Ring breathing
37	B_2	1333.7689	2.0834	10.7251		1385	Cm-H,Car-H rocking ,Ring ip deformation
38	A1	1410.8487	0.0386	0.6172			Cm-H ,Car-H wagging,Ring ip deformation
39	B_2	1425.5358	0.6722	16.2803			CH3 umbrella deformation
40	B_2	1433.2570	2.0021	0.3344			CH3 umbrella deformation, Ring
41	A1	1435.5871	3.8213	23.4713			CH3 umbrella, Car-H and ring wagging
42	A1	1448.2271	5.6031	3.8673	1461	1443	CH3 umbrella deformation,Car-H and ring wagging
43	B_2	1491.3299	0.1425	1.7725			Cm-H rocking, Car-H ip bend, ring
44	A1	1494.3241	1.7725	7.3179			Car-H bending, Ring stretching
45	A2	1502.7366	0.0000	17.8829			Cm-H wagging
46	B_1	1503.1429	34.9989	4.1920			Car-H bending
47	B_2	1522.2327	13.0504	0.9119			CH3 umbrella def,Car-H ip bend,Ring
48	B_1	1527.4245	0.1610	10.6674			Cm-H rocking
49	A2	1527.8325	0.0000	0.4826			CH3 umbrella def,Car-H ip bend,Ring
50	A1	1534.0498	36.6021	36.6021			CH3 umbrella deformation
51	B_2	1535.1753	38.9932	0.4692	1536	1545	CH3 umbrella deformation
52	A1	1621.6755	17.7821	25.058		1604	CH3 umbrella deformation,Ring
53	B_2	1676.1042	4.3594	26.676			Car-H ip bend Ring stretching
54	B_2	3064.4493	50.9239	24.748	2360		Cm-H stretching
55	A1	3064.9059	23.5176	364.82			Cm-H stretching
56	B_2	3072.9763	9.7074	0.7500		2921	Cm-H stretching
57	A1	3073.5993	320.5430	320.54	2917	2950	Cm-H stretching
58	A2	3144.9895	0.0000	157.68			Cm-H twisting
59	B_1	3145.1889	30.2813	1.4856			Cm-H twisting
60	B_1	3149.0028	8.8015	60.816			Cm-H twisting
61	A2	3149.1971	0.0000	16.236			Cm-H twisting
62	A1	3168.6747	31.9910	108.78			Cm-H stretching
63	B_2	3168.7489	2.3514	0.0862			Cm-H stretching
64	B ₂	3197.3480	30.8725	51.296			Cm-H stretching
65	A1	3197.7173	6.5209	55.305			Cm-H stretching
66	A1	3203.5644	24.5710	104.19			Car-H stretching

Chapitre V Etude théorique (DFT) du durène et quelques uns de ses dérivés: CD, BD et ID

• Vibrations du groupement méthyle

Les fréquences du groupement méthyle indiquant les modes dans le plan et hors du plan de la molécule d'iododurène sont données dans le (**Tableau V.16**).

Ce composé est caractérisé par la présence de quatre groupements méthyles, ce qui ne rend pas l'attribution de leurs modes vibrationnelles facile, non seulement à cause de leurs couplages, mais aussi dans la gamme de fréquence (73-166 cm⁻¹) il est difficile à discerner entre les modes internes de réseau et de torsion.

Selon la littérature relative aux composés hexaméthylo-halogéno-benzène il est rapporté que le mouvement d''élongation (stretching vibrations) de la liaison C-H du groupement CH₃ et le mouvement de parapluie (umbrella) se fait autour de 2900 cm⁻¹, dans notre cas, le mouvement d''élongation anti-symétrique est localisé dans la gamme des fréquences 3145-3198 cm⁻¹ et le mouvement symétrique de parapluie est localisé dans la gamme des fréquences 3065-3074cm⁻¹. Ce mouvement est observé entre 3000 cm⁻¹ en Raman et entre 2400 et 3000 cm⁻¹ en IR. Les fréquences calculées par la DFT sont globalement intenses et supérieures à celles observées expérimentalement.

Vibration dans et hors du plan moléculaire du reste du squelette de la molécule

Plusieurs modes des vibrations sont trouvés par le calcul de la DFT dans la gamme 1676-251 cm⁻¹ et correspondent à la fois au balancement (wagging) du CH₃, respiration (breathing) du noyau benzénique, d''élongation (stretching) C_{ar} –Br, bending C_{ar} -H ainsi qu''un mouvement de parapluie des groupements méthyles et déformation du cycle aromatique. Dans le **tableau V.16** sont rassemblés les types de mouvement et les fréquences correspondantes.

Les 66 modes de vibrations (dans le plan et hors du plan) du bromodurène et de l'iododurène sont illustrés dans les **(figures V-14 et V-15).** Une description détaillée a été faite au paragraphe précédent décrivant les modes de vibration observés et calculés par la fonctionnelle MPW1PW91/DGDZVP.

Figure V-14 : Illustration de 41 mouvements de vibrations **dans le plan** de la molécule du BD et de l''ID obtenus par la MPW1PW91/DGDZVP. Les modes de vibration dans le plan sont spécifiés par les symétries A₁ et B₂.

Figure V-15 : Illustration de 25 mouvements **hors du plan** de la molécule du BD et de l''ID obtenus par la MPW1PW91/DGDZVP. Les modes de vibration hors du plan sont spécifiés par les symétries B_1 et A_2 .

V.6. Comportement de la stabilité moléculaire à partir de la rotation d'un méthyle

Les conformères (ou isomères de rotation) sont des stéréoisomères reliés par rotation d'une partie de la molécule par rapport au reste de la molécule autour d'une liaison comme axe de rotation, sans rupture de liaison.

Au cours de la rotation, l'énergie potentielle de la molécule passe alternativement par des maximums correspondant aux conformations éclipsées et des minimums correspondant aux conformations décalées. L'analyse conformationnelle a pour but d'examiner les conformations adoptées par les molécules et de dégager celles qui sont énergétiquement favorisées. L'origine physique de la barrière de rotation est complexe.

Elle met en jeu des interactions de van der Waals et des interactions coulombiennes.

A partir de conformation C_{2v} optimisée correspondant à l''énergie de conformation la plus stable de la molécule du C10H13X (X= Cl, Br et I), nous avons étudié les effets de rotations successives d''une part à un méthyle C_{m8} et d''autre part à un méthyle C_{m10} , dans les deux cas en faisant dévier la liaison Cm-H_{écl} par un pas de 30° par rapport au plan moyen du cycle aromatique.

L'énergie potentielle relative des différentes conformations de chaque composé obtenue par la rotation de C_{m8} est donnée par la courbe Ep = f (angle de rotation) suivante :

Figure V-16 : Variation de l'énergie potentielle de la molécule du a): chlorodurène, b): bromodurène, c): iododurène en fonction de la rotation du méthyle **Cm**₈ autour de l'éaxe C₃-C₈.

D'après ces diagrammes d'énergie, il apparaît qu'il existe deux conformations remarquables.

• Pour $\theta = 0$ et 120° (périodicité de 120°) nous trouvons des conformations éclipsées avec des énergies : Ep(CD)= 9.2 kcal.mol⁻¹, Ep(BD)= 9.3 kcal.mol⁻¹ et Ep(ID)= 9.0 kcal.mol⁻¹.

• Pour $\theta = 60$ et180° (périodicité de 120°), nous trouvons des conformations décalées avec des énergies :Ep(CD) =Ep(BD)= 1.1 kcal.mol⁻¹ et Ep (ID)=1.5 kcal.mol⁻¹.

D'après ces résultats, on remarque que la position éclipsée est moins stable que la position décalée.

Donc, dans le cas de déviation de la liaison Cm_8 - H_{83} du CD, BD et ID, on a deux niveaux d'énergie possible (Figure V-16).

Dans le cas de déviation de la liaison Cm_{10} -H₁₀₃ du CD, BD et ID, on remarque que l'on n'a plus globalement deux niveaux d'énergie, mais six. En effet les diagrammes d'énergie présentent trois valeurs de minimum différentes pour θ = 60 ou 300°, 120 ou 240°, 180° et 3 valeurs de maximum pour θ = 15 ou 345°, 105 ou 255°, 135 ou 225° (Figure V-17).

135

Figure V-17: Variation de l'énergie potentielle de la molécule du: a): chlorodurène, b): bromodurène, c): iododurène en fonction de la rotation du méthyle C_{m10} autour de l'axe C_6 - C_{10} .

Parmi ces six niveaux d'énergie, on a un niveau très bas, tout au moins plus bas que les autres, c'est lorsque le halogène (Cl, Br, I) et le méthyle C_{m10} sont décalés à 180°. C'est donc une conformation privilégiée pour les trois composés (Figure V-17). On pourrait penser que la préférence pour la conformation décalée provient de la répulsion entre les atomes d'hydrogène des deux groupements méthyle C_{m9} et C_{m10} .

Ces résultats montrent bien l'influence de l'environnement sur la barrière de potentiel.

V.7. Conclusion

Nous avons utilisé les possibilités du programme GAUSSIAN 03 et de calculs basés sur la théorie de la fonctionnelle de densité (DFT) pour connaître les conformations probables adoptées par la molécule isolée du durène et quelques uns de ces dérives.

L'optimisation des géométries à l'aide de bases de fonctions telles que DGDZVP et des fonctionnelles d'échange corrélation « B3LYP » et « MPW1PW91 » a permis de faire une étude complète de l'influence du choix de la base sur les géométries et les fréquences de vibration. Les géométries optimisées des C_{10} H₁₃X (X= Br et I) sont comparées à celles des structures caractérisées expérimentalement par diffraction des rayons X sur monocristal.

- Les calculs nous ont permis de trouver des conformations de symétrie D_{2h}, Cs pour le durène et des conformations de symétrie Cs et C_{2v} pour le chlorodurène (CD) le bromodurène (BD) et l'iododurène (ID) avec des énergies de formation minimales voisines.
- Les résultats obtenus montrent que les longueurs et les angles de liaison calculés avec la fonctionnelle B3LYP/DGDZVP sont plus longs par rapport à celles obtenues par la fonctionnelle MPW1PW91/DGDZVP.
- Les résultats de l'optimisation ont confirmé que : la conformation moléculaire de symétrie D_{2h} du durène (C₁₀ H₁₄) obtenue à partir de la fonctionnelle B3LYP et la base DGDZVP est la forme la plus stable.

- La conformation du chlorodurène (C_{10} H₁₃ Cl), proche de la symétrie C_{2V} obtenue par la B3LYP et la base DGDZVP correspond à l'énergie de formation la plus faible pour la conformation la plus stable.
- La conformation moléculaire du bromodurène (C₁₀ H₁₃ Br) et l'iododurène (C₁₀ H₁₃ I) présente la même symétrie C_{2V} est obtenue par la MPW1PW91/ DGDZVP correspond à l'énergie de formation la plus faible pour la conformation la plus stable.
- les résultats de la géométrie obtenus pour la molécule isolée du durène avec ceux de la molécule du CD, BD et l'ID, prouvent que les molécules sont rigoureusement planes avec une moyenne des longueurs de liaison des cycles de l'ordre de 1.400Å.
- Pour le bromdorène, les résultats obtenus montrent un accord de 0.4 % entre les longueurs de liaison calculées par la fonctionnelle MPW1PW91 et celles obtenues par l'expérience, cet accord est moins prononcé pour ce qui est des valeurs calculées par la B3LYP et les valeurs expérimentales, il est égal à 1.1 %.
- Un accord de 0.96 % entre les valeurs des angles de liaisons calculées par les deux fonctionnelles et celles fournies par l'expérience.
- Expérimentalement la structure cristalline du brodurène est beaucoup plus proche de la conformation de symétrie C2v obtenue à partir de la fonctionnelle MPW1PW91 et le jeu de base DGDZVP.
- Pour l'iododurène, les résultats obtenus montrent un accord de 0.69 % entre les valeurs des angles de liaisons calculées par la MPW1PW91 et celles fournies par l'expérience. Cet accord est de 0.76% en ce qui concerne la B3LYP.
- Un accord de 0.3 % entre les longueurs de liaison calculées par la fonctionnelle MPW1PW91 et celles obtenues par l'expérience, cet accord est moins prononcé pour ce qui est des valeurs calculées par la B3LYP et les valeurs expérimentales, il est égal à 0.8 %.
- Expérimentalement la structure cristalline de l'iododurène observée est beaucoup plus proche de la conformation moléculaire de symétrie C2v obtenue par la fonctionnelle MPW1PW91 et la base DGDZVP.
- Dans le cas de deux dérivés de durène : bromodurène (BD) et iododurène (ID) les calculs de la DFT permettent d'un côté de trouver les optimisations géométriques de chacune des deux molécules, et de l'autre, de calculer leurs fréquences de vibration internes et principalement leurs attributions sur toute la gamme fréquentielle allant de 0 à 3500 cm⁻¹.
- Les fréquences de vibration du bromodurène et l'iododurène dans la conformation de symétrie C₂v ont été calculées avec la DFT à l'aide de la fonctionnelle MPW1PW91 et le jeu de base DGDZVP.
- Les données spectroscopiques ont été caractérisées et comparées avec celles fournies par les expériences (Raman et IR).
- Les résultats de calcul de la DFT ont permis l'attribution des 66 modes internes de la molécule du bromodurène et d'iododuène.
- L'attribution des modes donne un très bon accord entre les fréquences calculées et observées à la fois pour les modes de vibration dans le plan et les modes de vibration hors du plan de la molécule isolée des monohalogénodurène (BD et ID).
- Nos calculs sur les monohalogénodurène (MHD) ont montré que la théorie de la fonctionnelle de la densité permet de faire une bonne suggestion sur le domaine de fréquences avec des intensités raisonnables IR et Raman.

Conclusion générale

Dans le cadre des recherches entreprises au laboratoire de cristallographie de l'Université Constantine1 en collaboration avec l'Université de Rennes 1 sur les monohalogènométhylebenzènes et les dihalogènométhylebenzènes, nous nous sommes intéressés à l'examen de la structure cristalline, la conformation moléculaire et au comportement spectroscopique de certains de ces composés.

Le but de ce travail était de compléter des études entreprises sur des composés halogènométhylebenzènes, dans notre cas, quelques monohalogénodurénes, afin de comprendre le comportement du radical méthyle soumis à des environnements différents.

Etude expérimentale

Au cours de ce travail, nous avons déterminé la structure cristalline de 1-iodo -2, 3, 5, 6-tétraméthylbenzene ($C_{10}H_{13}I$), connu comme iododurène (ID) et du 1-bromo -2, 3, 5, 6-tétraméthylbenzene ($C_{10}H_{13}$ Br) aussi connu comme bromodurène (BD) par la diffraction des rayons X à partir d'un monocristal à la température ambiante (293K).

Les groupements méthyles des molécules de la maille élémentaire de l'ID et du BD, ont chacun une liaison C-H éclipsée dans le plan du cycle aromatique. Deux des quatre liaisons C-H sont orientées vers l'atome H₄₁ et aucune liaison n'est orientée vers l'atome d'halogène (I ou Br).

- L'expérience montre que l'iododurène (ID) cristallise dans le même groupe d'espace que le bromodurène (BD) P2₁2₁2₁ du système orthorhombique avec quatre molécules par maille.
- ✓ L'affinement des positions atomiques et des paramètres de déplacements atomiques anisotropes du cristal de l'iododurène conduisent à R= 3.5% et R_w= 3.9%.
- ✓ L'empilement des molécules de ce composé, se fait suivant l'axe cristallographique le plus court *a*.

- ✓ L'angle entre la normale au plan moléculaire est de 50.14° par rapport à l'axe a, 44.82° par rapport à l'axe b et 74.47° par rapport à l'axe c.
- ✓ Dans l'iododurene, l'interaction entre couches de molécules est plus importante que celle entre molécules d'une même couche.
- ✓ La cohésion du cristal est assurée par les forces d'interaction C_m − C_{ar} qui présentent les plus courtes distances de contact dans des couches différentes et dans l'empilement moléculaire.
- ✓ Pour le bromodurène, l'affinement des positions atomiques et des paramètres de déplacements atomiques anisotropes du cristal de BD conduit à R= 4.8% et R_w= 5.9%.
- ✓ Les longueurs de liaison carbone-carbone du noyau benzénique sont légèrement plus courtes que celles trouvées pour la structure cristalline de l'iododurène, et correspondent aux valeurs habituellement admises.
- ✓ L'empilement des molécules de ce composé, se fait suivant l'axe cristallographique le plus court a.
- ✓ L'angle entre la normale au plan moléculaire est de 47.45° par rapport à l'axe a, 72.85° par rapport à l'axe b et 24.42° par rapport à l'axe c.
- ✓ Dans le bromodurène, l'interaction entre molécules d'une même couche est plus importante que celle entre différentes couches de molécules.
- ✓ La cohésion du cristal est assurée par les forces d'interaction C_{ar}- C_m qui présentent les plus courtes distances de contact dans une même couche et dans l'empilement moléculaire.

Etude théorique

Nous avons réalisé une série de calculs en méthode DFT pour déterminer les conformations moléculaires du durène ($C_{10}H_{14}$) et quelques-uns de ses dérives C_{10} H₁₃ X (X= I, Br, Cl).

L'ensemble des calculs a été réalisé à l'aide du programme Gaussian03 en méthode DFT avec deux fonctionnelles d'échange corrélation « B3LYP » et « MPW1PW91 » avec la base DGDZVP, qui peuvent conduire à des prédictions très précises pour l'optimisation géométrique des angles et des longueurs de liaisons. Les calculs proposent des conformations de symétries D_{2h}, C_s, C_{2h} et C_{2v} pour le durène et des conformations de symétries C_s et C_{2v} pour le chlorodurène (CD), le bromodurène (BD) et l'iododurène (ID) avec des énergies de formation minimales voisines.

Les résultats de l'optimisation ont confirmé que :

- la conformation moléculaire de symétrie D_{2h} du durène (C10 H14) obtenue à partir de la fonctionnelle B3LYP et la base DGDZVP est la forme la plus stable.
- La conformation du chlorodurène (CD), proche de la symétrie C_{2V} obtenue à partir de la fonctionnelle B3LYP et le jeu de base DGDZVP correspond à l'énergie de formation la plus faible pour la conformation la plus stable.
- La conformation moléculaire du BD et ID présentant la même symétrie C_{2v} est obtenue à partir de la fonctionnelle MPW1PW91/DGDZVP correspond à l'énergie de formation la plus faible pour la conformation la plus stable.
- Les longueurs de liaison calculées avec la fonctionnelle B3LYP/ DGDZVP sont plus longues par rapport à celles obtenues par la fonctionnelle MPW1PW91/ DGDZVP et les angles sont plus grands.
- La géométrie obtenue pour la molécule isolée du durène et les molécules des MHD (CD,BD et ID) sont rigoureusement planes avec une moyenne des longueurs de liaison des cycles de l'ordre de 1.400 Å.

Les géométries optimisées de C_{10} H₁₃X (X= Br et I) sont comparées à celles des structures caractérisées expérimentalement par diffraction des rayons X sur monocristal :

- L'expérience montre que la structure cristalline du brodurène observée est beaucoup plus proche de la conformation de symétrie C_{2v} que de C_s obtenue à partir de la fonctionnelle MPW1PW91 /DGDZVP.
- Un écart de 0.4 % est observé entre les longueurs de liaison calculées par la fonctionnelle MPW1PW91 et celles obtenues par l'expérience. Cet accord est moins prononcé pour ce qui est des valeurs calculées par la B3LYP et les valeurs expérimentales, il est égal à 1.1 %.
- Un écart de 0.96 % est constaté entre les valeurs des angles de liaisons calculées par les deux fonctionnelles et celles fournies par l'expérience.

- Expérimentalement la structure cristalline de l'iododurène observée est beaucoup plus proche de C_2v que de C_s obtenue à partir de la fonctionnelle MPW1PW91 et le jeu de base DGDZVP.
- Un accord de 0.69 % entre les valeurs des angles de liaisons calculées par la MPW1PW91 et celles fournies par l'expérience. Cet accord est de 0.76% en ce qui concerne la B3LYP.
- Un accord de 0.3 % entre les longueurs de liaison calculées par la fonctionnelle MPW1PW91 et celles obtenues par l'expérience, cet accord est moins prononcé pour ce qui est des valeurs calculées par la B3LYP et les valeurs expérimentales, il est égal à 0.8 %.
- Les légers écarts qui existent entre les valeurs expérimentales moyennes et celles obtenues à partir de la mécanique quantique peuvent être attribués aux interactions intermoléculaires.

Résultats spectroscopiques :

Les calculs de la DFT permettent d'un côté de trouver les optimisations géométriques de chaquecomposé, et de l'autre, de calculer leurs fréquences de vibration internes et principalement leurs attributions dans notre cas sur toute la gamme fréquentielle allant de 0 à 3500 cm⁻¹. Les données spectroscopiques ont été caractérisées et comparées avec celles fournies par les expériences (Raman et IR).

- Les fréquences de vibration du bromodurène et l'iododurène dans la conformation de symétrie C₂v ont été calculées avec la fonctionnelle MPW1PW91 et le jeu de base DGDZVP.
- Les résultats de calcul de la DFT ont permis l'attribution des 66 modes internes de la molécule du bromodurène et d'iododuène.
- L'attribution des modes donne un très bon accord entre les fréquences calculées et observées à la fois pour les modes de vibration dans le plan et les modes de vibration hors du plan de la molécule isolée des monohalogénodurène.
- Nos calculs sur les monohalogénodurène (MHD) ont montré que la théorie de la fonctionnelle de la densité permet de faire une bonne suggestion sur le domaine de fréquences avec des intensités raisonnables IR et Raman.

- Lors de la rotation du groupement méthyle, il est trouvé que la position du C_m-H éclipsée et orientée vers C_{ar}-H correspond à l'état instable de la molécule.
- La rotation de la liaison C_m-H éclipsée dans le plan moyen de la molécule et mitoyenne de l'halogène donne six états d'énergie pour chacun des trois composés. Pour chacun des trois composés, l'état le plus stable correspond à 1 Kcal/mole.

Références bibliographiques

- [1] R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University, New York, (1989).
- [2] J. K. Labanowski and J. W. Chemestry, Springer. Verlag New York, (1991).
- [3] J. Deferne, Introduction à la cristallographie, 40A, route déHermance CH-1222 Vésenaz, (2010).
- [4] http://www.fsr.um5a.ac.ma/cours/chimie/jouhari/chap4
- [5] http://marquant.chimie.free.fr/New08/aeac_Halogene.doc
- [6] http://fr.wikipedia.org/wiki/Rayon_X.
- [7] http://culturesciencesphysique.ens-lyon.fr/ressource/Diffraction-rayons-X-techniquesdetermination-structure.xml
- [8] J.R.Ouahes, Eléments de Radiocristallographie, Office des publications universitaires, (1995).
- [9] http://nte-serveur.univ-lyon1.fr/spectroscopie/raman/INTANALUSISMAG.htm.
- [10] J. M. Hollas. Spectroscopie. Dunod. Paris, (2003).
- [11] J.H. Lambert, Photometria, sive de mensura et gradibus luminis, colorum et umbrae, Sumptibus Vidae Eberhardi Klett, (1760).
- [12] E. Schrödinger, Phys. Rev. 28, 1049, (1926).
- [13] P. Hohenberg, W. Kohn, Phys. Rev. 136, B864, (1964).
- [14] D.Born, J.R. Oppenheimer, Ann. Phys. Rev., 84, 457 (1927).
- [15] W. Kohn, J. L. Sham, Phys. Rev. 140, 1133, A, (1965).
- [16] G. Berthier, J. Chem. Phys. 51, 363 (1954).
- [17] J. A. Pople et R. K. Nesbet, J. Chem. Phys. 22, 571 (1954).
- [18] J. C. Slater, Phys. Rev. 57, 57 (1930).
- [19] S. F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950).
- [20] J. A. Pople, R. Ditchfield, et W. J. Hehre, J. Chem. Phys. 56, 2257 (1972).
- [21] J. P. Perdew. Phys. Rev. B, 33 :8800, (1986).
- [22] C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 37: 785, (1988).
- [23] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frish. J. Phys. Chem., 98:11623, (1994).
- [24] F. Jensen. Introduction to Computational Chemistry. John Wiley & Sons, Ltd, (2007).
- [25] D. Young. Computational Chemistry : A Practical Guide for Applying Techniques to Real World Problems. Wiley-Interscience, (2001).

- [26] R. Ditchfield, W. J. Hehre, and Pople J. A. J. Chem. Phys., 54: 724, (1971).
- [27] W. J. Hehre, R. Ditchfield, and Pople J. A. J. Chem. Phys., 56: 2257, (1972).
- [28] T. Ziegler. Chem. Rev. 91, 651, (1991).
- [29] S. Vosko, L. Wilk, M. Nusair, Can. J. Chem. 58, 1200, (1990).
- [30] L. Fan, T. Ziegler. J. Chem. Phys. 94, 6057, (1991).
- [31] D. Salahub. DFT95, Paris, (1995).
- [32] J. E. McGrady, T. Lovell, R. Stranger, M. G. Humphrey. Organometallics, 4004, (1997).
- [33] M. W. Wong. Chem. Phys. Lett. 256. 391, (1996).
- [34] J. P. Perdew, A. Ruzsinszky, L. A. Constantin, J. Sun, G. I. Csonka, J. Chem. Theory Comput, 5, 902, (2009).
- [35] A. Ipatov, A. Fouqueau, C. Perez del Valle, F. Cordova, M. E. Casida, A. M. Köster, A.Vela, C. Jödicke Jamorski, J. Molec. Struct. (Theochem), 762, 179, (2006).
- [36] E. G. Cox, D. W. Cruickshank & J. A. Smith, Proc. Roy. Soc. London, A274, 1, 21 (1958).
- [37] M. Tazi, J. Meinnel, M. Sanquer, M. Nusimovici, F. Tonnard, R. Carrie, Acta Crystallogr., Sect. B 51, 838 (1995).
- [38] M. Mani, Thèse d'état, Univ. El-jadida, Maroc, (1992).
- [39] J. Meinnel, M. Mani, A. Cousson, F. Boudjada, W. Paulus, M. Jonshon, J. Chem. Phys, 165, 261 (2000).
- [40] T. Fujiwara, T. Atake & H. Chihara Bull. Chem. Soc. Jpn, 63, 3, 1-8, (1990).
- [41] A. Boudjada, J. Meinnel, A. Boucekkine, O. Hernnandez, M. T. Fernnandez-Diaz, J. Chem. Phys., 117, 10173 (2002).
- [42] M. Tazi, Thèse Doctorat d'Etat, Université Rennes 1, France (1990).
- [43] J.M. Robertson, Proc. Roy. Soc., A141, 594 (1933).
- [44] E. Prince, L.W. Schroeder et J.J Rush, Acta Cryst ., B29,184 (1973).
- [45] J.L. Baudour, M. Sanquer, Acta Cryst., B30, 2371 (1974).
- [46] J. C. Messager, J. Blot, C. R. A. S. Paris, 272,684 (1971).
- [47] D. Britton, W. B. Gleson, Acta Cryst., C59, 0439 (2003).
- [48] N. Hamdouni, Thèse de Magister, Univ. Mentouri Constantine (2008).
- [49] G. Charbonneau, J. Baudour, J. C. Messager, & J. Meinnel, Acta Cryst. 17, 780-781 (1964).
- [50] Y. Balcou, P. Gregoire, J. Meinnel, J. Chem. Phys., 5, 536 (1965).
- [51] Y. Balcou, J. Meinnel, J. Chem. Phys., 1, 114 (1966).
- [52] F. C. Pigge, V. R. Vangala, P. P. Kapadia, D. C. Swenson, N. P. Rath, Chem.Comm., 4726-4728, (2008).

- [53] Collect, Denzo, Scalepack, SORTAV: KappaCCD Program Package, Nonius, B. V. Delft, The Netherlands. Nonius (1999).
- [54] G. M. Sheldrick, *SADABS*, University of Göttingen, Germany. (1996)
- [55] R. H. Blessing, Acta Cryst. A51, 33 (1995).
- [56] D. J. Watkin, L. J. Pearce & C. K. Prout, CAMERON. Chemical Crystallography Laboratory, Oxford, England, (1996)
- [57] L.J. Furragia, J. App. Cryst. 32, 837 (1999)
- [58] G. Cascarano, A. Altomare, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, D. Siliqi, M.C. Burla, G. Polidori et M. Camalli, Acta Cryst. A52, C-79 (1996)
- [59] D. J. Watkin, C.K. Prout, J.R. Carruthers, P. W. Betteridge, CRYSTALS Issuel1. Chemical Crystallography Laboratory, Oxford, UK (2003)
- [60] A.C. Larson, "Crystallographic Computing", Ed. Ahmed, F. R. Munksgaard, Copenhagen, 291 (1970)
- [61] Origin, Microsoft Software, INS One Rounthouse Palse Nothempton 1110160 USA
- [62] Smith et al., J. Amer. Chem. Soc., 7, 58 (1936)
- [63] J.R. Carruthers, D. Watkin, Acta Crysy., A35, 698 (1979)
- [64] M. J. Frisch et al., GAUSSIAN 03, Gaussian, Inc., Pittsburgh, PA, 2003.
- [65] W. Gaussview, AE. Frisch, A.B. Nielsen, A.J. Holder, Gaussian Inc., Cernegie Office Park, Building 6, Pittsburg, PA 15106, USA.

Résumé

Spectroscopie, conformation théorique et structure cristalline de quelques produits halogénodurènes

Ce travail rentre dans le cadre d'une étude systématique du comportement du groupement méthyle (CH₃) dans des produits benzéniques $C_{10}H_{13}X_1$ substitués par des méthyles et des halogènes (X= Cl, Br, I ...) et qui présentent une grande symétrie. Dans notre cas nous avons déterminé la structure cristalline du bromodurène (BD) et l''iododurène (ID) à partir de la diffraction des rayons X à température ambiante (293K).

L''expérience montre que l''iododurène (C_{10} H₁₃ I) cristallise dans le même groupe d''espace que le bromodurène (C_{10} H₁₃Br) P2₁2₁2₁ du système orthorhombique avec quatre molécules par maille. L''empilement moléculaire se fait suivant le plus court axe cristallographique *a*.

Parallèlement, nous avons fait des calculs basés sur la théorie de la fonctionnelle de densité (DFT) pour trouver très précisément les conformations moléculaires probables adoptées par la molécule isolée du durène ($C_{10}H_{14}$) et quelques-uns de ses dérivés $C_{10}H_{13}X(X=I, Br, CI)$.

La méthode de DFT permet aussi de calculer les fréquences de vibration, les intensités IR, les activités Raman et donc de les comparer avec les résultats expérimentaux.

Les calculs à partir de deux fonctionnelles B3LYP et MPW1PW91 et le jeu de base DGDZVP nous ont permis de trouver des conformations de symétrie D_{2h} et C_{2v} pour le durène et des conformations de symétrie C_s et C_{2v} pour le chlorodurène(CD), le bromodurène(BD) et l'iododurène(ID) avec des énergies de formation minimales voisines.

Expérimentalement les structures du BD et de l''ID sont beaucoup plus proches de C_{2v} que de C_s obtenues à partir de la fonctionnelle MPW1PW91/DGDZVP. En conséquence, les calculs des modes de vibration interne ont été entrepris à partir de cette fonctionnelle.

Les calculs théoriques de spectroscopie IR et Raman ont permis l'attribution des 66 modes internes de la molécule du bromodurène et de l'iododuène. L'attribution des modes donne un très bon accord entre les fréquences calculées et celles observées à la fois pour les modes de vibration dans le plan et les modes de vibration hors du plan de ces composés.

Mots clés : Structure Cristalline, Diffraction des rayons X, DFT, spectroscopie IR, modes internes.

Abstract:

Spectroscopy, theoretical conformation and crystal structure of some compounds of halogenodurene

This work is part of a systematic study of the behavior of the methyl group (CH_3) in benzene compounds $C_{10}H_{13}X$ substituted with methyl and halogens and that exhibit large symmetry. In this case, we have determined the crystal structure of bromodurene (BD) and iododurene (ID) from the X-ray diffraction at room temperature (293 K).

Experience show that iododurene ($C_{10}H_{13}I$) crystallizes in the same space group that the bromodurene ($C_{10}H_{13}Br$) of the orthorhombic P212121 with four molecules per unit cell. The molecular packing is along the shortest crystallographic axis *a*.

In parallel, we have extensively studied the possibilities of GAUSSIAN 03 program and calculations based on density functional theory (DFT) to find precisely the likely molecular conformation adopted by the isolated durene ($C_{10}H_{14}$) molecule and its derivatives (X = I, Br, Cl). DFT method can also calculate the vibrational frequencies, IR intensities, Raman activities and therefore to compare them with experimental results.

Calculations based on B3LYP and MPW1PW91 functionals and DGDZVP basis set give conformations of symmetry D_{2h} for durene and two symmetries C_s and C_{2v} for chlorodurene (CD). Bromodurene (BD) and iododurene (ID) have similar energies minimum.

Experimentally, molecular structures of BD and ID compounds are much closer to that of C_{2v} and C_s obtained from MPW1PW91 / DGDZVP functional. So, calculations of internal modes vibration were undertaken from this functional.

Theoretical calculations of IR and Raman spectroscopy allowed the assignment of 66 internal modes of bromodurene and iododurene. The assignment of modes give a very good agreement between calculated and observed frequencies for inplane and outofplane vibration modes.

Key words: Crystal Structure, X-ray diffraction, DFT, IR spectroscopy, internal modes.

<u>ل لې خص:</u>

لحقي ة، لت مثل النظري و ليدي ة ليلى دي قل عض مراكبات ل دلى جين في ران

يأتي هذا العمل في اطار دراسة منهجية سلوك مجموعة المثيل (CH₃) المتواجدة في مركبات البنزين X= Cl,Br,I.....) والميثيل والمتميزة بانهالوجينات (X= Cl,Br,I....) والميثيل والمتميزة باناظر كبير. وفيما يخصنا قمنا بتحديد البنية البلورية للبروموديران (BD) واليودوديران(ID) من خلال انعراج الأشعة السينيةعند درجة الحرارة الغرفة 293K.

وقد بينت التجربة أن اليودوديران C₁₀ H₁₃I والبروموديران C₁₀ H₁₃Br يتبلوران في نفس مجموعة الفضاء P2₁2₁2₁ للنظام المعيني متعامد المحاور بأربع جزيئات في خلية الوحدة. و تتم التعبئة الجزيئية وفقا لأقصر محور بلوريa.

بالموازاة،ق في اب حريب اث الحج ماداع لى نظرية وظيفية الكثافة (DFT) وذلك لإيجاد الإمتثالات الجزيئية المحتملة لجزيء الديران(C₁₀H₁₄)المعزول وبعض من مشتقاته C₁₀H₁₃X(X=I, Br,Cl).

كما تسمح طريقة نظرية وظيفية الكثافة DFT بحساب تردداتا لاهتزات ، شدة الأسعى ما حرح جال حمراء، وتش اطاث ر مان وال خال قي اربخ ما معالين خل جال جرب ب

باستعمال وظائف الكثافة (B3LYP)و (WPM1WP91) و القاعدة الستعمال وظائف الكثافة $(D_{2v} = D_{2h})$ و (DGDZVP الحسابات أعطت إمثتالات لها تناظر $D_{2v} = D_{2h}$ و النسبة للديران و إمثتالات تملك تناظر C_{2v} و تناظر C_{2v} و النسبة للكلرودوديران (CD) والبروموديران (BD) و اليودوديران (ID) لها طاقات تكوين دنيا متقاربة.

تجريبيا نلاحظ أن بنى كل من BD و ID هي أكثر قربا إلى C_{2v} منها إلى C_{s} والمتحصل عليها بواسطة الوظيفية MPW1PW91/DGDZVP. وعليه فقد تم حساب أنماط الاهتزازات الداخلية عن طريق هذه الوظيفية.

وقد سمحت الحسابات الطيفية النظرية ماحح جالحمراء و ر مانب لإن اد 66نمط دا خلَّ لجزيء البروموديران و اليودوديران. ويعطي هذا الإسناد توافقا كبيرا بين الترددات المحسوبة و الملاحظة لهذه المركبات سواء بالنسبة لأنماط الاهتزاز داخل المستوي أو خارجه.

الكلمات المفتاحية: البنية البلورية، انعراج الأشعة السينية،DFT، أطياف الأشعة ماحح ج الحمراء، أنماط الاهتزازات.

<u>Résumé</u>

Ce travail rentre dans le cadre d'une étude systématique du comportement du groupement méthyle (CH₃) dans des produits benzéniques $C_{10}H_{13}X_1$ substitués par des méthyles et des halogènes (X= Cl, Br, I ...) et qui présentent une grande symétrie. Dans notre cas nous avons déterminé la structure cristalline du bromodurène (BD) et l'iododurène (ID) à partir de la diffraction des rayons X à température ambiante (293K).

L''expérience montre que l''iododurène (C_{10} H₁₃ I) cristallise dans le même groupe d''espace que le bromodurène (C_{10} H₁₃Br) P2₁2₁2₁ du système orthorhombique avec quatre molécules par maille. L''empilement moléculaire se fait suivant le plus court axe cristallographique *a*.

Parallèlement, nous avons fait des calculs basés sur la théorie de la fonctionnelle de densité (DFT) pour trouver très précisément les conformations moléculaires probables adoptées par la molécule isolée du durène ($C_{10}H_{14}$) et quelques-uns de ses dérivés $C_{10}H_{13}X(X=I, Br, CI)$.

La méthode de DFT permet aussi de calculer les fréquences de vibration, les intensités IR, les activités Raman et donc de les comparer avec les résultats expérimentaux.

Les calculs à partir de deux fonctionnelles B3LYP et MPW1PW91 et le jeu de base DGDZVP nous ont permis de trouver des conformations de symétrie D_{2h} et C_{2v} pour le durène et des conformations de symétrie C_s et C_{2v} pour le chlorodurène(CD), le bromodurène(BD) et l''iododurène (ID) avec des énergies de formation minimales voisines.

Expérimentalement les structures du BD et de l''ID sont beaucoup plus proches de C_{2v} que de C_s obtenues à partir de la fonctionnelle MPW1PW91/DGDZVP. En conséquence, les calculs des modes de vibration interne ont été entrepris à partir de cette fonctionnelle.

Les calculs théoriques de spectroscopie IR et Raman ont permis l'attribution des 66 modes internes de la molécule du bromodurène et de l'iododuène. L'attribution des modes donne un très bon accord entre les fréquences calculées et celles observées à la fois pour les modes de vibration dans le plan et les modes de vibration hors du plan de ces composés.

Mots clés : Structure Cristalline, Diffraction des rayons X, DFT, spectroscopie IR, modes internes.