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Introduction

L’analyse des modeéles de séries chronologiques exhibant des changements struc-
turales remonte aux années cinquante par Rubin [43]. Excellente introduction
(et une bibliographie abondante) sur le sujet a été donnée récemment par Hal-
lin [27]. Dans cette classe de modeles, on peut distinguer deux catégories de
modeles & coefficients variables, selon que cette évolution est de nature déter-
ministe ou non. Ce sont les modeles a coefficients stochastiques (cf. Nicolls
et Quinn [40]) et les modeles a coefficients dépendant du temps introduits par
Crameér [19]. Les modeles de la premiére catégorie visent cependant tout comme
les modeles a coefficients constants, & décrire principalement des processus de
nature stationnaire. Par contre, les modeles de la seconde catégorie, sont in-
troduits afin de modéliser des séries non stationnaires lorsque les méthodes de
filtrages et de différentiations ne permettent cependant pas. Ce sont les modeéles
a coefficients (presque-) périodiques qui, assez curieusement ont regu jusqu’a
présent le plus d’attention. D’excellents et récents travaux de synthese sont
disponibles sur ce sujet (citons, notamment Bezandry and Diagana [7], Hurd
et Miamee [28] et Franses et Paap [25]) auxquelles nous renvoyons le lecteure
intéressé. Les applications de ces modeles sont multiples et nous les retrouvons,
en science économique (Cleveland et Tio [18], Franses [24], Franses et Paap [25],
Parzen et Pagano [42]), en climatologie (Bloomfield et al. [14]), & I'ingénierie
électrique (Meyer et Burrus [37], Bittanti et De Nicolao [13], Adams et Goodwin
[1], Gardner et Franks [26]) et a I’hydrologie (Vecchia [48]).

En économétrie et en finance emirique, une classe de modéles désormais

assez populaires, ce sont les modeles GARCH (Autorégressifs Conditionnelle-
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0. Introduction iv

ment Hétéroskédastiques Généralisés) périodiques (PGARCH) introduits pour
la premiére fois par Bollerslev et Ghysels [15], puis popularisée a travers les
travaux de Aknouche et Bibi [2], Bibi et Aknouche [8]. Ces modeles sont générale-
ment non stationnaires mais ils sont stationnaires entre chaque période. Ils sont
devenus un outil puissant et fondamental pour modéliser des séries financiére a
volatilité saisonniére. La structure des modeles PGARC H est semblable a celle
des modéles linéaires périodiques, ils partagent donc beaucoup de similarités avec
les modeles périodiques linéaires mais ont aussi, & cause des non linéarités, des
caractéristiques spécifiques que nous les étudions a travers les différents chapitres
de cette theése.

Historiquement, les motivations majeures qui se trouvent a la base d’introduc-
tion des modeles PGARCH sont d’origines empiriques. En effet, I’'observation
d’une structure saisonniére non-constante des autocorrélations des rendements
boursiers nécessite le recours a une classe de modéles plus riches que les mod-
éles linéaires standards des séries temporelles qui supposent une constance de
la structure d’autocorrélation. Ce dernier point a amené certains auteurs tels
Bessembinder et Hertzel [6] & utiliser des modeles de séries temporelles périod-
iques qui admettent explicitement une structure d’autocorrélation qui peut varier
au travers de la semaine. Cette classe de modeles périodiques a été largement
étudiée tant d’un point de vue théorique qu’empirique comme en témoigne les ré-
cents livres de Franses [24] et de Hurd et Miamee [28]. Elle couvre une multitude
de modéles univariés ou multivariés qui s’avérent fort utiles pour modéliser des
séries économiques saisonniéres. Leur utilisation en finance empirique reste néan-
moins relativement peu courante en comparaison aux simple modéles linéaires
de régression. Citons les travaux de Bessembinder et Hertzel [6] qui utilisent
des modeles autorégressifs périodiques (PAR) pour l'analyse de la structure
d’autocorrélation des rendements aux alentours des jours ouvrables alors que
dans une contribution assez importante Bollerslev et Ghysels [15] appliquent
un raisonnement similaire a la modélisation de la dynamique de la volatilité

des séries financiéres. Pour ce faire, ils proposent un modeéle PGARCH qu’ils
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s’appliquent avec succes a des séries de taux de change ainsi qu’a certains in-
dices boursiers. L’avantage évident de cette approche est qu’elle permet d’une
représentation assez flexible des effets saisonniers, et des périodicités diverses
sur la volatilité des séries financiéres. Franses et Paap [25] quant & eux, unifi-
ent ces deux types d’études en proposant une modélisation économétrique des
rendements financiéres intégrant a la fois périodicité observée en moyenne avec
celle observée en volatilité: Le modéle PAR-PGARCH. Leurs résultats, ainsi
que ceux obtenus par Bessembinder et Hertzel [6] mettent assez clairement en
évidence non seulement une structure périodique dans I’autocorrélation des ren-
dements, mais aussi des effets saisonniers dans la persistance de la volatilité.
Malgré le nombre important des parameétres qui apparaissent dans un modéle
PGARCH, et par conséquence leurs estimations en I’absence de la stationnarité
et de lergodicité, les modeles PGARCH ont gagnés un intérét considérable et
continu a attirés 'attention des chercheurs, cependant une grande littérature a
été observée témoignant I'intérét particulier de cette classe de modeles (cf. [44]).

Notons ici que dans la classe des modéles GARC H stationnaires, nous trouvons
ainsi une littérature abondante. Cette abondance est due aux conditions sous
lesquelles le modele devient ergodique. Cependant de nombreux travaux de
recherche ont développés les propriétés probabilistes et statistiques notamment:
'identification, les tests et Iestimation des parametres (Pour une bibliographie
récente, riche et exhaustive, voir Francq et Zakoian [21] ). En revanche, dans la
classe des modeles GARCH & coefficients dépendants du temps, les méthodes
classiques d’estimation ne s’appliquent pas directement. Car, par exemple,
les conditions de régularité sous lesquelles I'estimateur du quasi-maximum de
vraisemblance est convergent et efficient ont été dérivées pour les modeéles
(I)GARCH. A notre modeste connaissance, aucun résultat théorique n’existe
sur 'estimation pour des modéles PGARC H autre que cel de Aknouche et Bibi
[2] (Ce papier est cité jusqu'a présent plus de 10 fois).

Certes, I’étude des modeles GARCH périodiques est loin d’étre achevée.

Cependant de nombreux problémes de nature statistiques restent ouverts. Néan-
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moins, on peut se demander s’il est possible de résoudre, par exemple, le probléme
de 'identification des modéles PGARC' H au sens de réduire le nombre des para-
meétres incorporés dans le modeéle comme ce fut pour les modéles GARCH sta-
tionnaires dans la mesure ou la classe de modéles considérés est tres riche et
assez complexe. La théorie des tests qui est jusqu’a présent a été peu étudiée
(dans le cas stationnaire) doit permettre d’aboutir assez rapidement & quelques
résultats: Outre les tests de stationnarité (cf. Francq et Zakoian [22]) pour
lesquels quelques procédures ont été proposées, on a besoin de tests portant sur
le choix de ’évolution des coefficients (périodique ou presque périodique), autre-
ment dit le choix de modéle. Ainsi, le but de notre travail est de contribuer a
I’étude des modeles PGARC' H a travers I'estimation et quelques tests de péri-
odicité. Cette thése que nous présentons permet de faire le point sur I’état actuel
des recherches concernant les modéles PGARCH ainsi que sur quelques points
non encore traités et indispensable pour mieux comprendre ces modéles. Outre
les résultats de 'auteur, dont les articles correspondants se trouvent vers la fin
de la thése, on trouve aussi d’autres résultats présentés sans preuves. Ceux-
ci pourront étre consultés a travers les références citées dans la bibliographie

générale.

0.1 Apport et présentation de la thése

Notre these intitulée "Inférence Statistique dans les Processus GARCH a Coef-

ficients Dépendant du Temps " se compose en cing chapitres principaux:

Chapitre 1 : On the structures of PGARCH models

Ce chapitre présente la structure de IL, et les propriétés propabilistes. En basant
sur une représentation vectorielle appropriée, nous donnons des conditions né-
cessaires et suffisantes assurant 1’existence et 'unicité de solutions stationnaires

(au sens périodique) et 'existence de moments d’ordre supérieurs.
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Chapitre 2 : The LSFE approach for PGARC H models

Ce chapitre traite les propriétés asymptotiques de l'estimateur (LSE) (non
standard) pour les PGARCH et les PARMA — PGARC H modeéles. Premiére-

ment, nous donnons des conditions nécessaires et suffisantes qui assurent ’existen-

ce de solutions stationnaires (au sens périodique) et pour Iexistence de moments
d’ordre supérieurs. Deuxiémement, une approche basée sur des moindres carrés
(non standard) pour estimer les modeles PGARCH et les modeles PARM A-
PGARCH modeéles est présentée. La consistance forte et la normalité asymp-

totique des estimateurs sont établées.

Chapitre 3 : The C'LS approach for PGARCH models

Ce chapitre étudie la consistance forte et la normalité asymptotique de I’estimate-
ur des moindres carrés conditionnels (C'LS) dans les modeéles GARC'H périod-
iques dont le carré centré des innovations est une différence de martingale. Cette
approche est étendue aux modeles PARMA — PGARCH. Les résultats sont
obtenus sans aucune contrainte sur les moments des innovations. Nos preuves

ont étés adaptées a celles de Francq et Zakoian [20] pour des innovations i.i.d.

Chapitre 4 : Yule-Walker equations for GARCH (1,1) mod-

els

Ce chapitre étudie I'inférence asymptotique des modeles PGARCH (1,1). Tout
d’abord, nous établissons des conditions nécessaires et suffisantes pour I'existence
et 'unicité de solutions stationnaires (au sens périodique) et pour I’existence de
moments de tout ordre. Deuxiémement, en utilisant la représentation

PARMA(1,1) basée sur le carré de PGARCH(1,1), nous considérons alors
des estimateurs des parameétres de type Yule-Walker, nous dérivons ensuite leurs
propriétés asymptotiques. Comme une application, on construit la statistique de

Wald pour tester une hypothése nulle contre une alternative. Nous utilisons un
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bootstrap basé sur les résidus afin de construire des estimateurs bootstrapés pour
les estimations de Yule-Walker et de prouver la robustesse de cette méthode. Un
ensemble d’expériences numériques illustre I'importance pratique de nos résultats

théoriques.

Chapitre 5 : The LAN properties for PARCH processes

Dans ce chapitre, nous considérons l’estimateur des moindres carrés condition-
nels C'LS pour les modeles ARC'H périodiques (PARCH). L’estimateur C'LS
appliqué sur le carré d'un PARCH a une forme explicite indépendante de la
distribution des innovations. Comme 'estimateur C'L.S n’est pas asymptotique-
ment efficace en général, nous donnons des conditions nécessaires et suffisantes
assurant son efficacité asymptotique basées sur ’approche LAN.

Nous terminons notre theése par un chapitre additif comportant une conclu-

sion générale, des remarques, quelques perspectives et nos occupations futures.
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Etude Probabiliste



Chapter 1

On the structure of PGARC H

models

Abstract: This chapter analyzes the Ly structures and the asymp-
totic properties of parameter least squares estimates (LSFE) for peri-
odic GARCH (PGARCH) models. In this class of models, the para-
meters are allowed to switch between different regimes. Firstly, we
give necessary and sufficient conditions ensuring the existence of sta-
tionary solutions (in periodic sense) and for the existence of moments
of any order. Secondary, a least squares estimation approach for es-
timating PGARC H model is developed. The strong consistency and
the asymptotic normality of the estimator are studied given mild reg-
ularity conditions, requiring strict stationarity and the finiteness of

moments of some order for the errors term.

1.1 PGARCH models and its probabilistic prop-

erties

A discrete-time stochastic process (¢,),., defined on some probability space
(Q, A, P) with finite second order moments is said to have a periodic general-
ized autoregressive conditional heteroscedastic representation with period s > 0
and orders p and g [denoted by PGARCH (p, q)| if it satisfies the non-linear

equations

q p

Vn € Z: €, = e,/ hy, and h,, = ag(s,) + Zai(sn)ei_i + Z bj(sn)hn—j  (1.1)

i—1 j=1
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where (ey),,c; is a sequence of independent identically distributed (i.7.d.) random
variables defined on the same probability space (2, A, P) with E {e,,} = 0 and

E{e2} = 1 where s, := Y klap(n) is the stage of the period cycle at time
k=1
n with A(k) := {sn + k,n € Z} so, by setting n = st + v, Model (1.1) may be

equivalently written as

q p
Est+v = Cst+v\/ hst—l—v and hst+v = aO(U) + Z ai(v)€§t+v7@' + Z bj (U>hst+v—j
i=1 =1
(1.2)

which we will make heavy use of (1.2). In the difference Equations (1.2), €4
(respectively hgiyy, €s10) Tefers to e (respectively hy, e;) during the v — th
"season" 1 < v < s of cycle t, (a;(v),0 <i<gq) and (b;(v),1 < i <p) are the
model coefficients at season v € {1, ..., s} such that ag(v) > 0, a;(v) > 0,b;(v) >
0 for all v € {1,....,s}, i € {1,...,q} and j € {1,...,p}. In what follows, we
assume that ey is independent of ¢; for £ > ¢ and we shall continue to use the
non periodic notations (€), (e;) and (h;) in preference to (€s4y), (€s110) and
(hst+o) Whenever the seasonality is not paramount.

Since the seminal paper by Pagano [41], with periodic coefficients, it is
possible to embed regimes into a multivariate process. More precisely €, =

(€st41, - Estys) is @ weak s—variate GARCH model in the sense that

* *

q p
& = {diagﬁt}% e, and hy = ag + Z Aser; + Z Bjh,_; (1.3)

i=0 j=0

where €2 = (€§t+1v e e?HS)/ chy = (hsts1, -, horys) and where ¢, = (€gp41, ...y Cstps) -
The model orders in (1.3) are p* = [2] and ¢* = [%] where [z] denotes the
smallest integer greater than or equal to x. The s x s matrices (4;)<;<,- and
(Bi)g<icy» are computed as follows (see Basawa and Lund [4]). Ay and By have

(1,7) th entries

(&M:{hﬁ@iﬁ>j (%M:{%ﬁ@iﬁ>j

0 otherwise 0 otherwise

(Bin)ij = bmsti—j(i) for 1 < m < p* and (A),
and the intercept vector a, = (ag(1),...,ao(s))’. In view of (1.3), it is obvious
that the PGARCH process is SPS if the process (h;),.; is strictly stationary.
So if we want to study the probabilistic properties and the higher order moments

of a PGARCH process it is enough to do so for the process (h,),.,. For this

= Umsti—j(t) for 1 < m < ¢*
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purpose, we have to introduce further notations to obtain similar results for the
standard GARC H processes. Let

1

Qo(t) = (I(s) — Apdiag {Qf} - Bo)

Ai(t) = (I(s) — Apdiag {Qf} - BO) ! A“Z 2,...,q",

Bi(t) = (I(s) — Apdiag {gf} — B(]) ! (Aldzag {et 1} + Bl)
Bi(t) = (I(S) — Aopdiag {gf} — Bo) - Bi,i=2,...p"

Clearly the matrix I(y) — Agdiag {e}} — By is invertible and
(I — Aodiag {ef} = Bo) ™ = Oy

With thls notation, Equatlon (1.3) is equivalent to ¢, = {diagh, }2 e, and h, =
a(t )—l—ZA( )er z+ZB( )h,_;. Now, set r* = p*+¢* — 1 and define the r* x 1

bloc Vectors Y, = (ﬁ;, Byt €€ )
wi = (ay(t), Olyy, - -+ Ols), Oy, - -+ Of))" and 7 x r* bloc matrix

M, = My(e,) Mi(e,_4)

where
(I — Aodiag {e2} — By) " ifi=j=1
(MO(Qt))m =9 L) if l<i=75<r*
O(s) otherwise
and where
Ml(Qt) =
Aidiag{e?} +By By ... ... By Ay ... ... ... Ap
](S) O(S) e O(S) O(S) C - . O(S)
O _ ) . )
Os) .. Ow) Iis) Oy O Os)
diag {7} Os) Oy O Os)
Os) Ow) Is) O Os)
Os)
5 Oy O
Os) Oy O Os) sy O
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Then Equation (1.3) has a stationary and ergodic solution, if and only if
Xt = Mtzt_l + Wy (14)

has one. Indeed, any stationary solution of (1.3) leads via Y; to one of (1.4) and
vice versa, that the first s—components of a stationary solution of (1.4) are one
for (1.3). Moreover, an ergodic solution of (1.4) gives also an ergodic solution of
(1.3) and vice versa. In the next subsections we shall examine conditions based

on (1.4) ensuring the existence of SPS solutions for Equation (1.2).

1.1.1 Strict periodic stationarity

Let ||.|| denote any operator norm on the sets of s7* x sr* and sr* x 1 matrices
and let log" z = max{logz,0} for z > 0. Since (g),., is an i.i.d process,
(My,w,),cq is a strictly stationary ergodic sequence, so the Equation (1.4) is the
same as defining the equation for a RC'A model, accept that the random matrix
M, is not independent of w, as is required in this model. Moreover we have
E{log" |wll} < E{llwil} < +o0 and E {log* [Mi[[} < E{IM]} < +oc.
Therefore, from Bougerol and Picard [16], Equation (1.3) have an unique strictly

stationary solution if and only if the Lyapunov exponent

[T |

associated with the random sequence M := (M), is strictly negative. Moreover

t>0 ¢

v (M) :=inf — E{log

the unique solution process (Y,),., of (1.4) is ergodic, causal and given by

Y, = i {1:[ MM} Wy p T W (1.5)

k=1 =0

where the Series (1.5) converges a.s.

Example 1 For the PGARCH (1,1) model, after some tedious algebra we find

that the necessary and sufficient condition ensuring the existence of SPS solution

is that Z E {log (a;(v)ez + by (v))} < 0. It is worth noting that the existence

of regzmes which satisfy E {log (a1(v)eZ + b1 (v))} > 0 does not preclude strict

periodic stationarity.

Remark 2 Similarly to the classical results on the GARCH processes theory
(see for instance Berkes et al.[5]), if v (M) < 0 then there exists 6 > 0 such
that E{h{} < +o0 and E {€} < +oo.
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Remark 3 Due to the positivity of the entries of My, it is no difficult to show
that if v, (M) < 0, then det(/, Z Bj27) # 0 for all z € C: |z| < 1. This

implies that we can relate (ht)tez and (et)teZ through the infinite series hgy, =

ao(v) + z @ (0)ey_; = (BW (L)) ag(v) + (B (L)) " ALY, for all

q ) p :
v € {1,...,s} where AV (L) = Y a;(v)L7, BY (L) =1— > bj(v)L?, L is the
j=1

Jj=1

back-shift operator and where the "seasonal weights" o;(v) satisfy 1r£1a2< Z aj(v) <

+o00.

The Lyapunov exponent «y, (M) criterion seems difficult to obtain explicitly
when » = p 4+ ¢ > 1, however a potential method to verify whether or not
v (M) < 0 is via Monte-Carlo simulations using Equation (1.4). This fact
heavily limits the interest of the criterion in statistical applications. Indeed, the
solution need to have some moments to make an estimation theory possible and
Lyapunov exponent criterion does not guarantee the existence of such moments.
Therefore, we have to search for conditions ensuring the existence of moments
for the stationary solution for which, the top-Lyapunov exponent v, (M) will

be automatically negative.

1.1.2 Second order periodic stationarity

In the previous subsection, necessary and sufficient conditions ensuring the exist-
ence of a SPS solution for Equation (1.2) have been established. In this subsec-
tion we give conditions ensuring the existence of a first order stationary process
(€7, hy),z satisfying (1.3). Therefore, the corresponding solution process (€),.5,
has a periodic covariance structure in the sense that C'ov (€1, €x1s) = Cov(ey, )
for all integers | and k. Such series are also called periodically correlated (PC')

processes.

Theorem 4 The s—wvariate weak GARCH process (1.3) is a PC' process if and
only if

det (I(s) — Z (A; + Bj) zj> # 0 for all complex z such that |z| < 1. (1.6)
=0

Moreover, the solution process is unique, strictly stationary, ergodic, causal and
given by the first s—block component of (Y,),., defined by (1.5).
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Proof. The condition is obviously necessary using (1.3). To show that (4.7) is

also sufficient, we define the following R*"" -valued processes (S, (t), A, (1)) () €T,

=T w4+ MS, (t—1),  ifn>0

and A, (t) := S,(t) — S

2n—1

(t). It is easily seen that for all n > 0, S, (¢) and
A, (t) are measurable functions of e;,e; 1, ...,e;_,,. Hence, for any fixed n > 0 the
processes (9,,(t));cz and (A, (1)), are strictly stationary and ergodic. From the
definition of S, (t) and A, (t) we have

Q(sr*) ifn<0
A (t) =18 w, ifn=0
MA, (t—1), ifn>0

n—1 n
and thus for any n > 1, we have A, (1) =< [] Mt_z-} w, ,and S, (t) = > AL(¢).
=0 k=0
Throughout, we consider the matrix norm defined by ||A|| = >~ A;; where A, ;
1,J

n—1
denotes the generic element of A. Since { I1 Mti} w,_,, has positive elements,
=0
we have for n > 0
n—1
ElA,Of = |E{Mole)} E {H M1<Qt—i)M0(§t—i)} E{M(en)win} H
i=1

< K|

where M := E{M;(eq)Mo(ey)} = E{Mi(ey)} E {My(ey)} and K is some posit-

ive constant. Thus

lim sup E[|A, ()] < Klim sup ((p(E{Mo(ey)Mi(ep)}))")

n—oo n—oo

— Ktim sup ((p(M))").

n—oo

Since p (M) < 1if and only if the Condition (1.6) holds, then lim sup E [|A,(¢)| =

n—o0

0, and hence S,,(t) converges in L; to some limit say lim S, (¢) which satisfies

the Equations (1.4) and (1.5). The rest of the assertions are immediate. m

Corollary 5 Under The Condition (1.6), Equation (1.2) has an unique PC' solu-
tion such that E{eg v} =0 and Cov (€5t 4y, €st10) = (diag {E})v,v’ d{v=vy where

* _1
L:=F{n}= (I(S) —> (A + Bz)) ay and hence the process (€:),., may be
i=0
viewed as a weak white noise.
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Remark 6 From the theorem of Kesten and Spitzer [30], it follows that the
Condition (1.6) implies that v, (M) < 0 and thus the result given in Remark 2
holds.

1.1.3 The existence of higher-order moments

In this subsection, we derive necessary and sufficient conditions for the finiteness
of E{e¥™}, for any integer m > 1. By the LL,,—theory, m > 1 the problem of
existence of E {€™} now reduces to the convergence of (S,,(t)), in Ly, for all
t € Z. As it is shown in Theorem (4) (S,,()),,~, converges to Xt_in L;. The key
quantity of interest in determining L,, conver_gence is Vi, = E{A%"(t)}. Let
Mt = E {Mf®m<§o)M(()®m(§o)} = F {M?m(ﬁo)} B {M(()X)m(ﬁo)}- From (1.4)
there exists a constant K > 0 such that

Yill,, = E{YN™ <Y 18,0, <K

n>0 n>0

K {% | (vt ’L} .

Hence, if p (M (m)) < 1, then || (M (m))n” converges to 0 with exponential rate as
n — oo. Since He§t+U|| < [le]l,, < Y., for all v € {1,...,s} thus a sufficient

condition for the finiteness of {est ", } is that p (E {Mt(m)}) < 1. Moreover,

{HMl Cy Z)Mo(et z)}

=1

m

IN

when p (M) < 1, the process Z A, (t) is strictly stationary and converges in
k=0

L,, and a.s. and that its limit is_strictly stationary and satisfies the Equation
(1.5). Now assume that F {e?™} < +o00 and suppose that Y, € L,,, then

v - el fin e (e o |
£ (i)

k=1

v

= MY (M) B{ME™ (e,) w )

k=1

The above discussion leads to the following theorem.

Theorem 7 Assume that E {e}™} < +oo and p (E{MF™}) <1 for any m >
1. Then, the PGARCH (p,q) Model (1.2) has a SPS solution (e, hy),., such
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that E{e2™} < +o00. The solution process is unique, causal and periodically
ergodic.

Conversely, if p (E {Mt®m}) > 1, then there is no SPS solution to Model (1.2)
such that E {e¥™} < +oc.

Example 8 The PGARCH (1,1) process has an unique, SPS and causal solu-

tion in Ly given by

0o k—1
€sttv = \/ PstpoCsipo With Ry, = Z {H (al(v —d)eg + by (v — 2)) } ao(v — k)

k=0 \i=0
if and only if T] (a1(v) + b1 (v)) < 1 If E{e?™} < +o0, then E{e¥™} < +oo if
v=1

and only if 1j1 E{(a1(v)ed + bi(v))"} < 1.
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Chapter 2

The LSE approach for PGARCH

models

Abstract: This chapter deals with the asymptotic properties of
parameters least squares estimates (LSFE) for periodic

GARCH (PGARCH) and for PARMA — PGARCH models. In
this class of models, the parameters are allowed to switch between
different regimes. Firstly, we give necessary and sufficient conditions
ensuring the existence of stationary solutions (in periodic sense) and
for the existence of moments of any order. Secondary, a least squares
estimation approach for estimating PGARCH and PARMA —
PGARCH models are discussed. The strong consistency and the
asymptotic normality of the estimators are studied given mild reg-
ularity conditions, requiring strict stationarity and the finiteness of

moments of some order for the errors term.

2.1 PGARCH models and its probabilistic prop-

erties

A second order process (¢y),.; defined on some probability space (€2, A, P)
is said to have a periodic generalized autoregressive conditional heteroscedastic
representation with period s > 0 and orders p and ¢ (PGARCH (p,q)) if it

satisfies the non-linear equations

q p

Vn € Z: €, = ep\/hy, and h, = ap(n) + Zai(n)ei_i + Z bj(n)hn—; (2.1)
j=1

=1

11
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where (ey),,c; is a sequence of independent identically distributed (i.7.d.) random
variables defined on the same probability space (2, A, P) with E {e,,} = 0 and
E{e’} = 1 and e, in independent of ¢ for k > t. The parameters (a;(n))<,<,
and (b;(n)), <<, are periodic in n with period s, i.e., for any (n, k) € Z*: a;(n) =
a;(n + sk), i = 0,...,q and bj(n) = bj(n + sk), j = 1,...,p. So by setting
n=st+v, v =1,..,s, Equation (2.1) may be equivalently written in periodic

notations as

=1

q p
Vit € Z: €510 = €st10\/ hstyo and hg, = CLO(U)+Z ai(v)eitﬂ,i—kz bi (V) hstrv—j,
=1

(2.2)
which we will make heavy use of (2.2). In (2.2), €54y (resp. hgito, €st+v) refers to
€ (resp. hy,e;) during the v —th regime of cycle ¢, (a;(v))y<ic, and (bi(v)), <<,
are the model coefficients at season v = 1, ..., s such that ag(v) > 0, a;(v) > 0,
b;(v) > 0 for all v and i € {1,...,pV ¢}. In what follows, we shall continue to
use the non periodic notations (&) (e;) and (h;) in preference to (€s14) (€st4v)
and (hs;1,) whenever the periodicity is not paramount.

Noting that Equation (2.1) is intractable when we want to examine the prob-
abilistic structure of this representation. Instead, we will work with the corres-

ponding Markovian representation. Let r = p 4+ ¢ and define
!/
€ = (CLO(t)etv Ql(q71)7 a()(t)? Ql(pfl))

_ 2 2 2 ’
& = (€t>€t71; o Gt 1s he, hi—q, ..o, ht—p+1)

Al BY
and let A; := g tl where
At Bt TXT

Al_(mwﬁ%@g)m_<m@ﬂﬂq
t = e A ’
I(q—l) Q(qfl) O(q—LQ)

E==( b(1)...by(t) >ﬂg(m@4@@g)
Ip-1) Qg Op—1,p)

Using the notation above, Equation (2.1) can be written as

rx1’ rx1

&= A1t (2.3)

and € = H'e, where H = (1,Q'(T_1))I. It is worth noting that (A e,) is an
independent and periodically identically distributed pair of random matrix and
vector, in the sense that (A, ey,),cy is an i.i.d. process. In the next subsection,
we are interested for the existence of causal solutions i.e., solutions which ¢, is

measurable with respect to %,S‘f) := 0 (e;,1 < t) and its probabilistic properties.
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2.1.1 Strict and second order periodic stationarity

From (2.3) we have the following recursion

& =Alt)eg_, + §t (2.4)

s—1 k—1
where A(t H At ; and Wheref Zk:l {Hz‘:o At_i} e, +e;. Define
the top—Lyapunov exponent associated with the strictly stationary and ergodic

sequence of random matrices A = (A(t)),., by

ﬁA@(t—i»H}

1=0

1
(s) — inf =
Y (A) = 11:r>1£ tE {log

whenever ZS E {log™ ||A,||} < oo where log™ z = max {logz,0} for = > 0.
Since (2.3) a,nd (2.4) are valid for all integer ¢, by successive substitution we

obtain the following formal series (gg )> and (_t2)>
tez tez

k—1 o0 k=1 ;
§§1) = Zk 1 {Hz_ Ay z} €k T & € (2) - Zk:1 { i=0 Alt - ZS>}§t—’f$ +§t'

(2.5)

The usefulness of these series are examined in the next theorem.
Theorem 1 If v*) (A) <0, then:

1. Equation (2.4) admits an unique, causal, SPS and periodically ergodic solution

given by the series (gf) ) which converges a.s.
tez

2. The Series <§§1)) converges a.s and constitute the unique, causal, SPS
teZ

€
and periodically ergodic solution of Equation (2.3).
3. ggl) = ggz) a.s.

Proof. 1. Since E {log” |A(t)||} and E {log
follows from the Theorem 1.1 of Bougerol and Plcard [16] 2. The proof fellows

} are finite, the proof

from standard arguments (c.f. Bibi and Aknouche [9 3 By setting " )( ) =

Zk:l {Hfzol At*i}gt"“ T 952)(” o Zk 1 {H At — st }ét @« T &

then, we can check after some tedious computations that for any 1 < m <'s,
there is a constant K > 0 such that

gt)(n) ()(sn—i-mH<KHH At —sj) H—>0

asn — 00, a.s. |
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Remark 2 The need of the condition v) (A) < 0 for the existence of SPS

solution can be shown by the same argument as in Bibi and Aknouche [9].

Remark 3 Similarly to the classical results on the GARCH processes theory
(see for instance Berkes et al.[5]), if ¥'*) (A) < O then there exists § > 0 such
that E{h{} < +oo and E {€?} < +oo (see also [2]).

Example 4 For the PGARCH (1,1) model, after some tedious algebra we find

that the necessary and sufficient condition ensuring the existence of SP.S solution

is that Y E{log (aj(v)e2 + by (v))} < 0. It is worth noting that the existence
v=1

of regimes which satisfy E {log (a;(v)e3 + bi(v))} > 0 does not preclude strict

periodic stationarity.

The top-Lyapunov exponent seems difficult to obtain explicitly; however it can
easily be obtained by simulation using Equation (2.4). Hence, and for the es-
timation purpose, the SPS causal solutions need to belong to L,. The most
one of characteristic of these solutions, is that the process (et, \/E) re7 defined
by (2.1) has a periodic covariance structure in the sense that Cov(€y g, €xrst) =
Cov(e, €;) for all integers [, k and ¢. Such series are also called periodically cor-

related (PC') processes.
Theorem 5 The PGARCH process (2.1) admit a PC process solution if and
only if

p(A) <1. (2.6)
where A := E{A(t)}. Moreover, the solution process is unique, SPS, period-

ically ergodic, causal and given by the first component of one of the processes
(Ei”) or <§§2)> defined in (2.5).
teZ teZ

Proof. The condition is obviously necessary using (2.3). To show that (2.6) is
also sufficient, we define the following R"—valued processes (5,,(t), A, (1)),

O ifn<0
e, + AS,_,(t—1), ifn>0
(). It is easily seen that for all n > 0, S, () and

A, (t) are measurable functions of e;, e; 1, ...,e;_,. Hence, for any fixed n > 0

t,n)ELXZ

S,(t) =

and én(t) = ﬁn(t) - ﬁnfl
the processes (S,,(t)),c and (A, (%)), are SPS and periodically ergodic. From
the definition of S, (t) and A, (t) we have

A ) =< ¢ ifn=0
Atén71<t — 1), 1f n > 0
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and thus for any n > 1, we have

A1) = {jl:[:z‘lt—z}ét_n and Sn(t) =

n

n—1
A, (t). Since {H At_l}gt_n has
=0

k=0

c{if )t

for n > 1, where K is some positive constant and [z] denotes the smallest integer
greater than or equal to x. Thus lim sup ElA,(t)] < Klim sup (p (A))[ﬂ]

n—oo

Hence under (2.6), lim sup F [|A, (t)]] = 0 and hence S,,(t) converges in L to

n—oo

some limit say hm S, (t) which satisfies the Equation (2.3) and thus the both

series in (2.5). The rest of the assertions are immediate. m

positive elements, we have E ||A,(t)| =

Al H

<

2.1.2 The existence of higher-order moments

In this subsection, we derive necessary and sufficient conditions for the finiteness
of E{e?™}, for any integer m > 1. By the L,,—theory, m > 1 the problem of
existence of E {€/™} is now reduces to the convergence of (S,,(t)), s, in L;, for
all t € Z. As it is shown in Theorem (5) (S,,(t)),~, converges to ¢ in L;. The
key quantity of interest in determining IL,, Conve;gence sV, =F {éffm(t)}.
For this purpose assuming that E {e2™} < +oo and set A™ = E{A%™(t)}.
From (2.5) there exists a constant K > 0 such that

led,, = Eflel™ ™ <> 1a@), < K>
n>0 n>0
< w{¥

1
m }
n>0

Hence, if p (A(m)) < 1, then (A(m)) B converges to 0 with exponential rate

I114tz

(A(m)) [%]

as n — oo. Since |[€}]|,, < |l€||,, thus a sufficient condition for the finiteness
of E{e™} is that p (A™) < 1. Moreover, when p (A™) < 1, the process

> AL(t) is SPS and converges in L,, and a.s. and that its limit is SPS and
k=0

satisfies the Equations in (2.5). Now suppose that ¢ € L,,, then F {g?m} =
E {A(t)gt_s +§t} > AME {2m} and thus

Theorem 6 Assume that E{e}™} < 400 and p (A™) < 1 for any m > 1.
Then, the PGARCH (p,q) Model (2.1) has a SPS solution (e, hy),., such that
E{e2™} < +00. The solution process is unique, causal and periodically ergodic.
Conversely, if p(A®™) > 1, then there is no SPS solution to Model (2.1) such
that E {e™} < +o0.
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Example 7 The PGARCH (1,1) process has an unique, SPS and causal solu-
00 k—1

tion in Ly given by e, = v/hye; and hy = > { I (al(t —i)e? 4+ by (t — z)) } ag(t—
k=0 i=0

k) if and only if T] (a1(v) +b1(v)) < 1. If E{e?™} < +o0, then E {€2™} < +o0

v—l

if and only if HE{a1 v)ed +bi(v))"} < 1.

2.2 Least squares estimation for PGARCH (p, q)

processes

In this section, the large sample properties of the least squares estimates (LSFE)
for PGARC' H model coefficients are studied. The process is thus described with
the vector of parameters 0= (0'(1), ...,0'(s))" where

0(v) = (ap(v),a1(v),...,aq(v), b1 (v), ..., by(v))’; v =1,...;s. The vector ¢ belongs
to a parameter space Oy := {0 : 0 € (]O, oo[ x |0, oo[(p+q))s}. The orders p,q and
the period s are supposed to be known and the true parameter value is unknown
and is denoted by 6. Let {e1, €9, ..., ex} be a realization of length N = sn of the
+ez to Model (2.1). Conditionally on initial

values €g, €_1, ..., €1_q, ho, h_l, . h1 _p the LSE of § is defined as any measurable

unique, causal, SPS solution (et)

solution En of

0, = Arg min Qn (@) (2.7)
~1

where Q, (§) := %Z 0) with lt : Znst—&-v 0) and 7, (0) = Zg140 —
—0

log Est—&-v (0) in Whlch Zst+p 1S motivated by the regression relationship 2y, =

log €2, —F {log est 2 .o} and Tst0(6) are defined recursively by Ay (6) = ag(v)+

Z ai(V)€2 Z+Z b;(v ) st+v—j (8). For instance, the initial values can be chosen
i=1

as €2 =ho =2 e2, =h_1=¢€,..., € _pvg = T1—pvq = €2. Noting that the choice
of the initial values does not matter to the asymptotic properties of the LSFE,
it may have importance from a practical purpose as building h;. Hence, and

from a theoretical point of view, it is more convenient to work with 1, (0) :=

5 Z Meryo (8) where ng, (0) := Zetyv—10g st 0(6) and where hyy .y (6) = ao(v)+

p
> ai(v)€2 i+ > bj(V)hsiv—j (0) because (I, (0)),c, is SPS process whereas
: =

(At (9)) is not due to the presence of initial values. However, instead of
tez
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—_

n—

Q. (8), we consider the minimization of the function O, (6) := 1 Z l; (@) which

=0
constitute an approximation of Q,, () in the sense that ‘571 0) — Qn (Q)‘ decays

to zero uniformly a.s. with geometric rate on the certain compact set. Noting
2

~ € ~ ~ €
here that the functions ¢, , (8) = = 41log hgrry (8), Copry (0) = =42 —
i+v (0) o (0) t+v (), Corro () o ()

1 and Zst W) =¢€4 ., — Tstio (8) can be used instead of 7, (¢) above.
q , p .
Let A, (2) = > agj(v)2?, B, (2) =1 — > by;(v)2? and )(A°) be the top-
j=1 Jj=1
Lyapunov exponent associated with the sequence (A7), , where A} is just the

matrix A; defined in Section 2.1 with 6, instead #. Then to show the strong

consistency, the following assumptions will be made.
Al. 0y € Oy and Oy is compact
s—1
A2. 49)(A%) < 0 and supp (H B§7v> < 1.
0cO v=0
A3. for allv € {1,...,s}, A, (2) and B, (z) have no common roots and ag,(v) +

bop(v) # 0.

A4. (€}),c; has a non-degenerate distribution.

In Assumption A1, the compactness of © is assumed in order that several results
from real analysis may be used. As seen in Remark 3, the first assumption in A2
ensures the existence of some finite moments for the SP.S solution of (2.1) which
is the key for proving the strong consistency of LS FE, and the second assumption

is imposed in order to obtain h; (f) as a causal solution of {e;, €, 1,...}, i.e.

hstro () = ag(v) + Zaj(v)e§t+v_j for all v € {1,...,s} in which the weights
j=1

a;(v) satisfy max a; (v) = O (p’) with p € ]0,1[. While A3 and A4 are made
to guarantee the identifiability of the parameters. The next theorem shows the
strong consistency of LSFE for PGARCH processes.

Theorem 8 Let <§n> be the sequence of LSE satisfying (2.7). Then, under
A1-AY4, almost surely /Q\

, — 0y asn — oo.

In order to establish the asymptotic normality of LSFE let k := Var {loge?} and

consider the additional assumptions

A5. 0y € Oy where Oy denotes the interior of ©g.



2. The LSFE approach for PGARCH models 18

A6. E{c}} < o
The second main result of this section is the following

Theorem 9 Under A1-A6, \/n (én — QO) ~ N (O, KI™') where
I = diag {Ifl,l =1,.., s} and each block matrix is given by

L 8lt( ( ) 1 ahst ’U(Q) 8hst U(Q) _
= G g ) - ZE% AUk o S

Remark 10 For Gaussian QM LE we have \/n @n - Q0> ~ N (0, Var{e2} T7)
(see [2]). Hence, the performance of LSE with respect to QM LE can be captured
by A := Var{e}} /k which depends on the distribution of (e;),-

Remark 11 Since T is s—block diagonal matrices implies the asymptotic inde-

pendency of the estimates for each regime v € {1,...,s}.

Next, we establish the law of iterated logarithm (LIL) for LSE — PGARCH es-
timator. This provide almost surely a flexible, completely consistent and bounds
for En

Theorem 12 Under Assumptions A1-A6 we have

1/2 _
lim sup WI <Qn (9 ) ( (pt+g+1))

where 13y = (1,...,1)" € R¥,

Let us now apply the forgoing results to the first order PARCH process given
by €stro = Estrvr/Rstro With by, = ag(v) + aq(v)e2,,_;where ao(v) > 0 and
a;(v) > 0. It is easily seen that the SPS condition for PARCH (1) reduce

to 0 < [] ao1(v) < exp(—sE {logeZ}) := a under which supposing that ¢, =
v=1
(05(1), ..., 8)(s)) with 8} (v) := (ag(v), a1 (v))’ belonging to a compact Oy of the

form ©y = ([e, ﬂ X [O, o — EDS for any € > 0. The LSFE is thus by Theorem

8 strongly consistent. Moreover, if ©y = Oy, then from Theorem 9 the LSE is
also asymptotically N (O, kZ~') where T~! := diag {Z; ', =1, ..., s} with

1 €2
E@ st+v—1 )
Z - {hgt—o—v (9) ( st—i—v 1 €§t+v—1
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2.3 Estimation of PARMA—PGARC H processes

In this section, our aim is to extend the previous results to the case where
the PGARCH process is not directly observed. Since the process (€;),.; solu-
tion of (2.1) is a martingale difference and thus can be used as the innova-
tion of a periodic ARMA (PARMA) process. The estimation of PARMA —
PGARC H models was considered by Aknouche and Bibi [2] using the QM L ap-
proach. Here, we shall investigated the LS E method for estimating PARM A —
PGARCH processes. For this purpose we will consider a set of observations
{X1, ..., Xn; N = ns} obtained from a SPS and causal

PARMA (P,Q)-PGARCH (p, q) process generated by the equations

( P

X;—Adﬂ::§:¢xﬂ<Xl4-—ut-—z e —

th

||M©

o= aot) + S ast)et + 3 by(0he

\ iz -

the coefficients pu(t), (¢;(t)),<;<p and (¢, (t))ISjSQ are periodic in ¢ with known
period s. The vector of parameters of interest is denoted by m:= (ﬁ', Q’)I where
B= (B(1), e #(5)) With B(0) 1= (1(0), &1(0). s 6p(0), 21 (0), (1)), 1 <
v < s and the parameter space is O C Og X 6y where Oy := RIHRTD),
The true parameter value denoted by my = (6' 0’>/ is supposed to belong to
some Euclidian space ®. If ¢ > @ the initial values Xo, ..., Xi_p_(4;-0), €-(4-0Q),
s €—1—gs ho, .. h1 _p allow to compute ¢ (6) fort=1+Q —q,..., N and h; ()
fort=1,..., N, from

€ =& (é) =Xy — p(t) — Z (1) (Xp—s — p(t — 1)) + Z ¢j(t)gt—j

e o= T () = an(t) + 32 a2 + 32 by (e,

i=1 j=1

When ¢ < @ the required initial values are X, ..., X1_(4—0), €~ (¢—0)- - El_Q,ﬁo,
) hl—p-
~ ~\'
The sequence of random vectors 7, = (ﬁn, Qn> is called two stages least

squares estimator if it satisfies, almost surely

B, = Arg pin Qua (9), &, = Arg uin Qo (5,.0)
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—_

n— S

~ 1 ~ ~ 1
where Q1 ,, (B) = — Lig (ﬁ) , with 144 (5) == ?§t+v (6) and where
g n (ad g s g
t=0 v=1
N 1 nfl/\ 1 s L .
Qo (1) == oy (x), with Ty, () := = Marso (). Forv =1, ..., s, consider
n s
t=0 v=1
Q
the polynomials ®,(z) = 1 — Z%z Su(z) = 1 — Z@Oi(v)zi and the
i=1
matrices

P — ( ¢1(v) ... ¢p(v) ) U = ( er(v) .. SOQ(U) )
’ Itp-1) Opp-1yx1 s lig-1) Oo-1)x1

and we introduce the following conditions

s—1 s—1
A.7T supp(Hq)s ,,><1 supp(l_[\llS v) < 1.

PO v=0 BEO;s v=0

A.8 The polynomials ®,(z) and ¥,(z) have no common roots with ¢yp(v) # 0
or wyg(v) #0forallv=1,..,s

The first inequality in Assumption A.7 is the top-Lyapunov exponent associated
with PARM A model and thus implies the causality of a SPS solution. The
second one, is the invertibility condition of the PARM A model (2.8). Hence,
under A.7, it follows that (X;),., and (€;),., can be related through the infinite

order moving average and autoregressive expansions

Xst—H) - M(U> = Z Q; (U) Est+v—i and €st+v = ZBZ (U) (Xst—f—v—i - M(U - Z))
=0 =0

(2.9)
In (2.9), the weights «; (v) and f; (v) satisfy

sup |a; (v)] = O(p') and sup |B; (v)] = O(p") with 0 < p < 1.

1<v<s 1<v<s

Theorem 13 Let (X,),., be a SPS PARMA process satisfying (2.8). Then

under A1-A3 and A7-A8, almost surely T,, — ™, as n — 0.

As the standard ARMA — GARCH case (cf. [21] and [4]) we will prove
asymptotic normality of 7, under the fourth order moment condition on the
(€¢);cz- From Theorem 6, such condition is expressed by p (A®)) <1 (see Sub-

section 2.1.2). Thus we make the following assumptions

A9 p(A®) < 1.
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A.10 7y is in the interior of ©.
Now, we are able to derive the limit distribution of 7,,.

Theorem 14 Let (X;),., be a SPS PARMA process satisfying (2.8). Then
under A1-A10 we have

R Q V11 V12
\/ﬁ(ﬂn—ﬂo)WN<(Q>’<V21 Vas ))

where Vi = Jii T Jit, Vis = Vay = J3' (Ion + Jon I ) i1, Voo = Jog' (Ine +
J21J1_11]11J1_11J12 — ]21J1_11J12 — J21J1_11]12)J2_21 with (leOSt surly

: 0 ~ . 9 ~
b = TLh—»Holo Varg, {\/ﬁ%QL“ (é)} s 122 = nh_{IC}O Varg, {\/E%an (E)} )

. 0 ~ 0 ~ ,
ha = nh—{{olo EEO {na_@le' (é) a_Q/QQJL (ﬂ)} I = 112
2 P2
Ju = nhj%o Varg, @Ql,n (@) , Jaa(v) = nlljlolo Varg, {WQQ’N (E)}

2

9300’

n—oo

Jip = lim Varg, { Qz,n (E)} , o1 = Jiy.

2.4 Appendix

The main aim here is to reveal the basic assumptions and to quantify the asymp-
totic properties of the LSE for PGARCH and for PARMA — PGARCH pro-
cesses. The proof of Theorems 8 is by now standard and follows from similar
arguments used in showing the strong consistency of the QM LE — PGARCH
models (cf. Aknouche and Bibi [2]) and hence, we do not detail the proof. Since
there are several similarities between the standard ARM A and GARC'H and
its periodic versions PARM A and PGARC H, certain steps of the proof for the
LSFE for PGARCH and for PARM A— PGARC H processes are similar in spirit
to that of the standard GARCH and ARMA — GARCH one. Thus, we give
details of proof only when it seems pertinent to us and refer to Aknouche and
Bibi [2], Francq and Zakotan [20], [21] or Straumann and Mikosch [46] for further
details.

2.4.1 Proof of the Theorem 9

It is worth noting that the estimate En is a solution to the s X (p+ ¢+ 1)

1ol (0
-dimensional estimating equation ) (8)

i 00

=0. The estimating equation above
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. ) ) =1 0l,(0)
is asymptotically equivalent (see Lemma 15 below) to S, (6) = > 50 =0,
=0 00
-~ 1
so the asymptotic distribution of g, can be obtained from —S,, (#). Indeed;
n
using Taylor-series expansion of the score vector around 6y, we obtain
8lt 1 8lt 821t -~
0. —0 2.10
0 G M - LS (15T Va0, ) (20

where 0, is between Enand 0. Thus we will show that
— 4K
LS M) v (0 M)
=0
P 2

I (6y) and the result fellows from Slutsky’s theorem.

1:(8,)
00

L OPL(0,)
and tZO 0000’

For this purpose, we Wlll split the proof into several intermediate results grouped

in lemmas 15 and 21 below.

Lemme 15 If the Assumptions A1-A6 hold

ol (0) 6’lt H 0%1,(0)
1. E, su < 400 and E, su , < 400,
o {6619(]30) o) %o Qeﬂ(lgo) 0000
E su M < 400 for any neighborhood ¥ (8,,) of 8y and for
%\ peoin) | 06:00;00, ynew 0
alli,j,k €{1,....s(p+q+1)}.
2.
n—1 ~
E {8@(@) az(;(Q@} 2 0asn - oo,
1[04, 0°L,0) )| »
senon |7 {aea&’ “ gy (|| VB o0

Proof. See Aknouche and Bibi [2].

Lemme 16 Under the Assumptions A1-A6 we have

{ ol (0

Q

-%2

} = I (0,) where I (0,) is positive definite matriz.

- N (0 i’jz(go))
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n—1 92
2 1S TR 5 2,
Proof.
1. It is not hard to see that Ey, alta—(ego) =0 and
Varg, {%@(99 )} = By, {az%(ego) 815(50)} - 4“1(9 ). Now, using the

same arguments as in Francq and Zakoian [20], we can show that for any
v =1,...,s, the vth block Z, (8,) of Z (8,) is positive definite matrix and
thus Z (6,) it is.

ol (0)
a0

} exists. Hence for any A€ R*+4+1) the sequence

2. Notice that Fp,

0l (6,)
o8

al, (0
N (0) , S is a square integrable martingale difference. Then
98 tez

|%t_1} =0 where 3 := o{e_;,0 >0} and that

by Theorem 3.1 of Billingsley [12] and the Wald-Cramer device,

T M) (o M),

3. The convergence follows from the a.s convergence of 0, to 0,
1 ”Zl 921,(0.,) _ 921,(0)
n iz | 0000 0000

1 n—1 aQZt (Q)
" sy 0000

} to O and an application of the ergodic theorem

2.4.2 Proof of Theorem 12

n110L0)  00(9)
1 t _Oh
Let Y, Zo 20 %0

\/anoglogn —
be shown that almost surly Y,, —O as n — oo. In other hand from (2.10) we

. By Assertion 2 of Lemma 15, it can
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have

-1
n -~ Gzlt
\/ 2k loglog n <Q” _QO> = < Z 0000 )

—0

Z 6lt
\/2/<mloglogn — 0

n—1 -1
S 1 0*1(0,)
3t (n 2000 Y

t=0
1 Zf 1/28E(Q0>
V2knloglogn = 2 00

S n—1 82lt(8 )
ince al ly, ST = (5 2 S0
Since almost surly, 5 (n 2 5000’

martingale difference stationary and ergodic sequence can be applied here to
aly(6,)
: 1 s71/27"t\20
show that lim sgp SrTosTonn tEZO A / 0 Lig(prgr1))-

—|—I_1/2

-1
) — 0, Y, —0O, then LIL for

2.4.3 Proof of Theorem 13 [consistency of LSE PARMA-PGARCH |

The proof of Theorem 13 relies on a set of intermediate results presented below.
It will convenient to consider the functions 51,,1, 52771, corresponding to the SPS

processes [ ; and [y .
Lemme 17 Under A1-A3 and A7-A8 almost surely
1. En —>ﬁ0 as n — oo.
2. {Elt €Z:e(B)=¢ (éo) and hy (m) = hy (EO)} = 7T =1,

Proof. The proof follows from the same arguments as in Aknouche and Bibi
2. m

Lemme 18 Under A1-A3 and A7-A8 we have

Oun (3,8) -0 (3,8)

1. lim sup
n 96@9

2. lim sup ‘@gn (z) — Oz (z)‘ =0

N 1eO,

3. 0% =B, {zu (/_30, QO)} < By, {zg,t (go, Q)} for any 0400 and 0, € O,.
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4. For any 0, € Oy, 0. #0y there exists a neighborhood V (0,) C ©y of 0.
such that lim inf in(f )@27,1 (En,Q> > 02 a.s.

n 0ev(0

Proof. The proof of these assertions follows essentially the same arguments

as in [21], therefore we do not detail the proof. m

Lemme 19 Under the Conditions A2 and A7 we have for allv € {1, ..., s} and
any € ©

Psio () = ) + Z O‘J st+v j _) s
€st+v (é) = (Xst+v - ,LL(U)) + Z Cj(v) (Xst+v*j - /’L(U - j)) .

Moreover, V€ ©p, the functions € (.) and hy (@ , ) are continuously differenti-
able with

ah'st—i-v (@a Q)
90;(v) ) Z i

Ocsiro (B) - '
W = ; cj(v) (Xst+vfj - ,U(U - ])) .

st+v 7 _) )

where the weights a;(v),cj(v),a;(v) and ¢;(v), satisfy max aj(v) = O(p),
max @(0) = 0 (), s |es(0)] = O (), mass [e(0)] = O () with p € [0, 1]

Proof. This is straightforward consequence from the Remark 3 and the
invertibility assumption in A7. =

In order to complete the proof of Theorem 13, let V (6,) be any neighborhood
of fp. By the compactness, Oy is covered by V(6,), V (¢,),...,V (6,) where
0; € ©\V (0,) and the V (Qj), 1 < j < k are defined in Lemma 18, Assertion
4. Using Lemma 18, Assertions 1,2 and 4 and the periodic ergodicity we have
almost surely lim ©2,n (En, Q) =02 and

Qiengg@m @ﬂ) — min inf O, @ﬂ) —  inf O, @n,g)

0<i<k 0€V(0,)NOq 0eV(05)NOy

for n large enough. This proves that En € V(0,), a.s for n large enough, giving

the required consistency result.
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2.4.4 Proof of Theorem 14[asymptotic normality of LSE PARMA-PGARCH]

The proof rests classically on the Taylor-series expansion of score vectors around

the true parameter values

1 — 1(91“ 1 — 13511& 825115 ~

0 = \/—Z 35 \/—Z < Z 8685 ) (én_ﬁ[))
1 alztﬁ ,9 1 3l2t5 0y)

0= fz 00 Va0

A a2l27t(§n7g*) ~
* (E ; 2000 ) v <Q" - QO)
1 6121&579 1”182[ 0,) ~
= \/—Z —a +<ﬁ; 50077 )ﬁ@n_@o)

L a2l21§ /6 )0 oy
- ]
" (n 2" o000 (6.-)

1 n—1 l n—1 2l
The above equations leads to _ﬁ tZO 0 t(“)(ﬂ o) = % P aa_ﬂté?) Vn(z, —m)

AL, (m, »_(mwﬁ)mu@ﬁ

§

where

on o oY
between Bn and Sy, (resp. Bn and Sy, Q and 0y and between 7, and 7y). Thus

/
> and where B.’s (vesp. 3 _, 0., m.) are

we will show that

n—1 n—1
1 0L, (m) 821, (x,) , o
ﬁ ; or N (O,I) and ﬁ - Dror — J in probability with

]:<Il1 Lo\ ,_ (O

: where the matrices (1;;),, ., and (J;;)
I o Jo1 Jao TAshys2 ’
are given in Theorem 14. The theorem will straightforwardly follow. For this

ol (my) .

purpose, we show an analogue Lemma 15 for 5y ie.,
™

Lemme 20 If the Assumptions A1-A10 hold

1. For any € O, the random vectors %ll,n (@), %lgm () exist and belong
to LQ
oL, (m) Ol,() 9%L,(x)
2. E A e A dE bt
" {wesél(gm o om || TS0, o || T T
ly(m)

Ey sup —————| ¢ < +0oo for any neighborhood V¥ (x,) of mo and
| zev(n,) | OmOT; 0y,

for allz,j,ke {1,..,s(p+ P+q+Q+1)}.

1<i j<2
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3.
n—1 7
L oL, () B Ol () Poasn — 00,
n on on
=0
18 [P, @ )| »
1 L(m) O lL(x 0
Qesy(go) n;{aﬂaﬂl oror’ —0asn — oo
Proof.

1. Under the Assumption A9, it follow that £ {X}} < 4+o00. By Lemma 19

and Cauchy-Schwartz inequality we can see that

863“,5 aesvﬁ agtv_ astv—
5—@(_) = Qs (é) t;ﬁ(_) and Ui 5@ (m) — Mot (x) ng—Q(ﬂ)

belong to L.
2. The Assertions 2 and 3 follows similarly as proving Lemma 15.

Lemme 21 Under A1-A10, we have

n=1 9]
1. \% O (mo) ~ N (O, I (m,y)), where the sub-matrices Ir1, 12 and Is
"0 81

exist and are strictly positive definite.

n—1 H2

i—o Omor’

Proof.

1. We will apply a central limit theorem for the martingale difference. Let

%ﬁe) := o {€e_i,i > 0}, then by Assumption A7, we have %l(f) = %§X>. No-

ol
tice that Kj_ { 1;';(5@0) |%§f1)} =0, Ey, {@llé_(eﬂoﬂgﬁ} —0 and that in

ol [
view of Assertion 1 in Lemma, 20, Varéo { 1(;;&) } and Vary, {8 255910) }

exists and not singular matrices. Hence, for any (X', i/ )I € Rs(P+@+1)

ol
- w

4 t
matringale diference. The central limite theorem of Billingsley [12] and the

Wold-Cramer devoce allow to derive the asymptotic normality result.
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2. The convergence follows from the a.s convergence of 7, to m,, an applic-

n—1 aQZ
1 &L (m,) and the fact that almost

ti f th dic th to -
ation of the ergodic theorem to g} Ordr’

surely as n — oo

1 ”Zl Plh(B,) _ 0%L.4(B,) 0

n<=\"opop ~ “opop |
1 A 3212,t(ﬁ**ago) B lz4(m) —~ 0
n s agaﬁl 8Q8§/ ’
12 (048,08, 0Pla(m,) 0
n £ 9000’ 9000’




Chapter 3

CLS approach for PGARCH

models

Abstract: This chapter studies the strong consistency and asymp-
totic normality (CAN) of the conditional least squares estimates
(LSE) for periodic GARCH (PGARCH) models with martingale
difference centered squared innovations. The approach is extended
to the PARMA — PGARC'H models. The results are obtained un-
der mild conditions, in particular, no restrictions on the conditional
mean are imposed. Our proofs closely follow those in Francq and

Zakoian [20] for independent and identically distributed innovations.

3.1 Introduction

In the process of attempting to model the conditional variance in financial time
series (€y),c;, exhibiting structural changes, Bollerslev and Ghysels [15] have
proposed a GARCH (p,q) model with time-varying coefficient which has the

form of

q p
Vn € Z: €, = ex\/h, and h,, = ao(n)—i-zi:l ai(n)ei,i—i-zjzl bj(n)h,—; (3.1)

where (e,,),,c7 is a sequence of random variables (its characteristics are specified
below), the coefficients (a:(n))y<;<, and (b;(n)),.;., are positive except that
ag(n) > 0. The Model (3.1) is called periodic GARCH (PGARCH ) when the
functions (a;(n))y<;<, and (b;(n))

1<j<p T€ periodic in n with period s > 0, i.e.,

a;(n) = a;(n+ sk) and b;(n) = b;(n+ sk) for all integers n, k € Z. So, by setting

29
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n=st+wv,1<v<s, Model (3.1) may be equivalently written as

st = Carso/Pares and by = a0(0)F " ai(0)o it Y by(0) oy

(3.2)
The PGARCH models are generally nonstationary but are stationary within
each period. They are becoming an appealing tool for investigating both volat-
ility and distinct seasonal patterns and continue to gain popularity in various
disciplines (see, e.g., Bibi and Lescheb [10],[11] and the references therein for
further discussions). Unfortunately, its probabilistic and statistical properties
remain unexplored compared with respect to the other structures (for instance
standard and Markovian switching GARC'H models). The main raison is cer-
tainly, that the lack of stationarity and thus the ergodicity in such models result
in enormous technical difficulties. Since the seminal paper by Pagano [41], with
periodic coefficients, Model (3.2) may be connected with multivariate model with
time-invariant coefficient. More precisely ¢, = (€gi1, ..., €stys) IS a s—variate
GARCH (p*,q") model in the sense that

. 1 qar p*
& = {diag{h,}}* ¢, and h, = a, + Zizo Agef i+ ijo Bih, (3.3)

2 _ (2 2 ) — ! — !
where €] = (€2, 1, ..., €%,,) s by = (hstr1, o, hotrs) and where e, = (€5¢11, ..., €stts) -

The model orders in (3.3) are p* = [2] and ¢* = [%] where [z] denotes the
smallest integer greater than or equal to z. The s X s matrices (A;)c;c,-
and (B;)y<;<,- are computed as follows (see Basawa and Lund [4]). Ao, Bo
have (i, j) th entries (Bo); ; = bi—j(1)lisj3, (Ao);; = ai—j()liszy and (By); ; =
binsti—j(1) for 1 < m < p*, (Am)m = Qmsti—j(i) for 1 < m < ¢* and the
intercept vector ay, = (ag(1),...,ao(s))". In the sequel, I denotes the iden-
tity matrix of order k, O (resp. O) denotes the matrix (resp. vector) whose
entries are zeros. The norm of a matrix M = (m;;) is defined by || M||. This
chapter investigates the strong consistency and asymptotic normality of the least
squares estimator (LSF) in PGARCH and extends those asymptotic results to
PARMA — PGARCH models.

3.2 Conditional least squares estimation for
PGARCH models

Consider the PGARCH model (3.2) described with the vector of parameters
0= (0'(1),...,8'(s))" where 8(v) = (ag(v),a1(v), ..., ag(v),b1(v), ..., by(v)), v =
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1,...,s. The vector # belongs to a parameter space

Op:=1{0:0¢ (]0, oo[ x [0, co[PT9 ) }. The orders p and ¢ and the period s are
supposed to be known, whereas the true parameter value 6y is unknown. Let
{€1, €2, ...,ex} be a realization of length N = sn to estimate the parameter 6.
Conditionally on initial values €y, €_1, ..., €1, ﬁo,ﬁ,l, ...,711,,, properly chosen,

the LSE of 0 is defined as any measurable solution En of

B = Argin @, (0), Qu(0)i= > 10).10) = Y i (0)

(3.4)
with7,,,, (0) = €4, - (0) where ?Lstﬂ(@) are defined recursively by hyis (0) =
ao(v) + 31 ai(v)ed ;i + 220, b (v)/fzstﬂ,,j (0). For the strong consistency of

Qn we need the following regularity conditions. First define the local polynomials

A, (2) = Zq ag;(v)2?, B, (2) =1 — Zp bo; (v) 27

J=1 Jj=1
and assume that

Al. 0, € Oy and Oy is compact.

A2. (en),cy is a sequence of of strictly stationary and ergodic random variables

satisfying almost surely (a.s) F {eiﬁfﬁl} = 1 here S refers to the
o—field generated by {€,t < n}. Moreover, (e7),., has a non-degenerate

distribution.

A3. (&),c, is strictly periodically stationary (SPS) and periodically ergodic
process in the sense that (¢,),., is strictly stationary and ergodic process
with E {€}} < .

A4. for all v € {1,...,;s} and § € Oy, the local polynomials A (z) and B, ()
have no common roots and the polynomial det { Iy Z B;z7 ) has its
roots outside the unit circle. Moreover, A, (1) # 0 and aog(v ) + bop(v) # 0.

Noting that if det (I () = 2jo W) (A, + B;) 2 ) has its roots outside the unit

circle, then Equation (3.3) ha,s a strict stationarity, 3 —measurable, ergodic

solution and det (I Z B;z ) # 0 for all z such that |z| < 1. The last
condition is imposed in order to obtain h; () as a causal solution of {e;, 1, ...},
e, haro (0) = ao(v) + 2272, aj(v)ed,,; for all v € {1,...,s} in which the
weights a;(v) satisfy max a; (v) = O (p?) with p € ]0,1][.

Theorem 1 Under A1-A4, almost surely En — 0, as n — oo.
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In order to establish the asymptotic normality of LSE — PGARCH, let k; :=
E {efﬁg?l} and consider the additional assumptions

A5. 0y € @OQ where é)g denotes the interior of ©y.

A6. E {|6t|4(1+5)} < oo for some § > 0 and E {e}} < oo.

Theorem 2 Under A1-A6, \/n @n — Q()) ~ N (Q, \7*11\7’1) where J 1 =

diag {jl_l,l =1,.., s}, T :=diag{Z;,l = 1,...,s} and each block matriz is given
by

. $ ahst—i—v (Q) ahst v (Q)
Jioo= Zv:l EQO { 8Q(l) 8szl)’ } s

s 8hst-‘,—v (Q) ahst-i-v (Q)
I . = E st+v T 1 h2 6
1 szl 9, {(H t+ ) st+v (-) aQ(l) 8Q(l)’
Moreover, under constant conditional kurtosis , i.e., Ky := F {e?!%,ﬁi)l} = K,

then v/n @n - Q0> w N (O, (k—1)TY).

The LSFE is not efficient due to the conditional heteroskedasticity of the
innovations. To designe a more efficient estimators of #, we weight approprietely

the non linear innovations 7j, (). Consider therefore

T 1 s ~2
/l} ) (0) == S szl Tstrollsero (€)
where 7 := (1), is a sequence of positive weights and 7, is %ge_)l—measurable.

Hence it is easy to show that the asymptotic variance of weighted LS E is minimal
when 7, = 0,2 where 0? = Vary, {ﬁth?l} For this asymptotically optimal
sequence of weights, the corresponding estimator is called the generalized least
square (GLS) estimator denoted by @f In most of practical situations, o, is

unknown and depends on a nuissance parameters

3.3 Estimation of PARMA—PGARC H processes

Consider a set of observations {Xj, ..., Xy; N = ns} obtained from a centred
PARMA (P,Q) — PGARCH (p,q) process (X;,t € Z) satisfying

{ X =0 00X+ e — X0 0 (Ve

(3.5)
e = Ve, he = ao(t) + 3oL, ai(t)el; + Z?:l bj(t)hi—;
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the coefficients (¢;(t)),<;<p and (goj(t))1<j<Q are periodic in t with period s.

Assume that the process (X;,t € Z) is described by a vector of parameters of

interest m:= (@',Q’), where = (5'(1), ...,é'(s)), with 3(v) := (¢1(v), ..., op(v),
©1(v), ., p0(v))'; 1 < v < s and the parameter space is ©, C O3 x O, where
Op = R*(P+Q) " The orders P, @), p and ¢ and the period s are supposed to

/
be known, unlike the true parameter value m, = (@g,Qg) is unknown. The

corresponding vectorial version is

P .
Xy = Zi:O (I)iitl—i +&— Z?:o \Ijjgt—j
& = {diag {l;}}? ¢, and h, = ay + Zgzo Aiel_; + Z§:0 thtfj
where the matrices (®;)yc;<pes (Vi)gcico- and the orders P*, Q" may be com-

puted as for PGARCH (p, q). Conditionally on initial values Xo, ..., X1_p_(4—q),
€_(g-0Q)s -1 E—1—q5 gy oy 1 _p properly chosen (cf. Aknouche and Bibi [2]), the

sequence of random vectors 7, = (én, Qn> is called two stages least squares

estimator if it satisfies, almost surely
B = Arg min Qi (B), T, = Arg soin Qa.n (@ﬂ)

1

where @m (g) = = ?:_OllAlt (ﬁ) with l1t( ) = —Zv L St+v (_) and where
. 1.,

Qan () == Zt o lgt( ) with lgt( )= — Zv 1775t+u (r). Forv=1,...;s, con-
sider the local polynomials ®,(z) = ZZ L oi(0)28, W, (2) = 1= 09 0y (v) 2

and we introduce the following conditions

AT7. (X;),c, is strictly periodically stationary (SPS) and periodically invert-
ible process in the sense that (X,),, is strictly stationary and invertible

process.

AS8. The polynomials ®,(z) and ¥,(z) have its roots outside the unit circle and
no common roots with ¢yp(v) # 0 or pyg(v) # 0 forallv =1,...,s

Noting that if det <I(S) — ZIZO D27 ) has its roots outside the unit circle, then
(Xi),ep is SPS. Moreover, if det (I ) — Z | zf> has its roots outside the

unit circle, then (X}),., is invertible. However, under A8., it follows that (X;),.,
and (€;),., can be related through the infinite order moving average and autore-

gressive expansions

st+v Z az Est—l—v—i and €st+v = Z /81, (U) Xst+v—i (36)
1=0
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In (3.6), the weights «; (v) and 3, (v) satisfy

sup |a; (v)] = O(p') and sup |B; (v)] = O(p") with 0 < p < 1.

1<v<s 1<v<s

Theorem 3 Let (X,),., be a SPS PARMA process satisfying (3.5). Then

under A1-A4 and A7-A8, almost surely 7,, — m, as n — 0.

As in the standard ARMA — GARCH case (cf. [21] ) we will prove asymptotic

normality of 7, under the fourth order moment condition on the (¢;), ;-

A9. B, {e!} < +o0.

A10. 7 is in the interior of ©.
Now, we are able to derive the limit distribution of 7,,.

Theorem 4 Let (X,),.,
under A1-A10 we have

R [0} Vir Vip
\/ﬁ(ﬂn—ﬂo)WN<<Q)’(V21 Vaz ))

where Vi1 = J1_11—711J1_11; Vie=Vy, = J2_21 (—721 + J21J1_11]11) Jﬁl; Voo = J2_21(122 +
Jor i I e — It it e — JorJit o) Joy with

be a SPS PARMA process satisfying (3.5). Then

[11 = nh—{{olo Varﬁo {\/ﬁ%él,n (@)} ;
I, = lim Varg, {\/ﬁgégn (E)} :

n—oo

I, = lim E7r0 { ﬁan (ﬁ) aig,@zn (Z)} Ao = [{2,

0?
Jn = nh_)IgOVarg {8585,621”(@}7

0
J22 = hm VaTg {8989,Q2n(_)},

n—oo

n—oo

9? A ,
Jiz = lim Varg {WQQn (ﬂ)} , Jo1 = Jis.
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3.4 Proofs

The proof of Theorems 1 and 3 are by now standard and follows from similar
arguments used in showing the strong consistency of the QM LE — PGARCH
and QMLE — PARMA — PGARCH models (cf. Aknouche and Bibi [2] and
Bibi and Lescheb [10]) and hence, we do not detail the proof. Thus, we give only
a sketch of proof for the asymptotic normality and refer to Aknouche and Bibi
[2], Francq and Zakotan [20], [21] or Bibi and Lescheb [10] for further details.
Because (lAt(Q))tGZ (resp. (lAl’t@))tez’ (E’t@))tez) is not a SPS process due to
the presence of initial values, we shall replace it by its SPS version (1;(0)),c5,
(resp. (ll’t<é)>tez’ (l2,4(7));cz) in which no constraint on the initial values were

imposed.

3.4.1 Proof of the Theorem 2 [asymptotic normality of LSE PGARCH]

Using Taylor-series expansion around 6y, we obtain

8[,5 azt 0%1,( ~
0- LS P S0 (A5 2E)) i 5,-0) 0

>

where 6, is between 5 and #,. Thus we need to show that f Z  Olby)

= 00
2
L O%(0.) BN ~J (8,) and hence the result fellows
s

4
N|(O,=T (0 nd 1
(_’ s2 (_0)> ;) 0000’
from Slutsky’s theorem and the following intermediate results grouped in the

following lemma

Lemme 5 Under A1. — A6. we have

2
1. Ey, {Halt ) (8 H} {’ %ége,) } < +o00 and
8%
B _Tt\d)
0, ees;g)‘ae 90,00, < 400 for some neighborhood 9 (6,) of 0y and

foralli,j,ke{l,....,s(p+q+1)}.
and sup

oL(9) L (0)
v Z% { a0 } 0€9(6,)

verges in probability to 0 as n — oo.

ol, (0 4
3. Varg, { (gé_)} = ?I (0,)-

con-

S 0*L(0)  0°L(0)
n = | 0606 0006’
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(

ICD

- 4
. \% Z 0) converges in distribution to N (Q, ?I (QO)).

ICb

3

1D

~ 0L (0.,)
= 0000

gular matriz.

2
5. L converges in probability to —J (6,) and J (8,) is non sin-
s

Proof. The proof follows from standard arguments (c.f. Aknouche and Bibi
[2], Francq and Zakoian [20] and Bibi and Lescheb [10]). =

3.4.2 Proof of Theorem 4[asymptotic normality of LSE PARMA-PGARCH|

The proof rests classically on the Taylor-series expansion around the true para-

meters values

nl@llt n— 1811,5

0 - =Y 5 -

(3 ) v .- @o>

fznlazgtaﬁﬁ,e \/_anazgtﬁ ,0,)

(o) ate

- rL gt (T ) w2
H(Er Tt li’;é%g? “) (e -a).

where .’s (resp. 8_, 0., m,) are between Bn and Sy, (resp. Bn and 60, 0, and
6y and between 7, and mp). The above equations leads to

n—1 al 1 n—1 82£t (E*) ~
\/_ Z E Zt:ﬂ aﬂaﬂl \/ﬁ (ﬂn - EO)

L, (my) o <3l1¢(ﬁ0) Olay(my)

I
I

/
where ) . Thus we need to show that

or o5 ol

1 n=10l, (ﬂ(J) 1 n—1 82116 (ﬂ*) . -
% tho or ~ N (O,I) and o tho “orox — J in probability



3. C'LS approach for PGARCH models 37

I I Ji O
with I = S I A " where the matrices (1), ;, and
21 I2o Jo1 Jaa -
Jij), <ij<o AT€ given in Theorem 4. The theorem will straightforwardly follow.
al,
For this purpose, we show an analogue Lemma 5 for %
s
Lemme 6 If the Assumptions A1-A 10 hold, then
0 0 _
1. For any e ©, the random vectors %llm (@), %12@ () exist and belong
to ]LQ N -
oL, (m) Ol,() 0?1,(m)
. E; = E, = d
2. Bn, {H or  or < +00, En, Onor < 400 an

31
Er, { sup —8 L(x)
| 9ev(8,) 87@87@37@

foralli,j,ke{l,...,s(p+q+P+Q+1)}.

() Ol ()
Vi Lo {aw oz f|"LAE,

converges in probability to 0 as n — oco.

n—1 alt (7]-0)

< 400 for some neighborhood ¥ (w,) of my and

lem@_ﬁ@
n t=0 8ﬂ8ﬂ' aﬂaﬂl

converges in distribution to N (O, I (w,)) where the sub-

Ly

matrices IH, 112 and Iy9 exist and are strictly positive definite.

L5 9y 887Lr(8_*> converges in probability to J (my) and (Ji; (7)) ;<o are

non singular matrices.

Proof.

1.

Noting that under the Assumptions A7-A9 FE {X}'} < +o0o. By Cauchy-

Oe? D€t
Schwartz inequality we can see that GSH—U@ = €444 (5) €t+—(ﬁ) and
9B - 0B
3y (1) Mty ()
tg—Q = 2y, () t8+—Q belong to L.

The statements in Assertions 2 and 3 follows similarly as proving Lemma

d.

ol
By Assumption A7-A9, we have %ﬁe) = %ﬁX), E@ { 14(8 )|%§ )} =0,

alz,t(ﬂo) Cx(x 8l1,t(ﬁo) 2t 7To
Er, { 0 R¥ =0 and Varg 98 and Var,ro

exists and not singular matrices. Hence, for any (X, / , c RoP *Q X
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ol
R*(P*a+1) the sequence { (N, 1) ‘ta( m) %EX)} is a square integrable SPS
=’ or

t
martingale difference. The central limit theorem and the Wold-Cramer

device allow to derive the asymptotic normality result.

4. The convergence follows from the a.s convergence of 7, to m,, an applic-

— &L (x.)
ation of the ergodic theorem to - Z

and the fact that almost
t:O aﬂ'aﬂ'

surely as n — oo

1 -1 [ Ph(B,) LB,
Ezt:0< 8685’ - aﬁaélo — 0,

—Zn 1 [ OPlay( 8,8 0) 3212,t(£0) 0
=0 8985 000" ’

1 Zn—l o lQ,t(§n>Q*) _ Plyy(my) —~ 0
n 20\ 0000 0000’ '




Chapter 4

Yule-Waker equations for
PGARCH(1,1) models

Abstract: This chapter studies the probabilistic structure and asymp-
totic inference of the first order periodic generalized autoregressive
conditional heteroscedasticity (PGARCH (1, 1)) models in which the
parameters in volatility process are allowed to switch between differ-
ent regimes. First, we establish necessary and sufficient conditions
for a PGARCH(1,1) process to have a unique stationary solution
(in periodic sense) and for the existence of moments of any order.
Second, using the representation of squared PGARCH(1,1) model
as a PARMA (1,1) model, we then consider Yule-Walker type es-
timators for the parameters in PGARCH (1,1) model and derives
their consistency and asymptotic normality. The estimator can be
surprisingly efficient for quite small numbers of autocorrelations and,
in some cases can be more efficient than the least squares estimate
(LSE). We use a residual bootstrap to define bootstrap estimat-
ors for the Yule-Walker estimates and prove the consistency of this
bootstrap method. A set of numerical experiments illustrates the

practical relevance of our theoretical results.

4.1 Introduction

In this chapter, we continuous to investigate the asymptotic behavior of empir-
ical studies of PGARC H models. Since PGARCH (p,q) models with p,q > 2

are rare in practice, we restrict ourselves to one particular model which has very

39
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often used in applications: the PGARCH (1,1) model in which

h2 = w(s,) + als,) X2, + B(sn)h_, with s, = Zzzl Vlla @ (n), (4.1)

where A(v) = {st+v,1 <v < s,t € Z} denotes the set of indices correspond-
ing to regime v. So by setting n = st + v, e,(v) = €s10, ht(V) := hgy, and
Xi(v) :== X410, 1 <v < s, and the convenience X;(v) := X;_1(s — v) (respect-
ively hi(v) := hi—1(s —v) and e;(v) = e;—1(s — v)) if v < 0, Models (4.1) may

be equivalently written as

{th) hi(w)er(v). “2)
h2(v) =w) + a(v)Xi(v—1)+ B(v)hi(v—1),v=1,..,s.

In (4.2) X;(v) (respectively h;(v), e;(v) ) refers to X; (respectively hy, e;) during

‘season’ v, 1 < v < s, of 'year’ t. In the sequel, the notations X;, h;, etc. are
used in preference to X;(v), hi(v), etc. whenever emphasis on seasonality is not

paramount.

4.2 Probability structure

In this section, we are interested in conditions ensuring the existence of causal
solutions, i.e., solutions such that X, is measurable with respect to %Ee) =0
{e;_r, k > 0}. For this purpose, letting g.(y) = a(z)y + B(x), then we have
Xi(v) := hy(v)ey(v) and hZ(v) = w(v) + go(ef(v —1)) K2(v—1), v =1,..,s
This formulation shows that h; can be viewed as a separable Markov chain and
thus one can uses the theory of Markov chains to study properties of either the

joint process (Xi, hy),c, or of (h;),, in isolation from (X;) By recursing the

tez:
last equation we obtain

i) = {I1_, 900 (25— v = 1)) } 121(5)
T e (@ o) s — k). (@)

where, as usual, empty products are set equal to one. Now, set Z; = h(s),
G(ef) = T30 9s-v (¢F(s = v — 1)) and

&) =" {T] . ov(s—v-1)}u(s— k)

where e? = (e2(1),..,e2 (s — 1)) and rewrite (4.1) as

Zi = G(€]) 21+ £()). (4.4)
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The Representation (4.4) is potentially useful for deriving probabilistic properties
for (X, hi),c;- Note that(G(ef), (7)) being i.i.d. pairs of random variables,
independent of Z; for any k£ < ¢t. This process is clearly Markovian with state
space R and transition probability measure P (z,.) equal to the distribution of
G(e?)z + £(e?). However, since the probabilistic properties of Models (4.2) and
(4.4) are the same (cf. Bibi and Lescheb [10] and Lee and Shin [34]), we shall
restrict ourselves by studying the latter one. Hence, the solutions of (4.2) are
called to be a strictly periodically stationary (SPS) (resp. periodically ergodic
) whenever the version (4.4) has a strictly stationary (resp. ergodic) solutions.
The important results on SP.S solutions of (4.2) are summarized in the following

theorem

Theorem 1 Let (X, hy),., be the PGARCH (1,1) process defined by (4.2). Ad-
ditionally, assume that

n

—00 < v = inf,~g —E {H (e } Zizl E{log ( gu(e3))} <0. (4.5)

Then under the Condition (4.5), a causal, SPS solution for (4.2) is given by

Xt():ht<) «(v)
n(w) = w)+ >, T goi (o =i = 1) pa(w - k)

with the above series converging almost surely (a.s.). Moreover, the solution

(4.6)

process 1s unique and periodically ergodic.
Conversely, if v, > 0, there is no a SPS solution (Xy, hy),., to model (4.2).
More precisely hy — +00, a.s. ast — +oo whenevery; > 0, otherwise hy — +00

in probability as t — +oo.

Proof. The proof rests classically by Theorem 1 of Brandt [17] and Theorem
1.1 of Bougerol and Picard [16] using (4.4). =

Remark 2 The condition E {log{g, (¢ (v))}} <0 forallv =1, ..., s (local sta-
tionarity) implies the existence of SPS solution for Model (4.2). The converse is
not true, i.e., the Condition (4.5) (global stationarity ) does not entail local sta-

tionarity of all regimes. This mean that the existence of some explosive regimes
(i.e., E{log{g, (% (v))}} > 0) does not preclude the existence of SPS solution.

Remark 3 For the PARCH (1) model, we obtain

= E{log{[]_ aweéw}}

and hence v;, < 0 if and only if [[)_, a(v) < exp{—sE {loged}}.
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In order to make an estimation theory possible, the process solution need
to have some moments. For instance, though the Criterion (4.5) could be used
as a sufficient condition ensuring the finiteness of £ {X?"} for some r € ]0,1]
(cf. Aknouche and Bibi [2]), it is of little use in practice, and it may have
importance from theoretical point of view. Therefore, we have to search for
conditions based on parameters of model ensuring the existence of second order
moments for the strict stationary solution. Under such conditions (X;),., is
called periodically correlated (PC') process characterized by E{X;} = E{ X5}
and Cov (X1, Xpps) = Cov (X4, X)) for all t,r € Z.

Theorem 4 Let (X, hy)
Then

1. if

ez be the PGARCH (1,1) process defined by (4.2).

Ay = E{G)} =] _ () +B() < 1. (4.7)
the PGARCH (1,1) model (4.2) has an unique, PC, causal, periodically
ergodic solution given by (4.6) in which the series converges a.s. and in
Ly. Moreover, the solution process is SPS and satisfies E{X;} = 0 and
Cov (X, X)) =0 for allt #r.

2. Conversely, if \qy > 1, then there is no a SPS solution (X, hi),c, to
model (4.2) such that E{X?} < co.

Proof. The proof follows essentially the same arguments as in Bibi and
Aknouche [9]. m

Remark 5 Since the Conditions (4.5) and (4.7) are necessary and sufficient, we
have necessarily [A1y < 1] = [y, < 0].

Remark 6 If eg has a positive and continuous density g, then under the Condi-
tion (4.7) the process (Xi, ht),oq is geometrically ergodic (cf. Bibi and Aknouche
[8]) and if it is initialized from its SPS distribution, then the process (X, hi),cq,
is f—mixing with the S—mizing coefficient satisfy B, < cp*, k € Z, for some
constants 0 < p <1 and c > 0.

The third exploration of the Representation (4.4) is for the existence of higher-

order moments.

Theorem 7 Let (Xy,h;),., be the PGARCH (1,1) process defined by (4.2) and
assume that rk,, = E{ef"} < +oo, for some integer m € [1,00[. Then the

following statements are equivalent
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1. E{X?"} < +0
2. Ao = E{GM )} = [ E{e@e+50)"} <1

Proof. The proof follows by induction using the development
m m(, 2\ 7m m (2 m—1 m! m—L( 2\l (2 m—~{
7= G™Me) 2 + €M (&) +Z£:1 mG (€)&" (ef) 27 m > 1.
n
We conclude this section with a periodic ARM A representation of the pro-
cess (X}),, which will be used in the next section. For this purpose assume that
(X, h),eq is @ SPS process and defining the martingale difference sequence 7, :=
h? (e? — 1), so we have the following periodic ARM A (1,1) (PARMA (1,1)) rep-

resentation

Xi () = w(v) + (a(v) + B () X (v=1) +1, (v) = B(v)m, (v—1).  (4.8)

The PARM A models are not only of interest in their own right, but, because of
their connection with multivariate stationary ARM A models. Indeed, by stack
the s regimes in vector X? := (X2(1),..., X?(s)) the Equation (4.8) has the
s—variate ARM A (1,1) representation

Ao X} = w+ A X7 | + B, + B, (4.9)

where (nt> is the vector of innovation process containing the stacked 7,
tez

variables. The precise expressions of the s x s matrices (A;)o<;<; and (Bi)jc;<
can be found in Bibi and Lescheb [10]. The VARM A (1, 1) Model (4.9) is causal
(and hence stationary) provided that

det (A9 — Ay12) # 0 for all complex z satisfying |z| < 1. (4.10)

It is straightforward to verify that the causality condition (4.10) reduce to
(4.7).  Furthermore, the process (Xi,h),., is said to be periodically integ-
rated (/PGARCH (1,1)) when H;l (a(i) + 5(i)) = 1. The latter include the
usual /IGARCH (1,1) process « (i) + B(i) = 1 for all i nested within general
IPGARCH process. It is worth noting here that the IGARC'H models can
be strictly stationary (unlike to ARIM A models) and geometrically f—mixing

processes (cf. Meitz and Saikonnen [38]). Since, from (4.9) we have

AX7 = X7 - X7 = Ag'w+TIX7 | + Ag' Bon, + Ay ' B,
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where IT = Ay ' (A; — Ag). Then, periodic stationarity implies that A; — 4 and
hence II is non singular. Periodic integration, on the other hand, implies that
rank (IT) = s — 1 so that (&f)tez is cointegrated of order (1,1). Hence, the
associated PARM A (1, 1) with the parametrization 5 (v) =1 —« (v) for all v is
an PARIMA(1,1,1)

AX7 = Ay'w+ Ay Bon, + Ayt B, (4.11)

showing that (i f) ez
For the theoretical development, (A& f) 1eg, Must be a weak stationary process
1z, does not. In spite of the right side in (4.11)
is a moving average, we cannot conclude anything about the weak stationar-
ity (even in the Gaussian strong I[PGARCH) of (AX7) 1oz that requires that

lim; o £ {n§|%§i)l} < 400 (See Kim and Linton [31] for further discussion).

is an integrated process with moving average error term.

even when the process (K f)

4.3 Asymptotic properties of empirical mean

and covariance of squared process

In this section, we are concerned with the problem of asymptotic behavior of em-

pirical mean and covariance of (X7),., which are needs laters. Let {X7,..., X2}

be a realization of length n = sN of the unique PC solution for the Equation

(4.8), or equivalently a realization {X 2 X %v} from a second order station-

ary process (X7),., defined by (4.9). Let uy(v) = E{X}?(v)} and 7,(h) =

Cov(X2(v), X?(v — h)) be the season v means and covariances functions at
1 N—-1

lag h > 0 and their samples estimates ji, (v) := % >, X7 (v) and 7,(h) :=

LSV VX2 (0) X2 (v — h) =iy (v) iy (v — h). Define the vectors fiy := (jiy(1)), ...
B (), 2 = (ia(D)se s () A(R) = (), e Au(R)) and A(R) =
(7,(R), ...,7,(h)). Noting that the dependence of the above estimates on N is
generally suppressed hereafter for notational convenience. The following results

characterize the asymptotic behavior of the empirical mean ji, (v).

Proposition 8 Consider the PARM A (1,1) representation (4.8) of PGARCH
(1, 1) Model (4.2) and let (X?);cz be the associated VARMA Representation
(4.9). Under the Conditions of Theorem 7 and if (X?);cz admits a moments up
to 2 — th order, then for each v,v" € {1, ..., s}

1. fiy (V) converges to i, (V) a.s. as N — oc.
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2. lim NCov (fig (V) , fiz (V') = (Vas)yor = Dpez Yor (V' — v + sk) where Vi =
> ohez Cov (lz??l?fh)

3. lim E{j, (v) = py (U>}2 =0

N—o0

4. The vector VN <_,&2 — E2> converges in distribution to N (0, V,s).

Proof. Since (X?);cz is stationary and ergodic process, then the almost
surely convergence is immediate. On the other hand, since

. ~ ~ / 3 h
lim NCou(jiy (v), fi5 (V")) = lim Z|h|<N (1 - %) (Cov (K?,X?—h))mﬂ ;

N—oo N—oo

then using the dominated convergence theorem, the second and the third as-
sertions follows. To show the Assertion 4 it is not difficult to see from (4.9)
that

X7 - p, =U, + W, (4.12)

where for any integer m > 1, U, = ZZL:O <I>’“Agl <Boﬂtfk + Blﬂtik71>7 W, =
1% — . — A N—-1
S @A (Bon,_, + Bin,_,_,) with @ = A7'A;. Let @ = & SN0,
and 2 = ﬁZﬁBlm, then vV N (_ﬂQ — Hz) = Q + E Since (Uy),cq is an
(m 4+ 1) —dependent stationary process and Var(ﬁ) tends to 0 as m — oo uni-

formly in NV, and hence E converges in distribution to 0 as m — oo uniformly in
N, then, the asymptotic distribution of v/ N (22 — H2> is the same as that of Q
Moreover, for m fixed Q ~ N(0,V) where V := 31" Cov (U,,U,_,,) (see
Jiming [29], Chapter 8). As m — oo, U, converges to X? in probability and V/
converge to Vo, := >, , Cov (X7, X7 ;) <co. m

Similar results can be addressed for the empirical covariance function 7, (h).

Proposition 9 Consider the PARM A (1,1) Representation (4.8) of
PGARCH (1,1) model (4.2) and let (X?),cz be the associated VARM A Version
(4.9). Under the Conditions of Theorem 7 and if (X?);cz admits a moments up
to 4 — th order then for any h > 0 and for each v,v" € {1, ..., s}

1. 4,(h) converges a.s. to v,(h) as N — oo

2. lim NCou(F,(h) ,7,(k) ) = (Was(h, k)), ., where

N—oo v

Was (h k) i= ez Cov (X7 © X7 (h), X, © X7 (k)

3. A}im E{7,(h) —~,(h) }> =0 forallv e {1,..., s}
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4. The vector \/N(/j(h) — 7(h)) converges in distribution to N (0, Wes(h)),
where Wys(h) := Wys(h, h).

Proof. For any integer h > 0, we rewrite the vector 7(h) as J(h) =
LN XX (h) i, O, (h) where XF(h) == (X? (1 — h), ..., X?(s — h)) and
H,(h) its sample estimate. By the ergodicity, the first, second and third asser-
tions follows. Since p, © p,(h) = —y(h)+E {X? ® X7(h)}, then the asymptotic

distribution of v N (3(h) — y(h)) is the same as that of

%W S (X o XA - E{X} 0 X3(h)) (4.13)

Simple computation using (4.12) shows that the asymptotic distribution of (4.13)

is the same as that of

\/% {ZN_l (U, ©U,(h) — E{U, 0 U,(h)})}

t=0

as m — oo. Now, for any s x 1 vectors A let P(h) = \/Lﬁzlf\;l}/t(h) where
Yi(h) == XN (U, 0U,(h) — E{U, ®U,(h)}). Clearly (Y;(h)),., is also a station-
ary (m + 1)-dependent process with E {Y;(h)Y;_r(h)} = X Wi(h)A < +00 where
Wi, (h) :== Cov (U, ©® Uy(h),U,_ ® U;_(h)). Therefore, we have

= 2o Yi(h) ~ N (0, XYW (B)A) where W (h) := 3 | Wi(h). As m — oo,
W (h) converges to W, (h) = >, ., Cov (X7 ® X7(h), X7 , © X; ,(h)) hence
the proof follows. m

Remark 10 The asymptotic distribution of 7,(h) has been examined by many
authors (see for instance [39] for an extensive discussion of this problem) without

requiring the 8th moment but the limit distribution is not Gaussian.

4.4 Yule-Walker estimation in PGARCH (1,1) pro-

cesses and its asymptotic properties

One of the most commonly used estimation procedures for PGARC H models is
the QM LE approach. (see for the instance [2]). In this approach, the estimator is
obtained as a minimizer of a Gaussian likelihood function. However, and in spite
of its strongly consistency and its asymptotic normality, this estimator does not
admit a closed-form expression. The main aim of this paper is thus to propose an
estimator of PGARCH (1,1) based on the Yule-Walker equations of PARM A

representation (4.8) which has a closed-form expression, computationally easy
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and which, compares favourably with the QM LE and also with LSE (see [32]).
As is well established in PARM A models (see Lund and Basawa [35]), the em-
pirical covariances of the process can be used to obtain Yule-Walker type estim-
ator for the parameter § = (8'(1),...,0'(s))" where 8(v) = (a (v), 3 (v),w (v)),

v =1,...,s. Indeed, considering the centered squared process

X20) — 1y(0) = (@(v) + B (1) (X2(0 — 1) — pig(v — 1) +7,(0) — B (0) my(0—1),

(4.14)
and assume that F {X}'} < oo. Conditions for the existence of moments are
given in Theorem 7. Set o7 (v) = Var {1, (v)} and noting that £ {X?(v)n, (v)} =
on(v), E{X}(v)n, (v —1)} = a(v)oy(v — 1) and E{X?(v = h)n, (v)} = 0 for
all h > 0. Then, by multiplying both sides of Equation (4.14) with XZ?(v — h),

h > 0 and computing the expectations, we obtain the following identities

1(0) = (a(v) + B (V) 7,(1) = o3(v) — a(v)B (v) oy(v — 1)
Y1) = (a(v) + B () 7,4(0) = =B (v)oy(v—1),
Yo(h) = ((v) + 5 (V) yya(h=1) = 0,h=2.

Elimination of ¢2(.) gives the equations

7,(2)

vfl(l)
T ) + B(0) 1) = 7 (0) (4.15)

~ 7)) = (@) + B () 7,1 (0)

a(v)+ 6 (v) =

f4(v) . 4 .
—————— with pu,(v) = E{X}(v)}. Now, setting
#4(1) _ 1) 4( ) { t ( >}

Bw)+B87" (v) 7 (v) = & (v) where § (v) = (a(v) + B (v)) + (B (V)7 (U) — a(v)),
then we have 8%(v) — d (v) B(v) + 7 (v) = 0. Hence, if 6 (v) > 24/ (v) we set

where 7 (v) =

pl) = T JTO) g (4.16)

so that 0 < S(v) and [[’_, B(v) < 1 (which corresponding to the invertibil-
ity condition of the PARMA (1,1) model) because (4.7). The above expres-

sions can now be used to obtain estimators of the parameter 6(v). First, we

can estimate a(v) + 3 (v) by (a(v )—i—ﬁ( ) = V%i?i) and p,(v) by fiu(v) =

~ e +- Second, substituting these estimators into (4.15), (4.16), we

. - (a(v) + B (v)7u(1) = 7u(0)
obtain (a(v) — 7 (v) 7 (v)) = " and
( ) 7o(1) = ((v) + 5 (v))7,-1(0)
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Blv) = %) — /20 2 ()
a(v) == (a(vﬂ\ﬂ(vw(v) (4.17)
W(v) := Hy(v) = (a(v) + B (v))Hz(v — 1).

As already mentioned by Kristensen and Linton [32], this method may lead to
(a(vﬁ—\ﬁ (v)) < 0or (a(vﬁ\ﬂ(v)) >1,v € {l,...,s}. However, the estimators
can be censored at zero and one or at € and 1 — € for small positive e.

In order to derive the a,sxmptotic properties of our estimators
E(’U) = (a (v) ,B(v),@(v)) and to construct confidence intervalls for 0, we

assume that

Al. (Xy),., is a SPS process and A(g) 1= Hs

=1

E {(a (i) €2 + 5@))2} <1

A2y =[] _E {(a (i) €2 +B(i))4} <1

1=

As already seen in Theorem 7, the moment condition in A1 is necessary and
sufficient for the PGARCH model (4.2) to have a SPS solution with a 4th
order moment (this rules out mildly the /PGARCH models). The moment
condition in A2 is imposed in order that \/NE(U) is asymptotically normal
distributed.

Lemme 11 Consider the PARM A representation (4.8) of the PGARC H model
(4.2) and let (X?)iez be the associated vectorial representation satisfying (4.9).
Then, under A1-A2 we have for each v € {1, ..., s}

1. The estimator E(v) of 0(v) is strongly consistent.

2. \/N(E(U) —Q(U)) ~ N (0,%,5 () where (if Yus (V) is positive definite)
Sas (V) 1= A(V)B(0)Sas(v) B (v) A’ (V) with

1 00
20 7.0
PO T W) - ) |
— iy (U —2) 01
l—a(v) —a(v) 0
Alw) : = a(v) a(v) 0
0 0 1
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and £ (v) = B {(n, (v) = B.(0)m, (v — 1)) Z, () Zy(v) } where

Zy(v) =
(XP(v—=2) = py (v =2))
Yo—1 (1)
X7 (v) =y (v) = (a (v) = B~ (V)7 (v) (XF (v = 1) = py (v — 1))
Yo (1) = (@ (v) + B(v)) 7,—1 (0)
1
1 Bw)+ 57" (v) 7 (v)
a(v) = 5 - =
4\/<5<v> Al CLIC)

Proof. The strong consistency follows from Propositions 8 and 9. To show
the asymptotic normality we use the same approach as Maercker and Moser [36].
We split the proof in two steps, in the first step, we will prove joint asymptotic

normality of

30
(a() +5(w) = =27
T L (e +BE) AW =30
(@) =570 = 5 0 = a0) + B F, A 0)
B) = filv) — (alv) + 8 () fis(v — 1)

From (4.14) we have

VN (@(v) = w(v))
= VN (jiy(v) = iz () = (@(v) + 5 (1)) (i (v = 1) = i (v = 1))
1 N-1
= U >, () =B @)nw-1).
Furthermore
VN () + B @) ~ (a(v) + 8 (1))
. /'?;il(l) N-1 2 N
= N > Xiw-2)
X (X7 (0) = Tz (v) = (a(v) + B (v)) (XP(v = 1) = iy (v—1)))

\/N —
< (n0) =s@une-0- 5 T 0w - 500 -1)
Yo (1)
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In a similar way we get

5(1) ~ (0(0) + 8 () F,1(0) = 5 o (n(w) = B W) mi(v 1)
< (K20 —1) = iy (v = 1))
.0 - (o (v)+6( DEAG
= —Zto n(v) = B () n,(v = 1) (XP(v) = Tiy (1))
and therefore
3,(0) = (a(v) + B ) A,(1) — (F,(1) — (a(v) + 5 (1)
<5, 1(0) (a(v) = 57 () 7 ()
= =3 )~ s W)m(o 1)
< (X20) =71y () = (alv) = 7 () 7 () (K20 = 1) = iy (v — 1)

we conclude that
VF ((00) =570 7 (0) - (ale) = 57 ()7 (1)

= () = (@) +B0)F,0) " =30 () = 8w - 1)
(X20) ~ iz (v) — (alv) = 37 (0) 7 (1) (K20 = 1) = i3 (v — 1))

By ergodicity, we have almost surely 1, (v), 1, (v) and 7, (.) converges to p, (v),

g (V) and v, (.) respectively. In order to prove

VN ((@@)+ B (0) = (a(v) + B (v),
(@l0) = 5T ()7 () = () = 57 ()7 () 50) ~ (o) ) =~ N (0,8 (0)

it is therfore sufficient to show that for any \e R?

\/—% i (V) = B (@) (v = D) NZ,@0) = N (0,XT0(0)2)  (418)

using the Cramer-Wold device and an application of the C LT for martingale
difference (see [29]) now gives (4.18). The next step we note

= ( (a(v) +BW)) fia (v = 1),
(a(v) - 1<v>w<>>—<a<v>—ﬁ*<v>w<v>)

B (av)+6 (a(v) + 8(v))) (32 (1) = Fuea (07, (0))
(1) = (@) +B@)F01(0)) Gul1) = (alv) + B () 5,4(0))
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Hence, the ergodic theorem and Slutsky’s theorem 1mphes

m(((Hﬂ()) (a(v) + B (v)), (alv) = B~ B () w (v))
— (o) = B (W) 7 (1)), B(v) — w(v)) wN(O B(0)Ses(v)B (U)'). Since
(a(v),B(©),w () = Trw) (a (W) + B (), 7 (v)7 (v) = a(v),w (V) where

tty (:c+y)2_
2 4
T7r (iL’,y,Z) = x+y (ZE'—Fy)Q ’
2 4
z

xr —

then by application of the delta method, the result follows. =

Theorem 12 Consider the PGARCH (1,1) Model (4.2) and let (X?)iez be the
associated V ARM A Representation (4.8). Then, under A1-A2 /N (E - Q) ~o
N (0, Sas (8)) where Sos (0) := A(0)B(0)S0s(0)B' () A'(6) with Sas (6) (respect-
ively A(0) and B(0))) is 3s x 3s symmetric covariance diagonal bloc matrices
with the v-th bloc being Sqs (V) (respectively A (v) and B (v)).

Proof. The proof follows essentially from the vectorial representation of
@ (v) — Q(U)) and the Lemma 11. =
1<v<s
Remark 13 The fact that the matrices A(0), B(0), and Sq(0) are s—block
diagonal implies the asymptotic independence of the estimates for each regime
1 <wv <s. This is not surprising result in periodic time-varying models as in
PARM A processes.

Remark 14 For the Gaussian PARM A models, it is well known that the Yule-
Walker estimates are asymptotically most efficient, because their asymptotic
covariance matrices are the inverse of the corresponding Fisher information
matrices. In PGARCH models, this property is not true, in spite of that, the
last admits a PARM A representation, this is due to Heteroscedasticity of the

process.

4.4.1 The Wald test statistic

As an application of Theorem 12, we consider the problem of testing a null
hypothesis H0 against an alternative hypothesis H1 of the form HO : R0 = 0,,

H1: RO # 6, where R is a given r x 3s matrix of rank r < 3s, and 6, is a given
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r X 1 vector. Under the null hypothesis HO and the conditions of Theorem 12,
VN (R/Q\ — Qo) ~ N (0, R¥,5(0)R") and if the matrix ¥ (

the asymptotic variance matrix involved is nonsingular and thus we have

6) is nonsingular then

Theorem 15 Under the conditions of Theorem 12, the additional condition that
Yas (0) is nonsingular with R of rank r, then under HO

W (0) =N (R0~ 0)) (RSu@R)™" (RE—0,) =3y (419)

On the other hand, under the alternative hypothesis H1 we have in probability
W (8 _
lim WTL) = (RO —0,) (RX4s (0) R) ! (RO —0,) > 0. (4.20)

N—o0

We first note that the statistics W (0) and W @) have asymptotically the same

distribution as N — oo i.e., W @) ~ X%T). Now, the statistic W@) is
the test statistic of the Wald test of the null hypothesis H0O. Given the size
a € ]0,1[, choose a critical value (3, so that under the null hypothesis HO,

P <W @) > ﬁ) — «. Then the null hypothesis is accepted if W @) <p
and rejected in favor of the alternative hypothesis if W (E) > 3. This test
is consistent due to (4.20). In the case when R is a raw vector, so §, is
a scalar, we can modify (4.19) to ¢ = VN (R s (@) R’) o (RE—QO) SO
t s N (0,1), whereas under the alternative hypothesis H1 we have in probab-

t
ility ]\}im i — (R4, (0) R))"? (RO — 0,) # 0. These results can be used to

construct a two-sided or a one sided tests.

4.5 Numerical illustrations and bootstrap com-

parison

In this section, we examine the performance of the finite sample properties of
the Yule-Walker type estimators by comparing it with the LS FE using the Monte
Carlo study.

1. First, we simulate a periodic GARCH(1,1) process with period s = 2 given
by (4.2) where (e¢),., is an i.i.d. Gaussian process with zero mean and
variance 02 = 1 for four different sets of parameter values. For each

choice of parameter values, we simulate 1000 data sets with length N €
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{1000, 1500,2000}. For each trajectory, 6 has been estimated by Yule-
~ ~(LS
Walker Q(YW) and by the least squares Q(L ) methods. Replacing the un-

known parameters by their estimates, we obtain an estimate Ss (v) for
Yas (), v €{1,...;s}. We denote by

\/ ~(YW) 1 SOYW) .
Var,(6 v)); = — <Ea3 U) 1=1,2,3

@ wyi= o= ).
the estimate of the standard deviation of (6 (v));. In order to demon-
strate that this estimate, although based on the asymptotic theory, can
be successfully applied to finite samples of reasonable size, the mean of

Varas((b\(yw)

(v)); over 1000 simulations has been compared with the mean

N 2
W (v))l) over 1000 simulations, denoted by MSEMWY),

of ((0(v))i — @
Now, let us consider the hypothesis Héi) (v,0") = (B(v)), = (8(V)), for

v,v" € {1,..,s} and i = 1,2,3. Then, if a Wald test is used, the hypothesis

Hy (v,2') is rejected when

N ((E(YW)<U))1‘ B @(YW) (U/))i)Z <R2as <§(YW)> R’) -1

is greater than 95% quantile of x? distribution. Similar notations for the
S)

least squares estimate E(L .

2. Once the parameter 6 is estimated, we naturally want to know how efficient it
is as an estimator of #. For this purpose, the so-called residuals bootstrap
method (see [45]) can be used as an alternative to the conventional method
of finding sampling distribution. The residuals bootstrap replicates can be
obtained (briefly) from the following. Define the residual

& (v) = Xi(V) na 12 (v) == &) + a(v) X2 (v — 1) + B(V)h2(v — 1),

ht (U

t=1,...,N,u=1,..,s and let ¢, be the standardized version of ¢; such

S N-1

> ¢ =0and 1 > € =1. Now wedraw ¢}, t = 1,..., N with
=0 =0

replacement from e; and define

1
that N

X (v) = by (v) € (v) and B () == B(v)+@(0) X (v=1)+ (V) (v-1),

t =1,..., N with starting values X/ (1) = h} (1) = ¢; (1). Noting here that
the choice of initial values does not matter for the asymptotic properties.

However, it may have importance from a practical point of view. Once
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we have the bootstrap replicate, we need to estimate its parameter E =
</Q\/ (1),..., /Q\/ (s))l by Yule-Walker estimator 6 as solution to the moment-
type equations (4.17). We repeat the simulation process several L—times
to estimate the distribution of @B. For the purpose of comparison, the
columns of the next tables have been bisected. Hence, the column E(YW)
corresponds to the Yule-Walker inference results, the next corresponds to
the bootstrap inference results. For purpose of comparison with the least

squares estimate, we have executed the same procedure.

Table 1 (respectively 2 and 3) reports the squared biais (respectively variance
and MSE ) of W) and 9% over N simulations and the bootstrap approx-
imation ESBYW) and ESBLS) over 1000 replications. The results reported in Tables
1,2 and 3 are in accordance with the asymptotic theory. It is clear that the
bootstrap estimates /égw) and /Q\SBLS) are very close to the corresponding estim-
ates E(YW) and /Q\(LS) and the MSEYY) and MSE® is almost equal to the
bootstrap estimate M SEfBYW) and M SEJ(BLS). It is worth noting that the LSE
clearly outperforms the YW estimator, indeed, Table 2 shows that M SE(%) and
MSEL®) are smaller than MSEY™) and MSEY ™) respectively. The asymp-
totic validity for the bootstrap can also be verified numerically by looking at
how the approximate distribution N @B — @) behaves for the bootstrap es-
timates. The x? test supports the observation that the bootstrap histograms are
normally distributed. This result shows numerically that the bootstrap method

is asymptotically valid for the Yule-Walker
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Chapter 5

The LAN properities for PARCH

processes

Abstract: In this chapter, we continue to investigate in asymptotic
inference for PARCH processes by considering the asymptotic effi-
ciency of the conditional least squares (C'LS) estimators based on
LAN approach.

5.1 Introduction

We consider a time series (e,t € Z ={0,£1,£2,...}) exhibiting changes in re-
gimes at known dates. Suppose that we have s regimes. Let s,, := ZS: VA (1)
where Ix denotes the indicator function of a set A and A(v) := {nTle st + v}
be the regime corresponding to index n, so s, = v when the time series is in

regime v at time n for v = 1,...,s. Given s,, it is supposed that the dynamics

in each regime can be described by an ARCH (q) equation. Thus we have

q
€n = \/ hnen, and h,, = w (s,) + Zai (5,)€2 ., n € Z. (5.1)
=1

where (e,,n € Z) is a sequence of independent and identically distributed (i.7.d.)
random variables defined on a probability space (Q2,.A, P) such that E {e,} =
0,E{e2} =1 and e, is independent of ¢, for all k¥ > n. The functions w (s,)

and «; (s,) are such that w (s,) > 0,; (s,) > 0,i = 1,...,q, for all n € Z. By
setting n = st + v, Model (5.1) may be equivalently written as

q
€strv = \/ PstrvCstro and gy, = w(v) + Z ai(v)eit%_i, teZ (5.2)
i=1

o8
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highlighting thus the periodicity in the model which we will make heavy use of

(5.2). It is easy to write Model (5.1) in term of the squared process as follows

q
e =w(s,) e+ Z ; (sn) €262, (5.3)
i=1
which is ready to be cast in a first-order stochastic recurrence equation with

random coefficients. Indeed, defining the g-random vectors ¢, = (ei, e ei_q +1)/

!/

and b(s,) = (w (sn) ei,_(q_l)xl)/ together with the ¢ x ¢ random matrix A (s,)
given by

As,) = a1 (8,) €2 ag (sn) €2 .. a1 (sn)e: ay(s,)e?
T(g-1)x(q-1) Q(q—1)><1

one can rewrite Model (5.3) in the following generalized AR model
[ A (Sn) €n—1 + Z—)(Sn)

which differs from the standard formulation studied by Bougerol and Picard [16]
in that the coefficients (A (s,),b(s,)) are rather independent and periodically
distributed (i.p.d.). It is well known, that with periodic coefficients, it is possible
to embed seasons into a multivariate stationary process (see Bibi and Aknouche
[9]). More precisely, Y, = (€,,,1, €. 2, ...,§;t+5)l is a VRCA (1) process of the
form

Y, = Ctxtfl + B, teZ (5'4)
where C} and B, are defined by blocks as

Ogxq "+ Ogxq A(st +1)
Ogxq -+ Ogxq A(st+2)A(st+1)
Cy = ) ) ) . :
s—1
Ogxqg -+ Ogxq T[1A(st+s—0)
v=0 qsxqs
b(st+1)
A(st+2)b(st + 1) + b(st + 2)
Et =
s s—k—1
Z{ IT A(st+s—v)}l_)(st+k)
k=1 v=0 gsx1

However, Equation (5.2) has a periodically strictly stationary (SP.S) solution in
L, if and only if (5.4) has strictly stationary solution in L;. Bibi and Aknouche
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[8] have been analyzed the probabilistic properties of P —GARC H process, such
as geometric ergodicity and the strong mixing.These concepts are fundamental
in central limit theorem and in the law of large numbers, which can be employed
to derive asymptotic normality, consistency of maximum likelihood estimator
and inference with the model. The key conditions of interest in determining the

geometric ergodicity are summarized in the following assumption

A. p (H Av> < 1 where p(M) represents the maximum modulus of the eigen-
v=1

values of a squared matrix M.

B. the variable e; has a positive density f absolutely continuous with respect

to the Lebesgue measure on (R, Bg) .

The Assumption A., ensures the causality of the process (¢?,¢ € Z). Moreover,
the solution process is unique, SP.S, periodically ergodic (see [9]) and with peri-
odic correlated (PC) structure in the sence that Cov (€45, €x1s) = Cov (€, €x)
for all integer [, k. Hence, for P — ARCH(1), the above condition reduce to

S
[T a1(v) < 1. It is worth noting that the existence of explosive regimes (i.e.,
v=1

a (v) > 1) does not preclude the periodic second order stationarity of (e;, t € Z).
When associated with B., Bibi and Aknouche [8] have showed that the process
(Y,,t € Z) defined by (5.4) is geometrically ergodic, and if initialized from its in-
variant measure, (Y,,t € Z) is strictly stationary and S-mixing with exponential

decay.

5.2 Conditional least squares estimator and ef-

ficiency

Let 0 = (6,05, ...,0.) where 0, = (w(i), a1(4), ..., a,(i))', i = 1,..., s, be the para-
meter vector which is supposed to belong to a compact space © C (}0, +oo[2q)5.
The true parameter value is unknown and is denoted by §° = (Q(l)', Qg', - QS'),
with 09 = (w°(i), ad(i), ...,al(i))". Let {e1, €2 ..., €x} be a realization of length
n = Ns of the unique, causal and periodically strictly stationary solution (&, t € Z)

to Model (5.2) with true parameter §° € O, i.e., €51y = \/hstsvCsirs and

q
hatpn = w’ () + Y Al (V)€ s,y = Z;(0)6) (5.5)
=1
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where Z,(v) = (1, €%, 1, ..., €§t+u—q>/ ,v =1, ..., s. Beginning this section with a
weak vectorial ARC H representation of the square process (€2,¢ € Z) which will
be used frequently in the sequel. Set €7 = (eitﬂ, s e§t+s),, e = (€§t+17 s e§t+s)/
and h; = (hgy1,..., hays) then we have ¢ = diag {h,} €. Defining F, as the
o—field generated by {¢,_;,i >0} we note E{€|F_1} = diag{h}1 = Z}0
where 1 := (1,...,1)" € R, Z! := diag {Z}(1), ..., Z}(s)}. Conditionally on some
initial values properly chosen, the C'LS estimator ES ° of 6° based on the

square-transformed variables €] _, ..., €, €], ..., €, is any measurable solution of

5 Cp

~CLS P
8, = ArgminQ, (0)

T

where

n

Qn(0) = Z (¢ - F {§?|-7:t—1})l (¢ — E{&/|Fi-1})

t=1
n

— N (@) (€ - Z0).

t=1

From the linear regression theory it is easily verified that

n -1 5

~CLS

0, = (Z th;> >z (5.6)
t=1 t=1

Remark 1 It will be shown that the choice of the initial values does not af-
~CLS
fect the asymtotic results regarding 8, . Hence, in practice, the initial values

{€1-¢»---s €0} can be chosen as €;_, = ... = ¢y = 0.

~CLS
In order to derive the asymptotic behavior of 6, , we need the following as-

sumption.
4
C. E{||§t|| } < 0.

The Assumption C., ensures the existence of the finiteness of the fourth-order
moment for the solution of Equations (5.2). Noting here that in P — GARCH
model, a necessary and sufficient condition for the existence of the fourth-order

moment has been established by Bibi and Aknouche [9]. In particular for
P — ARCH (q), the condition p <{ [T E{A®%(st + v)}}) < 1 implies that
v=1

E{e}} < +00. The following lemma gives the strong consistency and the limit
~CL
distribution of 0,



5. The LAN properities for PARCH processes 62

Lemme 2 Under Assumption C., we have

~CLS
1. almost surely 0, —0 asn — +oo.

2. v (8,7 —0") ~ N (007 ()T (6°) 07 (¢°)) where 9 (¢°) and T (")

are block matrices given by

9) = -3 e Z0)Z0)

s

o 1 8hst+v ahstJrv 0
- L {5 )

1 !/ !
I(@) = -Y Ep{(cd-1) (Z08) Z()Z0)}
v=1
_ l - 4 2 ahst+v 8h3t+v 0
_ S;Eeo{(eo 1) By Tt (Q)}

Proof.

1. The result follows from Equation (5.6) and the ergodic theorem.

2. Note that

N-1
Consider —= ;) Gy where Gy == =3 Z,(v) (4, — Z,(v)8,) is the

= v=1
v — th component of Z; (¢2 — Z}0) which is a stationary ergodic zero mean

martingale difference with
Varg (@) = 25 Ep{Z, (0) 2. (v) (&, — Z(0)0,)°
arg (Gy) = Z 0 1< (v) Zi (v) <€st+v t(v)—v)

IS B {202 0) (200 (- 1))

s

- YR {2020 00 (e 1)

S
v=1

Applying the central limit theorem for stationary ergodic martingale differ-

ence (see [12]) and the Gramer-Wold device we find that \/Lﬁ S Z (62— Z,0)
=1
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~ N (Q,I (QO)). Furthermore, by ergodic theorem, we have almost surely

L3 7,7 — 9 as n — +oo. The result follows from Slutsky’s theorem.
t=1

n

Note that the conditional least squares estimator ESLS has the following advant-
ages: (i) it is simple and has an explicit form (5.6), (ii) its construction does not
need the knowledge of innovation density f(.). However, it is not asymptotic-
ally efficient in general due to the heteroscedasticity. In this paper, based on
the LeCam [33] approach we establish the locally asymptotic normality (LAN)
theorem. This property implies the asymptotic optimality of the C'LS estim-
ator and the related statistics (see [47] and [3] for further discussions). For this

purpose, we set down the following assumption.

D. k4= E{e}} < o0.

E. The innovation density f is symmetric, twice continuously differentiable and

satisfies

(i) - 0</{f,(x)}2f(x)dx<oo,(iz’):/{f,(x)}4f(x)dx<oo,

f () f(x)
(43i) : lim 2°f (x) =0, (iv) : lim 22f" (z) = 0.

|z|—o0 |z|—00

.. . . 1 €t ..
Condit lly to F;_1, the densit f —f | —= d thus the distribu-
onditionally to F;_, the density of ¢ is \/h_tf (VE) and thus the distribu
. . .. n 1 €t
tion of (ey, ..., €,) denoted by P, g with density is dP, o := [] f )
B T =V (0) \ Ve (9)

Thus for two hypothetical values § and §° € O, the log likelihood ratio is written
dpP, n
as A, (6,0') := log 1P £ — log ®, (Q, QO) where
=1

®t (Q) QO) =
€
Vi @) | ——
()
Let ESLS =0+ % where r := (r},...,7")" with r, = (rop, ..., 7q) € REFD a

~CLS o
sequence of parameters such that §, € ©. We are now in position to state

the LAN theorem for the P — ARC H Model (5.2).
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Theorem 3 [ Local Asymptotic Normality] Suppose that Assumptions A., B.-

D., E. holds. Then we have under P, g
1. For all 9 O, the log-likelihood ratio A, (0) :== A (Q,Q + %) admits the
n

following asymptotic representation
2

log dP, gr + 0,(1)

v 1
An (0) = /n o0 log dPng — aeae’
where
o) 1l 1 f'(er) \ Ohy , 4
og 8t = a2 ht(QO){<”f< ) )09 @)

o2 1 & 1 [’ (er)
logdPog = — > 50 9 (1
ogog B = 1o ; hi (€°) {( e

2 0, (0.0,7) ~ N (=372(0),7 ).

Proof. The proof rests classically on a Taylor-series expansion of the function

A, (8,0 +1r/y/n) around 0. We have
2

1 0
log dPy,, — 6009’ log dPy 1 + 0,(1).

g(r) =

where
" {<1+f'(€t)et>%(go)}:2%

9 g P = -

90 &0 T T L, (69) Flen ™) 00 -~

2 1l &1 fled) \* 0y o\ Ol (o
el = Ga 2 (Q“){(”ﬂet)et) a0 @) 5y @)

t=1

0000’
It is easy to see that (w,,F}),.; constitutes a martingale difference sequence

Indeed, firstly we have
f (et) det

_%ié ( ) hi (6°)

—+00

! / (f (et) + f/ (et) 6t) de; =0,
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thence Ego {w;|F;—1} = 0. Applying the central limit theorem for martingale
difference (see [12]), Gramer-Wold device and Slutsky’s theorem, it follows that
A, (Q,ESLS) ~ N (—%7’2 (QO) , T2 (QO)) where 72 (QO) =T (QO) r with ' (0) is
a block diagonal matrix given by

o L - 1 f/ (est-l-v) 2 ahst—‘rv (Q) 8hst-‘,—v (Q)
)= Ep {452 2. (Freeans1) @

is block -diagonal. =

Recalling here, that an estimator En is called asymptotically efficient if its asymp-
totic variance equal to I'~! (QO). Hence if ¢t (QO) 7z (QO) 91 (QO) =I! (QO),
then ESLS is said to be asymptotically efficient. Now we state the following
theorem.

Theorem 4 Suppose that Assumptions C. and D., E. holds. Then the following

assertions hold true.
. . ~CLS . . .
1. The asymptotic variance of 0,  satisfies the inequality
VL) T () V(@) = T (@) .7

~CLS
2. 0 is asymptotically efficient if and only if

q
a. Mgy = wy + Y i(v)€2,_; = k (constant) almost surely (a.s) for all
i=1
v=1,..,s.

b. €t NN(O,l)
To prove Theorem 4, we use the following matrix inequality.

Lemme 5 Let A and B be r X m and t X m random matrices, respectively, and

h is a positive everywhere random variable. If E{BB'/h}™" eaists, then

E{AAB} > E{AB) (E { Bf/ }) T piaBy.

The equality holds if and only if there exists a constant r X t matriz C' such that
almost surely hA+ CB = O.

Now we proceed to prove theorem 4.
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ahst+v (Q) B o ahst—‘,—v (Q)

Proof. In lemma 5, let A, = and h = hitﬂ =

26, T T on,
2
<w(v) - zq: ai(v)e§t+v_i) then we have
i=1
7, (6°) = v, (€°) T,* (¢°) V. (¢°) (5.8)

where

7 (0 o 2 ahst-ﬁ-v (Q) ahst—f—v (Q)

z (Q ) o EQO {hstJr’U (Q) an aQ; )

V (QO) — Eio {ahsggv (Q) ahsé—;/f (Q) } 7
™ (n0 o 1 ahst+v (Q) 8hstJrv (Q)
Me) = B { W2, (0) 00, o0,

From Iemma 5 we can see that equality in (5.8) holds if and only if almost surely

w(v) + Z%( )€ p_; = K for all v = 1,...,s. Now we are going to prove the
mequahty (5.7). For this we use the following inequality

E {€§t+v ~1}E { (1 + %estﬂf}
= s e (v fge) |
: {< o=t (1 e )}

"(estrv
st+v - (1 + Me t+v) f (est-i-v) dest+v

(by Schwarz inequality)

v

2

f (est—f—v) °

2

est+v §t+v - f, (est—l—v) est—l—v) dest—l—v

8\%‘ 8\%‘

3
hIIl GSt—H}) <6st+v eSt-H) / f esH-ﬂ 3estJr'U - 1) deSt+v

a—00

Il
’Q,—/h\,—/h\,—/H

The equality holds if and only if there exists constant ¢ # 0 such that ¢ (egt —— 1) =
f ! (est-i-'u)

f(est v)
{ei_1, et_2,+...} so we obtain Z, (¢°) = E {e} — 1} 7, (0°) >V, (6°) Iyt (6°) Vs (6°)

1+ estrv , for all v = 1,...;s. Recalling that e; is independent of



5. The LAN properities for PARCH processes 67

which implies
T(0°) =E{c/—1}T(¢°) 2V (&)1, (") V(¢°).

The equality holds if and only if there exist constants &’ # 0 and ¢ # 0 such that

almost surely for all v =1, ..., s.

q !
Wy + § av,i€§t+v7i = k/ and ¢ (egtJrv - 1) =1 + %est+v (59)
i=1 s

From the second equation in (5.9) the solution becomes

fle) = \/127 exp (—i) (5.10)

Then the assertions of theorem 4 follow from (5.9) and (5.10). =



Chapter 6

Conclusion générale: Remaques

et quelques perspectives

Dans cette thése, nous avons essayé de "dégager le voile" sur un domaine trés
actuel dans les mathématiques empiriques et dans I’économétrie, en envisageant
une étude fidele des modeéles PGARCH proposeés par Bollerslev et Ghysels (1996)
et Franses et Paap (1999) puis popularisés récemment par Bibi et Aknouche a
travers leurs travaux sur le sujet (notons notamment Aknouche et Bibi (2009)
[2], Bibi et Aknouche (2008) [9]).

Il est utile de bien rappeler quels étaient les buts que nous nous sommes fixés
au début de cette étude. L’idée principale est de proposer une approche pour les
PGARCH qui peut étre utilisée pour estimer, modéliser, espérons-le, de man-
iere plus explicite et adéquate autre que la quasi-maximum de vraisemblance
(QMV) proposée par Aknouche et Bibi [2] tout en tenant compte de I’aspect
mathématique de notre étude. Nous avons donc pensé dans un premier temps
aux moindres carrés (non standards) et plus tard aux moindres carrés condition-
nels puis aux équations de Yule-Walker pour les PGARCH.

Nous devons néanmoins rester prudents quant & I'interprétation de la fonction
@n (/) & minimiser dans l’équation 2.7 du chapitre 2, il est claire que cette
derniére dépend de I'innovation non observable qui nous la considérons comme
un processus de nuisance. Malgré certaines réserves observées par les référés lors
de la révision du papier correspondant a ce chapitre ([10]), les résultats obtenues
sont encourageants et, semblent indiquer que I’approche que nous proposons peut
s’avérer utile (Excellent discussion sur un sujet voisin peut étre consulté dans
Francq et Zakolan [23]). Grace aux critiques fructueux des référés sur ce sujet,

nous avons pensé plus tard aux m-estimateurs conditionnels, cette approche a

68
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fait ’objet d’'une Note CRASS.

Notre contribution & 1’étude de l'identification et de l'estimation dans les
modeles PGARCH continue, cependant nous avons envisagé une étude plus
détaillée sur le modele le plus populaire: PGARCH (1,1). Dans cette classe de
modeles, nous avons considéré les équations de Yule-Walker, afin d’obtenir une
forme explicite des estimateurs. Contrairement au QMYV, la stationnarité au
second ordre (au sens périodique) jeu un role fondamental, et par conséquent,
le développement d’une théorie (ou méthodes) de 'estimation dans les modeéles
IPGARCH s’impose. La généralisation des équations de Yule-Walker dans les
PGARCH avec des ordres plus élevés mérite aussi une étude particuliére.

Enfin, de nombreux problémes sont envisageables et certainement désirables.
D’un point de vue économétrique, ’extension des modeles PGARC H aux mod-
eles GARC H a coefficients quasi-périodiques est assez directe et mériterait notre
attention. De méme, une version multivariée périodique permettrait de prendre
en compte les inter-relations dynamiques complexes serai parmi nos occupations

primordiales.
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