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Chapter 1  

Literature Review 
 
 
 
 
 
1.1 Theoretical analysis 
 
 Laminar mixed convection in tubes finds itself in many industrial applications such 

as cooling corps in nuclear reactors [1], solar water heating systems [2], heat exchangers 

[3] and closed-loops thermosyphon [4]. These numerous domains of applications justify 

the production of an abundant bibliography in the past decades. On the other hand, the 

understanding of the inherent physical phenomena to the interaction of the free and forced 

convection constitutes in itself a very important objective.  

 For the two kinds of mixed convection in ducts (upward mixed convection and 

downward mixed convection), one finds few works treating the transient downward or 

upward mixed convection in vertical duct with or without the effect of axial wall and fluid 

conductions, while in the steady state, these two kinds of mixed convection have received a 

rather particular attention from researchers in the past decades.   

 To the departure, the researchers used simplified models like those based on the 

equations of the boundary layer approximations but, these last years, the spectacular 

development of the computers and the techniques of numerical analysis have permitted the 

modelling of the mixed convection phenomena from the Navier-Stockes equations. 

 Between 1901 and 1903, Gauthier-Villars published in Paris, Joseph Boussinesq's 

treaty entitled: "Analytic theory of the Heat" in which one recovers the following fragment: 

"… it was necessary to observe again that, in most movements provoked by the heat on our 
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heavy fluids, the volumes or the densities are conserved to very little near, although the 

corresponding variation of the weight of the unit volume is justly the reason of the 

phenomena that it is about analysing. There results from that the possibility to disregard 

the variations of the density, where they are not multiplied by the gravity g, while keeping, 

in the calculations, their product by this one ". 

 This drives to the more used hypothesis in the natural or mixed convection that is 

called "the Boussinesq approximation". It means that the density ρ is supposed constant 

except in the gravitation term of the equation of quantity of movement.  

 The experimental studies imply costs of very important realization. For this reason 

we find a few experimental works in the literature that concern the mixed convection. 

Besides, the chosen geometry doesn't facilitate us the task. Two techniques have been used 

until now in the experimental studies: the first one is quantitative while the second is 

qualitative. The first consists in taking measures of temperature or velocity on several 

sections along an opaque tube, while the second consists in visualizing the flowing fluid in 

a transparent tube. 

 Among the first experimental studies concerning the assisted or opposed mixed 

convection in a vertical tube one recovers the one of Hanratty et al [5] in 1958. The 

authors show experimentally and numerically that the non-isotherm flow becomes 

unstable, even for a weak Reynolds number. The thermal boundary condition (positive or 

negative wall heat flux) has been realized by the way of a plastic cutaway fixed in a 

concentric manner around the tube in which circulates hot or cold water. Two cases have 

been analyzed:  

(1) the heated upward flow (or the cooled downward flow) that corresponds to the 

assisted mixed convection, and  

(2) the cooled upward flow (or the heated downward flow) that coincides with the 

opposed mixed convection.  

In the first case they observed that the fluid in the center of the tube is decelerated, while 

the one close to the pipe wall is accelerated, so that a recirculation zone of parabolic shape 

appears. They also observed that if the temperature in the envelope decreases or the debit 

in the tube increases, the summit of the parabola goes up. In the second case they observed 

the inverse phenomenon. Otherwise, for a value of Reynolds equal to 50, and a 
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temperature difference between the zone where the fluid is heated or cooled by the 

cutaway and the inlet of the tube of 10 the turbulent régime gets settled.  

 In 1972, Zeldin and Schmidt [6] have studied the effect of the gravitation force on 

the hydrodynamic and thermal characteristics of the flow in a vertical tube. The used fluid 

is air. The temperature of the pipe wall is assumed constant and the velocity at the inlet of 

the tube is either constant or parabolic. The system is composed of two concentric tubes in 

which the one that is inside serves to take the measures and the annular space ensure to 

maintain the temperature of the interior wall tube constant while making circulate water. 

The authors found that the heat transfer has been improved by the action of the gravity 

when the ratio 0Gr/Re < , and that the Nusselt number varies linearly with 

Gr/Re when 050 ≤≤− Gr/Re .  

 Mori and Ohbuchi [7] have realized an experimental study of a downward water 

flow in a uniformly heated tube. They found that for weak heat flux values, the heat 

transfer is decreased by the effect of the natural convection compared to the case of the 

forced convection.  

 Bernier and Baliga [8] finalized a technique of visualization in a uniformly heated 

vertical tube through the intermediary of a very thin and semitransparent gold leaf. The 

experiences have been done for several representative cases of assisted mixed convection. 

They have observed, for each case, a recirculation cell in the centre of the tube. The 

apparition of these cells are due to the fact that the fluid close to the pipe wall is hot 

therefore its density decreases in relation to the one that is far from the pipe wall. This 

difference of density added to the force of gravity lead to the acceleration of the fluid 

adjacent to the pipe wall and at the same time, to keep the conservation of the mass, the 

fluid at the centre decelerates.  

 The numerical studies of steady combined forced and free convection in vertical 

parallel plate or pipe, without the effect of wall conduction, have been performed by 

numerous researchers, which refer to different kinds of boundary conditions [9-17].  

 Carlos and Guidice [18] presented a numerical analysis of the effect of the entrance 

region on mixed convection in horizontal concentric cylinders.  

 Fusegi [19] investigated the combined effect of the oscillatory through-flow and the 

buoyancy on the heat characteristics of a laminar flow in a periodically grooved channel.  
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 Cheng and Weng [20] numerically studied the mixed convection flow and heat 

transfer processes in the developing region of a vertical rectangular duct with one heating 

wall. 

 Morton and Leung [21] investigated numerically and experimentally the mixed 

convection in vertical circular duct subjected to constant temperature condition. In the 

downward mixed convection, a recirculation cell has been observed experimentally in the 

vicinity of the wall. They have shown that the upstream extent of the observed 

recirculation cell is more important than the one computed numerically. Morton and 

Leung have attributed this effect to the axial conduction of heat in the pipe wall.  

 Chan and Leung [22] shows that in the case of the opposed mixed convection, the 

correlation between the Nusselt number and the ratio 2Gr/Re is: 

15.0)−= 2(Gr/Re*8.16Nu  if     77.25.0 pp 2Gr/Re  

38.0)−= 2(Gr/Re*8.54Nu  if     35.0008.0 pp 2Gr/Re  

 Wang et al [23] have presented a numerical analysis of upward and downward mixed 

convections in vertical and horizontal circular ducts with reversed flow. Their results 

indicate that the velocity profile distortions increase with Re)/Gr(  but decrease 

considerably when Pe  increases for a constant value of Re)/Gr( . They have also shown 

that for high values of Gr/Re , the recirculation zone appears at the center of the tube for 

the heating case and near the pipe wall for the cooling case.  

 Chow et al [24] have analysed the effect of the natural convection and the fluid axial 

conduction on the fully developed laminar flow in a vertical channel subjected to constant 

wall temperature. The temperature profile at the inlet of the channel is assumed constant. 

They treated two cases: heating and cooling. Their results indicate that in the heating case, 

the heat flux and the Nusselt number increase with the Grashof number. On the contrary, in 

the cooling case these last two magnitudes decrease with the increase of Grashof number.  

 Barletta et al [25] have studied the non-axisymmetric forced and free convection in 

vertical circular duct subjected to:  

(1) Periodic sinusoidal temperature change at the wall, or 

(2) Convection from Ambient.  

For these two cases they find a critical value of Gr/Re , corresponding to the apparition of the 

recirculation zones that depends on the angular frequency q  for the first case:       
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 Joye [26] performs a comparison of heat transfer in a vertical tube between the 

assisted-buoyancy and the opposed-buoyancy cases. He shows that in the case of the 

opposed-buoyancy, there is an increase of the heat transfer compared to the case of the 

assisted-buoyancy.  

 Zghal et al [27] studied numerically laminar upward mixed convection flows in a 

vertical tube with a uniformly heated zone preceded and followed by adiabatic zones for a 

wide range of heating lengths, Reynolds and Richardson numbers. According to the 

combination of these parameters, the results show the existence of five regime of flow: 

developing with or without flow reversal, developing followed by a fully developed region 

both without flow reversal, and developing with flow reversal followed by a fully 

developed region with or without flow reversal. The conditions leading to the flow reversal 

as well as significant upstream diffusion of heat and momentum have been mapped on the 

Peclet-Richardson plan for different lengths of the heated zone.  

 More lately, Behzadmher et al [28] examined a similar problem of laminar and 

turbulent mixed convection, while using the turbulent model k- ε for the turbulent regime. 

The upward flow of air in a vertical heated tube has been analysed for two values of 

Reynolds number (Re=1000, 1500) and for several values of the Grashof number 

(Gr≤108). A correlation for the Nusselt number, valid in laminar and in turbulent regime, 

has been elaborated for Gr≤ 5.107 and 1000≤ Re ≤1500: 
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 Hadjadj and El Kyal [29] studied numerically the effect of two sinusoidal 

protuberances on natural convection in a vertical concentric annulus. They found that the 

presence of protuberances, lead to an increase in the heat transfer rate in the location of the 

obstruction along the wall.  

 El-Shaarawi and Negm [30] have studied numerically the coupling between the wall 

conduction and the laminar natural convection in open-ended vertical concentric annuli. 
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The effect of the wall-to-fluid thermal conductivity ratio has been investigated and found 

to have prominent effects on the steady heat transfer parameters.  

 Busedra and Soliman [31] have considered the geometry of semicircular duct and 

solved the problem of laminar fully developed mixed convection under buoyancy-assisted 

and opposed conditions. Their results are presented with a detailed assessment of the 

effects of inclination, Reynolds number, Grashof number and the thermal boundary 

conditions.  

 Other works about this subject in the steady state regime can be consulted in the 

references [32-39]. 

 The effect of axial wall conduction on the steady combined forced and free 

convection in vertical pipes or parallel plates has been studied by numerous researchers. 

 Bernier and Baliga [40] have presented the steady state results of a numerical 

investigation of conjugate conduction and laminar mixed convection in vertical cylindrical 

pipe for upward flow and uniform wall heat flux. The Prandtl number was fixed at 5, the 

Grashof number, based on heat flux, was set at 5000. In their study, two values 1 and 10 of 

the Reynolds number are used. The results are presented for four different values of solid-

to-fluid thermal conductivity ratio K (0.5, 5, 50 and 500) and three different values of wall 

thickness-to-pipe diameter ratio ∆ (0.01, 0.05 and 0.25). For Re equal to 1, they found that 

the effects of axial conduction in the pipe wall are quite pronounced when K and/or ∆ are 

high. Furthermore, they found that the upstream axial conduction distorted the parabolic 

velocity profile in the upstream adiabatic section to the point that the centreline velocity 

was negative at the entrance of the heated section, which established a zone of 

recirculation.  

 A similar survey is achieved by, Heggs et al [41] for opposed mixed convection. In 

their study, some parameters have been fixed such:  Re=50, Gr=-10000, Pr=7. The ratio 

(Re/Ri) between the external (Re) and internal (Ri) radius of the tube vary between 1.1 and 

1.4. The results are presented for three different values of solid-to-fluid thermal 

conductivity ratio K (0.5, 5 and 500). The authors observe that the effect of axial wall 

conduction on the mixed convection increases with the increase of the values of these last 

ratios.  

 The effect of wall axial conduction on downward flow with opposed mixed 

convection in vertical circular duct have also been examined numerically by, LaPlante and 
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Bernier [42]. The results are presented for (Pr=5), for a Reynolds number equal to 1 and 

10, and for two values of the Richardson number (Ri=5000 and 50). Their study 

demonstrates that, under buoyancy effect, and for high values of the solid-to-fluid thermal 

conductivity ratio and high pipe thickness-to-diameter ratio, some heat flux quantities, are 

redistributed in the upstream adiabatic section situated forward of the beginning of the 

recirculation cell. They also show that in some cases the heating effects are felt until 25 

diameters upstream of the heated section. 

 Nasredine et al [43] have studied the effect of the axial wall conduction on the 

upward mixed convection.  

 Ouzzane and Galanis [44] have analyzed numerically the effects of the axial wall 

conduction and the non-uniform heat flux condition on the upward mixed convection in an 

inclined circular duct. They found that the calculated results for local parameters 

(circumferential distribution of the interfacial temperature or axial velocity profile) and for 

average variables (circumferentially average values of the Nusselt number and of the 

interfacial shear stress) are quite different, especially for high values of Grashof number. 

As a consequence, they found that for Gr=106, Re=500 and Pr=7, the asymptotic average 

Nusselt number for a uniform heat flux applied over the entire outer tube surface is 16.47. 

The corresponding values for the case of a heat flux applied on the fluid-solid interface is 

26.14 for a uniform heat flux over the entire circumference, and 29.71 for a heat flux 

applied only on the top half of the interface.  

 Burch et al [45] performed a pioneering study of wall conduction effect on steady 

natural convection between vertical parallel plates.  

 Similar studies were also performed by, Kim et al [46] and Anand et al [47]. Their 

results show that the influence of wall conduction on the heat transfer and flow behaviors 

are significant, particularly for the system with higher Grashof number, larger wall-to-fluid 

conductivity ratio or thicker wall.  

 In the transient regime, Mai et al [48-49] have studied the problem of upward 

vertical pipe flow with step change in the inlet temperature and velocity. Their results 

show a dissymmetry of the velocity and temperature profiles between the positive and 

negative step changes.  

 Nguyen et al [50] have studied the problem of 3D transient laminar mixed 

convection flow in vertical tube with negligible thickness under buoyancy effect and time 
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dependant wall heat flux condition. Their results have shown that the flow seems to remain 

stable and unique for Gr=5.105 and 106, respectively for opposed and assisted-buoyancy 

cases. Beyond this critical Grashof numbers, an extremely slow and rather difficult and 

tedious convergence behaviours have been experienced, which are believed to be due to a 

possible flow transition. 

  Barletta and Rossi di Shio [51] have studied the fully developed laminar mixed 

convection in vertical circular duct subjected to a periodic sinusoidal temperature change at 

the wall. Their results show that there exists resonance frequency such that the velocity, the 

friction coefficient and the heat flux reach a maximum.  

 The unsteady mixed convection heat transfer in a vertical channel was presented by, 

Lin et al [52] and Yan [53]. Their results show that the wall heat capacity can have a 

profound influence on the unsteady mixed convection flow and thermal characteristics. 

The axial conduction in the fluid and in the pipe wall remains untreated in [52, 53] and 

hence its effect is not known.  

 Lee and Yan [54] have presented a numerical analysis for unsteady mixed convection 

heat transfer in a parallel-plate channel or a circular pipe experiencing a sudden change in 

ambient temperature with high Péclet number and a relatively thick pipe. So the axial 

conduction in both the flow and the pipe wall is negligibly small. Their results show that 

the ignorance of wall effect causes a substantial error, especially in the early transient 

period.  

 Bae et al [55] numerically investigated the enhancement of mixed convection heat in 

a multi-block heater arrangement in a channel. For the studied specific case they 

demonstrate the possibility of resonant heat transfer augmentation by thermal modulation. 

The resonance frequency depends on the heater block geometry and the spacing between 

neighbouring blocks.  

 Cheng et al [56] conduct their numerical study on the criterion of apparition of the 

recirculation zones in the case of assisted mixed convection between vertical parallel 

plates.  Special attention is devoted to the following sets of thermal boundary conditions 

imposed on the two opposed duct walls: 

• Uniform heat flux Q1 at Y=1  -Uniform heat flux Q2 at Y=0 with Q1> Q2 or Q1= Q2. 

• Uniform heat flux Q1 at Y=1  -Uniform temperature T2 at Y=0. 

• Uniform temperature T1 at Y=1 -Uniform temperature T2 at Y=0 with T1> T2. 
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In the first situation, two cases have been examined: symmetrical heating 1/ 12 == QQrH  

and asymmetrical heating 1/ 12 <= QQrH . For the symmetrical heating case, the condition 

for the onset of the flow reversal is 410.2,3Re/ −<Gr , while of the case where 1<Hr , the 

recirculation zones appear for large values of the ratio Re/Gr . Besides, the authors 

presented a diagram with the recirculation zones in the Hr  and GrRe/ coordinates in 

which one observes that for 053.0>Hr , the velocity profile include two points of 

inflection and for 053.00 << Hr , it includes one of it only.  

In the second situation 21 TQ − , the conditions for the onset of the flow reversal have been 

defined as follows: 

0
10

≥











== YY dY
dU

dY
dU . What is equivalent to 

2
2

3
3 11 +

≤≤
+ Q

dX
dPQ .  

In the third situation 21 TT − , the conditions for the onset of the flow reversal have been 

defined as follows: 
2

1
3

12 +
≤≤

+ TT r
dX
dPr  where 

01

02

TT
TTrT −

−
= . 

 In the same geometry, Hamadah and Wirtz [57] have conducted a similar analysis 

for a downward opposed mixed convection flow and for the same boundary conditions.  

They define the criterion for the onset of the reversal flow, respectively for the second and 

the third case, as follows: 

 
TREV rRe

Gr
−

=







1
288 ,  576=








REVRe
Gr .  

For the first case, they found that criterion for the onset of the reversal flow depends on the 

values of the ratio 21 Q/QrH = .  

 In the study of unsteady forced convection channel flow, Abboudi et al [58], Bilir 

and Ateş [59] and Faghri and Sparrow [60] found that both heat conduction in the wall and 

wall heat capacity play an important role in the case of transient conjugated heat transfer.    

 As can be shown from the previous literature review the effect of wall conduction on 

the characteristics of purely free or mixed convection channel flows at the steady state 

have received more attention, contrary to the case of transient mixed convection channel 

flows. 
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1.2 Summarized of the literature review 

 The first numerical studies on the mixed convection stayed limited to the fully 

developed flows. The arrival of the computers made possible the resolution of the 

simultaneous development of the thermal and hydrodynamical boundary layers.  

 Several cases of mixed convection have been solved numerically with parabolic 

algorithms by using the boundary layer approximations. However, when the axial 

conduction becomes important or when the flow is reversed, an elliptic algorithm is 

required to solve the problem of mixed convection. In the case where no instability appears 

in the flow, the existing results are in agreement on the fact that the mixed convection 

increases the heat transfer for assisted mixed convection (upward with heating or 

downward with cooling), while for opposed mixed convection (downward with heating or 

upward with cooling) the heat transfer is reduced.  

 Several experimental studies show that the apparition of instabilities in the flow 

coincides with the apparition of an inflection point in the axial velocity profile and can 

really occur for Reynolds numbers below 2300, especially for a downward flow. However, 

for low Reynolds numbers and for a relatively short heating section, stable and symmetric 

recirculation cells have been observed experimentally for laminar flow.  

 Although it is generally accepted that, for the forced convection flows the axial 

conduction becomes only important when the Péclet number is lower than 100. For the 

mixed convection case, no similar rule has been established.    

 

1.3 Conclusion 

 Through this literature review it can be concluded that the most part of works treated 

this problem in the steady state, while in the transient state the available few works neglect 

the coupling between the pipe wall and the fluid flow. The lack of information on transient 

conjugated laminar mixed convection motivates the present work, which represents an 

extension of the steady state cases studied before by different authors and the continuation 

of our investigations [61-63, 74].  

 

1.4 Objective 

 The main objective of the present work is to analyze numerically the effects of wall 

and fluid axial conduction, physical and geometrical properties and heat capacity in the 
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pipe wall on the transient downward mixed convection in a circular duct experiencing a 

sudden change of the applied heat flux on the outside surface of a central zone preceded 

and followed by adiabatic zones. 
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Chapter 2 

Mathematical modelling 
 
 
 
 
 
2. 1 Introduction 

 As it has been mentioned in the previous chapter, the present study treats the 

transient mixed convection problem. One studies the conjugated heat transfer in a vertical 

duct submitted to a uniform heat flux and in which one recovers a downward transient 

mixed convection flow.  

 

2. 2 Problem formulation and boundary conditions  

 The problem consists of a simultaneously developing conjugated downward flow 

inside a vertical tube with a uniformly heated section preceded and followed by adiabatic 

sections. A schematic drawing of the problem under consideration is presented in Figure 

3.1a. One will first of all note that the origin of the system of axes is situated at the entry of 

the heated section (ξ=0) on the symmetry axis of the tube (η=0). Upstream and 

downstream adiabatic sections have been added to the heated section in order to permit the 

study of: (1) axial diffusion of quantity of movement and (2) axial fluid and wall heat 

conduction. The governing equations are: the mass conservation equation, the Navier-

Stockes equations and the equation of energy in the fluid and in the pipe wall. In view of 

the tubular geometry of the domain, these equations will be written in cylindrical 

coordinates. Besides, being given the bi-directional nature of the problem, the elliptic 

equations should be solved. 
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2.2.1 Hypothesis    

 Several hypotheses have been restraint on the above-mentioned system of 

equations. On the one hand, these hypotheses permit to avoid a heaviness of the problem, 

and on the other hand, they simplify the application of the boundary conditions while, 

keeping a good physical representation of the problem. These hypotheses are: 

1. The flow and heat transfer are axisymmetric and two-dimensional (none azimuthal 

variation). 

2. The thermal radiation is negligible. 

3. The flow is assumed to be incompressible, laminar and transient. 

4. The viscous dissipation and the pressure force work are negligible. 

5. The physical properties of the fluid )and,,,( βρµ fp kC  and of the wall 

)and,( ρpp kC  are constant and estimated at the fluid temperature at the entry of the tube. 

However, the density varies linearly with the temperature in the term representing the body 

forces in the momentum equation according to the axis Z (Boussinesq approximation). 

Thus, ρ  is replaced by the expression }{ )(1 00 TT −− βρ .   

6. The fluid is Newtonien. 

7. The fluid enters in the upstream section with a uniform temperature and a fully 

developed velocity profile. 

8. The upstream and downstream sections, including the extremities of the tube, are 

perfectly isolated. 

9. Initially )0( =τ , the whole systems, including the flowing fluid and the duct wall are at 

the same uniform temperature 0T . The velocity of the flowing fluid is assumed parabolic 

and the applied heat flux at the outer surface of the central section Q is zero. At 0>τ , the 

heat flux applied at the outer surface of the central section is suddenly raised to a new 

value 0>Q  and maintained at this level thereafter. 

10. At the exit of the duct, the adiabatic downstream section is considered long enough to 

permit an axial invariance of the velocity components and of the axial diffusive thermal 

flux, and a preponderance of the convective contribution over to the diffusive one. 

 The hypotheses 1) and 2) merit some reflections. As it has been mentioned in chapter 

1, the opposed mixed convection flows tend to become asymmetric under some conditions. 

Thus, for a relatively high values of the ratio 2Re/Gr  or Re/Gr , the main flow arranges 
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itself uncertainly on one hand of the tube, whereas if the ratio 2Re/Gr  or Re/Gr  is raised 

enough, one observes a recirculation cell on the other side. It seems that the apparition of 

this asymmetry is joined to the length of the heated section. Thus, Senécal [65] have 

observed experimentally this asymmetry for a ratio 54/ =DLh  and for 2Re/Gr  ratios of 

the order of those used in the present study. On the other hand, the experimental studies of 

Morton et al [21] show a nearly perfect symmetry of the flow for 85.0/ =DLh . The ratio 

DLh / used in the present study is of 10. This value is located between the geometry of 

Senécal and the one of Morton et al. For such ratio, one can affirm with certainty that the 

flow will stay symmetrical. 

 As for the hypothesis of a negligible thermal radiance, it carries to controversy 

when one uses a gas as fluid coolant. The presented farther results are for Pr=5, 

representing a fluid whose properties are typically similar to those of water. For this case, 

the coefficients of extinction are relatively high for the wavelengths corresponding to the 

infrared radiance (Siegel and Howel [66]). Consequently, the liquid being in contact with 

the wall immediately absorbs the thermal radiation given out by the wall. 

 

2.2.2 Governing equations 

 With reference to the nomenclature presented in Fig. 1a, the governing equations and 

boundary conditions for the transient conjugated heat conduction and laminar mixed 

convection are presented as follows: 

 

Conservation of mass: 
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Conservation of energy in the fluid: 
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Conservation of energy in the pipe wall: 
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2.2.3 Initial and boundary conditions 

 

 2.2.3.1 Initial conditions 

 0=τ :    ( )2)/(12)( iRrVru −=      0=v      0=T        (2. 6)  

 

 2.2.3.2 Boundary conditions  

 0fτ : 

- Inlet of the duct: uL−=ξ  

  iRr <≤0              




 −= 212 )iR/r(V)r(u    0=v     0TT =    (2. 7a) 

 eii RRrR +≤≤    0=u      0=v       0
z

T
=

∂

∂
  (2. 7b)  

- Upstream and downstream sections: 0<<− zLu  and dhh LLzL +<<  

 0=r          0=
∂
∂

r
u    0=v     0=

∂

∂

r
Tf     (2. 8a)  

 iRr =   0u =       0v =                                                         (2. 8b)  

 ei RRr +=  0=
∂

∂
r

Tw                                                                                (2. 8c) 

-Heated section: hLz ≤≤0  

 0=r            0=
∂
∂

r
u     0=v      0=

∂

∂

r
Tf   (2. 9a)  

 iRr =  0u* =     0v* =   (2. 9b)  
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 ei RRr +=  Q
r

Tw
w =

∂
∂

λ   (2. 9c) 

 

- Outlet of the duct: *
d

*
h LLz +=  

 iRr0 <≤  0=
∂
∂

z
u      0=

∂
∂

z
v      0=

∂
∂

z
Tf  (2.10a) 

 eii RRrR +≤≤  0=u        0=v      0=
∂

∂
z

Tw  (2.10b) 

 

2.2.4 Adimensionalization 

 The governing equations as well as the boundary conditions presented in the previous 

section were nondimensionalized using the following dimensionless variables:  

 
V
u*u =      

V
v*v =     

D
r

=η      
D
z

=ξ                            (2.11a) 

       
D
uL*

uL =      
D
hL*

hL =      
D
dL*

dL =  (2.11b) 

   
fk/QD

TT 0−
=θ      2

0

0V
gzp

P
ρ

ρ−
=         )iRD( 2=  (2.11c) 

Where V  is the average axial velocity at the entrance of the duct.  

 

2.2.5 Dimensionless governing equations 

 

Conservation of mass: 

   0u)v(1 **

=
∂
∂

+
∂

∂
ξη

η
η

 (2.12) 

Conservation of momentum: 
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∂

+−







∂
∂
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∂
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∂
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∂

+
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∂

+
∂
∂
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*2

2

***
*

*
*

* vvv1
Re
1Pvuvvv

ξηη
η

ηηηξητ
 (2.13) 
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∂
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∂
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∂
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∂
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*2*
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*
*

*
*

* uu1
Re
1P

Re
Gruuuvu

ξη
η

ηηξ
θ

ξητ
 (2.14)                                            

Conservation of energy in the fluid: 

 







∂
∂

+







∂
∂

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

2

2
** 1

Pe
1uv

ξ
θ

η
θ

η
ηηξ

θ
η
θ

τ
θ  (2.15) 
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Conservation of energy in the pipe wall: 

 







∂
∂

+







∂
∂

∂
∂

=
∂
∂

2

21
Pe
A

ξ
θ

η
θ

η
ηητ

θ  (2.16) 

 

2.2.6 Dimensionless initial and boundary conditions 

 

 2.2.6.1 Initial conditions: 

 0=τ  [ ]2* 2(12)( η)η −=u ; 0v* = ; 0=θ  (2.17) 

 2.2.6. 2 Boundary conditions: 

 - Inlet of the duct: *L−=ξ  

 
2
10 <≤η    [ ]2* 2(12)( η)η −=u ; 0v* = ; 0=θ  (2.18a) 

 ∆+≤≤
2
1

2
1

η  0u* = ; 0v* = ; 0=
∂
∂

ξ
θw  (2.18b)  

 - Upstream 0L*
u <<− ξ , and downstream sections *

d
*
h

*
h LLL +<< ξ  

 0=η  0u*
=

∂
∂

η
;  0v* = ;  0=

∂
∂

η
θ f  (2.19a)  

 
2
1

=η  0u* = ;  0v* =    (2.19b)  

 ∆η +=
2
1  0=

∂
∂
η
θ    (2.19c) 

 - Heated section: *
hL0 ≤≤ ξ : 

 0=η               0u*
=

∂
∂

η
;  0v* = ;  0=

∂
∂

η
θ f                (2.20a) 

 
2
1

=η               0u* = ;  0v* =               (2.20b)                    

 ∆η +=
2
1  1=

∂
∂

η
θw  (2.20c) 

- Outlet of the duct: *
d

*
h LL +=ξ  

 
2
10 <≤η           0u*

=
∂
∂

ξ
, 0v*

=
∂
∂

ξ
, 0=

∂
∂

ξ
θ f  (2.21a) 
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 ∆+≤≤
2
1

2
1

η  0u* = ;  0v* = ; 0=
∂
∂

ξ
θw   (2.21b) 

 

 Based on this nondimensionalization, the parameters governing the transient 

conjugated mixed convection   are: 

 
ν

VDRe =     (Reynolds number) 

 
f

Q
k

QDgGr
2

4

ν

β
=  (Grashof number based on the heat flux) 

 
f

p
k

VDC
Pr.RePe 0ρ

== (Péclet number) 

 
f

w
k
kK =   (wall-to-fluid conductivity ratio) 

 
DD

iReR δ
=

−
=∆  (pipe thickness to diameter ratio) 

 
fa

aA w=   (wall-to-fluid diffusivity ratio) 
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Chapter 3  

Numerical resolution  
 
 
 
 
 
3.1 Introduction  

 In this chapter we present the methodology of resolution of the dimensionless system 

of equations presented in the chapter 2 and the grid points distributions in both axial and 

radial directions.  

 Considering the transient and the non-linear character of this system of equations as 

well as the high coupling between the gravity and the advection terms, the solution of the 

prescribed system of equations is exclusively numerical.  

 In addition to the finite volumes method adopted in the setting of this work, the finite 

differences and the finite elements methods are frequently used in the numerical 

simulations of fluid mechanic and heat transfer problems. In each of these numerical 

methods, one proceeds by the substitution of the differential equations of motion by a 

system of algebraic equations. These algebraic equations describe the same modeling 

physical phenomena by the original differential equations but at certain discrete number of 

points named nodes.  

 The finite volumes method, developed at the origin by Patankar and Spalding [67], 

has experienced an important success during the years 1980 due to many advantages that it 

offers, such as:  
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• The differences equations have a conservative property. This means that the extension 

of the conservation principle, written under a discretized form for a typical finite 

volume, is verified for the whole numerical domain.  

• Its ability, its numerical robustness and its formalism very close to the physical reality 

(rate of heat flux and quantity of movement).  

 As introduced by Patankar [64], the finite volumes method consists in dividing the 

domain of computation in a finite number of volumes where each volume surrounds a 

node. The terms of the modeling differential equations are integrated on every control 

volume by using a suitable approximation scheme. The algebraic equations produced with 

this manner express the conservation principle for a finite control volume in the same way 

that the differential equations express it for an infinitesimal control volume.  

 

3.2 Discretization of the physical domain  

 This section presents the discretization of the solution domain comprised between 

∆+≤≤ 500 .η  and *
d

*
h

*
u LLL +≤≤− ξ . This domain is two-dimensional according to η  

and ξ , what presupposes that the angular component of the control volume is equal to one 

radian. The schematic of the system, including the coordinates and the representation of 

the grid distribution in the duct is sketched, respectively in Figures 3.1a and 3.1b. 

  The grid points were arranged according to the Type-B practice of Patankar [64], 

with control volume faces placed at the wall-fluid interface ( 5.0=η ) and at the 

discontinuities in the thermal boundary conditions ( 0=ξ and *
hL=ξ ).  

 The problem of interest was solved as if it were a fluid flow problem throughout the 

entire calculation domain ( ∆+≤≤ 5.00 η ). In the solid region ( ∆+≤< 5.05.0 η ), 

following the recommendation of Patankar [64], the viscosity was set to a very large 

value, resulting in zero velocities in that region. 

 To obtain enhanced accuracy, grids were chosen to be non-uniform both in the axial 

and radial directions (based one a geometric series progression) to account to uneven 

variations of velocity and temperature at the wall-fluid interface, at the inlet of the duct and 

at the interfaces between the heated section and its downstream and upstream sections. In 

the pipe wall, the grid distributions according to the radial direction are chosen uniform.  
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(a) (b) 

Figure 3.1: (a) Schematic diagram of the flow and the geometrical configuration 

                  (b) Representation of the grid distribution in the fluid and in the pipe wall 

 

 The Figure 3.2 illustrates the main control volume ( )..V P ξηη ∆∆=∆  in which the 

geometric center is associated to the node P. This control volume is delimited by the faces 

n, s, e and w, corresponding respectively to the common sides of the control volumes 

belonging to the neighboring nodes N, S, E and W. In this numerical method, the scalar 

magnitudes (pressure and temperature) are calculated at the node P, while the vectorial 

magnitudes (velocities) are calculated at the points that lie on the faces of the control 

volume. Thus, the axial and radial velocities, are respectively calculated at the faces which 

are normal to ξ  and η  directions, as can be shown in Figure 3.2.  

Upstream 
section Lu  
(adiabatic) 

Downstream 
section  Ld 
(adiabatic)   

Heated 
section 

Lh 

η 

Parabolic inlet 
velocity profile 
Uniform inlet 

Q               ξ 

g 
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 It is noticed that, with respect to the main grid points, the axial velocity locations are 

staggered only in the ξ -direction. In other words, the location of the axial velocity lies on 

the ξ -direction link joining two adjacent main grid points. Similarly, the radial velocity 

locations are staggered only in the η -direction.  

 An important advantage of the staggered grid is that the pressure difference between 

two adjacent grid points becomes the natural driving force for the velocity component 

located between these grid points, contrary to the case of the non-staggered grid points. 

 

 

 

                                                            wdη               edη  
                                                                             N  
                                                                       
                                                                      Un  n                               ndξ  

                                         
                                               W        w               P          e         E  
                                 ξ∆                   Vw                          Ve 
                                                                                     
         
                                                                      Us   s                               sdξ                                   
                                                                                                   
                                                                             S  
 

η∆  

Fig. 3.2 Typical control volume  
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3.2.1 Radial grid-point distributions  

 The grid distributions according to the radial direction are shown in Figure 3.3. The i  

points are centered in the )(iη∆ , who are the measurements of the finite volumes 

according to η  direction. 

    ηc(1 )    ηc(2)                   ηc(2)                                                                                                                          ηc(il-3)  ηc(il-2) ηc(il-1) 
                                                                                                                                                                                                                                                                                                                                                                
           
           ∆η(2)          ∆η(3)                                              ∆η(i+1)                                                                                  ∆η(il-2) ∆η((il-1) 
 
 
 
                 dη(1)                 dη(2)                             dη(i-1)    dη(i)                                                                       dη(il-2)  dη(il-1) 
        
    
       ηp(1)          ηp(2)                     ηp(i-1)      ηp(i)   ηp(i+1)                                     ηp(il-2) ηp(il-1)  ηp(il) 
                                 
                               Fluid region                                             Pipe wall region 
                             ).( 500 ≤≤ η                                            )5.05.0( ∆+≤< η  
 

Figure 3.3: Radial distributions of the grid-point )5.00( ∆+≤≤η   

 

3.2.2 Axial grid-point distributions  

 The grid distributions according to the axial direction are shown in Figure 3.4a-b, 

respectively for the upstream and the heated sections (Figure 4a), and for the downstream 

section (Figure 3.4b). For each figure, the j  points are centered in the )( jξ∆ , who are the 

measurements of the finite volumes according to ξ  direction.    

 
                      ξc(1)ξc(2)ξc(3)                                                                                                   ξc(jl-2 ξc(jl-1) 

 
                                    ∆ξ(2)∆ξ (3)                                           ∆ξ (j+1)                                                           ∆ξ (jl-2) ∆ξ (jl-1) 

             

 

 
                          dξ (1) dξ (2)                       dξ (j-1)       dξ (j)                                         dξ (jl-2) dξ (jl-1) 

                                

                              ξp(1) ξp(2) ξp(3)              ξp(j-1)        ξp(j)           ξp(j+1)                           ξp(jl-2)ξp(jl-1) ξp(jl) 

 

Figure 3.4a: Axial distributions of the grid-point in the upstream )L( u<≤ ξ0 and 

heated )LLL( huu +≤≤ ξ sections. 
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                ξc(1)ξc(2)ξc(3)                                                                                        ξc(jl-3)              ξc(jl-2)     ξc(jl-1) 

 
               ∆ξ(2) ∆ ξ(3)                                                             ∆ξ(j+ 1)                                   ∆ξ(jl-2)        ∆ξ (jl-1) 

 
                             
                 
                   dξ(1)     dξ(2)       dξ(3)                             dξ(j-1)           dξ(j)                                         dξ(jl-1) 
 
 
           ξp (1) ξp(2)        ξp(3)                          ξp(j-1)             ξp(j)           ξp(j+1)              ξp(jl-1)                     ξp(jl) 
                                                                                                                                                          

Figure 3.4b: Axial distribution of the grid-point in the downstream section 

)( dhuhu LLLLL ++≤<+ ξ  

 

3.3 Conservative form of the conservation equations 

 The dimensionless system of equations (2-12)-(2-16), described in chapter 2, can be 

written in dimensionless local and conservative form, as follows: 

 

 φξ
φ

ξη
φ

η
ηηφφ

ξ
εφη

ηη
ε

τ
φ SUV +
















∂
∂

∂
∂

+







∂
∂

∂
∂

Γ=
∂
∂

+
∂
∂

+
∂
∂ 1)*()*(1   (3.1) 

 

whereφ , φΓ , ε  and φS , for each equation, are given as follow: 

 

Governing equations                                         φ          φΓ               ε                         φS  
Mass                                                                         1            0             1                          0 
 
Axial momentum equation                                  *u       Re/1          1     ξθ ∂∂−− /)Re/( 2 PGr  
 

Radial momentum equation                                *v      Re/1          1        Re)/(v/P 2* ηη −∂∂−  
 
Energy equation in the fluid                               θ        Pe/1         1                           0 
 
Energy equation in the pipe wall                        θ       Pe/A         1030                       0 
 

Table 3.1 Expressions of the variables φ , coefficients of diffusion φΓ , ε  and the source 

terms φS  used in the conservative equations. 
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3.4 Spatial and temporal discretization schemes 
3.4.1 Discretization scheme of the transient terms 

 Within the interval time τ∆ , the integration of the transient terms, over the typical 

control volume (Figure 2) is obtained according to a progressive differences scheme of the 

first order. For example, when the variable θφ =  the integration of the transient term 

(integration over the non-staggered control volume Figure 2) is calculated as follows:  

PPPPP

e

w

n

s

....)( ξηηφφτξηη
τ
φ τττ

ττ

τ

∆∆



 −=∂∂∂

∂
∂ ∆+

∆+

∫ ∫ ∫       (3.2) 

Where weP ηηη −=∆ , snP ξξξ −=∆  and τφP  represents the dependent variable at the 

instant τ  that precedes the instant ττ ∆+ for which the variable ττφ ∆+
P  is unknown. One 

admits that φ  at the point P (= τφP ) is the representation of φ  for the whole typical control 

volume at the instantτ .  

 For each variable φ ( )vu, ** andθ , the other terms of the discretization equation 

are evaluated at the instant ττ ∆+ , what corresponds to the implicit scheme. Indeed, 

because of the non-linearity of the Navier-Stockes equations, the used scheme is in fact 

semi implicit. 

 

3.4.2 Discretization schemes of the spatial terms 

 For the spatial discretization, one uses the centered differences scheme of the second 

order, known by the appellation CDS (formulation with two points). Thus, the value of the 

variable φ on a common face of two finite adjacent volumes is the half of the nodal values. 

Also, the spatial derivative of the variable φ  on a common face is the difference of the 

nodal variable values upstream and downstream of the interface divided by the distance 

between the two corresponding nodal, as can be shown in the examples below (Eqs.3.3 and 

3.4) and Figures 3.5a-b.   

2
NP
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φφ
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=        
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                                               dξs                                     dξn 

 

                               S                   s                     P                   n                  N 

                                                                                     l                  l 

Figure 3.5a: Typical grid points for the calculation of φ  at the interface (s or n) 

 

                                                   dηw                                    dηe 

 

                                  W                   w                   P                   e                   E 

                                                                                        l                    l 

Figure 3.5b: Typical grid points for the calculation of φ  at the interface (w or e) 

 

 What follows is a demonstration of the precision of the scheme CDS. Referring to the 

Figures 3.5a and 3.5b, and while using the development in Taylor series of the function φ , 

one shows that: 

......llln nnnP +
∂

∂
−

∂

∂
+

∂
∂

−=
3

33

2

22

62 ξ

φ

ξ
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ξ
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φφ  (3.5) 

......llln nnnN +
∂

∂
+

∂

∂
+

∂
∂

+=
3

33

2

22

62 ξ

φ

ξ

φ
ξ
φ

φφ      (3.6) 

If we subtract Eq. (3. 6) from Eq. (3. 5), we have: 

nnPN
ll.

3

33

3
2

ξ

φ
ξ
φ

φφ
∂

∂
+

∂
∂

=−       (3.7) 

By substitution of the value of 2/dl nξ= , one obtains: 

2
3

3

24
1

ξ
ξ

φ
ξ

φφ
ξ
φ

∆
∂

∂
−

∂
=

∂
∂

nn
P_N

n
      (3.8) 

From equation (3. 8), it is clear that the truncate error is of order of 2ξ∆ .  

 Similar expressions can be obtained by the same development for the others 

derivative of φ  at the interfaces w,e,s . For example, the derivative of φ at the interface 

e  is given by the following expression: 
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3.5 Discretization of the conservative equations   
3.5.1 Discretization of the conservative equation of energy 

 The terms of the equation of conservation of energy are integrated over the typical 

control volume ).V( PTypique ξηη ∆∆=∆ (Figure 2), between the instants τ and ττ ∆+ . 
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∂

Γ= ∫ ∫ ∫
∆+ 1  (3. 10) 

 An appropriate rearrangement of the resulting terms from this integral gives the 

following general discretized form: 

τ
θ

ττττττττττττττττττττ θθθθθ baaaaa WWEESSNNPP ++++= ∆+∆+∆+∆+∆+∆+∆+∆+∆+∆+  (3.10a) 

With:  

ττττττττττττττ
P

W,E,S,Nnb
nbPWESNP aaaaaaaa ++ ∑

=

∆+∆+∆+∆+∆+∆+ =+++=   (3.10b) 

Where the coefficients SNWEP a,a,a,a,a  are evaluated according to the hybrid 

scheme of Patankar [64]. This scheme is based on the absolute value of the local Péclet 

number associated to the controle volume. The local Péclet number (Pe) is defined as the 

ratio of the convection to the diffusion magnitudes (Pe =  F/D). The hybrid differentiation 

consists in using the following combination for the calculation of the above coefficients: 





 −−= 0

2
,eF

eD,eFmaxaE           



 −−= 0

2
,wF

wD,wFmaxaW  (3.11) 





 −−= 0

2
,nF

nD,nFmaxaN             



 −−= 0

2
,sF

sD,sFmaxaS  (3.12) 

 The significance of the hybrid scheme can be understood by observing that (1) it is 

identical with central-difference scheme for the Péclet number range 22 ≤≤− Pe , and (2) 

outside this range it reduces to the upwind scheme in which the diffusion has been set 

equal to zero. It should be noted that the hybrid scheme is in fact a less expensive 
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approximation in time of calculation of the exponential scheme [64], developed to assure 

an exact solution to a one-dimensional problem of convection/diffusion in the steady state. 

Some superior order schemes are recognized generally more precise, but more expensive 

and less robust [68-71]. 

 It should also be noted that this formulation is valid for any arbitrary location of the 

interfaces between the grid points and is not limited to midway interfaces.  

 Furthermore, to handle the abrupt change of the conductivity at the wall-fluid interface, 

and consequently to obtain, a good representation for the interfacial heat flux, the 

conductivity at the wall-fluid interface is obtained by way of the harmonic mean of wk  and 

fk [64]. 
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3.5.2 Discretization of the conservative momentum equations 

3.5.2.1 Axial direction 

 The terms of the conservation equation of the axial momentum are integrated on the 

staggered control volume )( .. ξηη dSuV
Pu

∆=∆ in the axial direction, Figure 3. 6, between 

the instants τ and ττ ∆+ (the superscript * of the axial velocity has been voluntarily 

omitted). 

 
 
                             

                                                              UNu  
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                                                        Vw         su     (P)     Ve  
  
                                                               USu 

                             ξ                                          Su  
                                                         
                                                                          S 
 
 
                                                                         η 

Figure 3.6:  Staggered internal control volume for the axial velocity 
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 An appropriate rearrangement of the resulting terms from this integral gives the 

following general discretized form: 
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−++++= ∆+∆+∆+∆+∆+∆+∆+∆+∆+∆+ τττττττττττττττττττττ
uWuWuEuEuSuSuNuNuPuPu buauauauaua   

SuPNSuP
VPPVGr ∆−−∆ ).(.).Re/( 2 τττθ   (3. 13a) 

With:  

ττ∆τττ∆ττ∆ττ∆ττ∆ττ∆τ
Pu

Wu,Eu,Su,Nunb
nbPuWuEuSuNuPu aaaaaaaa +∑=+++=

=

+
+

+++++   (3. 13b) 

Where 
Su

V
PN

PP ∆− ).( ττ  is the appropriate pressure force in the axial direction. 

 

3.5.2.2 Radial direction 

 The terms of the conservation equation of the radial momentum are integrated over the 

staggered control volume )..( ξηη ∆=∆ dV
PvSv , Figure 3.7, between the instants τ and 

ττ ∆+ (the superscript * of the radial velocity has been voluntarily omitted) 
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Figure 3.7: Staggered internal control volume for the radial velocity. 
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 An appropriate rearrangement of the resulting terms from this integral gives the 

following general discretized form: 

−++++= ∆+∆+∆+∆+∆+∆+∆+∆+∆+∆+ τττττττττττττττττττττ
vWvWvEvEvSvSvNvNvPvPv bvavavavava

SvPE
VPP ∆− ).( ττ  

 (3.14a) 
With:  

ττ∆τττ∆ττ∆ττ∆ττ∆ττ∆τ
Pv

Wv,Ev,Sv,Nvnb
nbPvWvEvSvNvPv aaaaaaaa +∑

=

+
+

+++++ =+++=   (3.14b) 

Where 
SvPE

VPP ∆− ).( ττ  is the appropriate pressure force in the radial direction. 

 
 

 Let's note, that the coefficients SuaNuaWuaEuaPua ,,,, , and 

SvaNvaWvaEvaPva ,,,, , respectively for the axial and the radial momentum equations 

are obtained by the same manner as those of the energy equation.     

 The viscosity at the wall-fluid interface is obtained by way of the harmonic mean of 

the fluid and solid viscosities. In the fluid, the real viscosity is used. In the wall region, a 

very big value (1030) of viscosity is used, resulting in zero velocities in that region. 

 

3.6 Equation of pressure 
3.6.1 Pressure and velocities corrections 

 The coupling of the discretized equations of conservation is at the origin of the 

complexity of their resolution. In addition to the velocities and the temperature appearing 

in the momentum and the energy equations, one finds the unknown pressure field that 

intervenes in the momentum equations. This paragraph presents the development of the 

equations that leads to the discretized equation of pressure. The used development is based 

on the SIMPLE algorithm developed by Patankar [64]. The pressure field is unknown; an 

initial field is necessary to start the iterative process of solution. This p* field, when 

applied to the equations (3.13a) and (3.14a) leads to values of u* and v* that don't satisfy 

exactly the conservation equation of mass. One considers that the exact pressure is given 

by: 
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                                                   p=p*+p′                                                              (3.15) 

Where p′ is the pressure correction.  

 In the same way, the exact velocities are: 

                                                  u=u*+u′                                                               (3.16) 
and  
                                                        v=v*+v (3.17) 

Where u′ and v′ are the corresponding velocity corrections. 

By substitution of the values of u, v and p by u*, v* and p* in the equation (3. 13a) and (3. 

14a), one obtains: 

SuNPu
nb

WuEuSuNunb
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PuPu VPPbuaua ∆−++∑=
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=
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∆+ ).(** **

,,,

τττ
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ττ   (3.18) 

and 
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nb

WvEvSvNvnb
nb

PvPv VPPvbvava ∆−++∑=
∆+

=

∆+
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∆+ ).(** **

,,,

τττ
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ττ
ττ

ττ   (3.19) 

 

If we subtract Eq. (3.18) from Eq. (3.13a) and Eq. (3.19) from Eq. (3.14a), we have: 
 

SuNP
nb

WuEuSuNunb
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∆+

=

∆+
∆+

∆+ ).''(''
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and 
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∆+ ).''(''
,,,
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ττ   (3. 21) 

 

 By disregarding the terms, 
ττττ ∆+∆+∑ nbnb

'ua and 
ττττ ∆+∆+∑ nbnb

'va  of the right 
member of equations (3. 20) and (3. 21), one obtains:  

SuNPPu VPPPuua ∆−=
∆+∆+ ).''(' ττττττ   (3.22) 

SvEPPv VPPPvva ∆−=
∆+∆+ ).''(' ττττττ   (3.23) 

or 

)''.(' ττττ

NPPu
PPdu Pu −=

∆+
  (3.24) 

)''.(' ττττ

EPPv
PPdv Pv −=

∆+
  (3.25) 

where: 
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ττ ∆+
∆

=
Pu

Su
Pu

a

Vd  (3.26) 

and 

ττ ∆+
∆

=
Pv

Sv
Pv

a

Vd  (3.27) 

 An extensive discussion of these actions can be found in [64]. Equations (3.24) and 

(3.25) would be called the velocity-correction formulas, who can be also written as: 

)''.(* ττττ
ττ

NPPu
PPduu PuPu

−= +
∆+

∆+   (3.28) 

)''.(* ττττ
ττ

NPPv
PPdvv PuPu

−= +
∆+

∆+  (3.29) 

This shows how the started velocities
ττ ∆+

Pu
*u and 

τ∆τ +
Pv

*v  are to be corrected in response to 

the pressure corrections to produce, respectively ττ ∆+
Puu and τ∆τ +

Pvv .  

 

3.6.2 Pressure-correction equation 

 The continuity equation is: 
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=

∂
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u)v(  (3.30) 

We shall integrate this equation over the typical control volume, shown previously in 

Figure 3.2, as follows:  
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 With an appropriate rearrangement of the resulting terms from this integral, the 

integrated form of this equation becomes: 

0).).((5.0.)( 22 =∆−−+∆∆− ∆+∆+∆+∆+ τηητξηη ττττττττ
wewe snwe uuvv  (3.30b) 

If now we substitute for the two velocity components the expressions given by the 

velocity-correction formulas, such as Eqs. (3.28)- (3.29), we obtain, after an appropriate 

arrangement, the following discretization equation for the pressure p′: 
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where 



Chapter 3                                                                                                                             Numerical resolution 
                                              

 
38 
 

 

τηηττ ∆∆=
∆+

PPnN .da  (3.31a) 

τηηττ ∆∆=
∆+

PPsS .da  (3.31b) 

τξττ ∆∆=
∆+ ..da eE  (3.31c) 

τξττ ∆∆=
∆+ ..da wW  (3. 30d) 

ττττττττττ ∆+∆+∆+∆+∆+ +++= WESNP aaaaa  (3.31e) 

τηητξηηττ ∆∆+∆∆= −−
∆+

PP)
*
n

*
s

*
ee

*
ww uu()uu(b  (3.31f) 

 Let’s note that if ττ ∆+b is zero; it means that the started velocities satisfy the 

continuity equation, and no pressure correction is needed. The term ττ ∆+b thus represents 

a “mass source”, which the pressure corrections must annihilate. 

 The discretized equations for T, u, v and p (3.10, 3.13a, 3.14a and 3.31) represent a 

general formulation. This generality in the establishment of these equations will permit us 

to use the same resolver for T, u, v and p for every global iteration of the solution process. 

 

3.7 Boundary conditions: discretized equations for T, u, v and p 

 The following paragraphs describe in the order the application of the boundary 

conditions for the discretized equations for T, u, v and p. For all cases, the boundary 

conditions will be expressed under the same form than the one of the general equation. 

3.7.1 Discretized equations for T 

• On the axis of the cylinder (η =0), what corresponds to (i=1, 1 ≤ j ≤ JL), we have: 

0
η
θ

=
∂
∂ . The discretized form of this equation is: 0

η(1)
j)θ(1,-j)θ(2,

=
∆

, or j)θ(1,j)θ(2, = , what 

corresponds to ττ ∆+
Pa  = ττ ∆+

Ea =1, ττ ∆+
Wa = ττ ∆+

Na = ττ ∆+
Sa = ττ ∆+b =0. 

• For the control volumes adjacent to the outer surface of the pipe wall of the heated 

section, the heat flux is introduced in the term b  by the discretization of the boundary 

condition 1
η
θK . =

∂
∂

∆+= 50η , it results ττ ∆+
Pa  = ττ ∆+

Wa =1, ττ ∆+
Ea = ττ ∆+

Na = ττ ∆+
Sa =0, 

)(
K
1b 1NT −

+ = η∆τ∆τ .  
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• For the control volumes adjacent to the pipe wall of the adiabatic sections and those 

adjacent to the exit of the tube, we have respectively: 

ττ ∆+
Pa  = ττ ∆+

Wa =1, ττ ∆+
Ea = ττ ∆+

Na = ττ ∆+
Sa = ττ ∆+b =0. 

and 

ττ ∆+
Pa  = ττ ∆+

Sa =1, ττ ∆+
Ea = ττ ∆+

Wa = ττ ∆+
Na = ττ ∆+b =0. 

• At the entry of the tube, in the fluid, the treatment is trivial because the temperature is 

known. In the solid, the treatment is similar to the one of the adiabatic sections. 

 

3.7.2 Discretized equations for u 

 In the case of the discretized equation of axial momentum and for the control 

volumes adjacent to the pipe wall, an equation similar to the equation (3.13a) is applied 

with 0uEu =
∆+ ττ . For the control volumes adjacent to the line of symmetry, the same 

equation is applied but this time while, ignoring the condition to the node Wu ( 0uWu =
∆+ ττ ). 

In this case, at every time steps (i.e. at the end of every global iteration), ττ ∆+
Wuu is set equal 

to ττ ∆+
Puu .  

At the inlet of the duct (Figure 3.8), the equation (3.13a) is applied. In this case, 

ττ ∆+
Suu corresponds to the inlet velocity, supposed known.  

At the exit of the tube (Figure 3.9), the same equation is also applied but this time while 

ignoring the conditions to the node uN ( 0uNu =
∆+ ττ ) and at every time steps (i.e. at the end 

of every global iteration), ττ ∆+
Nuu is set equal to ττ ∆+

Puu . 
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Figure 3.8 Staggered control volume at the inlet of the duct for the axial velocity 
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Figure 3.9: Staggered control volume at the outlet of the duct for the axial velocity 
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3.7.3 Discretized equations for v 

 The same principle is applied for the equation of radial momentum. At the line of 

symmetry (η=0), (Figure 3.10), the same equation is applied with 0vWv =
∆+ ττ . At the outside 

surface of the duct (η=0.5+∆) (Figure 3.11), the equation (3.14a) is applied with 

0vEv =
∆+ ττ . At the entry and the exit of the duct, the same equation is applied while putting 

0vSv =
∆+ ττ at the entry and while omitting 0vNv =

∆+ ττ  at the exit. 

                                                            

Boundary(η=0)                                              VNv  

                                                 Un                                Une  

                                       

                        ξ           VWv                    VPv                               VEv 
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                                                                        VSv 
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Figure 3.10: Staggered control volume at the symmetry line (η=0) for the radial velocity 
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Figure 3.11: Staggered control volume at the outside surface of the tube (η=0.5+∆) for the 

radial velocity 
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3.7.4 Discretized equations for p 

 Finally, the boundary conditions for the discretized equation of pressure are 

established, as follows. The equation (3. 31) is applied by considering: 0aE =
∆+ ττ for the 

control volumes situated in the fluid along the wall-fluid interface (η=0.5); 0aW =
∆+ ττ  at 

the line of symmetry (η=0); 0a N =
∆+ ττ  at the exit of the tube and 0aS =

∆+ ττ  at the inlet of 

the duct. In the solid region, a zero value is assigned to the pressure. The calculated 

pressure at every point in the fluid is normalized by subtracting form it the value of the 

pressure of the control volume situated at the entry and adjacent to the line of symmetry.  

 

3. 8 Method of solution 

 Due to the fact that the basic equations are non-linear and highly coupled, an iterative 

algorithm based on the SIMPLE method [50] is used to solve these equations. The 

establishment of the iterative solution is as follows:  

1. Start with a guessed pressure fields p* at the time τ 

2. Change the time τ=τ+∆τ 

3. Solve the momentum equations, such as (3.18)- (3.19), to obtain u* and v*. 

4. Solve the 'p  equation (3.31) 

5. Calculate p  from equation (3.15) by adding 'p to *p . 

6. Calculate u and v from their starred values using the velocity-correction formulas 

(3.28)- (3.29). 

7. Solve the discretized equation for the equation of energy (3-10a) and deduct the 

temperature θ. 

8. Treat the corrected pressure p as a new guessed pressure *p , return to step 2, and 

repeat the whole procedure until the steady state regime is obtained. 
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3.9 Underrelaxation and convergence 
3.9.1 Underrelaxation 

 In the iterative solution of the algebraic equations or in the overall iterative scheme 

used for handling non-linearity, it is often desirable to slow down the changes, from 

iteration to iteration, in the values of the dependant variable. This process is called under-

relaxation. Underrelaxation is a very useful device for nonlinear problems. It is often 

employed to avoid divergence in the iterative solution of strongly nonlinear equations. 

 In the purpose of introducing the under-relaxation, we shall work with the general 

discretization equation of the form   

 ττττττττττ φφ ∆++∆+∆+∆+∆+ ∑= baa PPPP   (3.32) 

Further, τφP  will be taken as the value of Pφ from the previous iteration. Equation (3.32) 

can be written as: 

 

ττ

ττττττ
ττ φ

φ
∆+

∆+∆+∆+
∆+ +∑

=
P

PP
P

a

a b
 (3.32a) 

If we add τφP  to the right-hand side and subtract it, we have 

 














−

∆+

∆++∆+∆+∑
+∆+ = τ

ττ

ττττφττ
τττ φφφ P

P

bPPa
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a
  (3.32b) 

Where the contents of the parentheses represent the change in Pφ  produced by the current 

iteration. This change can be modified by the introduction of a relaxation factor α, so that 
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 (3.32c) 
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P
a
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a ∆+

∆+∆+∆+
∆+

−++∑ ∆+= )1(  (3.32d)    

 There are no general rules for choosing the best value of α. The optimum value 

depends upon a number of factors, such as the nature of problem, the number of grid 
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points, the grid spacing, and the iterative procedure used. In this work, the values of the 

used relaxation factors are: 

Axial velocity: 0.5uα =  

Radial velocity: 0.5vα =  

Pressure: 0.8pα =           

 These values of the relaxation factors have been found to be satisfactory in a large 

number of fluid-flow computations Patankar [64]. 

 

3.9.2 Convergence 

 The marching in the time is assured by an external loop in which the dependent 

variables at the instant ττ ∆+  are affected in those at the instants τ . In this work, we are 

fixed two criteria of convergence of the numerical code, as follows: 

1. Convergence was considered as being achieved when 4k
j,i

k
j,i

1k
j,i 10/)( −+ <− φφφ  where 

k
j,iφ is u* or θ at every ( jξ , iη ) location of the discretized domain at the iteration k .   

2. One verifies, graphically, in some points of the domain that there are not anymore 

temporal variations of all variables associated to these points. 
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Chapter 4 

Numerical results and analyses  

 
 
 
 
 
4.1 Introduction 

 This chapter is devoted to the results of the numerical simulation of the transient 

conjugated mixed convection in a vertical thick tube. The considered geometry as well as 

the boundary conditions and the grid-point distributions have been presented in Figures 

3.1a and 3.1b. The dimensionless thickness of the pipe wall is equal to∆. A uniform heat 

flux, Q is applied at the external surface of the tube on the central section. This section is 

located between two adiabatic sections that permit the study of the diffusion in the fluid 

and in the pipe wall. The fluid flow is laminar, transient and axisymmetric. Besides, the 

fluid penetrates to the top of the tube (inlet) and falls down toward the bottom (exit); 

therefore one is in presence of opposed mixed convection flow case.  

 Natural convection flow, resulting from the variation of the fluid density inside the 

tube, is then superposed to the forced convection flow of Poiseuille type. So, a decrease of 

the fluid density in the neighbouring region of the heated pipe wall provokes a 

corresponding deceleration of the fluid in that region. One even attends, for a sufficiently 

elevated heat flux (or equivalently elevated Gr) to the reversing of the flow close to the 

pipe wall, and consequently to the apparition of a recirculation cell. In some cases, the wall 

thermal conduction generates an important redistribution of the applied heat flux, what 

generates an elongation of this cell upstream of the heated section. The cell acts like an 

insulator in the upstream section and the interfacial heat flux propagates itself upstream of 

this cell before being transmitted to the fluid.  
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4.2 Preliminary considerations 
4. 2.1 Selection of the dimensionless parameters 

 The foregoing analysis indicates that the heat transfer characteristics in the flow and 

in the pipe wall depend on five dimensionless groups, namely: the Prandtl number Pr, the 

Richardson number Gr/Re2 (or Gr and Re), the wall-to-fluid conductivity ratio K, 

dimensionless wall thickness ∆, and the wall-to-fluid diffusivity ratio A. 

 One recovers the first two parameters in all mixed convection problems. The 

second two other parameters are specific to the calculations of the steady or transient 

conjugated heat transfer, while the last parameter is specific to the transient conjugated 

heat transfer problems. In addition to the already mentioned parameters, the solution of this 

problem requires the specification of the length of each of the three sections of the domain: 

(Li /D), where i= u, h, d. 

 In the transient state regime, a parametric study of all these individual parameters 

would have required an enormous set of results and this was not the main goal of this 

work. In order to present a reasonable quantity of solutions and to concentrate on the 

understanding of the transient conjugate mixed convection heat transfer characteristics, all 

numerical runs were performed for Pr=5, what represents a fluid whose properties are 

similar to those of the water. The Grashof number has been fixed at 5.103 and 5.105. Three 

velocities of the flow have been kept, leading to three values of the Reynolds number 1, 10 

and 100, qualified of low and high Re. The corresponding Gr/Re2 ratios are 5000 and 50. 

In summary, three cases of mixed convection are examined: 

Low Re                                                   High Re 

Grq=5000                                                Grq=5000, 500000 

Re=1                                                       Re=10, 100 

Gr/Re2=5000                                          Gr/Re2=50 

Pe=5                                                      Pe=5 

The dimensionless heated length, 10L*
h = . This length is judged adequate because it 

permits to study the development of the flow while, keeping the length of the calculation 

domain to an acceptable level.    

 The first and the third portion of the duct namely respectively: the upstream and the 

downstream sections are insulated. Their values were sufficiently long for all cases 

considered in this work to study:  
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(1) The diffusion of heat by axial conduction,  

(2) To ensure that the inlet conditions remain no affected by mixed convection in the 

upstream section,  

(3) To ensure that the outlet boundary conditions in the fluid region were appropriate, as 

can be seen, respectively in Figure 4.1, Figure 4.4, Figure 4.6 and Figure 4.12b for the 

hydrodynamic field, and in Figures 4.2a-b for the thermal field. In these figures, one can 

note that the corresponding hydrodynamical and thermal fields at the outlet of the duct are 

fully developed.  

 Parameter K is chosen to have the value 10, 50, 100 or 500, and A is assigned to 

have the values 0.01, 0.03 or 4. Parameter ∆ is chosen to have the values 0.01, 0.05, 0.15 

or 0.25. A typical case for Gr/Re2=5000, K=50, ∆=0.05 and A=4 is discussed in detail. 

 These values of the stated parameters were selected as appropriate for problems of 

engineering interest and from the range that all the presumed effects of the defined 

problem, i.e. two dimensional wall and axial fluid conduction are in a significant level [36, 

40, 42, 59].   
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Figure 4.1 Evolution of the centreline axial velocity at the steady state 
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Figure 4.2a Axial evolution of bulk fluid and wall temperatures 
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Figure 4.2b Axial evolution of bulk fluid and wall temperatures 
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4.2.2 Grid independency 

Numerical experiments were made to ensure that the numerical results are grid 

independent for Re=100, Gr=5.105, ∆=0.05 and K=50. This case has been retained 

because of the importance of the two modes of convection and the extent of the heat flux 

redistribution in the upstream section.  

While beginning with an enough coarse grids and while refining it, the obtained 

results have been compared until the refinement doesn't have a noticeable effect anymore 

on the solution. One estimates whereas that, solution is grid independent.  

 Some exploratory simulations demonstrated that, ten (10) nodes in the pipe wall are 

sufficient to get the grid independency. Therefore, this number has been adopted in the 

pipe wall. It is why, in what follows, one only preoccupies of the grid effect in the radial 

direction in the fluid.  

 The grid independency has been verified with the help of four criteria:  

-The profile of dimensionless axial velocity, u/V 

-The axial distributions of θw and θb  

-The axial redistributions of the friction coefficient ratio 0Re).f/(Re).f(  

-The normalized interfacial heat flux Qwi.   

 Among these criteria, the axial distribution of the friction coefficient ratio and of the 

normalized interfacial heat flux proved to be the more severe criteria. For this reason, only 

these results are presented.  

 For different grid arrangements in the axial direction, namely: A(30,16,30), 

B(60,30,60), C(90,60,90), D(150,90,120) and E(180,90,120) we present in  Figures 4.3a-c, 

the axial distribution of the interfacial heat flux at several instants of the transient period 

including the steady state, and in Figure 4.4, the axial distribution of the friction coefficient 

at the steady state.   

For each cases A, B, C, D and E, the first, the second and the third value refer respectively, 

to the upstream section, the heated and the downstream sections. For these grid 

arrangements, the number of nodes in the radial direction is 30 and 10, respectively in the 

fluid and in the pipe wall.  

One concludes that the increase of the nodes improve the accuracy of the interfacial heat 

flux and the friction coefficient ratio, in particular, in the upstream section. In these figures, 
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it is obvious that the grid arrangement corresponding to the case D is sufficiently accurate 

to describe the heat transfer in the duct.  

It may be observed that wiQ presents large extreme values in the upstream section. This 

behaviour will be explained in the following paragraphs. 

 The effect of the number of nodes in the radial direction is presented at the steady 

state in Figures 4.5 and 4.6, respectively for the interfacial heat flux and for the friction 

coefficient ratio. It may be observed that the curve corresponding to the case C1 is 

sufficiently accurate.  

 Consequently and based on these numerical experiments, all numerical runs were 

performed with the case D (150, 90, 120) in the axial direction, and with the case C1(40, 

10), in the radial direction. 
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Figure 4.3a Influence of the grid distribution in the axial direction on the interfacial heat 
flux  
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Figure 4.3b Influence of the grid distribution in the axial direction on the interfacial heat 
flux 
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Figure 4.3c Influence of the grid distribution in the axial direction on the interfacial heat 
flux 
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Figure 4.4 Influence of the grid distribution in the axial direction on the friction coefficient 
ratio  
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Figure 4.5 Influence of the grid distribution in the radial direction on the interfacial heat 
flux 
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Figure 4.6 Influence of the grid distribution in the radial direction on the friction 
coefficient ratio 
 

4.2.3 Effect of the initial time step 

 Since the size of time increments particularly important at the beginning of the 

transient, and τ is of order magnitude of the time needed for the inside wall to respond to 

the sudden change of the applied heat flux at the outside surface of the heated section. A 

comparison was made for several first time intervals for the case Pr=5, Gr=5105, Re=100, 

∆=0.05 and K=50. As shown in Figure 4.7 at τ = 0.1, it is clear that a time interval of 510-4 

is sufficiently accurate to describe the flow and heat transfer.  

 

4.2.4 Validation 

 To check the accuracy of the numerical computation results, the interfacial heat flux 

and the axial velocity obtained at the steady state by the present developed code, are 

compared with the corresponding one of LaPlante [42]. As one can see in Figures 4.8 and 

4.9 the agreement between our results and those of LaPlante is very satisfactory.  

 In the transient period, the computer model has been successfully validated by 

comparing the results obtained by the present developed code with the corresponding 

numerical data [50] of the simultaneously developing mixed convection flow of air inside a 
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vertical tube which is submitted to uniform but time-depending wall heat flux, at a specific 

axial position ξ=19.5, see Table 4.1.  

As one can notice, the agreement between our results and those of Nguyen [50] may be 

qualified as very good.  

 In view of these comparisons, we conclude that the model and the computer code 

are reliable and can be used to analyse the problem under consideration. 

 

 

 

-5 0 5 10 15

0,0

0,2

0,4

0,6

Gr=5.103 Re=1 ∆=0.05  K=50
 

 

(3) and (4)

(2)
(1)

Q
w

i

ξ

(1) ∆τ =5.10 -2

(2) ∆τ =5.10 -3

(3) ∆τ =5.10 -4

(4) ∆τ =5.10 -5

 
Figure 4.7 Effect of time steps ∆τ on the initial distribution of the interfacial heat flux 
 at τ = 0.1. 
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Figure 4.8 Validation of the computer code with available results 
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Figure 4.9 Validation of the computer code with available results  

 

Table 4.1 Comparison of the radial distributions of the axial velocity u* obtained by the 
present code with those in reference [50].  
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 Gr=0 Gr=105 Gr=3.105 Gr=4.5105 Gr=5.105 

r/D   Ref 
 [50] 

Present 
study 

  Ref 
 [50] 

Present 
study 

 Ref 
[50] 

Present 
study 

 Ref 
 [50] 

Present 
study 

 Ref 
 [50 

Present 
study 

0.0 1.95 1.93 2.22 2.24 2.92 2.93 3.58 3.58 3.83 3.84 

0.05 1.93 1.91 2.20 2.21 2.87 2.88 3.51 3.51 3.78 3.77 

0.10 1.90 1.88 2.13 2.13 2.70 2.72 3.30 3.30 3.51 3.52 

0.15 1.82 1.80 2.00 2.01 2.49 2.50 2.92 2.92 3.14 3.14 

0.20 1.66 1.65 1.79 1.81 2.14 2.15 2.46 2.46 2.59 2.60 

0.25 1.51 1.50 1.68 1.68 1.71 1.72 1.86 1.87 1.93 1.93 

0.30 1.32 1.31 1.13 1.14 1.27 1.27 1.20 1.21 1.19 1.19 

0.35 1.06 1.04 0.97 0.98 0.79 0.80 0.59 0.60 0.54 0.54 

0.40 0.73 0.72 0.62 0.62 0.38 0.38 0.13 0.13 0.02 0.022 

0.45 0.41 0.39 0.34 0.35 0.04 0.096 -0.098 -0.099 -0.18 -0.18 

0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

4.3 Numerical results and analysis 
4.3.1 Introduction 

 This section presents the numerical results of the parametric study of the transient 

conjugated laminar mixed convection in vertical thick duct. A part of the presented results 

was the subject of publications [61-63, 75].  

 Local Nusselt number, as traditionally considered in the presentation of the 

convection heat transfer results is not a convenient tool for the conjugate problems [60], 

since it contains three unknowns in its definition. However, local interfacial heat flux gives 

more useful information. Therefore, the results are presented by the normalized interfacial 

heat flux and, for some cases, by the transient radial distribution of temperatures for 

thermal magnitudes and by the friction coefficient ratio 0Re).f/(Re).f(  and the vector 

velocities for the dynamical magnitudes.  

 Even, though calculations were performed from ξ= -40 to ξ= 40. It is noted that for 

reasons of clearness, most of the results will not be plotted in this rang of ξ. Recall that 

0=ξ and 10=ξ  corresponds, respectively to the inlet and the exit of the heated section. 

 In a first step, we suggest a brief description of the transient behaviour of the flow in 

downward mixed convection. As 0<τ , the flow is considered laminar, isothermal and 



Chapter 4                                                                                                                                   Numerical results 
-------------------------------------------------------------------------------------------------------------------------------------------------- 

57 
 
 

dynamically developed (parabolic profile of the axial velocity). As 0≥τ , we applied a 

uniform and constant heat flux on the outside surface of the heated section ( 100 ≤≤ ξ ). 

With elapsing time, and as the fluid approaches the heated section it undergoes a local 

deceleration close to the pipe wall compensated by an increase of the velocity in the centre 

of the tube in order to obey the of the mass conservation law. The fluid deceleration in the 

near wall region is due to the Archimede's forces. Indeed, because of the heating, it 

establishes a difference of density inside the tube. The density of the fluid situated close to 

the pipe wall decreases in relation to the one of the flow in the core region. This variation 

of density combined with the gravitational field provokes upwards Archimede's forces on 

the fluid situated close to the pipe wall.  

While approaching the heated section, Archimede's forces increase gradually in relation to 

the viscous forces. At a given axial position and instant of the transient period, the gradient 

of the axial velocity on the tube wall vanishes, indicating obviously that the flow reversal 

has just been initiated. While heading toward the downstream of this axial position, a 

reversing zone appears in the velocity profile. The thickness of this reversing zone 

increases with time and with the increase of the magnitude of Archimede's forces in 

relation to the viscous forces.  

While continuing towards the downstream and while approaching the end of the heated 

section, the reversing zone becomes thins, whatever is the time. This is due to the fact that 

the viscous forces take gradually over on Archimede's forces. The reversing zone tends to 

disappear and while approaching of the exit of the tube, the flow becomes fully developed 

with parabolic velocity and uniform radial temperature profiles.  

 Let's note that for low values of Gr/Re2, this cell disappears because Archimede's 

forces, in presence, are weak in relation to the viscous forces. Thus, for a given Pr, the 

transient extent and the intensity of this cell will be, therefore, function of the ratio Gr/Re2, 

and of K and∆. Indeed, when the axial wall conduction is important, one attends an 

important redistribution of the applied heat flux, what influences the position of the 

beginning of this cell.  

 In summary, in the reversing zone, which is situated close to the pipe wall, the fluid 

possesses an ascending movement. This ascending quantity of fluid is extracted from the 

central descendant flow, in the region of the end of the reversing zone. When this quantity 

of fluid arrives in the region of the beginning of the reversing zone, it loses gradually its 
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ascending quantity of movement and it is carried away by the descending central flow. 

Then, it establishes a buckle where a given quantity of fluid circulates in closed circuit. It 

is the recirculation cell.  

 

4.3.2 Transient normalized interfacial heat flux wiQ  

 In Figures 10a and 10b, axial distributions of the normalized interfacial heat flux 

5.0)/w)(eR/iR(KQ/iQwiQ =∂∂== ηηθ  are given at several times for typical 

combination of parameters under consideration.  

In this ratio Q  is the uniform heat flux applied at the outside surface of the pipe wall 

( eRr = ) and iQ  is defined as follow: )/( eiinner RRQiQ = , where innerQ  is the local heat flux 

transferred to the fluid at the inner surface of the pipe wall ( iRr = ), given by the relation: 

iRrrwTwkQinner =∂∂= )/( . A ratio of unity indicates that the applied heat flux goes directly 

to the fluid without any axial wall conduction. 

 At the early transient 005.0<τ , where the heat transfer is globally dominated par 

radial conduction, one can note that the ratio wiQ  increases quickly in the heated section. 

With elapsing time, wiQ  continues to increase in the heated section with a symmetric 

upstream and downstream diffusion, indicating the beginning of the axial wall conduction 

effect.  

 At τ =2, one notes that wiQ  presents a weak minimum followed by a weak maximum 

in the vicinity of 0=ξ  with a notable corresponding reduction in the heated section before 

it decreases rapidly towards zero. One notes also, at this time instant, that the maximum of 

wiQ  shift towards the inlet of the heated section ( 0=ξ ). Such behaviour is due to the 

recirculation cell, which is established from the first instants of the transient period.  

In fact, during these first moments, the recirculation cell is still confined in the heated 

section as can see it later in the representation of the vector velocities. As time goes on, its 

effect widens towards the upstream section, involving therefore the evacuation of a certain 

quantity of energy in the opposite direction of the main fluid flow (appearance of the 

minimum indicated previously). This quantity of energy added to that conducted by axial 
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wall conduction leads to increase more the interfacial heat flux (presence of the 

maximum).  

With further increase in time, the intensity of the cell increases resulting in an increase of 

the evacuated energy in the direction opposite to the main fluid flow. Then, the fluid 

temperature in the vicinity of the wall is higher than the inner wall temperature and 

therefore negative interfacial heat flux wiQ  values are obtained, indicating that the heat 

transfer is from the fluid to the pipe wall. This transferred quantity of energy to the pipe 

wall is then diffused by axial conduction in the upstream section of the duct, resulting in a 

significant redistribution of the applied heat flux in this adiabatic section, Figure 4.10a. 
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Figure 4.10a Transient axial distribution of interfacial heat flux 

 

 The process of the heat flux redistribution in the upstream section continues with 

elapsing time, until the steady state is reached. At this final time, Figure 10b, one notices 

that a significant quantity of the applied heat flux of the order of 15%, represented by a 

maximum of the curve )(fQwi ξ=  is redistributed in the upstream section far from the 

inlet of the heated section, before being released upstream of the beginning of the 

recirculation cell.  
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 We notice that at 2=τ and 4 , the negative values of wiQ in the vicinity of 0=ξ  are 

about 10% of the applied heat flux, whereas, with further increase in time, it tends to 

decrease rapidly and reach very low values at the steady state. This is due to the fact that, 

at the beginning of the transient state, the temperatures difference at the wall-fluid interface 

is important, while with further increases in times, the hot fluid contained in the 

recirculation cell tends to decrease this difference. Such effects result in a gradient of the 

radial temperature at the wall-fluid interface ( 5.0)/( =∂∂ ηηθ ) approximately equal to zero, 

as one can see it later at the time of the representation of the radial distribution of 

temperatures. In addition, we note that the maximum of the redistributed heat flux in the 

upstream section decreases according to time, whereas the zone through which the heat 

transfer at the wall-fluid interface is produced increases (Figure 4.10a-b).  

 In the downstream section, the energy diffused by axial conduction in the pipe wall 

increases with elapsing time until the instant 8=τ . From this time, one notices a decrease 

of the ratio wiQ  in the vicinity of 10=ξ , whereas for 10>ξ , an increase is observed 

( 5.12=τ and 25 ). From 25>τ until the steady state, the ratio wiQ  presents a weak 

widening of its redistribution towards the downstream section ( 10>ξ ) and tends to zero 

on the remainder of this section.  
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Figure 4.10b Transient axial distribution of interfacial heat flux. 
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 This behaviour of wiQ is due to the fact that at the beginning of the transient, for 

example at 1.0=τ , the fluid decelerates near the wall at the point where the axial velocity 

becomes negative in the vicinity of 10=ξ , Figure 4.11. With elapsing time, the fluid axial 

velocity increases from negative to positive values, as can be seen, for example at 4=τ , 

whereas from 8≥τ  until the steady state, one can observe that the fluid axial velocity 

presents, again, negative values. This effect leads to the apparition, the disappearance and, 

finally again, the apparition of the recirculation cell in the vicinity of this axial position, 

which affects the transient evolution of the normalized interfacial heat flux wiQ . 
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Figure 4.11 Transient distribution of the axial velocity profiles at the exit of the heated 
section (ξ=10) 
 

4.3.3 Transient axial distribution of friction coefficient and vectors velocities 

 Shown in Figures 4.12a and 4.12b are the transient axial distributions of the friction 

coefficient ratio 0Re).f/(Re).f( . In this ratio 0Re).f(  is the friction coefficient relating to 

the case of the forced convection and Re).f(  is defined as follows: 

[ ] 5.0/*2Re).( =∂∂−= ηηuf .  

 During the early transient period, 005.0<τ , one notes that the friction coefficient is 

equal to 1 while from 1.0=τ , it becomes negative indicating that the flow is reversed in 
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the vicinity of the wall, as one can see it in Figure 4.13, where we represent the radial 

distributions of *u  at 1.0=τ , from 5−=ξ  to 20=ξ .  

This behaviour of the friction coefficient ratio continues with elapsing time where it is 

noted that this later presents more and more negative values in the heated and in the 

upstream sections. However, one can note, that the friction coefficient ratio decreases 

quasi-linearly from the value 1 in the downstream section to a negative maximum value at 

the vicinity of 0=ξ  and then it increases again to the value 1 in the vicinity of the inlet of 

the upstream section (limit case of forced convection).  

This maximum negative value can be explained by the fact that at the inlet of the heated 

section ( 0=ξ ), the temperatures difference between the fluid located close to the wall and 

that in the core region is more important than the corresponding one at the centre ( 5=ξ ) 

and the exit ( 10=ξ ), as can be seen in Figures 4.14 and 4.15, respectively for a 

representative instant 2=τ  in the transient period and at the steady state. In Figure 4.14, it 

is noted that the recirculation cell has not reached yet the axial position 5−=ξ . 
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Figure 4.12a Transient axial distributions of the friction coefficient ratio. 
 

 At the steady state, Figure 4.12b, one can note that the ratio 0Re).f/(Re).f(  presents 

negative values in the heated section and along the most length of the upstream section, 
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indicating that the flow is reversed in the vicinity of the wall. In particular, one finds the 

stationary asymptotic values corresponding to forced convection flow in the vicinity of the 

inlet of the duct 30−=ξ  and in the downstream section, 2010 ≤< ξ . 
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Figure 4.12b Transient axial distributions of the friction coefficient ratio. 
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Figure 4.13 Radial distribution of the axial velocity profiles at different axial positions at 
τ = 0.1 
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 The widening of the recirculation cell towards the upstream section mentioned above 

is confirmed by Figures 4.16a-c. In these figures we present the development of the vector 

velocities at the moments 1.0=τ , 4, and 119 (steady state). Inspection of these figures 

shows that: 

-As 5.0<τ , the recirculation cell is very weak and remains confined in the heated section, 

Figure 4.16a at 1.0=τ . 

-From 5.0≥τ , an increase of the intensity of this recirculation cell at the inlet and the 

centre of the heated section is observed. As a consequence, the cell spreads toward the 

adiabatic upstream section, as can be seen, in Figure 16b at 4=τ . It is also shown on this 

figure that the recirculation cell tends to shift towards the upstream section before 

returning gradually downwards with elapsing time. This behaviour is a consequence of the 

temperatures difference at the beginning of the transient period explained previously 

(Figure 4.14).  

-As time goes on, the recirculation cell becomes more intense with however a weak 

widening toward the downstream section compared with the corresponding one toward the 

upstream section until the steady state is reached. At this final time the cell covers more 

than two-thirds of the length of the adiabatic upstream section (Figure 4.16c). 
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Figure 4.14 Radial distribution of temperature profiles for different axial positions at  
τ = 2. 
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Figure 4.15 Steady radial distribution of temperature profiles for different axial positions 
(τ =119 or greater) 
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Figures 4.16a-c Vector velocities at: a) τ =0.1, b) τ =4, c) τ =119 (steady state) 
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 The upstream extent of the cell can be explained by a transfer of energy between the 

hot fluid contained in the recirculation cell and the pipe wall, as described previously in 

relation to the Figures 4.10a and 4.10b. This energy is conducted thereafter by axial 

conduction in the wall in the opposite direction to the main flow, involving again the 

heating of the fluid in near wall, situated forward of the beginning of the recirculation cell. 

This effect results in a deceleration of the fluid located close to the wall at the point where 

the axial velocity becomes negative. As a consequence, the cell moves in the upstream 

section toward the inlet of the duct. Thus, the thermal gradient at the wall [ 5.0)/( =∂∂ ηηθ ] 

becomes then increasingly weak, tending toward zero inside the cell with elapsing time, 

see Figure 4.15, representing the radial distribution of the temperatures at the steady state 

for the interval 2025 ≤<− ξ .  

On Figure 4.15, it is also noted that the radial distribution of temperatures at the exit of the 

duct ( 20=ξ ) is constant. This behaviour is due to the fact that, at this axial position, the 

forced convection is dominant, and consequently, the flow field is fully developed. 

 

4.3.4 Effect of the thermal diffusivity ratio A  

 In order to investigate the effects of thermal diffusivity ratio, one presents in Figures 

4.17a-c the transient axial distributions of normalized interfacial heat flux wiQ for three 

values of A at several time steps, including the steady state.  

An overall inspection of these curves discloses that the values of the interfacial heat flux 

are higher for higher values of A. This is due to the fact that thermal resistance and heat 

capacity of the pipe wall wp )C( ρ are small for higher values of A. Thus, during the 

transient period, the heat flux supplied from the outer surface of the heated section is easily 

transferred to the fluid. This in turn causes a large thermal lag in the system. A similar 

trend has been found by, Lee & Yan [54]. 

For example at 4=τ , see Figure 4.17a, the amount of heat transferred to the wall-fluid 

interface in the heated section for 1.0A = , is of order of 50% than the corresponding one 

for 4A = . Thus, the quantity of energy transported by the recirculation cell in the opposite 

direction of the main flow is more important for 4A = . This results in a negative value of 

the interfacial heat flux wiQ  in the vicinity of 0=ξ  for 4A= , while for 3.0A =  
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and 1.0A = , the corresponding values of wiQ  are even positive, indicating that the heat 

transfer is still from the pipe wall to the fluid at this time instant. 

 In the downstream section, the effects of the thermal diffusivity ratios on the 

thermal response are also more pronounced. For example, at 4=τ and 50=τ , the heat 

transfer is from the fluid to the pipe wall over a large length of this section for 1.0A = , 

contrary to the case of 4=A , where wiQ is positive (Figure 4.17b). Indeed, at this period of 

the transient, the quantity of heat conducted by axial conduction in the pipe wall 

for 1.0A = is small compared with that evacuated by the recirculation cell toward this 

section. This is a direct consequence of the effect of the pipe wall heat capacity. 

 In the upstream section, one can observe that the thermal lag between the curves of 

wiQ  corresponding to the three values of A increases with elapsing time. As a 

consequence, the heat flux redistribution in the upstream section slows down with the 

decrease of A(Figure 17b), and consequently, affects the upstream widening of the 

recirculation cell, as one can see it later on the corresponding vectors velocities (Figures 

4.19a-c). 

With further increase in time, heat transfer between the pipe wall and the fluid continues 

with thermal lag effect between the curves of wiQ  relative to the three ratios of A until the 

steady state is reached. At this time one can observe, as expected, that the curves of 

wiQ corresponding to the three values of the wall-to-fluid thermal diffususivity ratio are 

superposed, see Figure 4.17c. Indeed, it can be made plausible by noting that the governing 

equations for the system at the steady state, is independent of A.  

 Figures 4.18a-c, presents the transient distribution of the friction coefficient ratio for 

the same three values of the thermal diffusivities ratio at several times of the transient 

period. In these figures, one notes that as time goes on, the friction coefficient 

corresponding to 1.0A = has the lowest negative values. At the steady state, the curves of 

wiQ corresponding to the three ratios of A are superposed. 
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Figure 4. 17a Influence of the thermal diffusivities ratios A on the axial distribution of the 
interfacial heat flux at τ = 4. 
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Figure 4.17b Influence of the thermal diffusivities ratios A on the axial distribution of the 
interfacial heat flux at τ = 50. 
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Figure 4.17c Influence of the thermal diffusivities ratios A on the axial distribution of the 
interfacial heat flux at the steady state. 
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Figure 4.18a Influence of the thermal diffusivities ratios A, on the axial distribution of the 
friction coefficient ratio at τ = 0.5. 
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Figure 4.18b Influence of the thermal diffusivities ratios A on the axial distribution of the 
friction coefficient ratio τ = 4. 
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Figure 4.18c Influence of the thermal diffusivities ratios A on the axial distribution of the 
friction coefficient ratio at τ =50  and in the steady state. 

 

 The Figures 4.19a-c, are presented to analyse the effect of the thermal diffusivity 

ratios on the transient development of the recirculation cell inside the duct for a 
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representative instant of the transient period 4=τ . For low values of A and during the whole 

transient period, the intensity and the upstream and downstream widening of the cell 

remain the lowest. This is due to the weak diffusion of energy by axial wall conduction 

caused by the high heat capacity of the wall. Thus, in Figures 4.19a-c, one can observe that 

the recirculation cell is mainly confined inside the heated section for A=0.1, whereas for 

A=4 its effect already reached the axial position 5−=ξ .  

The effect of thermal lag on the transient development of the cell continues with further 

increase in time until the steady state is reached. At this final time, the cells relative to the 

three ratios of thermal diffusivity, not represented here, present the same intensity and the 

same level of extent toward the two adiabatic sections. 

Note that the time needed to reach the steady state increases with the decrease of the ratio 

A. 
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Figures 4.19a-c Influence of the thermal diffusivities ratio A on the vector velocities at 
τ =4:  a) A=4, b) A=0.3, c) A=0.1 
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4.3.5 Effect of the Grashof number Gr 

 The effect of the Grashof number on the transient axial distribution of the normalized 

interfacial heat flux, wiQ are shown in Figures 4.20a-b, respectively for a representative 

instant of the transient period 25=τ  and at the steady state.  

At the initial transient stage, not represented here, the curves of wiQ  for the various values 

of the Grashof number under consideration are indistinguishable. This is due to the fact 

that the heat transfer is dominated by the radial conduction. With elapsing time, the effect 

of buoyancy increases with the increase of Gr, especially in the upstream section, where 

one can observe that the redistribution of the applied heat flux is more and more localised 

far from the inlet of the heated section as the Grashof number increases.  

This process continues until the steady state regime, where one can observe no maximum 

of wiQ  in the upstream section for Gr=1000, while in the heated section it remains the 

lowest. This is a direct consequence of the recirculation cell that remains confined in the 

heated section.   
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Figure 4.20a Influence of Gr on the axial distribution of Qwi at τ =25. 
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Figure 4.20b Influence of Gr on the axial distribution of Qwi at the steady state 
 

 The corresponding steady state axial distribution of the friction coefficient ratio for 

the stated values of the Grashof number, Figure 4.21, shows clearly that with the increase 

of Grashof number, the intensity and the region of the flow reversal increase in its turn.   
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Figure 4.21 Influence of Gr on the axial distribution of the friction coefficient ratio in the 
steady state 
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 The Figures 4.22a-c, present the effect of Grashof number on the widening of the cell 

upstream and downstream of the heated section at the steady state. The inspection of these 

figures reveals that the extent and the intensity of the cell increase with the increase of Gr . 

This confirms the upstream redistribution of the applied heat flux, observed previously for 

different values of the Grashof numberGr . 
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Figures 4.22a-c Influence of Gr on the vector velocities at the steady state  
a) Gr=1000, b) Gr=2000, c) Gr=3000. 
 

4.3.6 Effect of wall-to-fluid conductivity ratio 

 The axial distribution of the normalized interfacial heat flux wiQ  for different 

values of K and for different instants of interest is shown in Figures 4.23a-d.  

An overall inspection of these figures show that, in the whole transient period, higher 

values of the normalized interfacial heat flux are obtained in the heated section for lower 

values of K, since the low values of K [K=A.(ρcp)w/(ρcp)f] with A fixed, decrease the 

thermal capacity of the wall (ρcp)w. Such effect leads to a large thermal lag in the system as 
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one can see it by comparing the curves of wiQ corresponding to the three values of K 

(Figures 4.23a-d).   

Furthermore, at the early transient period (τ ≤ 0.5), the magnitude of the normalized 

interfacial heat flux Qwi increases quickly in the heated section, while in the upstream and 

downstream sections it increases symmetrically with the increase of K (Figure 4.23a at 

τ =0.5). This behavior is due to the fact that the heat transfer in the pipe wall and in the 

flow is essentially dominated by conduction at small τ.  

 Later (τ>0.5), one can observe a decrease of Qwi in the heated section, which is 

more substantial for high values of K, as one can see it in Figure 4.24, representing the 

transient evolution of Qwi, from τ = 0  to τ = 8 in the medium of the heated section (ξ=5). 

In the adiabatic upstream and downstream sections an important diffusion of heat is 

noticed, Figure 4.23b, at τ =2.  

 It is also shown in Figure 4.23b (τ =2) that the normalized interfacial heat flux Qwi 

present a local minimum and maximum in the vicinity of the inlet of the heated section 

before decreases rapidly towards zero. At this time, the minimum of Qwi corresponding to 

K=10 is more pronounced compared to the corresponding one for K=50 and 100. Thus, for 

K=10, Qwi presents a negative value (minimum), indicating that the heat transfer is from 

the fluid to the pipe wall. This later quantity of energy, that has been transferred from the 

fluid to the pipe wall, is then diffused by axial wall conduction, resulting in a positive 

value of Qwi (maximum), while for K=50 and 100, Qwi still positive.  

This presence of these negative values of Qwi is attributed to the recirculation cell. In fact, 

at the early transient period, the recirculation cell is confined in the heated section, and its 

intensity is very low, as one can note it in Figures 25a-b (τ =0.5) for the limiting cases, 

K=10 and K=100. With elapsing time, the intensity of the cell increases and spreads 

towards the adiabatic upstream section (Figures 4.26a-b, τ = 4), involving the evacuation 

of some quantity of energy in the direction opposite to the main flow, which is more 

important than that diffused by axial wall conduction for K=10. Then, Qwi is negative at 

the vicinity of ξ=0 for K=10 at this period of the transient, contrary to the other values of 

K, where the energy diffused by axial wall conduction is too large than that transported by 

the cell.  
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Figure 4.23a Influence K (K=10, 50 and 100) on the axial distribution of Qwi at τ=0,5.   
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Figure 4.23b Influence K (K=10, 50 and 100) on the axial distribution of Qwi at τ=2. 
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Figure 4.23c Influence K (K=10, 50 and 100) on the axial distribution of Qwi at τ = 4.  
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Figure 4.23d Influence K (K=10, 50 and 100) on the axial distribution of Qwi at τ=12.5.   
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Figure 4.24 Transient distribution of the Qwi at (ξ=5) for Gr=5.103, Re=1. 

 

 On Figures 4.26a-b, relative to another instant of the transient, it is noticed that the 

intensity of the cell for K=10 is more important than the corresponding one for K=100. 

This is also due to the fact that for low value of K [K=A(ρcp)w/(ρcp)f] with A fixed, the heat 

capacity of the wall is lower by comparing with that of the fluid. So, the supplied heat flux 

from the outside surface of the heated section is easily transported in the wall and, 

consequently to the fluid.  

This effect results in a difference of temperatures between the fluid located close to the 

wall and that in the core region, more important for lower K than for higher K, as can be 

seen, for example, at τ =4 in Figure 4.27a. Therefore, the local deceleration of the fluid in 

the near wall region is more important for K=10 than for K=100. Consequently, the 

acceleration of the fluid on the tube centreline is greater for K=10.   

 With elapsing time, it may be observed in the upstream section that the local 

minima and maxima of Qwi, shown previously for each value of K, are more pronounced, 

resulting in a negative value of Qwi for K=50, while for K=100 it remains positive, see 

Figure 4.23c.  

 As time goes on, one can observe that the present quantity of energy at the vicinity 

of the inlet of the heated section is redistributed in the adiabatic upstream section, for all 
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values of K (Figure 4.23d). This redistribution of the applied heat flux is due to the fact 

that, the hot fluid circulating inside the cell, tends to diminish the radial gradient of 

temperature, see Figure 4.27b at τ =25, for K=10 and 100. Thus, the cell acts like an 

insulator and, with elapsing time, as the cell moves towards the inlet of the adiabatic 

upstream section, the heat flux inside the wall is redistributed further upstream of the 

region of the beginning of the cell.  

 Further inspection of Figure 4.27b, show also that for K=100, the cell has not yet 

reached the axial position ξ = -10, and the temperature at the exit of the heated section (ξ 

=10) corresponding to K=10 is greater than the corresponding one for K=100. This is the 

direct consequence of the quantity of energy transferred to pipe-wall interface.  

 It is also shown in Figures 4.23a-d that fromτ ≥ 4, Qwi increases in the heated 

section for all values of K due to the effects of the widening of the cell towards the 

upstream section.  
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Figures 4.25a-b Vector velocities at τ =0.5: a) K=10, b) K=100 for Gr=5.103, Re=1. 
Scale: Relative (Grid units/Magnitude)=0.10 
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Figures 4.26a-b Vector velocities at τ =4: a) K=10, b) K=100,  for Gr=5.103, Re=1.  
Scale: Relative (Grid units/Magnitude)=0.10. 
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Figure 4.27a Influence of K (K=10, 100) on the radial distribution of temperature for 
Gr=5.103, Re=1 from ξ =0 to 10, at τ =4  
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Figure 4.27b Influence of K (K=10, 100) on the radial distribution of temperature for Gr =  
5.103, Re=1 at τ =25 from ξ = -10 to 10. 

 

 In the downstream section, one can observe that the energy diffused by axial conduction 

continues to increases at the first period of the transient, say for τ  ≤ 8, and then, decreases 

with elapsing time until the steady state is reached where it becomes zero, Figure 4.23d and 

Figure 4.28.  

This behaviour of Qwi at this period of the transient is due to the effect of the axial wall 

conduction and the recirculation cell. Thus, for all values of K, and after the initial period of 

the transient where the cell is confined in the heated section, Qwi continues to increase in the 

upstream and downstream sections due to the effect of axial conduction. Whereas, as time 

goes on, the cell becomes more intense, especially at the inlet of the heated section (ξ=0) than 

at the middle (ξ =5) and the exit (ξ =10), Figures 4.26a-b, resulting in a displacement of the 

cell upwards, at the point where the reversed flow region near the wall, spreads toward the 

downstream region and leads consequently to increase Qwi in this section (Figure 4.23c). 
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Figure 4.28 Influence of K (K=10, 50 and 100) on the axial distribution of Qwi in the steady 
state. 
 
 As time goes on, we have observed that the cell starts to spread towards the exit of the 

heated section, see Figures 4.29a-b, leading consequently to the disappearance of the reversed 

flow near the wall region. This effect results in the evacuation of the energy diffused by axial 

conduction towards the downstream section during the early period of the transient (Figure 

4.23d).  

 Note that for K=100 and, with further increase in time, the energy evacuated by the cell 

becomes also higher than that conducted by axial wall conduction. Then, the interfacial heat 

flux Qwi becomes also negative in the vicinity of ξ =0 (Figure 4.23d), before being 

redistributed, in its turn, in the upstream section, in the same way as for the other values of K 

(K=10 and 50).  
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Figures 4.29a-b Vector velocities at τ =12.5:  a) Κ =10, b) Κ =100, for Gr=5.103, Re=1. 
Scale: Relative (Grid units/Magnitude)=0.10 
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Figures 4.30a-b Vector velocities at the steady state: a) Κ=10, b) K=100 for Gr=5.103, 
Re=1. Scale: Relative (Grid units/Magnitude)=0.10. 
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 The process of the widening of the cell and consequently the heat flux redistribution 

continues as time goes on until the steady state is reached. At this final time, one can observe 

that the redistributed quantity of energy corresponding to low values of K is the lower and, for 

all values of K, this later, is also represented by a maximum of the curve Qw i= f(ξ), see Figure 

4.28. The cell begins far upstream of the inlet of the heated section and extends downstream 

from this latter, see Figures 4.30a-b. A similar trend was found, at the steady state by, 

LaPlante [42]. 

 Finally, it is worth noting in these figures that in the whole transient period, the 

widening of the cell and consequently the heat flux redistribution in the upstream section slow 

down with the increase of K. 

 The transient axial distribution of the friction coefficient ratio 0Re)./(Re).( ff  is shown 

on Figures 4.31a and 4.31b.  

As can be shown previously and, due to the fact that at small τ, the heat transfer is essentially 

made by conduction, the friction coefficient ratio for τ ≤ 0.5 presents a weak distortion over 

the most of the length of the heated section. As time goes on (τ =2), one can find the results 

discussed above, relating to the behaviour of the recirculation cell during the transient period. 

It is also shown at this representative instant (τ = 2) that the friction coefficient ratio present 

negative values for all K in the downstream adiabatic section, indicating that the reversed flow 

region spreads towards this section, as mentioned above.  

 With further increase in time and as a consequence of the spreading of the cell toward 

the upstream and downstream sections, the friction coefficient ratio follows the same 

behaviour until the steady state is reached. At this final time, see Figure 4.31b, one can note 

that the friction coefficient is negative over an important length of the upstream section, 

especially for higher values of K, before tending asymptotically to the corresponding value of 

forced convection in the vicinity of the inlet of the duct 40)( −=ξ . In the downstream section 

( 4010 ≤< ξ ), the friction coefficient ratio is equal to 1, indicating that the flow is fully 

developed. 
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Figure 4.31a Influence of K (K=10, 50 and 100) on the axial distribution of the friction 
coefficient ratio for Gr=5.103, Re=1 at τ = 0.5 and 2 
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Figure 4.31b Influence of K (K=10, 50 and 100) on the axial distribution of the friction 
coefficient ratio for Gr=5.103, Re=1 at the steady state. 
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4.3.7 Effects of high Reynolds and Grashof numbers  

 In order to examine the effect of the thermal conductivity ratio K on the transient 

behaviour of the previous dynamical and thermal magnitudes for high Gr and Re numbers, 

one present for Gr =5.105, Re =100, the axial distribution of the normalized interfacial heat 

flux, Figure 4.32 for a representative instant τ =25 in the transient period where the 

convection in the flow becomes increasingly important. For the early transient period note 

represented here, we have noted that, Qwi increases rapidly for all values of K. 
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Figure 4.32 Influence of K (K=10, 100 and 500) on the axial distribution of Qwi at τ=25  for 
Gr=5.105, Re=100. 

 

 A comparison of the results of this case (Figure 4.32) with the corresponding one, 

(Figures 4.23b-d) for Gr=5 103, Re=1, shows that: 

- The time required for the appearance of the minimum and maximum of Qwi is much longer 

( 2≤τ  for Gr=5 103, Re=1) and ( 25≤τ  for Gr=5 105, Re=100). 

- The values of the minimum and maximum corresponding to each value of K are more 

important. 

 It is also worth noting in Figure 4.32 that for the limiting case K=500, the interfacial 

heat flux is negative in the heated section. In fact, for these values of Re (Re=100) and Gr 
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(Gr=5.105), the negative values of Qwi in the heated section have also been observed for the 

other values of K (10, 50 and 100) before τ=25.  

Indeed, as can be seen in Figures 4.33a and 4.33b, respectively for K=10 and 500, the 

interfacial heat flux is negative in the heated section from τ >10 for K=10, while for K=500, it 

becomes negative from τ >20. This difference in time between the two values of K is due to 

the thermal lag effect. Recall that the negative values of Qwi indicate that the heat transfer is 

from the fluid to the pipe wall. 

 The presence of these negative values of Qwi in the heated section in this case 

(Gr=5.105, Re=100), contrary to the case (Gr=5.103, Re=1) is due to the fact that the axial 

conduction in the fluid is negligible (Pe =500). Indeed, at the beginning of the transient state, 

the cell is not yet sufficiently intense to overcome the forces exerted by the fluid flow coming 

from the entry of the duct. So the cell remains confined longer in the heated section and, 

spreads slowly toward the upstream section, see Figures 4.34a and 4.34b.  

This effect leads to an increase in the fluid temperature with a maximum in the vicinity of the 

wall-fluid interface at ξ=0, as can be seen, for example, in Figure 4.35a for K=10 at τ =17.5 

and 20 and, in Figure 4.35b for K=500 at τ =25. In these figures one can note that the 

maximum corresponding to K=10 is more pronounced and still much longer than the 

corresponding one for K=500.  

This behaviour explain the large values of the minimum and maximum and the very sharp 

changes of Qwi in this case, contrary to the case of Figures 4.23b-d (Gr=5 103, Re=1), where 

the axial conduction in the fluid is important. 

 With elapsing time, the cell becomes more intense and starts to spread toward the 

upstream section, involving the evacuation of the accumulated energy and, leading 

consequently to the disappearance of the maximum of the temperature at ξ=0, see Figures 

4.35a-b. 
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Figure 4.33a Axial distribution of Qwi for K=10 at τ=10, 20 and 35 for Gr=5.105, Re=100. 
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Figure 4.33b Axial distribution of Qwi for K=500 at τ=5, 10, 20  and 35 for Gr=5.105, 
Re=100.
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Figures 4.34a-b Vector velocities for Gr=5.105, Re=100, K=50: a) at τ =25, b) at τ =50. 
Scale: Relative (Grid units/Magnitude)=0.40 

 

 It is also shown in Figures 4.33a-b that the appearance of the first minimum and 

maximum of Qwi is accompanied by a corresponding reduction of this later in the heated 

section. With further increase in time, the cell spreads toward the upstream section, leading to 

increase Qwi in the heated section for the two values of K. This is due to the fact that the cell 

acts like an insulator between the pipe wall and the fluid, as it has been explained previously 

for the case (Gr=5.103, Re=1). 

 Other inspections of Figure 4.32 and Figures 4.33a-b show that the extreme values of 

Qwi increase with the decrease of K. This is due to the fact that for low K the heat transmission 

in the wall by axial conduction is slower, whereas the energy transferred from the hot fluid to 

the pipe wall is conducted in the pipe wall more rapidly for large value of K. This effect 

results in lower extreme values of the redistributed energy in the upstream section for large 

values of K and, consequently slowly sharp changes between the maximum and minimum 

points, contrary to the case of low values of K.     
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Figure 4.35a Radial distribution of temperature at the inlet of the heated section (ξ =0) at 
different instants of the transient period, for Gr=5.105, Re=100, K=10. 
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Figure 4.35b Radial distribution of temperature at the inlet of the heated section (ξ =0), at 
different instants of the transient period, for Gr=5.105, Re=100, K=500. 
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 At the steady state, Figure 4.36 and, contrary to the result shown in Figure 4.28 

(Gr=5.103, Re=1), one can observe that the heat flux redistribution in the upstream adiabatic 

section slows down with the decrease of K and it is more close to the entry of the heated 

section. This is the consequence result of the axial conduction. Thus, in this case (Gr=5.105, 

Re=100), the heat flux redistribution is done mainly by axial wall conduction (Pe=500). 

 More inspections of the Figure 4.36 reveal that the time needed to reach the steady state 

regime is more important compared to the corresponding one of the case (Gr=5.103, Re=1). 

This is also a direct consequence of the pipe wall and fluid axial conductions.  
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Figure 4.36 Axial distribution of Qwi at the steady state for K=10, 50, 100 and 500 for 
Gr=5.105, Re=100. 
 
 
 The axial distribution of the friction coefficient ratio for Gr=5.105 and Re=100 at a 

representative instants τ =5, 25 in the transient period and, at the steady state, Figures 37a-b, 

shows: 

-The same behaviour to the one corresponding to the previously studied case (Gr=5.103, 

Re=1) at the early transient period. 

-Local values higher than the unity (>1) in the downstream section, during a period of the 

transient, before decrease asymptotically to the unity at the outlet of the duct. 
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-At the steady state, a local minimum in the vicinity of the inlet of the heated section. This 

later is more pronounced than the corresponding one shown in Figure 4.31b, before tending 

slowly towards the limiting case corresponding to the forced convection at the exit and the 

inlet of the duct. 
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Figure 4.37a Influence of K (K=10, 50, 100 and 500) on the axial distribution of the friction 
coefficient ratio for Gr=5.105, Re=100 atτ =5 and 25. 
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Figure 4.37b Influence of K (K=10, 50, 100 and 500) on the axial distribution of the friction 
coefficient ratio for Gr =5.105, Re =100 at the steady state. 
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 In order to improve our understanding of heat transfer characteristics in the unsteady 

mixed convection and to prove that the large values of Qwi in the upstream section for this 

case (Gr=5.105, Re=100) is due to an important heat transfer at the wall-fluid interface, we 

present the transient evolution of the temperatures difference ∆θwi at the wall-fluid interface, 

Figure 4.38a and of Qwi, Figure 4.39a at three axial positions (ξ =0, ξ = -5 and ξ = -10).  

As can be seen in these figures, it is obvious that the large values of the maximum and 

minimum points of Qwi are due to a large temperatures difference ∆θwi at the wall-fluid 

interface. Furthermore, it is also observed that for the three axial positions, ∆θwi and 

consequently Qwi, increases with time and reach a maximum value. Thereafter, it decreases 

rapidly towards a minimum value and finally it increases again asymptotically towards zero.  

This behaviour of ∆θwi and Qwi is explained by the fact that, for each axial position, the heat 

transfer is firstly dominated by conduction in the pipe wall, which results in a lower rate of 

increase in the fluid temperature than in the interfacial temperature. Then, ∆θwi increases with 

elapsing time until the recirculation cell reach the corresponding axial position. At this 

transient period, the energy transported by the cell becomes more important than that diffused 

by conduction in the pipe wall from the adjacent heated section. This effect result in negative 

values of ∆θwi and consequently Qwi, indicating that the heat transfer is from the fluid to the 

pipe wall.  

 As time goes by, the cell continues to move towards the inlet of the upstream section, 

resulting in a decrease of ∆θwi and consequently Qwi until they become zero after a certain 

period of time. This is due to the fact that, as the cell passes the corresponding axial position 

(ξ=0, ξ= -5 or ξ= -10), it acts like an insulator, as it has been explained previously for the 

case (Gr=5.103, Re=1). 

 Figure 4.38b and Figure 4.39b gives, respectively the transient evolution of ∆θwi and 

Qwi at the same conditions and axial positions for Re=50. It is observed that the decreases of 

Re leads to decrease the extreme values of Qwi. This is due to the fact that as Re decreases, the 

forces exerted by the fluid flow coming from the inlet of the duct decrease also in its turn. 

Therefore, the cell spreads in the upstream section more rapidly, as can be seen in Figure 39b. 

Consequently, the accumulated energy at each axial position is lower.  
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It is also seen in these figures that for Re=50, ∆θwi and consequently Qwi are positive at 

the axial position ξ=0, Figure 4.38b contrary to the case of Figure 4.38a (Re=100), indicating 

that the interfacial heat flux is positive in the heated section for Re=50.  
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Figure 4.38a Transient evolution of the temperature difference at the wall-fluid interface at 
ξ=0, −5 and ξ=−10  for Gr=5.105, K=50, Re=100. 
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Figure 4.38b Transient evolution of the temperature difference at the wall-fluid interface at 
ξ=0, −5  and ξ=−10  for Gr=5.105, K=50, Re=50. 
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Figure 4.39a Transient evolution of the interfacial heat flux at ξ=0, −5  and ξ = −10 , for 
Gr=5.105, K=50, Re=100. 
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Figure 4.39b Transient evolution of the interfacial heat flux at ξ=0, −5 and ξ = −10  for 
Gr=5.105, K=50, Re=50. 
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4.3.7.1 Observations on the maximum of the radial temperature in the 
upstream section  
 

The maximum of the radial distribution of temperatures to the neighbourhood of the 

pipe wall observed previously to the entry of the heated section during a weak period of the 

transient period has also been observed in the upstream section.  

Indeed, for every axial position, the radial temperature presents a distribution similar to 

the one of the forced convection in the absence of the recirculation cell as one can see it in 

Figures 4.40a (ξ= -5) and 4.40b (ξ = −10), respectively at τ =  80 and 180. The corresponding 

vectors velocities are represented in Figures 4.41a-b and 4.41c-d. The Figures 4.41b and 

4.41d represents an enlarging of the zones situated between 05 ≤≤− ξ and 

between 515 −≤≤− ξ .  

 In Figures 4.41a-c, one notes that the velocity profiles at the axial positions (ξ= -5) or 

(ξ = −10) are parabolic, indicating that the recirculation cell has not reached these two axial 

positions again. As the recirculation cell reaches a given axial positions, (ξ=-5) or (ξ= -10), 

the radial temperature profiles undergo a distortion in the neighbourhood of the pipe wall, 

represented by a maximum, see Figures 4.40a-b, respectively at τ =90 and τ =190. This 

distortion subsists until the moment where the cell passes the corresponding axial position.  

 With elapsing time, for the reasons that we evoked previously, the cell moves toward the 

upstream section, Figures 4.42a-b. Such effect results in the evacuation of the accumulated 

energy to the neighbourhood of the pipe wall. Consequently, these maxima undergo a 

decrease and finish by disappearing completely with elapsing time, Figures 4.40a-b, 

respectively from τ>100 and τ>210.  

Later, τ ≥110 (Figure 4.40a) and τ≥250 (Figure 4.40b), the radial distribution of 

temperatures to the neighbourhood of the pipe wall presents a flat profile, indicating that the 

gradient of temperature between the pipe wall and the fluid is nearly equal to zero. This is due 

to the fact that, when the recirculation cell passes a given axial position, it acts like an 

insulator between the pipe wall and the fluid. In Figures 4.43a-b (τ=110) and 4.43c-d 

(τ=250), representing the vector velocities, one can see that the reversed flow region has 

already passe the two axial positions ξ=-5 and ξ=-10.  

This flat profile in the near wall maintains itself until the steady state is reached for 

every axial position reached by the recirculation cell.  
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Figure 4.40a Transient evolution of temperature profiles at ξ=-5. 
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Figure 4.40b Transient evolution of temperature profiles at ξ=-10. 
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Figures 4.41a-d Vectors velocities for two instants of the transient period 
a-b) Vector velocities and enlarging of the zone 010 ≤≤− ξ  at τ =80     
c-d) Vector velocities and enlarging of the zone 515 −≤≤− ξ  at τ =180   
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Figures 4.42a-b Vectors velocities for two instants of the transient period 
a)τ =100  b) τ =210   
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Figures 4.43a-d Vectors velocities for two instants of the transient period 
a-b) Vector velocities and enlarging of the zone 010 ≤≤− ξ  at τ =110 
c-d) Vector velocities and enlarging of the zone 515 −≤≤− ξ  at τ =250   

 
4.3.7.2 Observations on the maximum of the radial temperature in the 
heated section  
 

 The analysis of the numerical results showed that the transient evolution of the radial 

distribution of temperatures in the heated section is different from the one in the adiabatic 

upstream section, except in the first instants of the transient period.  

Indeed, during the first instants of the transient period where the heat transfer is globally 

dominated by radial conduction we have noted that the flow corresponds to the case of 'pure 

forced convection' without the effect of the natural convection as one can see it in Figure 4.44 

representing the radial axial velocity profiles at τ =0.5. On the Figure 4.45, relative to the 

radial temperature profiles at the same instant, one notes as for the case of the upstream 

section, a similar profile to the one of the forced convection.  

 With elapsing time, the energy transferred to the wall-fluid interface increases. 

Consequently, the effect of the natural convection in the vicinity of the wall starts to appear 

and, acts on the main descendant flow, in particular from the middle to the exit of the heated 

section. This results in a deceleration of the fluid close to the pipe wall compensated by an 
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acceleration in the centre of the duct in order to satisfy the conservation of the continuity 

equation, see Figure 4.44 at τ =5.  
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Figure 4.44 Radial distributions of axial velocity profiles inside the heated section for two 
instants of the transient period.               
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Figure 4.45 Radial distribution of temperature profiles inside the heated section at τ=0.5 
 
 At this instant (τ =5), where the axial velocity at the middle of the heated section 

(ξ=5) is negative (Figure 4.44) and, where the gradient of the axial velocity to the exit of the 
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heated section (ξ=10) is zero, there is practically no noticeable effect on the radial 

distributions of the temperature, see Figure 4.46.  
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Figure 4.46 Radial distribution of temperature profiles inside the heated section at τ=5  

  

 As the time goes on, the negative values of the axial velocity to the vicinity of the pipe 

wall become more visible. Consequently, the reversed flow region thickness increases 

considerably, see Figure 4.47. The presence of this reversed flow region in the vicinity of the 

pipe wall has strongly distorted the radial temperature profiles. Such effect results in a clear 

change in the shape of the fluid temperature profiles in the whole heated section. So, at the 

entry of the heated section, one notes a local maximum in the near wall region (observed 

previously) and a local minimum close to the axis of the duct. From the middle to the exit, the 

temperature profiles present two local minima, Figure 4.48.  

From τ>17.5, the recirculation cell, spreads toward the upstream section (Figures 4. 

49a-b), leading to the disappearance of the local maxima of the temperature profiles at the 

inlet of the heated section and, indicating the end of the period where the heat transfer at the 

vicinity of the inlet of the heated section is from of the fluid to the pipe wall.  

After this period and until the steady state the temperature profiles along the heated 

section presents two local minima: one observed on the centreline of the duct and the other 
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one located in the near wall region, see Figure 4.50. Consequently, the heat transfer at the 

wall-fluid interface is again from the pipe wall to the fluid.  
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Figure 4.47 Radial distribution of the axial velocity profiles inside the heated section 
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Figure 4.48 Radial distribution of the temperature profiles inside the heated section 



Chapter 4                                                                                                                                   Numerical results 
-------------------------------------------------------------------------------------------------------------------------------------------------- 

103 
 
 

r/D

z/
D

0 0.1 0.2 0.3 0.4 0.5

-15

-10

-5

0

5

10

15

20

a)

 
r/D

z/
D

0 0.1 0.2 0.3 0.4 0.5

-15

-10

-5

0

5

10

15

20

b)

 
Figures 4.49a-b Vectors velocities for two instants of the transient period a)τ=25, b)=100 
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Figure 4.50 Radial temperature profiles inside the heated section at τ=25 and 100. 
                                   

Such behaviour (presence of two local minima), concerning the radial temperature 

profiles in this case is due to the fact that the recirculation cell brings the colder fluid from the 

outer space adjacent to the end of the recirculation cell (ξ≥10) and, injects it in the heated 
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section. This effect results in weak values of temperatures at the exit of the heated section 

(ξ=10) over a large zone of the cross-section of the duct,  compared to the corresponding one 

at the middle (ξ =5) and the exit (ξ=0), see Figure 4.50.  

 As the fluid moves toward the inlet of the heated section (ξ=0), the radial temperature 

increases and reach its maximum values at this axial position. The fact that the temperature at 

the inlet of the heated section (ξ=10) is the higher compared to one at the middle (ξ =5) and 

the exit (ξ=0) can be explained by the fact that the heat coming from the wall continuingly 

heats the fluid brought from the outer space adjacent to the exit of the heated section into the 

reversed flow region. A similar trend has been found, at the steady state by, Nguyen & al 

[50].  

Let's note that on a weak region of the cross-section at ξ=10, the radial temperature is 

slightly greater than the corresponding one at ξ=5 and ξ=0  (Figure 4.50). This is a result of 

the permanent contact of the beginning of the recirculation cell with the cold fluid, coming 

from the entry of the duct.  

 It is also noted on the Figure 4.45 at τ =0.5 (at the beginning of the transient period), 

that the pipe wall temperature at ξ=0 is higher than the corresponding one at ξ=10, whereas at 

τ =5, Figure 4.46, one notes the inverse. As the time goes on, one realizes that the radial 

temperature at ξ=0 is again higher than that at ξ=10 over a large zone of the cross-section, 

say between 0.55η0.2 ≤≤ , Figure 4.50.  

This can be explained by the fact that at the beginning of the transient period, the heat transfer 

is made without natural convection effect and, that upstream of the heated section one 

recovers the colder fluid, what favourites the heat transfer. After a short time, the effect of the 

natural convection begins to appear, resulting in a more important reduction of the axial 

velocity at the vicinity of the pipe at ξ=10 than at ξ=0 (Figure 4.44 at τ =5), leading thus to 

an increase of temperature at ξ=10. Later, the intensity of the cell becomes more pronounced, 

resulting in an important extent toward the upstream section. This results therefore in an 

important evacuation of energy toward the entry of the heated section. Consequently, the 

temperature at ξ=0  is again greater than that at ξ= 10. 
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4.3.8 Effect of the pipe wall thickness-to-diameter ratio ∆  

In order to examine the effect of the pipe wall thickness-to-diameter ratio ∆ on the 

interfacial heat flux, we present on the Figures 4.51a-c the obtained results at different 

instants of the transient period for different values of the parameter ∆.  

 On these Figures, one notes that the values of the interfacial heat flux in the heated 

section decrease according to the parameter ∆. This is due to the fact that for low values of ∆, 

the thermal resistance and the thermal capacity of the pipe wall are weaker. Consequently, the 

applied heat flux at the outer surface is easily transferred to the fluid. Upstream and 

downstream of the heated section, the diffusion of the heat increases with the increase of ∆.  

 Let's note that at the instant τ =5, Figure 4.51a, the heat transfer is globally dominated 

by conduction.  
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Figure 4.51a Effect of the parameter ∆ on the axial distribution of the interfacial heat flux at 
τ =5. 

 

As the time goes on, Figure 4.51b, the effects of convection become more important 

and we attend, as seen previously, to an important redistribution of the energy provided to the 

system at the vicinity of the inlet of the heated section. One also notes, that with the increase 

of ∆, the corresponding maximum and minimum of the redistributed energy decreases, while 
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the heat exchange surface between the fluid and the pipe wall increases. These results are a 

direct consequence of the effect of the axial conduction.  

 At this instant (τ =25), the corresponding interfacial heat flux for ∆ equal to 0.15 and 

0.25 is negative in the heated section. Such behaviour is attributed, as we have explained it 

before (effect of the conductivity ratio) to the large values of the thermal capacity and the 

thermal resistance. Thus, at this period of the transient regime, the energy evacuated by the 

recirculation cell is higher than the one transmitted to the wall-fluid interface through the pipe 

wall. It results an exchange of heat from the fluid to the pipe wall.  
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Figure 4.51b Effect of the parameter ∆ on the axial distribution of the interfacial heat flux  
 

With further increase in time, the thermal lag between the different curves increases 

considerably. So, in Figure 4.51c, one notes that with the decrease of the values of the 

parameter∆, the redistribution of the applied heat flux becomes closer to the inlet of the 

heated section. This behaviour continues until the steady state regime, not represented here, 

because of a too long upstream section for the cases ∆=0.15 and 0.25. 

 Finally, one note that the time needed to reach the steady state increases with the 

values of the parameter ∆.  
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Figure 4.51c Effect of the parameter ∆ on the axial distribution of the interfacial heat flux  
  

For two extreme values of the pipe wall thickness-to-diameter ratio ∆ and for the same 

instants that those corresponding to the case of the interfacial heat flux, we present in Figures 

4.52a-b, the axial evolution of the friction coefficient ratio.  

 Through these two Figures, one notes that at τ =5 (Figure 4.52a), the friction 

coefficient ratio in the heated section corresponding to ∆=0.01 is more distorted than the one 

corresponding to ∆=0.25. This is due to the fact that the quantity of energy transferred to the 

wall-fluid interface for ∆=0.01 is more important than the one relative to ∆=0.25 (Figure 

4.51a). Consequently, the effect of the natural convection is more important. Outside of the 

heated section, the two curves corresponding to ∆=0.01 and ∆=0.25 are superposed.  

 With elapsing time, the distortion relative to ∆=0.25 becomes more pronounced that 

the one of ∆=0.01 due to the effects of the thermal inertia of the system and the axial wall 

conduction. Consequently, at the instant τ =25, one notes that in the vicinity of the inlet and 

the exit of the heated section, the distortion of the friction coefficient for ∆ =0.25 is larger 

than the one corresponding to ∆ =0.01. 

 This behaviour continues until the steady state with more and more important 

distortions as the values of ∆ increase, in particular in the upstream section, as one can see it 

in Figure 4.52b.  
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Far from the exit of the heated section, the different curves join themselves, indicating 

that the system tends toward an established regime characterized by a ratio of the friction 

coefficient equal to 1 corresponding to the case of the forced convection.  

In Figures 4.53a and 4.53b, one presents the radial distribution of temperatures at the 

inlet of the heated section for two values of the parameter ∆  and, for different instants of the 

transient period representing the development and the disappearance of the maximum of 

temperature profiles at this axial position.  

On these Figures, one notices that the development of the maximum corresponding to 

∆=0.01 is more pronounced. Thus, at τ =21, the maximum value reached by the radial 

temperature is greater than 0.26 for ∆=0.01, whereas for ∆=0.25  it is of the order of 0.18. One 

also notes that these maxima remain longer for ∆=0.25  than for ∆=0.01. These results 

represent a direct consequence of the effect of the thermal capacity and the axial wall 

conduction.  
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Face 4.52a Effect of the parameter ∆ on the axial distribution of the friction coefficient ratio 
at τ =5 and τ =25. 
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Figure 4.52b Effect of the parameter ∆ on the axial distribution of the friction coefficient            
ratio at τ=200. 
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Figure 4.53a Radial distribution of temperature profiles at ξ=0 for different instants of       
the transient period ∆=0.01. 
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Figure 4.53b Radial distribution of temperature profiles at ξ=0 for different instants of       
the transient period ∆=0.25. 
 

 In order to improve our understanding of the effect of the dimensionless pipe wall 

thickness on the heat transfer characteristics in the unsteady mixed convection, we present in 

Figure 4.54, the transient evolution of temperatures difference at the wall-fluid interface 

(∆θwall-fluid), for the analysed preceding values of the parameter ∆ at the same axial position 

ξ=0. 

On this Figure, one notes that the maximum and the minimum of the temperatures 

difference at the wall-fluid interface become more pronounced with the decrease of the ∆. 

One also notes, that the period of time during which the heat transfer is from the fluid to the 

pipe wall, increase with the increase of the pipe wall thickness.  

Let's recall that these maxima and minima correspond respectively to a heat transfer 

from the pipe wall to the fluid and, from the fluid to the pipe wall.  

Finally, one notes that during the transient period where the effect of the natural 

convection effect is negligible (τ≤ 15), the temperatures difference (∆θwall-fluid) corresponding 

to ∆=0.01 present the weakest values.  

From this it can be concluded that the presence of the pipe wall has a considerable 

influence on the characteristics of the heat transfer during the transient period and, therefore, 
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the effects of the pipe wall cannot be disregarded in the case of the transient conjugated mixed 

convection heat transfer. 
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Figure 4.54 Transient evolution of the difference of temperature at the wall-fluid interface 
∆θwall-fluid at ξ=0. 
 

4.3.9 Influence of Grashof and Reynolds numbers for the same Richardson 

number 

The transient axial evolution of Qwi for two values of the Reynolds and Grashof 

numbers, respectively (10, 100) and (5.103, 5.105) is shown in Figures 4.55a-c. For these two 

values of Reynolds and Grashof numbers, the Richardson number has the same value Ri=50. 

In the beginning of the transient period the values of the interfacial heat flux for (Re, Gr)=(10, 

5.103) are greater than these relative to (Re, Gr)=(100, 5.105), see Figure 4.55a. With elapsing 

time, Archimedes forces take the over on the viscous forces, in particular for the case (Re, 

Gr)=(100, 5.105). This leads to the appearance of a recirculation cell, more intense for the 

case (Re, Gr)=(100, 5.105), see Figures 4.56a-b. This result in negative values of Qwi in the 

vicinity of the inlet of the heated section, see Figure 4.55b. For the case (Re, Gr)=(10, 5.103), 

one notices that the transient distribution of Qwi is similar to the one relative to the case of the 

pure forced convection with axial wall conduction effect. This is due to the fact that in this 

case the recirculation cell is very weak, therefore, it remain confined in the heated section 

(Figure 4.56a).  
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 This behaviour continues for the two cases until the steady state, see Figure 4.55c. At 

this final time, one notes the absence of any redistribution of the interfacial heat flux in the 

upstream section for the case (Re, Gr)=(10, 5.103), contrary to the case (Re, Gr)=(100, 5.105). 

-20 -10 0 10 20

0,00

0,25

0,50

0,75

1,00

1,25
a)

τ =0.5

 

 
Q

wi

ξ

 (Re, Gr)=(100, 5.105)
 (Re, Gr)=(10, 5.103)

K =50, ∆ =0.05

 
Face 4.55a Axial distribution of the interfacial heat flux at τ =0.5 
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Figure 4.55b Axial distribution of the interfacial heat flux at τ =25. 
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Figure 4.55c Axial distribution of the interfacial heat flux at the steady state. 
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Figures 4.56a-b Vector velocities atτ =25:a)(Re, Gr)=(10, 5.103), b)(Re, Gr)=(100, 5.105) 
 

 The corresponding transient axial evolution of the friction coefficient ratio is 

illustrated in Figures 4.57a-b. One notes a weak distortion of the friction coefficient ratio 

relative to the case (Re, Gr)=(10, 5.103). This distortion is limited to the heated section 
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(0≤ξ≤10), contrary to the case (Re, Gr)=(100, 5.105) where the distortion spreads upstream 

and downstream of the heated section. This justifies the confinement of the recirculation cell 

at the interior of the heated section for the case (Re, Gr)=(10, 5.103, and consequently, there 

were no redistribution of the interfacial heat flux in the upstream section.  
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Face 4.57a Axial distribution of the friction coefficient ratio at τ =0.5 and 25. 

-30 -20 -10 0 10 20 30 40
-8

-6

-4

-2

0

2
b)

 (Re, Gr)=(100, 5.105), τ ≥ 460
 (Re, Gr)=(10, 5.103), τ ≥ 38.5

K =50, ∆ =0.05

 
 

(f.
Re

)/(
f.R

e)
0

ξ

 
Figure 4.57b Axial distribution of the friction coefficient ratio at the steady state. 
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The radial distribution of temperatures in the heated section corresponding to these two 

cases is presented in Figures 4.58 and 4.59. One observe that the radial distribution of 

temperatures, relative to the case (Re, Gr)=(10, 5.103) presents no distortion and, that this last 

is greatly similar to the one of pure forced convection. On the other hand, the one relative to 

the case (Re, Gr)=(100, 5.105) present an important distortion along the heated section.  

Furthermore, one notices in Figure 4.58, that the temperature at ξ=0 is greater to the one 

at ξ=5 and 10 on nearly the half of the cross-section, due to a strong reversed flow at this 

region. In Figure 4.59, one notes the inverse. 

Let's note that the time needed for the system to reach the steady state for the case (Re, 

Gr)=(100, 5.105) is more important than the corresponding one for the case (Re, Gr)=(10, 

5.103).  

From this comparison it can be concluded that the characteristics of the heat transfer by 

mixed convection are characterized in addition to the number of Richardson (Ri=Gr/Re2) by 

the values of the Reynolds (Re) and Grashof (Gr) numbers.  
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Figure 4.58 Radial distribution of temperature profiles in the heated section at τ =25 
(Re, Gr)=(100, 5.105) 
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Figure 4.59 Radial distribution of temperature profiles in the heated section at τ =25 
(Re, Gr)=(10, 5.103) 
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5 General conclusion and perspective 
5.1 Contribution of the present work  

In the present work, a numerical study has been performed to investigate the unsteady 

conjugated downward laminar mixed convection in circular pipe submitted partially to a 

uniform and constant wall heat flux. The solution takes wall conduction and wall heat 

capacity in to account.  

The various investigated parameters were the Reynolds and Grashof numbers, the 

thermal conductivity and diffusivity ratios between the pipe wall and the fluid, respectively K 

and A, and the dimensionless wall thickness ∆ .  

For the typical studied cases, the reversed flow is limited to the heated section during the 

early transient while, with elapsing time, such recirculation zone becomes more important 

and, is spreading upstream of the heated section.  

This recirculation cell spreads rapidly towards the upstream section for (Gr, Re) = 

(5.103, 1), while for (Gr, Re) = (5.105, 100) it remains confined longer in the heated section, 

resulting in a more pronounced minimum and maximum of Qwi in the inlet of the heated 

section. 

The presence of the reversed flow region has drastically perturbed the internal flow as 

well as the thermal field, resulting in negative values of the friction coefficient and a 

significant redistributed portion of the applied heat flux in the upstream section where no 

energy is directly applied.  

Moreover, the radial temperature profile at ξ=0 increases and presents a maximum at 

the vicinity of the wall-fluid interface for all values of K, over a specific period of the 

transient for (Gr, Re) = (5.105, 100) due to the fact that the cell remains confined longer in the 

heated section before spreading towards the adiabatic section.  Furthermore, this maximum of 

the radial temperature profile at the vicinity of the wall-fluid interface has also been observed 

at every axial position of the upstream section reached by the reciculation cell.      

Results have also shown that the upstream redistribution of the applied heat flux and 

consequently the upstream widening of the cell slowdown with the decrease of A and the 

dimensionless wall thickness ∆.  

It is also found that the transient redistribution of the applied heat flux in the adiabatic 

upstream section slowdown with the increase of K for the case when the axial conduction is 
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significant in the fluid (Pe=5) and in the pipe wall, whereas when the axial conduction in the 

fluid is neglected (Pe=500), the transient evolution of this redistribution is reversed. 

For the two values of Gr and Re numbers, the time required to the heat transfer to reach 

the steady state increases with the decrease of K, contrary to the of forced convection case 

[60]. 

With the increases of the Grashof number, the upstream redistribution of the applied 

heat flux is more and more localised far from the inlet of the heated section.  

 

5. 3 Perspectives of this work  

Although the results presented in this work form a coherent whole, other aspects could 

be the subjects of ulterior research, of which these:  

The numerical code could be generalized by adding the required elements to simulate 

the turbulent flows. Indeed, the present results are only valid for a very restricted rang of Re 

and Gr corresponding to laminar flow regime. This last extension would permit to widen the 

application fields of the generated results.  

It would be interesting to examine the effects of the viscous dissipation. Indeed, Barletta 

[72] has examined this effect on the steady fully developed mixed convection in a parallel flat 

vertical channel. He found that the effect of viscous dissipation is important especially in the 

case of upward flow. Moreover, for asymmetric heating, it has been shown that viscous 

dissipation enhances the effect of flow reversal in the case of downward flow while it lowers 

this effect in the case of upward flow. 

The extension of this work to the case of concentric annular duct encountered in 

numerous heat transfer and fluid flow devices involving two fluids. One fluid flows through 

the inner tube while the other flows through the annular passage between the two tubes. For 

example, heat exchangers designed for chemical processes require the consideration of mixed 

convection in annular flow. 

 The extension of the present work to the time-dependant [50], or the time-periodic [51, 

73] boundary conditions (wall temperature or wall heat flux).                                                                                                                                            

 

 

 

 



  : ملـــــــــخص

 بین ) حمل طبیعي+ حمل قسري (بواسطــة الحمل المختلط  الانتقالينتناول دراسة التبادل الحراري  ةالأطروحفي ھذه 

المأسورة خاضعة على طول . غیر مھمل في وضع شاقولي سمكذات و أسطواني ات شكلذ ماسورة جریان رقا ئقي و

Lh ، المسخن یضاف لھذا الطول  .ثافة تسخین منتظم و ثابثي، لكلیكمرات القطر الھیدرو 10یساوي)Lh(، أجزاء 

و  Luالكاتم  ئل یأتي من الأعلى، أي من بدایة الجزاءاالس. على الترتیب ،الطول المسخن خلفوأمام  Lu و Ld   كاتمة

ھذه الظروف  مثلفى .،  لیخرج من نھایة ھدا الأخیرLdاتم  كو الجزء الLh ینزل إلى الأسفل، مارا بالجزء المسخن 

  .ي  حالة حمل مختلط معاكس ف نقول أننا

الابتدائیة یتم حدیة و مع الشروط ال zمحور المأسورة و rنشف القطر  اتجاهفي  Navier-Stocksحل جملة معادلات 

لتحقیق الترابط بین  SIMPLEنستعمل طریقة  . Patankarطریقة الأحجام المنتھیة فیھا طریقة عددیة نستعملب

  .السرعة–الضغط

وغراتشوف  (Re)و من أجل قیمتین لعدد رینولدز  5یساوي   (Pr)جري التجارب العددیة من أجل قیمة لعدد براند ت

(Gr)  (و) 100، 1(على الترتیبGr = 5.103   و Gr = 5.10 5 .(  

) سمك المأسورة ( ة یندسو الھ) الحراري  الانتشار، معامل حراریةالناقلیة ال( قوم بدراسة تأثیر الخصائص الفیزیائیة ن

ورة و توزیع درجة الحرارة بدلالة قطر لمأسلجدار الداخلي  الة إلى نتقلكمیة الحرارة الم( على المقادیر الحراریة 

  .و ذلك بدلالة الزمن) و حقل السرعة  كالاحتكامعامل ( و المقادیر الدینامیكیة  )رةوالمأس

یكون فیھا التبادل الحراري مضمون إلى حد كبیر بواسطة  ، زمنیة معینةمن خلال ھذه الدراسة لاحظنا بعد مرور فترة 

مع  .)z=0أي عند (التواصل الحراري، ظھور كمیة من الحرارة الموفرة للمنطقة المركزیة في جوار بدایة ھذه الأخیرة 

ھذه الكمیة من الحرارة إلى  انتقالحمل المختلط و یؤدي ھذا إلى تأثیر التبادل الحراري بواسطة المرور الزمن یتزاید 
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لاحظنا كذلك خلال المرحلة  ة،ندما یكون التوصل الحراري المحوري معتبر في السائل و في جدار المأسورـع

حاصل قسمة الناقلیة الحراریة  زیادةب یتناقص ھذه الكمیة من الحرارة داخل المنطقة الكاتمة انتقالأن سرعة  ،الانتقالیة

الانتشار حاصل قسمة معامل  كما أن ھده الأخیرة تزداد مع تزاید .لجدار المأسورة على الناقلیة الحراریة للسائل

تتطابق و تتساوى ) المستقر (  الوضع النھائيعند  .للسائل يالانتشار الحرار على معامل ةلجدار الماسور يالحرار

   .  يقابلة لمختلف معاملات الانتشار الحرارالم جمیع القیم

ظنا لاح ،) (Gr = 5.10 5, Re = 100المأسور جدارفقط في  امعتبرفي الحالة التي یكون التوصل الحراري المحوري 

حاصل قسمة الناقلیة الحراریة للجدار  تتسارع مع نقصان ، )(Ldن الحرارة داخل المنطقة الكاتمة انتقال ھذه الكمیة م أن
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ري بعیدا عن ابقة لتلك المقابلة لحالة سریان قسمط قیمة إلى الأخیرھذا  لونظام المستقر یؤفي ال. Luالمنطقة الكاتمة 

 .مخرج المنطقة المسخنةمدخل و 

  ، نظام رقائقيةتسخین ثابت، حمل مختلط، نظام انتقالي، ما سورة أسطوانی  :كلمات المفاتیح



RESUME 

Dans le cadre de ce travail, on présente les résultats d’une simulation numérique de la 

convection mixte conjuguée transitoire dans un tube vertical de géométrie cylindrique. 

L’épaisseur de la paroi du tube est égale à (∆). L’écoulement est laminaire et 

axisymétrique. Un flux de chaleur uniforme (Q) est appliqué à la surface externe du tube, 

sur une section centrale, d’une longueur égale à 10 fois le diamètre hydraulique. Cette 

section est comprise entre deux sections adiabatiques, respectivement Lu et Ld. De plus, le 

fluide pénètre au haut du tube pour se diriger vers le bas; par conséquent on est en présence 

d’un écoulement de convection mixte opposé. Les équations gouvernantes sont résolues 

numériquement en utilisant la méthode classique des volumes finis développée par 

Patankar. Le couplage pression-vitesse est assuré en utilisant l’algorithme SIMPLE. 

Deux nombres de Grashof ont été choisis, 5.103 et 5.105. Deux vitesses d’écoulement ont 

été retenues, conduisant à des nombres de Reynolds de 1 et 100, qualifiés de bas et de haut 

Re. Les rapports Gr/Re2 correspondants sont de 5000 et 50, respectivement. On étudie 

l’influence des propriétés physiques et géométriques sur l’évolution transitoire des 

grandeurs thermiques (flux de chaleur à l’interface paroi-fluide et température) et 

dynamiques(coefficient de frottement et vecteurs vitesses). 

Pendant les premières périodes du régime transitoire où le transfert de chaleur est 

globalement dominé par conduction, nous avons constaté une certaine quantité d’énergie 

au voisinage immédiat de l’entrée de la section chauffée (ξ=0). Plus tard, les mouvements 

convectifs s’intensifient. Il en résulte une augmentation de la valeur de cette quantité 

d’énergie et une redistribution de cette dernière dans la section de préchauffage. La valeur 

et la position axiale de cette redistribution dépend du rapport des conductivités et des 

diffusivités thermiques de la paroi à celle du fluide ainsi que de l’épaisseur de la paroi.  

Nous avons constaté aussi que la redistribution du flux de chaleur imposé dans la section 

de préchauffage ralentit avec l’augmentation du rapport des conductivités et la diminution 

du rapport des diffusivités dans le cas où la conduction axiale est significative dans la paroi 

et dans le fluide (Pe=5). Dans le cas où la conduction axiale dans le fluide, est négligeable, 

nous avons constaté l’effet inverse. Pour les deux cas étudiés, nous avons constaté que le 

coefficient de frottement prend de faibles valeurs négatives dans la section chauffée. Avec 

le temps, ces valeurs augmentent et s’étendent vers la section adiabatique de préchauffage. 

Loin de l’entrée et de la sortie de la section chauffée, la valeur de ce dernier tend vers celle 

d’un écoulement isotherme pleinement développé. 
Mots clés : flux de chaleur, convection mixte, régime transitoire, conduite cylindrique, régime laminaire                 



SUMMARY OF THE THESIS  

 

The proposed survey in this thesis appears in the setting of the conjugated laminar and 

transient mixed convection in a thick vertical conduct. The external surface of the conduct is 

submitted to a constant and uniform heat flux, applied on a central section of length equal to 

ten times the hydraulic diameter. Two adiabatic sections have been added upstream and 

downstream the central section. Besides, the fluid penetrates to the top of the conduct to head 

downwards, therefore one is in presence of opposed mixed convection flow (unfavourable).  

The objective of this work consists in finalizing a two dimensional numerical code to study 

the problems of forced, free and mixed convection in the transient regime in thick cylindrical 

conducts. The originality of this work resides in the consideration of the transient phenomena 

and the wall-fluid coupling. The numerous analyses and illustrations presented in this thesis 

put in evidence some original and interesting results that contribute in general to the 

improvement of the knowledge in the domain of the heat transfers, and in particular of the 

heat transfers by mixed convection.  

In the beginning of the transient, we noted that the flow corresponds to the case of 'pure 

forced convection'. Consequently, the interfacial heat present no distribution towards the 

upstream adiabatic section due to the weak intensity of the recirculation cell, which still 

enclosed in the heated section. With elapsing time, the effects of the natural convection close 

to the pipe wall become more pronounced and act on the descendant main flow. This leads to 

increase the intensity of the recirculation cell, driving to an evacuation of a quantity of energy 

toward the upstream adiabatic section. The analysis of the effects of the physical and 

geometrical properties have shown that the redistribution of the interfacial heat flux in the 

upstream adiabatic section accelerates with the increase of the wall-to-fluid thermal 

conductivity and the thermal diffusivity ratios, and also with the increase of the dimensionless 

thickness of the pipe wall. Otherwise, we noted for some cases that the radial distribution of 

the temperatures present, during a weak period of the transient, a local maximum close to the 

pipe wall. This local maximum appears to the neighborhood of the entry of the heated section 

and also to every axial position of the upstream section reached by the recirculation cell.  

 

Key words: heat flux, mixed convection, transient laminar regime, cylindrical duct, opposed- 
                   buoyancy    
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Nomenclature 
 

Symbol     Definition 

 

A      wall-to-fluid thermal diffusivity ratio (=aw/af) 

D      tube diameter (=2Ri), m 

F     friction coefficient, Kg.m -1.s -2 

g        acceleration due to gravity, m.s -2 

GrQ    Grashof number (=gβQD4/ν2kf) 

K        wall-to-fluid thermal conductivity ratio (= kw/kf) 

Lu              length of the upstream section, m 

Lh              length of the heated section, m 

Ld              length of the downstream section, m 

Li
*      dimensionless length (=Li /D), i=u, h, d 

p       pressure, Pa 

P      dimensionnelless pressure (=(p-ρ0gz)/ρ0V2) 

Pe   Peclet number (=Re.Pr) 

Pr   Prandtl number (=ν / af) 

Q     heat flux at the outer surface of the pipe, W.m -2 

Qwi    normalized heat flux (=(Qinner/Q).(Ri/Re)) 

Qinner  heat flux at the wall-fluid interface, W.m -2 

Ri       internal radius of the pipe, m 

Re         external radius of the pipe, m  

Re       Reynolds number (=V.D/ν) 

r relate to the radial coordinate, m 
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T      temperature, K 

T0     initial or inlet temperature, K 

u                axial velocity, m.s –1 

v                radial velocity, m.s -1 

u*      dimensionless axial velocity (=u/V) 

v*    dimensionless radial velocity (=v/V) 

V    average axial velocity at the entrance of the duct, m.s -1 

Z  relate to the axial coordinate, m 

 

Greek symbols 

τ      dimensionless time (=t.V/D) 

η        dimensionless radial coordinate (=r/D) 

ξ         dimensionless axial coordinate (=z/D) 

ν        cinematic viscosity, m2.s -1 

β           thermal volumetric expansion coefficient, K -1 

∆   pipe thickness-to-diameter ratio (=  (Re-Ri)/D) 

 θ           dimensionless temperature (=T-T0/QD/kf) 

ρ           density, kg.m-3 

∆θ            dimensionless temperature difference at the wall-fluide interface 

 

Subscripts 
b   bulk quantity 

f   fluid 

d   downstream 

h   heated 

u   upstream 

w   wall 

wi   wall-fluid interface 

0   evaluated at the inlet temperature 

 

Exponents 

*  dimensionless value 

τ  designate the instant τ 

τ+∆τ  designate the instant τ+∆τ 
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