République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITÉ MENTOUR<mark>I-CONSTANTINE</mark> FACULTÉ DES SCIENCES EXACTES DÉPARTEMENT D<mark>E CHIMIE</mark>

Année : 2008 Série : N° d'ordre :

<u>Mémoíre</u>

PRÉSENTÉ DEVANT L'UNIVERSITÉ MENTOURI-CONSTANTINE POUR OBTENIR

Le diplôme de Magister

Spécialité : Cristallochimie.

PAR

Melle GUENIFA FATIHA

INTITULÉ

Synthèse, caractérisation par diffraction des rayons x et liaisons hydrogène de nouveaux composés hybrides à base de perchlorate.

SOUTENUE LE:

JURY:

Mr. H. MERAZIG Professeur à l'Université Mentouri-Constantine Mme. L. BENDJEDDOU Maitre de conférences à l'Université Mentouri-Constantine Mme. A. CHEROUANA Maitre de conférences à l'Université Mentouri-Constantine Mme. F. BOUDJAADA Maitre de conférences à l'Université Mentouri-Constantine Mr. M. BOUDRAA Maitre de conférences à l'Université Mentouri-Constantine Président

Rapporteur

Examinatrice

Examinatrice

Examinateur

1

DEDICACES

Je dédie ce travail :

A mes parents, qu'ils sachent combien je les aime.

A la mémoire de mon défunt frère.

A mes sœurs Fadila, Warda, Wasssila, Amel et Sara et mes frères Yahia et Noureddine, qui tout au long de mes années d'études m'ont aidée et encouragée. Trouvez dans ce travail l'expression de mon éternel amour.

A mes sœurs et mes frères, pour m'avoir soutenue moralement. Trouvez dans ce travail le témoignage de mon profond respect.

A mes très chères amies Houda, Leila, Línda, Meriem.H, Meriem.O Nabila, Naima, Naouel, Ramla, Saliha et Zahra, pour avoir toujours été à ma côté pendant ces années, pour avoir partagé mes doutes et mes espoirs.

A toute ma famille.

A toute la promotion de cristallochimie 2007.

A mon adorable et bien aimée nièce Hasna, Trouve dans ce travail l'expression de ma grande affection et mon profond amour. De tout mon cœur, Je te souhaite tout le bonheur et le succès du monde.

Remerciements

Ce travail a été effectué au Laboratoire de Chimie Moléculaire, du Contrôle de l'environnement et de Mesures Physico-chimiques (L.A.C.M.O.M) de département de chimie à l'université Mentouri-Constantine.

Je souhaite remercier tout particulièrement Mme L.BENDJEDDOU, maître de conférences à l'université Mentouri de Constantine, qui a acceptée de diriger cette thèse. Je tiens à lui témoigner ici toute ma reconnaissance pour m'avoir accordée sa confiance dans la réalisation de ce travail. Je la remercie sincèrement d'avoir inspirée cette thèse avec enthousiasme.

Je voudrais exprimer ma profonde reconnaissance à Mr. H. Merazig, professeur à l'université Mentouri Constantine, pour m'avoir accueillie dans son laboratoire et pour l'honneur qu'il me fait de présider le jury de thèse.

J'adresse également mes plus vifs remerciements à Mme F. Boudjaada., d'avoir acceptée de juger et d'examiner cette thèse.

Un merci tout particulier à Mme A. Cherouana, maître de conférences à l'université Mentouri de Constantine, pour le très grand honneur qu'elle m'a fait en jugeant ce travail.

Je remercie sincèrement Mr M. Boudraa., maître de conférences à l'université Mentouri de Constantine, d'avoir accepté de faire partie de mon jury.

Je remercie toute l'équipe du laboratoire LACMOM pour leurs aide et conseils précieux.

Mercí à Nabíla et Naouel, pour m'avoir encouragée et soutenue lorsque je ne croyais plus en mon travail.

SOMMAIRE

Introduction générale	7
Première partie	
Chapitre I : Les acides aminés.	
I- Introduction	11
II- Définition	11
III- Importance biologique	14
IV-	14
Classification	
V- Les séries D et L	15
VI- Propriétés acido-basiques	16
Chapitre II : Les liaisons hydrogène.	
I- Introduction	18
II- Définition de la liaison hydrogène	18
III- Mise en évidence de l'existence de la liaison hydrogène	18
IV-	20
Propriétés de la liaison hydrogène	
V- Exemple de molécules présentant des liaisons hydrogène	21
VI- Les différentes configurations de la liaison hydrogène	22
VII- Les différentes types de liaisons hydrogène	24

Deuxième partie

Chapitre I : Synthèse, étude structurale et liaisons hydrogène du

composé DL-asparaginium perchlorate.

$C_4H_9N_2O_3^+$. ClO_4^-

I-	Introduction	27
II-	Partie expérimentale	27
	II-1- Protonation du cation organique	28
III-	Etude cristallographique	28
IV-	Description de la structure	30
V-	Liaisons hydrogène	31
VI-	Graphes du modèle des liaisons hydrogène	35
	VI-1- Introduction	35
	VI-2- Graphes qualitatifs	35
	VI-3- Graphes quantitatifs	37
VII	- Réseau de liaison hydrogène dans la DL-asparaginium perchlorate	57
	a) Liaison hydrogène de type O-HO	57
	b) Liaison hydrogène de type N-HO	57
	c) Liaison hydrogène de type C-HO	62
VII	I- Etude comparative	65
IX-	Conclusion	70

Chapitre II : Synthèse, étude structurale et liaisons hydrogène du

composé L-histidinium perchlorate.

 $C_6H_{10}N_3O_2^+$, ClO_4^- .

I-		72
	Introduction	
II-	Partie expérimentale	72
	II-1- Protonation du cation organique	73
III	- Etude cristallographique	73

IV- Description de la structure	75
V- Liaisons hydrogène du composé L-histidinium perchlorate	76
VI- Graphes et modèle des liaisons hydrogène de la structure	80
VI-1- Graphes qualitatifs	80
VI-2- Graphes quantitatifs	81
a) Liaison hydrogène de type N-HO	81
b) Liaisons hydrogène de type C-HO	83
VII- Etude comparative	86
VIII- Conclusion	91
Conclusion générale	92
Références	93
Annexes	97
Résumé	129

Introduction générale

La chimie est la science de compréhension de la matière et sa symbolique : son langage moléculaire qui ressemble au langage des mots, constitue un passage obligé pour décrire les espèces. A tel point que l'on a pu dire que cette symbolique était, par rapport à ces espèces, ce que le solfège était à la musique. Elle se présente comme l'un des nœuds d'un réseau de connaissances comprenant la physique, la biologie, la géologie, l'écologie, les mathématiques, la médecine, l'histoire, l'économie, les sciences philosophiques, morales, religieuses et sociales.

C'est la seule discipline capable de créer ses propres objets dotés de propriétés spécifiques et de les étudier ou de les caractériser.

L'étude de la chimie vise à comprendre la matière et ses transformations. Cette compréhension passe par l'étude de la structure atomique de la matière. Une des difficultés majeures de la chimie réside dans la connexion entre le monde macroscopique de l'observation et le monde microscopique des atomes et molécules. C'est l'aspect qui distingue la chimie des autres sciences. Sans cette connexion, on ne peut pas comprendre la cohérence et l'importance de la chimie par rapport au monde réel.

La chimie organique d'hier s'étend aujourd'hui aux molécules biologiques, aux molécules inorganiques et aux macromolécules. Elle crée des édifices plus ou moins complexes jusqu'à l'élaboration d'une chimie supramoléculaire fondée sur des interactions diverses entre molécules et explique leurs propriétés.

Bien que leurs fonctions et leurs structures tridimensionnelles varient énormément, les protéines sont constituées à partir d'une même unité primaire : les acides aminés. Les protéines sont constituées d'enchaînement d'acides aminés, leur nombre est de vingt.

Les acides aminés s'unissent entre eux selon un ordre précis pour former la structure primaire de la protéine. Pour ce faire, deux acides aminés forment une liaison peptidique par condensation en reliant le groupement carboxyle de l'un avec le groupement amine de l'autre.

Les matériaux hybrides, objet de notre étude sont basés sur des molécules que l'on rencontre dans les mécanismes de la chimie de la vie et sont l'objet d'un intérêt immense **[1,2,3]**, en permettant d'allier à la fois certaines propriétés d'un matériau organique-inorganique et des propriétés de macromolécules. Cette symbiose entre deux types de chimie trop longtemps considérés comme antagonistes s'hybrident à merveille et libèrent des propriétés complètement nouvelles. Les composés hybrides jouent un rôle important dans le métabolisme cellulaire, ils interviennent dans le transfert d'énergie vu leurs richesses en interactions intermoléculaires via les liaisons hydrogène **[4].**

Dans le but de comprendre l'influence des liaisons hydrogène sur des structures cristallines complexes constituées par des composés élémentaires de l'ADN (bases azoté) et des protéines (acides aminés) associé à des acides minéraux. Des techniques de diffraction des rayons X sont utilisées pour collecter le maximum d'information sur les structures de ces complexes moléculaire. A l'heure actuelle, la structure de plus d'une centaine de complexes protéines-ADN a pu être déterminée à l'échelle atomique. Ces techniques ont permis d'étudier certaines caractéristiques essentielles des protéines telles : la chaîne apolaire, les hélices alpha et les feuillets bêta [5] où la liaison hydrogène est la plus importante interaction assurant la cohésion de ces structures [6].

La liaison hydrogène joue un rôle important dans les propriétés physiques des composés organiques (points de fusion et d'ébullition, solubilités) mais également sur leur réactivité (acidité par exemple). Elle est à l'origine de la duplication de la molécule d'ADN, acide désoxyribonucléique qui reçoit le code génétique de toutes les espèces vivantes, animales et végétales. Les liaisons hydrogène sont essentielles en biologie.

Notre travail a pour objectif la synthèse, la caractérisation par diffraction des rayons X de nouveaux composés riches en liaisons hydrogène.

Le rôle de ces liaisons hydrogène dans la détermination de l'empilement de motifs et des molécules dans les cristaux, exige la compréhension de l'association des systèmes des liaisons hydrogène, pour ce là, une méthode systématique dite la méthode des graphes établie par Bernstein et ces collaborateurs et Grell et ces collaborateurs permet de relier et corréler ces liaisons hydrogène.

Ce travail est constitué de deux parties :

- La première partie, bibliographique traite les acides aminés, leurs importances ainsi que leurs rôles dans la biologie et la liaison hydrogène.

- La deuxième partie, formée de deux chapitres est relative à la synthèse, la caractérisation par diffraction des Rayons X, ainsi que l'étude structurale et la construction des graphes du modèle des liaisons hydrogène de deux nouvelles structures à base d'acides aminés et de perchlorate, qui sont :

1. DL-asparaginium perchlorate de formule $C_4H_9N_2O_3^+$. ClO_4^-

2. L-histidinium perchlorate de formule $C_6H_{10}N_3O_2^+$, ClO_4^- . Nous terminerons ce travail par une conclusion générale.

PREMIERE PARTIE

Chapitre I Les acides aminés

I- Introduction :

La connaissance des acides aminés est importante car ils sont à la base de la construction des protéines, classe majeure parmi les macromolécules du vivant. Cependant, les propriétés individuelles peuvent être plus ou moins fortement modifiées en fonction de leur environnement. A l'extrême, les fonctions, acide carboxylique et amine portées par le carbone alpha sont presque toutes mobilisées par les liaisons peptidiques. S'il est donc essentiel de connaître le répertoire en acides aminés pour comprendre la biochimie, cette connaissance ne saurait dispenser de l'étude des nombreux cas particuliers que constituent les polymères de ces molécules, à savoir les peptides et protéines.

II- Définition :

Un acide aminé est un composé organique contenant un groupement amine (NH₂), un groupement acide carboxylique (COOH), un atome d'hydrogène et une chaîne latérale caractéristique (R). Le type (α , β , δ ,...) d'acide aminé est relié à la position de l'amine sur la chaîne carbonée. Les acides aminés qui composent les protéines sont les acides α -aminés. En effet, la fonction amine est en position α de la fonction acide. Le carbone où se rattache la fonction amine est appelé carbone α (C α) (Figure 1).

Figure 1: Structure commune à tous les acides α-aminés.

Le corps humain utilise les vingt acides aminés naturels pour construire les protéines dont il a besoin. Les acides aminés s'unissent entre eux selon un ordre précis pour former la structure primaire de la protéine. Deux acides aminés forment ainsi une liaison peptidique par condensation en reliant le groupement carboxyle de l'un avec le groupement amine de l'autre.

C'est la chaîne latérale qui donne la spécificité à chaque acide aminé. La réactivité chimique de la chaîne latérale rend uniques les forces physiques qui sont à l'œuvre entre l'acide aminé et le solvant, ainsi qu'entre l'acide aminé et d'autres acides aminés. Le groupement acide et le groupement amine ont des affinités chimiques [7].

Ces vingt acides aminés constitutifs des protéines sont codés dans l'ADN et incorporés dans la chaîne polypeptidique des protéines lors de la traduction de l'ARN. Un code de trois lettres et un code d'une lettre permettent de les nommer de façon synthétique (Tableau I).

Nom complet de l'acide Formule aminé		Code à une lettre	Code à trois lettres
Glycine	H_H_COOH 201 1 NH	G	Gly
Alanine	H ₃ ³ C ₂ C ₂ COOH NH ₂	А	Ala
Arginine	$H_2 N = \frac{NH}{7} H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2$	R	Arg
Asparagine	H ₂ 3C H COOH 4 2 NH ₂ NH ₂	Ν	Asn
Aspartate ou acide aspartique	H ₂ 3C H_COOH 4 2C 1 OH NH ₂	D	Asp
Cystéine	H ₂ 3C H_COOH HS ₄ 2 1 NH ₂	С	Cys
Glutamine	$H_2N = 5 C_4 C_4 C_4 C_4 C_4 C_4 C_4 C_4 C_4 C_4$	Q	Gln
Glutamate ou acide glutamique	HO = 5 + COOH = 0 +	Е	Glu
Histidine	H_{2} H_{2} H_{2} H_{2} H_{2} H_{3} H_{2} H_{3} H_{3	Н	His
Isoleucine	$H_{3}^{5}C_{4}^{3}C_{H}COOH$ $H_{3}^{6}C_{4}^{4}C_{H}^{5}C_{2}^{3}$ $H_{2}^{2}OOH$	Ι	Ile

Tableau I: Les vingt acides aminés et ces codes de trois lettres et d'une lettre associés

Leucine	$H_{3} \overset{H}{\overset{5}{}_{4}} H_{2} \overset{H}{_{2}} H_{2} \overset{1}{_{1}} \overset{1}{_{2}} \overset{OOH}{_{4}} H_{2} \overset{OOH}{_{4}} \overset{H}{_{2}} \overset{OOH}{_{2}} H_{2} \overset{OOH}{_{2}} \overset{H}{_{2}} \overset{OOH}{_{2}} \overset{OO}{} \overset{OOH}{_{2}} \overset{OOH}{_{2}} \overset{OOH}{_{2}} \overset{OOH}{_{2}} \overset{OOH}{_{2}} \overset{OOH}{_{2}} \overset{OOH}{_{2}} \overset{OO}{} \overset{OOH}{_{2}} \overset{OOH}{_{2}} \overset{OOH}{} \overset{OOH}{_{2}} \overset{OOH}{_{2}} \overset{OOH}{_{2}} \overset{OOH}{_{2}} \overset{OOH}{_{2}} \overset{OOH}{_{2}} \overset{OOH}{} \overset{OOH}{} \overset{OOH}{} \overset{OOH}{} \overset{OOH}{} \overset{OOH}{} OOO$	L	Leu
Lysine	$\begin{array}{c} \begin{array}{c} 7 \\ H_2 \\ N \\ 6 \\ 6 \\ -5 \\ H_2 \\ H_2 \\ H_2 \\ H_2 \\ N \\ -1 \\ N \\ N \\ -1 \\ N \\ -1 \\ N \\ -1 \\ N \\ -1 \\ -1$	K	Lys
Méthionine	$H_{3}^{6}C \xrightarrow{5} H_{2}^{4} \xrightarrow{1} COOH \\H_{2}^{6} \xrightarrow{1} H_{2}^{1} \xrightarrow{1} COOH \\H_{2}^{6} \xrightarrow{1} H_{2}^{1}$	М	Met
Phénylalanine	$H_{16}^{5} = H_{2}^{1} + H_{2}^{1} + H_{16}^{2} = H_{16}^{1} + H_{2}^{1} + H_{16}^{1} + H_{16}$	F	Phe
Proline	$H_{2}^{0} H_{2}^{0} H_{2$	Р	Pro
Sérine	H ² HO ² HO ² HO ² HO ² HO ² HO ² HO ² HO ² H ² COOH NH ₂	S	Ser
Thréonine	он H ₃ C _H ⁴ C _H ¹ COOH H ₁ C _H ² NH ₂	Т	Thr
Tryptophane	$\begin{array}{c} H & H & H_{2} & H_{2} \\ G = C^{11} & H_{2} & 1 \\ H & 10 & 12 & 4 & 3 & C_{2} \\ H & 10 & 12 & 4 & 3 & C_{2} \\ 8 & C & 7 & 6 & CH & NH_{2} \\ H & N & 5 & H \\ H & N & 5 & H \end{array}$	W	Trp
Tyrosine	$H_{C}^{6} \xrightarrow{H}_{2}^{H} \xrightarrow{H_{2}}_{3}^{1} \xrightarrow{1}_{C}^{2} \xrightarrow{H}_{OOH}$	Y	Tyr
Valine	$H_{3}^{4}C H_{1}^{2}COOH$	V	Val

III- Importance biologique :

Le rôle des acides aminés est multiple :

III-a- Structural :

Les acides aminés sont les monomères des protéines: leur nature, l'ordre dans lequel ils s'enchaînent, leurs rapports spatiaux mutuels sont les déterminants de la structure et de la fonction des protéines.

III-b- Energétique :

Les acides aminés peuvent être, comme le glucose, les acides gras et les corps cétoniques, substrats énergétiques.

III-c- Métabolique :

Les acides aminés sont des précurseurs plus ou moins directs de molécules d'intérêt biologique, leur catabolisme fournissant des atomes et groupements d'atomes utilisés lors de réactions de synthèse (exemple: histidine et histamine, aspartate ou glycocolle et synthèse des nucléotides puriques et pyrimidiques).

III-d- Fonctionnel :

Certains acides aminés ont en soi des propriétés biologiques importantes tel que la transmission de l'influx nerveux par la glutamine.

IV- Classification :

Les acides aminés protéiques peuvent être classés selon :

IV-1- Structure de la chaîne latérale R :

La chaîne latérale des acides aminés peut être soit aliphatique soit cyclique.

> <u>Chaîne latérale aliphatique</u>

La chaîne latérale aliphatique peut être :

- Hydrocarbonée linéaire : tel que le glycocolle (glycine) et l'alanine.
- Hydrocarbonée ramifiée: tel que la valine, la leucine et l'isoleucine.
- A fonction alcool : tel que la sérine et la thréonine.
- A fonction soufrée : tel que la cystéine et la méthionine
- A fonction acide (et amide correspondante) : tel que l'acide aspartique et l'asparagine, l'acide glutamique et la glutamine.
- A fonction basique : tel que la lysine, l'arginine et l'histidine.

La qualité acide ou basique de ces acides aminés se rapporte à la chaîne latérale.

> <u>Chaine latérale cyclique</u>

La chaîne latérale cyclique peut être:

- Aromatique : tel que la phénylalanine, la tyrosine et la tryptophane.
- Acide α -iminé : tel que la proline.

IV-2- Polarité de la chaîne latérale R:

La chaîne latérale R peut être soit polaire soit non polaire

Chaine latérale polaire

- Non ionisable : tel que la sérine, la thréonine, l'asparagine, la glutamine, la cystéine et la tyrosine.
- Ionisable : tel que l'acide aspartique, l'acide glutamique, la lysine, l'arginine et l'histidine.

> Chaine latérale non polaire

Le glycocolle, l'alanine, la valine, la leucine, l'isoleucine, la méthionine, la phénylalanine, le tryptophane et la proline présentent une chaîne latérale non polaire.

V- Les séries D et L :

L'atome de carbone α des acides aminés (à l'exception du glycocolle) est un atome de carbone substitué asymétriquement, car il est lié à quatre atomes ou groupements d'atomes différents: -H, -NH₂, -COOH et la chaîne latérale R. Il est au centre d'un tétraèdre dont les sommets sont occupés par les différents substituants.

Il existe donc deux de configurations, le D-acide aminé (D signifie dextrogyre) et le L-acide aminé (L signifie lévogyre), selon que le groupement aminé est à droite ou à gauche de la chaîne carbonée, molécules qui sont images spéculaires l'une de l'autre. L'atome de carbone α est un centre chiral et les deux stéréo-isomères sont dits énantiomères (Figure 2).

R = chaîne latérale

Figure 2 : Les deux configurations des acides aminés.

VI- Propriétés acido-basiques :

Les acides carboxyliques (-COOH) ne peuvent pas coexister avec des bases faibles comme les amines (-NH₂). En milieu aqueux, le groupement acide carboxylique des acides aminés donne son proton au groupement amine. Les acides aminés possèdent donc une structure zwitterionique (un atome porte une charge positive : $-NH_3^+$ et un autre porte une charge négative ($-COO^-$) (Figure 3).

Figure 3 : Structure des acides L-α-aminés.

Chapitre II Les liaisons hydrogène

I- Introduction :

Un cas particulier de liaison non covalente, la liaison hydrogène, est d'une grande importance en chimie et biochimie. Elle est particulièrement connue pour être responsable de la structure tridimensionnelle de la glace et de l'environnement d'une molécule d'eau liquide. Elle est également responsable des propriétés remarquables de la glace et de l'eau (diminution du volume à la fusion, densité maximale à 3,984°C). Notons qu'elle influence également la dynamique des liquides par sa propre durée d'existence **[8]**.

La liaison hydrogène joue un rôle central dans les processus biologiques au niveau moléculaire, ne serait-ce que par son implication dans les propriétés de l'eau qui est le solvant biologique universel. Elle détermine également la structure et les propriétés de beaucoup de molécules et macromolécules biologiques. En particulier, elle retient les différents segments d'une protéine, lui donnant ainsi sa forme et par la même ses fonctions, et stabilise l'ADN en reliant les deux brins. C'est d'ailleurs lorsque Watson et Crick [9] découvrirent que c'est la liaison hydrogène qui couple les bases (couples adénine-thymine et cytosine-guanine), qu'ils se mirent sur la piste de la configuration en double hélice de l'ADN. Tout cela vaut quelquefois à la liaison hydrogène le nom de « liaison de la vie », tout comme l'eau est la « molécule de la vie ».

II- Définition de la liaison hydrogène :

La liaison hydrogène est une interaction attractive intra ou intermoléculaire entre un atome d'hydrogène lié de façon covalente à un atome donneur fortement électronégatif tels que l'azote, l'oxygène et le fluor, et un atome accepteur similaire faisant partie ou non de la même molécule que celle du donneur. La longueur de la liaison hydrogène est définie comme la distance entre les centres de ces deux atomes. Il s'agit d'une attraction électrostatique, favorisée aussi par le fait que l'atome d'hydrogène est petit et qu'il peut se rapprocher beaucoup du doublet non-participant de l'atome électronégatif (figure 1).

Figure 1 : Représentation schématique de la liaison hydrogène.

III- Mise en évidence de l'existence de la liaison hydrogène.

Nous présentons ici quelques phénomènes physiques qui ont amené les scientifiques à s'interroger sur l'existence d'une liaison chimique particulière, mettant en jeu l'hydrogène et quelques atomes fortement électronégatifs. Les phénomènes en question sont la formation d'édifices particuliers et certaines anomalies spectrales.

III-1- Formation d'édifices particuliers :

Les méthodes de diffraction des rayons X et des neutrons ont permis de prouver, par mesures d'angles et de longueurs de liaisons, l'existence d'assemblages moléculaires comme ceux provenant de la dimérisation des acides carboxyliques (liaison intermoléculaire), ou du phénomène de chélation pour certains dérivés du phénol (liaison intramoléculaire).

L'étude de la structure de l'eau à l'état solide a mis en évidence que l'oxygène d'une molécule était au centre d'un tétraèdre régulier de quatre autres oxygènes (figure 2), et d'un tétraèdre irrégulier de quatre hydrogènes. Cet édifice a trouvé une explication grâce à la liaison hydrogène entre molécules d'eau, en attribuant à l'oxygène deux liaisons hydrogène intermoléculaires en plus de deux liaisons covalentes.

Figure 2 : Coordination tétraédrique de l'eau solide par des liaisons hydrogène.

III-2- Par méthodes spectroscopiques :

La liaison hydrogène provoque une élongation de la liaison D-H, entraînant une diminution de quelques centaines de cm⁻¹ le nombre d'onde de la vibration d'étirement, ainsi qu'une augmentation importante de l'intensité. Nous avons par exemple lors de la formation d'une liaison hydrogène avec le proton de la fonction alcool, affaiblissement de la liaison O-H et par conséquent une diminution du nombre d'onde en spectroscopie infrarouge, qui dans le cas d'une fonction alcool non associée par liaison hydrogène est de 3600 cm⁻¹, et qui en fonction du degré d'association, peut atteindre 3300 cm⁻¹.

En spectrométrie de résonance magnétique nucléaire, la formation de la liaison hydrogène réduit la densité électronique autour des protons, entraînant un déplacement du signal RMN vers les basses fréquences de quelque ppm.

IV- Propriétés de la liaison hydrogène :

a) Contraction de la distance entre l'atome donneur et l'atome accepteur :

La distance entre l'atome d'hydrogène et l'atome accepteur est bien plus petite que pour une liaison de Van Der Waals, les molécules se rapprochant beaucoup plus que ne le permet la somme des rayons de Van Der Waals. La distance entre l'atome donneur D et l'atome accepteur A, est alors approximativement égale à la somme des rayons de Van Der Waals des atomes D et A. La distance H-----O est par exemple d'environ 1,9 Å dans le complexe N-H-----O=C alors que la somme des rayons de Van Der Waals des atomes d'hydrogène et d'oxygène est de 2,6 Å. La liaison covalente H-O est par contre d'environ 1,0 Å. Dans les molécules biologiques les longueurs de liaisons hydrogène sont comprises entre 2,8 et 3,1 Å (tableau I).

Tableau I : Fréquentes longueurs de liaisons hydrogène dans les molécules biologiques.

	distance D A (Å)	
-0-н 0	2,8 ± 0,1	Liaison H dans l'eau
-О-Н О=С	$2,8 \pm 0,1$	Liaison H entre molécule et l'eau
N-H 0	$2,9 \pm 0,1$	Liaison H entre molécule et l'eau
>N-H 0=С<	$2,9 \pm 0,1$	Liaison H très importante dans la structure des molécules biologiques.
N-H N≡	3,1 ± 0,2	Liaison H très importante dans la structure des molécules biologiques.

b) Directivité de la liaison :

L'angle de liaison est proche de 180° , le proton pointe directement vers le doublet électronique non liant de l'atome accepteur (Figure 3). Cette directionnalité est une conséquence des deux contributions attractives majeures que sont la contribution électrostatique et le transfert de charge, toutes deux hautement directionnelles. Elle est d'une très grande importance dans l'architecture moléculaire de la glace ou de l'eau à courte distance, ou encore dans l'organisation des structures biologiques régulières telles que les protéines (comme celle de l'hélice α) ou l'ADN.

A-H----

Figure 3 : La liaison hydrogène.

c) Processus coopératif :

La formation d'une liaison hydrogène entre deux molécules augmente la polarité de chacune d'elles. Cela a pour effet d'accroître la propriété d'autres atomes de la molécule, non encore engagés dans une liaison hydrogène, à être donneur ou accepteur de proton, et à favoriser ainsi la formation d'une deuxième liaison, et ainsi de suite.

V- Exemple de molécules présentant des liaisons hydrogène:

L'exemple le plus cité sur la liaison hydrogène est la molécule d'eau. Comme les liaisons de valence, la liaison hydrogène est directionnelle ; elle s'aligne dans l'axe de la liaison de valence qui lui est associée. Pour l'eau, les trois atomes O, H et O de la liaison O-H...O, sont alignés (en phase liquide). Cette propriété permet d'avoir des structures moléculaires très bien définies à courte distance, comme dans la glace, l'eau, les molécules biologiques telles que les protéines, ou l'ADN dont les deux brins sont liés entre eux par liaisons hydrogène (Figure 4). Toutes les molécules possédant des groupes carbonyles (C=O) polaires peuvent également se lier par liaisons hydrogène aux molécules d'eau telle que dans le composé 4-oxo-1,4-dihydro-5,7-dichloroquinoline-2-carboxylic acid hydrate **[10]** (Figure 4).

Liaison hydrogène dans l'eau

Liaison hydrogène dans la glace

Couples de bases azotés dans la structure de l'ADN

Liaison hydrogène entre la molécule d'eau et une molécule possédant un groupe cabonyle.

Figure 4 : Exemples de liaisons hydrogène.

La molécule H_2O est capable de développer des liaisons hydrogène, elle n'est cependant pas la seule car la plupart des molécules polaires, en particulier les molécules biologiques, peuvent se lier ainsi entre elles ou avec des molécules d'eau.

L'énergie de formation de la liaison hydrogène est de l'ordre des énergies mises en jeu dans les fluctuations thermiques à température ambiante (27°C). Cette propriété donne aux structures moléculaires assemblées par liaisons hydrogène, souplesse et possibilité d'évoluer à température ambiante, ce qui ne peuvent faire les liaisons covalentes, beaucoup trop énergétiques et donc complètement rigides à cette même température, cette souplesse et ces possibilités d'évolution sont écran de molécules H_2O souples, résistants et couvrants tout l'espace autour de cet ion, l'empêchement de se combiner à nouveau avec des ions de signe opposé et le maintenant dissous au sein de l'eau. Beaucoup de molécules qui constituent d'autres liquides sont aussi polaires, mais incapables d'établir suffisamment de liaisons hydrogène entre elles, pour former un réseau souple et résistant ; elles sont incomparablement moins efficaces que l'eau pour dissoudre sels, acides ou bases.

La liaison hydrogène est capable de transférer des ions H^+ entre les molécules qu'elle lie. Cette propriété est très importante car elle est à l'origine de la réactivité des milieux aqueux. Sans elle, ceux-ci seraient inertes, la vie ne serait pas possible, car les molécules biologiques doivent en permanence réagir pour rester actives. On soupçonne que ce sont les molécules H_2O qui autorisent ces transferts d'ions H^+ en établissant certaines liaisons hydrogène spécifiques, en d'autres termes qu'elles donnent le feu vert pour que des molécules telles que les protéines puissent réagir.

C'est peut-être là leur rôle fondamental, et ce serait grâce à cela que la vie existe dans l'eau et s'y maintient.

VI- Les différentes configurations de la liaison hydrogène :

La liaison hydrogène forte est presque linaire avec un seul atome accepteur, elle est dite à deux centres (Figure 5).

Figure 5 : Liaison hydrogène à deux centres.

On dit qu'une liaison hydrogène moyenne est à trois centres, quand l'atome d'hydrogène est lié à trois atomes avec une liaison covalente et deux liaisons hydrogène. Ces trois atomes (D, A, A') se trouve dans un plan où la somme des angles est approximativement de 360° ($\theta 1 + \theta 2 + \alpha \approx 360^{\circ}$). Les liaisons à trois centres sont usuellement non symétriques où r $1 \neq$ r2 (Figure 6).

Figure 6 : Liaison hydrogène à trois centres.

Une liaison hydrogène chélatée est une liaison à trois centres, où l'atome d'hydrogène est lié à trois atomes : un à partir d'une liaison covalente et deux par deux liaisons hydrogène avec deux atomes accepteurs qui sont liés au même atome X (Figure7a), la figure 7b présente aussi une liaison hydrogène chélatée, dans ce cas les deux liaisons hydrogène sont à deux centres.

Figure 7 : Liaison hydrogène chélatée.

La combinaison de deux configurations à trois centres conduit à une configuration bifurquée (Figure 8).

Figure 8 : Configuration bifurquée.

Lorsque l'atome d'hydrogène établit trois liaisons hydrogène avec trois atomes accepteurs différents, cette configuration est dite liaison hydrogène à quatre centres (Figure 9). Ce type de liaison hydrogène est rarement observé dans les structures cristallines (1%). Les distances H...A sont plus longues que celle observée dans les liaisons hydrogène à trois centres et la somme des angles D-H...A, doit être supérieur à 90°.

Figure 9 : Liaison hydrogène à quatre centres.

La liaison hydrogène tandem (Figure 10) est surtout observée dans la structure de la molécule d'eau où les atomes d'hydrogène sont désordonnés.

Figure 10 : Liaison hydrogène Tandem.

VII- Les différentes types de liaisons hydrogène :

VII-1- Liaison hydrogène forte :

Les liaisons hydrogène fortes font partie de la catégorie de liaisons hydrogène la plus intrigante. Elles sont formées quand le proton est partagé entre deux fortes bases, ou entre ions et molécules dans le cas ou il y a une déficience dans la densité électronique pour le groupement donneur ou bien un excès de densité électronique pour le groupement accepteur.

VII-2- Liaison hydrogène moyenne ou modérée:

La liaison hydrogène modérée est formée entre des groupements donneurs neutres A-H et des atomes contenant une paire libre d'électrons. Elle est la plus dominante dans les structures biologiques.

VII-3- Liaison hydrogène faible :

Une liaison hydrogène faible est formée quand l'atome d'hydrogène est lié par covalence à un atome légèrement plus électronégatif, tel que le carbone(C-H...A). Elle peut aussi se former lorsque l'atome accepteur possède des électrons π .

DEUXIEME PARTIE

Chapitre I

Synthèse, étude structurale et liaisons hydrogène du composé DL-asparaginium perchlorate à 100K. C₄H₉N₂O₃⁺. ClO₄⁻

Synthèse, étude structurale et liaisons hydrogène du composé DL-asparaginium perchlorate à 100 K. C₄H₉N₂O₃⁺. ClO₄⁻

I-Introduction :

L'asparagine est le premier acide aminé naturel découvert en 1806 par Louis-Nicolas Vauquelin qui étudiait les asperges, d'où son nom. Elle est considérée comme un acide aminé non-essentiel, c'est à dire ne nécessitant pas d'apport extérieur, car le corps peut la synthétiser. L'asparagine représente environ 3 % des acides aminés des protéines de notre organisme.

L'asparagine est l'amide au niveau du radical de l'acide aspartique. Son radical est constitué d'une chaîne de deux carbones qui se termine par une fonction acide carboxylique, amidifiée par une molécule d'ammoniaque. Cette amidification cache les propriétés de la fonction acide. A cause des liaisons hydrogène autour de la liaison amide, l'asparagine est un radical faiblement polaire, mais hydrophobe et chimiquement neutre.

Pour mieux étudier les différentes interactions de cet acide aminé, nous avons synthétisé un nouveau composé hybride à partir du DL-asparagine monohydrate et l'acide perchlorique avec un rapport molaire de 1/1 qui est l'asparaginium perchlorate.

II- Partie expérimentale :

Les monocristaux du composé DL-asparaginium perchlorate sont obtenus par évaporation lente à température ambiante d'une solution aqueuse contenant le DL-asparagine monohydrate et l'acide perchlorique avec une stœchiométrie 1:1. La solution a été maintenue à 20°C sous agitation pendant vingt minutes.

II-1- Protonation du cation organique :

Le site susceptible de recevoir un proton est l'atome d'azote N1 (Figure 1).

Figure 1 : Site de protonation de l'asparagine.

Une recherche bibliographique a révélée l'existence de quelques composés contenants l'asparagine comme matrice organique à savoir : L-asparagine-L-aspartic acid monohydrate **[11]**, L-asparagine monohydrate **[12]**. Ces derniers sont monoprotonés au même atome d'azote N1.

III- Etude cristallographique :

III-1- Enregistrement des intensités :

La collection des données a été réalisée à l'aide d'un diffractomètre à quatre cercles de type X Calibur Sapphir 2 équipé d'un détecteur bidimensionnel de type CCD sur un monocristal de dimension 0.09 x 0.04 x 0.02 mm, en utilisant la radiation K_{α} de Mo ($\lambda = 0.71073$ Å). Les conditions d'enregistrement et les données cristallographiques sont consignées dans le tableau I.

III-2- Résolution et affinement de la structure :

La structure cristalline a été résolue à l'aide de l'ensemble des programmes disponibles dans le logiciel WinGX **[13].** Nous avons utilisé le programme Sir92 **[14]** pour déterminer le modèle structural.

Les atomes d'hydrogène ont été localisés sur des cartes de Fourier différences.

L'affinement final du modèle structural effectué par la méthode des moindres carrés, à l'aide du programme SHELXL-97 **[15]**, en considérant les facteurs d'agitation thermiques isotropes des atomes d'hydrogène, contrairement aux autres atomes qui sont définis comme anisotropes, conduit aux facteurs de réalisabilités non pondéré R =3.39 % et pondéré Rw =10.16% avec une estimée de la variance de 1.128 (Tableau I).

Les coordonnées atomiques, facteurs d'agitation thermiques, distances inter atomiques et angles de liaisons sont données respectivement dans les tableaux 1, 2, 3,4 (Annexe 1).

Tableau I : Données cristallographiques, Conditions d'enregistrement et Affinement de la structure.

Données cristallographiques :

$C_4H_9N_2O_3^+$, ClO_4^- .	Radiation Kα du Mo.
Mr =232.58.	Paramètres de la maille à partir de 2916 réflexions.
Orthorhombique, Pbca.	
a = 9.8607(1) Å	$\theta = 3.11 - 32^{\circ}.$
b = 10.2891(1) Å.	$\mu = 0.470 \text{ mm}^{-1}.$
c = 16.7002(2) Å.	T = 100 K
$V = 1694.4(13) \text{ Å}^3.$	Aiguille. Transparent.
Z = 8	0.09 x 0.04 x 0.02 mm
Dx = 1.823.	

Conditions d'enregistrement :

Diffractomètre X Calibur Sapphir 2.	Rint = 0.0334
Kappa CCD	θ max = 32°.
Mode de balayage : ω	$h = -14 \rightarrow 14$
45802 réflexions mesurées.	$k = -15 \rightarrow 11$
2916 réflexions indépendantes.	$l = -24 \rightarrow 24$
2248 réflexions avec $I > 2\sigma(I)$	

Affinement :

$(\Delta/\sigma)_{max} = 0.094$
$\Delta / \rho_{max} = 0.694 \text{ Å}^{-3}.$
$\Delta / \rho_{min} = -0.29 \text{ Å}^{-3}.$

127 paramètres.

IV- Description de la structure :

La structure du composé DL-asparaginium perchlorate est formée d'un cation organique monoprotoné : l'asparaginium $C_4H_9N_2O_3^+$, et d'un anion minéral qui est le perchlorate ClO_4^- . La jonction entre ces deux entités est assurée par des liaisons hydrogène moyennes de type N-H...O, O-H...O et faibles de type C-H...O (Figure 2).

Figure 2 : ORTEP-3[16]. L'unité asymétrique du composé DL-asparaginium perchlorate.

L'empilement cristallin est formé par une succession de doubles couches anioniques et de doubles couches cationiques qui s'alternent le long de l'axe \vec{c} et sont parallèles au plan (\vec{b}, \vec{c}) (Figure 3).

Figure 3 : Empilement de la structure parallèlement au plan (\vec{b}, \vec{c}) .

Le cation formant l'unité asymétrique a une configuration D (Figure 4a), suite à l'application des trois plans de glissement de type b, c et a qui sont perpendiculaires respectivement aux axes \vec{a} , \vec{b} et \vec{c} , on retrouve la configuration L, et par conséquence la structure étudiée contient les deux énantiomères D et L qui s'alternent en zigzag le long de l'axe \vec{b} (Figure 4b).

Figure 4 : Configurations du composé DL-asparaginium perchlorate.

V- Liaisons hydrogène :

Le composé étudié est engagé dans quinze liaisons hydrogène, dont une de type O-H...O, neuf liaisons de type N-H...O et cinq liaisons faibles de type C-H...O qui contribuent à la cohésion de l'édifice cristallin (tableau II).

D-HA	D-H (Å)	HA (Å)	DA (Å)	D-HA (°)
01-H103 ⁽ⁱⁱ⁾	0.82	1.75	2.5489(19)	164
N1-H1NO5 ⁽ⁱⁱⁱ⁾	0.89	2.03	2.910(2)	171
N1-H2NO3 ⁽ⁱ⁾	0.89	2.35	2.886(2)	119
N1-H2NO5 ⁽ⁱ⁾	0.89	2.11	2.908(2)	148
N1-H2NO6 ⁽ⁱ⁾	0.89	2.70	3.293(2)	120
N1-H3NO4 ^(iv)	0.89	1.98	2.837(2)	160
N2-H4NO2 ^(v)	0.86	2.57	3.362(2)	153
N2-H4NO5 ^(v)	0.86	2.55	3.088(2)	122
N2-H5NO2 ^(vi)	0.86	2.55	3.341(2)	154
N2-H5NO6 ^(vii)	0.86	2.65	3.242(2)	127
C2-H2O3 ^(viii)	0.98	2.63	3.371(2)	133
C2-H2O4 ⁽ⁱⁱⁱ⁾	0.98	2.71	3.189(2)	110
C2-H2O6 ^(viii)	0.98	2.44	3.202(2)	134
C3-H3AO4 ^(iv)	0.97	2.58	3.326(2)	134
C3-H3BO2 ^(ix)	0.97	2.41	3.253(2)	145

Tableau II : Liaisons hydrogène dans le composé DL-asparaginium perchlorate.

Code de symétrie : (i) : x, y, z ; (ii) : 1-x, 1/2+y, 1.5-z ; (iii) : 1-x, 1-y, 1-z ; (iv) : 1/2+x, 1/2-y, 1-z ; (v) : 1/2+x, y, 1.5-z ; (vi) : 1-x, -1/2+y, 1.5-z ; (vii) : x, 1/2-y, 1/2+z ; (viii) : 1.5-x, 1/2+y, z ; (ix) : 1/2+x, y, 1.5-z ; (viii) : x, 1/2-y, 1/2+z ; (viii) : 1.5-x, 1/2+y, z ; (ix) : 1/2+x, y, 1.5-z ; (viii) : x, 1/2-y, 1/2+z ; (viii) : 1.5-x, 1/2+y, z ; (ix) : 1/2+x, y, 1.5-z ; (viii) : x, 1/2-y, 1/2+z ; (viii) : 1.5-x, 1/2+y, z ; (ix) : 1/2+x, y, 1.5-z ; (viii) : x, 1/2-y, 1/2+z ; (viii) : 1.5-x, 1/2+y, z ; (ix) : 1/2+x, y, 1.5-z ; (viii) : x, 1/2-y, 1/2+z ; (viii) : 1.5-x, 1/2+y, 1.5-z ; (viii) : 1/2+x, 1/2+y, 1.5-z

V-1- Environnement du cation asparaginium C₄H₉N₂O₃⁺:

L'entité cationique DL-asparaginium est environnée par six anions et quatre cations, établissant ainsi quinze liaisons hydrogène de type N-H...O, O-H...O et C-H...O (Figure 5).

Figure 5 : Environnement du cation DL-asparaginium. (On n'a représenté que les atomes des cations et des anions environnant pour la clarté de la figure.)

Le groupement ammonium présente trois liaisons hydrogène à deux centres et une liaison hydrogène chélatée où l'atome d'hydrogène H(2N) établie deux interactions intermoléculaires avec deux atomes d'oxygène O(5) et O(6) appartenant au même anion (Figure 6).

Figure 6 : Environnement de l'atome N1.

L'entité cationique présente deux liaisons hydrogène à trois centres via le groupement $N(2)H_2$, la somme des angles est respectivement 359.96° et 352.18° pour H(5N) et H(4N), valeurs proches de 360° (Figure 7).

Figure 7 : Configuration du groupement N(2)H₂.

On note aussi la présence d'une liaison hydrogène à quatre centres, où l'atome d'hydrogène H(2) est lié à l'atome de carbone C(2) via une liaison covalente et il forme trois liaisons hydrogène avec les atomes d'oxygènes O(4), O(6) et O(3) appartenant respectivement à deux anions perchlorate et à un cation environnant (Figure 8).

Figure 8 : Liaison hydrogène à quatre centres.

Les entités cationiques s'enfilent le long de l'axe **b** à c = 1/4 et 3/4 formant ainsi des doubles couches suite à l'existence d'un plan de glissement de type b perpendiculaire et à 1/4 de l'axe **a** (Figure 9a). On note également que les groupements hydroxyle de la double couche cationique située à c = 1/4 sont orientés inversement à ceux des cations de la double couche situant à c = 3/4, ceci est dû à l'existence du plan de glissement de type c qui est perpendiculaire et à 1/4 de l'axe **b** (Figure 9a).

La figure 9b montre que ces doubles couches cationiques se déploient en zigzag tout au long de l'axe \vec{a} .

La cohésion entre ces doubles couches cationiques est assurée par des liaisons hydrogène de type N-H...O, C-H...O et O-H...O (Figure 9a et 9b).

Figure 9 : Liaisons hydrogène entre les doubles couches cationiques.

V-2- Environnement de l'anion perchlorate :

L'atome d'oxygène (O(7)) ne participe à aucune liaison hydrogène, ceci est du probablement à la disposition des entités cationiques dans l'édifice cristallin (Figure 11a). Une recherche bibliographique sur les composés à base de perchlorate a révélé qu'un atome d'oxygène de cet anion dans les composés : (Benzoato-k²O,O')(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-k⁴N,N',N'',N''') Nickel(II) perchlorate monohydrate **[17]**, Cis-Difluoridobis(1,10-phenanthroline) Chromium(III) perchlorate monohydrate **[18]** et Cis-Bis(acetylacetonato)diaquachromium(III) perchlorate monohydrate **[19]**, ne participe à aucune interactions intermoléculaires avec les cations environnant (Figure 10b, 10c et 10d).

a: DL-asparaginium perchlorate.

b: Cis-Bis(acetylacetonato)diaquachromium(III) perchlorate monohydrate.

c: Cis-Difluoridobis(1,10-phenanthroline) Chromium(III) perchlorate monohydrate

d : (Benzoato-k²O,O')(5,5,7,12,12,14hexamethyl-1,4,8,11- tetraazacyclotetradecanek⁴N,N',N'',N''') Nickel(II) perchlorate monohydrate.

Figure 10: Disposition des Entités cationiques dans différents composés.

La jonction entre deux doubles couches cationiques est assurée par des liaisons hydrogène de type C-H...O et N-H...O via les doubles couches anioniques qui se déploient le long de l'axe $\vec{\mathbf{b}}$ à c = 0 et 1/2, ces anions se regroupent par paires, suite à l'existence du plan de glissement de type c perpendiculaire et qui est à 1/4 de l'axe $\vec{\mathbf{b}}$ (Figure 11).

Figure 11 : Cohésion entre les deux doubles couches cationiques.

VI- Graphes du modèle des liaisons hydrogène :

VI-1- Introduction :

Pour bien comprendre et décrire l'agencement des différentes entités dans une structure cristalline via les liaisons hydrogène, Kuleshova et Zorkii en 1980 **[20]** et M. C. Etter en 1990 **[21]** ont proposé une méthode d'établissement de graphe des liaisons hydrogène. Cette méthode a été bien décrite et développée par Etter et ses collaborateurs en 1990 **[22]** et Bernstein et ses collaborateurs en 1995 **[23]**, elle devient une partie du langage de la chimie structurale, da la même manière que la notation des mécanismes réactionnels (SN₂, E_1 *etc.*) qui fait partie du langage de la chimie organique.

VI-2-*Graphes qualitatifs* :

Un graphe est une organisation des différentes liaisons hydrogène présentes dans un composé. Des chiffres et des lettres ont été utilisés par Bernstein et Etter pour déterminer les modèles de liaison hydrogène qui sont \mathbf{R} pour les cycles, \mathbf{C} pour les chaines infinies, \mathbf{D} pour les chaines finies et \mathbf{S} pour la liaison intramoléculaire.

Une autre approche a été élaborée par Bernstein et ses collaborateurs en 1997 **[24]** et Grell et ses collaborateurs en 1999 **[25]** où la structure cristalline est réduite en points (ces points représentent les atomes), en liaisons covalentes et en liaisons hydrogène (Figure 12).

Pour chaque liaison hydrogène deux orientations peuvent être suivies :

- > Du donneur à l'accepteur (D \rightarrow A) cette orientation est représenté par: \vec{a} (pour la liaison hydrogène notée a).
- > De l'accepteur au donneur (A \rightarrow D) cette orientation est représenté par: \overline{a} .

La combinaison de ces symboles (R, C, D et S) et les deux orientations possibles (\vec{a} ou \vec{a}) forme le graphe qualitatif des liaisons hydrogène noté G(\vec{a}) ou bien G(\vec{a}).

L'établissement du graphe qualitatif du modèle des liaisons hydrogène passe par deux étapes:

- 1- Repérer et libeller les différentes liaisons hydrogène symétriquement indépendantes.
- 2- Identifier le motif de chaque liaison en utilisant les notations décrites ci-dessus.

Le composé étudié présente quinze liaisons hydrogène établies entre cations et entre cations-anions, parmi eux, neuf liaisons ont comme modèle des chaînes finies (Figure 13a), cinq liaisons hydrogène sont des chaînes infinies (Figure 13b) et une liaison hydrogène intramoléculaire (Figure 13c)

Figure 13 : Représentation schématique des différentes liaisons hydrogène

Le graphe unitaire qualitatif du composé DL-asparaginium perchlorate s'écrit : $N_1=D(\vec{b})D(\vec{d})D(\vec{f})D(\vec{f})D(\vec{f})D(\vec{j})D(\vec{l})D(\vec{m})D(\vec{n})C(\vec{a})C(\vec{g})C(\vec{l})C(\vec{o})S(\vec{c}).$ La combinaison binaire des différentes liaisons hydrogène donne des chaînes finies, des chaines infinies et des cycles (figure 14, tableau IV).

Figure 14 : Exemple de quelques graphes binaires qualitatifs

VI-3- Graphes quantitatifs :

La notation du modèle de liaison hydrogène inclut aussi un indice **d** pour dénoter le nombre d'atomes donneurs dans le modèle, et un exposant **a** qui représente le nombre d'atomes accepteurs. Le nombre des atomes participant dans la liaison hydrogène **n** (appelé le degré par Etter) est mis entre parenthèses, le graphe s'écrit : $\mathbf{G}_{d}^{a}(\mathbf{n})$ (où $\mathbf{G} = \mathbf{R}$, C, D ou S). Cette notation est appelée graphe quantitatif des liaisons hydrogène.

Le graphe quantitatif $G_d^{\alpha}(\mathbf{n})$ du modèle des liaisons hydrogène dérive du graphe qualitatif. Pour déterminer le nombre d'atomes participants dans la liaison hydrogène (n), le nombre de donneur (d), et le nombre d'accepteur (a), il faut dénombrer les liaisons covalentes entre deux liaisons hydrogène, en passant par le chemin le plus court (tableaux III).

Prenant comme exemple la liaison hydrogène notée a, le nombre de liaison covalente est égale à 6, si on choisit le chemin du donneur à l'accepteur (\vec{a}) et égale à zéro en combinant les deux chemins (donneur-accepteur (\vec{a}) et accepteur-donneur (\vec{a})) (Figure 15, tableau IIIa).

Figure 15: Exemple de dénombrement de liaisons covalentes.

LC	→ a	← a	→ b	← b	$\rightarrow_{\rm c}$	← c	\overrightarrow{d}	← d	→ e	← e	$\rightarrow_{\mathbf{f}}$	← f	→ g	← g	\rightarrow h	← h	\rightarrow i	← i	\rightarrow i	← i	\rightarrow	← k	$\overrightarrow{1}$	$\frac{\leftarrow}{1}$	$\rightarrow m$	← m	\rightarrow n	← n	→ o	← 0
← a	0	6	5	0	5	0	5	0	5	0	5	0	7	3	7	0	7	3	7	0	4	6	4	0	4	0	5	0	5	3
\xrightarrow{a}	6	0	5	0	5	0	5	0	5	0	5	0	3	5	3	0	3	5	3	0	4	0	4	0	4	0	3	0	3	5
↓ b	5	5	0	0	2	0	2	0	2	0	2	0	6	4	6	0	6	4	6	0	3	5	3	0	3	0	4	0	4	4
→ b	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	0	0	2	0	0	0	2	0	2	0	2	0	0
↓ v	5	5	2	0	0	0	0	0	0	0	2	0	6	4	6	0	6	4	6	0	3	5	3	0	3	0	4	0	4	4
→ c	0	0	0	0	0	0	5	0	5	0	5	0	3	5	3	0	3	5	3	0	4	0	4	0	4	0	3	0	3	5
← d	5	5	2	0	0	5	0	0	0	0	2	0	6	4	6	0	6	4	6	0	3	5	3	0	3	0	4	0	4	4
→ d	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	0	0	2	0	0	0	2	0	2	0	2	0	0
← e	5	5	2	0	0	5	0	0	0	0	2	0	6	4	6	0	6	4	6	0	3	5	3	0	3	0	4	0	4	4
→ e	0	0	0	2	0	0	0	2	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	2	0	0	0	2	0	0
← f	5	5	2	0	2	5	2	0	2	0	0	0	6	4	6	0	6	4	6	0	3	5	3	0	3	0	4	0	4	4
\rightarrow f	0	0	0	2	0	0	0	2	0	2	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2	0	0	0	0
← g	7	3	6	0	6	3	6	0	6	0	6	0	0	6	0	0	2	6	2	0	5	3	5	0	5	0	4	0	4	6
	3	5	4	0	4	5	4	0	4	0	4	0	6	0	6	0	6	0	6	0	3	5	3	0	3	0	4	0	4	0
⊷ h	7	3	6	0	6	3	6	0	6	0	6	0	0	6	0	0	2	6	2	0	5	3	5	0	5	0	4	0	4	6
\rightarrow h	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	0	0	2	0	0	0	2	0	2	0	2	0	0

Tableau IIIa : Liaisons covalentes dans le composé DL-asparaginium perchlorate.

LC	\rightarrow	← a	\rightarrow	← b	→	÷	\rightarrow	← 1	→	<i>←</i>	$\rightarrow_{\mathbf{f}}$	← f	→ °	<i>←</i>	\rightarrow	← h	\rightarrow	← i	\rightarrow	← i	\rightarrow	→ ע	\rightarrow	÷	\rightarrow	← m	\rightarrow	← n	\rightarrow	←
← i	7	3	6	0	6	3	6	0	6	0	6	0	2	6	2	0	0	6	0	0	5	3	5	0	5	0	4	0	4	6
\rightarrow i	3	5	4	0	4	5	4	0	4	0	4	0	6	0	6	0	6	0	6	0	3	5	3	0	3	0	4	0	4	0
← j	7	3	6	0	6	3	6	0	6	0	6	0	2	6	2	0	0	6	0	0	5	3	5	0	5	0	4	0	4	6
\rightarrow j	0	0	0	2	0	0	0	2	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	2	0	0	0	2	0	0
← k	4	4	3	0	3	4	3	0	3	0	3	0	5	3	5	0	5	3	5	0	0	4	0	0	0	0	3	0	3	3
$\xrightarrow{\mathbf{k}}$	6	0	5	0	5	0	5	0	5	0	5	0	3	5	3	0	3	5	3	0	4	0	4	0	4	0	3	0	3	5
- ←	4	4	3	0	3	4	3	0	3	0	3	0	5	3	5	0	5	3	5	0	0	4	0	0	0	0	3	0	3	3
\rightarrow 1	0	0	0	2	0	0	0	2	0	2	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2	0	0	0	0
← m	4	4	3	0	3	4	3	0	3	0	3	0	5	3	5	0	5	3	5	0	0	4	0	0	0	0	3	0	3	3
\xrightarrow{m}	0	0	0	2	0	0	0	2	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	2	0	0	0	2	0	0
← n	5	3	4	0	4	3	4	0	4	0	4	0	4	4	4	0	4	4	4	0	3	3	3	0	3	0	0	0	2	4
\xrightarrow{n}	0	0	0	2	0	0	0	2	0	2	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2	0	0	0	0
← 0	5	3	4	0	4	3	4	0	4	0	4	0	4	4	4	0	4	4	4	0	3	3	3	0	3	0	2	0	0	4
→ ∘	3	5	4	0	4	5	4	0	4	0	4	0	6	0	6	0	6	0	6	0	3	5	3	0	3	0	4	0	4	0

Tableau IIIb : Liaisons covalentes dans le composé DL-asparaginium perchlorate.

a- Détermination du nombre de donneur :

- Si le nombre de liaison covalente entre deux liaisons hydrogène queue à queue (exemple (a a)) est égale à zéro, le nombre de donneur est le nombre de liaisons hydrogène présentes dans le graphe qualitatif moins un.
- Si le nombre de liaison covalente entre deux liaisons hydrogène queue à queue est différent de zéro, le nombre de donneur est le nombre de liaisons hydrogène présentes dans le graphe qualitatif.

b- <u>Détermination du nombre d'accepteur :</u>

- Si le nombre de liaison covalente entre deux liaisons hydrogène tête-à-tête (exemple $(\vec{a}\cdot\vec{a})$) est égale a zéro, le nombre d'accepteur est le nombre de liaisons hydrogène présentes dans le graphe qualitatif moins un.
- Si le nombre de liaison covalente entre deux liaisons hydrogène tête-à-tête est différent de zéro, le nombre d'accepteur est le nombre de liaisons hydrogène présentes dans le graphe qualitatif.

c- Détermination du nombre d'atomes participants dans la liaison hydrogène :

- Le nombre d'atomes participants dans la liaison hydrogène ou bien le degré est le nombre de liaisons hydrogène présentes dans le graphe qualitatif plus le nombre de liaison covalente entre les différentes orientations.

> Exemples :

1- Soit le graphe qualitatif $D(\overline{\mathbf{b}} \ \overline{\mathbf{a}} \ \overline{\mathbf{b}})$.

Le nombre de donneur pour cette chaine finie d est égale a 3, sachant que le nombre de liaison covalente entre les deux liaisons hydrogène queue-à-queue (b, a) est égale à cinq (Tableau IIIa).

 Le nombre d'accepteur a est égale à 3 (absence de liaison hydrogène tête-à-tête.

► Le degré n = 3 + 5 + 5 = 13.

- Le graphe quantitatif s'écrit : $D_3^3(13)$.
- 2- Soit le graphe qualitatif $\mathbf{R}(\mathbf{\overline{f}},\mathbf{\overline{n}})$.
 - > Le nombre de donneur : $\mathbf{d} = 2$ (absence de liaison hydrogène queue a queue (voir tableau IIIa).
 - > Le nombre d'accepteur \mathbf{a} : $\mathbf{a} = 2-1 = 1$ (Le nombre de liaison covalente entre les deux liaisons hydrogène qui sont têteà-tête est égale a zéro).
 - > Le degré n = 2 + 0 + 4 = 6 (pour le zéro il n y a aucune liaison covalentes entre les deux liaisons (\mathbf{f} \mathbf{n}), le chiffre 4 correspond au nombre de liaisons covalentes entre les deux liaisons (\mathbf{n} \mathbf{f}))

Le graphe quantitatif s'écrit: $\mathbf{R}_2^1(\mathbf{6})$.

- 3- Soit le graphe qualitatif $C(\vec{a} \vec{c})$.
 - > Le nombre de donneur : $\mathbf{d} = 2$ (absence de liaison hydrogène

queue-à-queue (voir tableau IIIa).

- Le nombre d'accepteur a: a = 2 (absence de liaison hydrogène tête-à- tête (voir tableau IIIa).
- Le degré n = 2 + 5 + 0 = 7 (Le chiffre cinq correspond a la liaison covalente entre les deux liaisons ($\vec{a} \vec{c}$), pour le zéro il n y a aucune liaison covalentes entre les deux liaisons ($\vec{c} \vec{a}$))

Le graphe quantitatif s'écrit: $C_2^2(7)$.

Type de liaison H		a 01-H103	b N1-H1NO5	c N1-H2NO3
	Graphes qualitatifs.	C(a)	D(b a b)	$C(\vec{a} \vec{c})$
a O1-H1O3	Représentations graphiques.	A A A		
	Graphes quantitatifs.	C(7)	$D_3^{3}(13)$	$C_2^2(7)$
	Graphes qualitatifs.		D(b)	C(b ⊄)
b N1-H1NO5	Représentations graphiques.		● → ⊖ A B	c b B
	Graphes quantitatifs.		D	$D_2^2(5)$
	Graphes qualitatifs.			S(c)
с N1-H2NО3	Représentations graphiques.			c A
	Graphes quantitatifs.			S(6)

Tableau IVa : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		d N1-H2N05	e N1-H2N06	f N1-H3N04
	Graphes qualitatifs.	$D(\vec{d} \ \vec{a} \ \vec{d})$	D(e a e)	$D(\vec{f} \vec{a} \vec{f})$
a 01-H103	Représentations graphiques.	$ \begin{array}{c} & & & \\ & & \\ a \\ a \\ A \\ A \\ d \\ B \end{array} \begin{array}{c} & \\ B \\ B \end{array} \begin{array}{c} & \\ & \\ B \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $		$ \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
	Graphes quantitatifs.	$D_3^{3}(13)$	$D_3^{3}(13)$	$D_3^{3}(13)$
	Graphes qualitatifs.	$R(\vec{b} \ \vec{d} \ \vec{b} \ \vec{d})$	$R(\vec{b} \ \vec{e} \ \vec{b} \ \vec{e})$	$C(\vec{b}\ \vec{f})$
b N1-H1NO5	Représentations graphiques.	A b B d	A A B B B B B B B B B B B B B B B B B B	
	Graphes quantitatifs.	$R_4^2(8)$	$R_4^4(12)$	$C_2^{2}(6)$
	Graphes qualitatifs.	$D(\overline{c} \overline{d})$	D(ce)	$D(\vec{c} \cdot \vec{f})$
c N1-H2NO3	Représentations graphiques.	c ▲ → O _B	c ▲ e → O _B	c f → C _B
	Graphes quantitatifs.	$D_2^{2}(3)$	$D_2^{2}(3)$	$D_2^{2}(5)$

 Tableau IVb : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		g N2-H4NO2	h N2-H4NO5	i N2-H5NO2
	Graphes qualitatifs.	$R(\vec{a}, \vec{g}, \vec{a}, \vec{g})$ et $C(\vec{a}, \vec{g})$	$D(\overrightarrow{h} \overrightarrow{a} \overrightarrow{h})$	$R(\vec{a} \vec{i})$ et $C(\vec{a} \vec{i})$
a O1-H1O3	Représentations graphiques.	g g g a a a a a a a a a a a a a a a a a	$ \overset{B}{\underset{A}{\overset{A}}{\overset{A}{\overset{A}{\overset{A}{\overset{A}{\overset{A}}{\overset{A}{\overset{A}{\overset{A}{\overset{A}}{\overset{A}{\overset{A}{\overset{A}}{\overset{A}{\overset{A}}{\overset{A}{\overset{A}{\overset{A}{\overset{A}{\overset{A}{\overset{A}{\overset{A}{\overset{A}}}{\overset{A}{\overset{A}}{\overset{A}{\overset{A}}{\overset{A}}{\overset{A}{\overset{A}{\overset{A}}}{\overset{A}{\overset{A}{\overset{A}}}}}}}}}$	
	Graphes quantitatifs.	$R_4^4(22)$ et $C_2^2(8)$	$D_3^{3}(13)$	$R_2^2(8)$ et $C_2^2(14)$
	Graphes qualitatifs.	D(b g b)	$C(\overrightarrow{\mathbf{b}},\overrightarrow{\mathbf{h}})$	$D(\overleftarrow{\mathbf{b}} \overrightarrow{\mathbf{i}} \overrightarrow{\mathbf{b}})$
b N1-H1NO5	Représentations graphiques.			
	Graphes quantitatifs.	$D_3^{3}(13)$	$C_2^{2}(8)$	$D_3^{3}(13)$
	Graphes qualitatifs.	$C(\vec{c}, \vec{g})$	$D(\vec{c},\vec{h})$	$C(\vec{c} \cdot \vec{i})$
c N1-H2NO3	Représentations graphiques.	$\begin{array}{c} A \\ \bullet \\ \bullet \\ c \\ c$	c A B	$ \bigcirc \\ c \\$
	Graphes quantitatifs.	$C_2^{2}(9)$	$D_2^2(7)$	$C_2^{2}(9)$

Tableau IVc : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		j N2-H5NO6	k C2-H2O3	l C2-H2O4
	Graphes qualitatifs.	$D(\vec{j} \vec{a} \vec{j})$	$C(\overrightarrow{a}, \overrightarrow{k})$	$D(\overline{1} \overrightarrow{a} \overrightarrow{1})$
a O1-H1O3	Représentations graphiques.		k A k A k A k A k A k A k A k A k A k A	
	Graphes quantitatifs.	$D_3^{3}(13)$	$C_2^2(12)$	$D_3^{3}(11)$
	Graphes qualitatifs.	$C(\overrightarrow{b}^{*}\overrightarrow{j})$	$D(\overleftarrow{\mathbf{b}} \overrightarrow{\mathbf{k}} \overrightarrow{\mathbf{b}})$	$R(\overrightarrow{b},\overrightarrow{1})$
b N1-H1N05	Représentations graphiques.			
	Graphes quantitatifs.	$C_2^{2}(10)$	$D_3^{3}(11)$	$R_2^2(7)$
	Graphes qualitatifs.	$D(\vec{c};\vec{j})$	$C(\vec{c},\vec{k})$	$D(\vec{c} \cdot \vec{l})$
c N1-H2NO3	Représentations graphiques.	c J→O _B	$\begin{array}{c c} A & k & A & k & A & k & A \\ \hline C & C & C & C & C & C \\ \hline C & C & C & C & C \\ \hline \end{array}$	c A B
	Graphes quantitatifs.	$D_2^2(7)$	$C_2^2(5)$	$D_2^{2}(6)$

 Tableau IVd : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		m Calla O(n C2 H24 - O4	0
		C2-H206	СЗ-НЗА04	СЗ-НЗВО2
	Graphes qualitatifs.	$D(\mathbf{\tilde{m}} \mathbf{a} \mathbf{\tilde{m}})$	$D(\vec{n} \vec{a} \vec{n})$	$R(\vec{a} \ \vec{o} \ \vec{a} \ \vec{o})$ et $C(\vec{a} \ \vec{o})$
a O1-H1O3	Représentations graphiques.	A = A = A = A = A = A = A = A = A = A =	$ \begin{array}{c} B \\ n \\ A \\ A \\ B \end{array} \begin{array}{c} B \\ A \\ B \end{array} \begin{array}{c} B \\ B \\ B \\ B \end{array} \begin{array}{c} B \\ B \\ B \\ B \end{array} \begin{array}{c} B \\ B \\ B \\ B \end{array} \begin{array}{c} B \\ B \\ B \\ B \\ B \\ B \end{array} \begin{array}{c} B \\ B $	A A A A A A A A A A A A A A A A A A A
	Graphes quantitatifs.	$D_3^{3}(11)$	$D_3^{3}(11)$	$R_4^4(20)$ et $C_2^2(8)$
	Graphes qualitatifs.	$C(\overrightarrow{b}, \overline{m})$	C(b n)	$D(\overleftarrow{b} \overrightarrow{o} \overrightarrow{b})$
b N1-H1N05	Représentations graphiques.			
	Graphes quantitatifs.	$C_2^2(7)$	$C_2^{2}(8)$	$D_3^{3}(11)$
	Graphes qualitatifs.	$D(\vec{c},\vec{m})$	$D(\vec{c},\vec{n})$	$C(\vec{c}, \vec{o})$
с N1-H2NО3	Représentations graphiques.	c ▲ m → O _B		
	Graphes quantitatifs.	$D_2^{2}(6)$	$D_2^{2}(7)$	$C_2^{2}(9)$

Tableau IVe : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		d N1-H2NO5	e N1-H2NO6	f N1-H3N04
	Graphes qualitatifs.	$D(\vec{d})$	R(d e)	$C(\vec{d},\vec{f})$
d N1-H2N05	Représentations graphiques.	$ \begin{array}{c} d \\ A \\ B \end{array} $		$A \bigoplus^{d} \bigoplus^{B} A \bigoplus^{d} f$ $f \qquad f$ $f \qquad f$ $d \longrightarrow^{B} A \bigoplus^{d} \bigoplus^{B} B$
	Graphes quantitatifs.	D	$R_1^2(4)$	$C_2^{2}(6)$
	Graphes qualitatifs.		D($C(\vec{e},\vec{f})$
e N1-H2NO6	Représentations graphiques.			
	Graphes quantitatifs.		D	$C_2^{2}(6)$
f	Graphes qualitatifs.			$\mathbf{D}(\vec{\mathbf{f}})$
N1-H3N04	Représentations graphiques.			● f → O A B
	Graphes quantitatifs.			D

Tableau IVf : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		g N2-H4NO2	h N2-H4NO5	i N2-H5NO2
	Graphes qualitatifs.	$D(\overline{d} \ \overline{g} \ \overline{d})$	$C(\vec{d}, \vec{h})$	$D(\mathbf{d} \ \mathbf{i} \ \mathbf{d})$
d N1-H2NO5	Représentations graphiques.		$A \bigoplus^{d} \bigoplus^{B} A \bigoplus^{d} \bigoplus^{h} h$	
	Graphes quantitatifs.	D_3^{3} (13)	$C_2^{2}(8)$	$D_{3}^{-3}(13)$
	Graphes qualitatifs.	D(ege)	$C(\vec{e}, \vec{h})$	D(e 1 e)
e N1-H2NO6	Représentations graphiques.			
	Graphes quantitatifs.	$D_3^{3}(13)$	$C_2^{2}(10)$	$D_3^{3}(13)$
	Graphes qualitatifs.	$D(\vec{f} \vec{g} \vec{f})$	$C(\vec{f},\vec{h})$	$D(\mathbf{f} \ \mathbf{i} \ \mathbf{f})$
f N1-H3N04	Représentations graphiques.		$A \bigoplus_{h} \bigoplus_$	$ \begin{array}{c} B \\ f \\ A \\ f \\ B \\ B$
	Graphes quantitatifs.	$D_3^{3}(13)$	$C_2^{2}(10)$	$D_3^{3}(13)$

Tableau IVg : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		j	k	1
		N2-H5NO6	С2-Н2О3	С2-Н2О4
	Graphes qualitatifs.	$C(\vec{d} \vec{j})$	$D(\overline{\mathbf{d}} \ \overline{\mathbf{k}} \ \overline{\mathbf{d}})$	$R(\vec{d} \cdot \vec{l} \cdot \vec{d} \cdot \vec{l})$
d N1-H2NO5	Représentations graphiques.			
	Graphes quantitatifs.	$C_2^2(10)$	$D_3^{3}(11)$	$R_4^{4}(14)$
	Graphes qualitatifs.	C(e j)	$D(\vec{e} \ \vec{k} \ \vec{e})$	$R(\overrightarrow{e} \overrightarrow{l} \overrightarrow{e} \overrightarrow{l})$
e N1-H2NO6	Représentations graphiques.			
	Graphes quantitatifs.	$C_2^{2}(8)$	$D_3^{3}(11)$	$R_4^{4}(14)$
	Graphes qualitatifs.	$C(\vec{f})$	$D(\overrightarrow{\mathbf{f}} \ \overrightarrow{\mathbf{k}} \ \overrightarrow{\mathbf{f}})$	$C(\vec{f},\vec{l})$
f N1-H3NO4	Représentations graphiques.		$ \begin{array}{c} & & & \\ & $	
	Graphes quantitatifs.	$C_2^{2}(10)$	$D_3^{3}(11)$	$C_2^{2}(5)$

Tableau IVh : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		m C2-H2O6	n C3-H3AO4	0 C3-H3BO2
	Graphes qualitatifs.	$C(\overline{d},\overline{m})$	$C(\overrightarrow{d}, \overleftarrow{n})$	$D(\overrightarrow{\mathbf{d}} \overrightarrow{\mathbf{o}} \overrightarrow{\mathbf{d}})$
d N1-H2NO5	Représentations graphiques.		$A \bigoplus_{n} B A \bigoplus_$	
	Graphes quantitatifs.	$C_2^{2}(7)$	$C_2^{2}(8)$	$D_3^{3}(11)$
	Graphes qualitatifs.	$C(\overrightarrow{e}, \overrightarrow{m})$	C(e n)	$D(\overleftarrow{e} \overrightarrow{o} \overrightarrow{e})$
e N1-H2NO6	Représentations graphiques.			
	Graphes quantitatifs.	$C_2^{2}(5)$	$C_2^{2}(8)$	$D_3^{3}(11)$
	Graphes qualitatifs.	$R(\vec{f} \cdot \vec{m} \cdot \vec{f} \cdot \vec{m})$	$R(\overline{f}, \overline{n})$	$D(\overrightarrow{f} \overrightarrow{o} \overrightarrow{f})$
f N1-H3N04	Représentations graphiques.		n f B	
	Graphes quantitatifs.	$R_4^{4}(14)$	$R_2^{-1}(6)$	$D_3^{3}(11)$

Tableau IVi : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		g N2-H4NO2	h N2-H4N05	i N2-H5NO2
	Graphes qualitatifs.	C(g)	$D(\vec{h} \vec{g} \vec{h})$	$R(\vec{g} \vec{i} \vec{g} \vec{i})$ et $C(\vec{g} \vec{i})$
g N2-H4NO2	Représentations graphiques.		$ \begin{array}{c} & & & & \\ & & & \\ g \\ & & & \\ & & $	g g g g g g g g g g g g g g g g g g g
	Graphes quantitatifs.	C(7)	$D_2^{2}(9)$	$R_4^{3}(18)$ et $C_2^{2}(14)$
	Graphes qualitatifs.		$\mathbf{D}(\mathbf{\vec{h}})$	$D(\vec{h} \vec{i} \vec{h})$
h N2-H4NO5	Représentations graphiques.			
	Graphes quantitatifs.		D	$D_3^{3}(11)$
	Graphes qualitatifs.			$C(\vec{1})$
i N2-H5NO2	Représentations graphiques.			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Graphes quantitatifs.			C(7)

Tableau IVj : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		j N2-H5N06	k C2-H2O3	l C2-H2O4
	Graphes qualitatifs.		$R(\vec{g} \vec{k} \vec{g} \vec{k})$ et $C(\vec{g} \vec{k})$	$D(\vec{1} \cdot \vec{g} \cdot \vec{1})$
g N2-H4NO2	Représentations graphiques.		g k g k g A k k g g g g g g g g g g g g g g g g g g	
	Graphes quantitatifs.	$D_3^{3}(11)$	$R_4^4(20)$ et $C_2^2(8)$	$D_3^{-3}(11)$
h N2-H4NO5	Graphes qualitatifs.	$C(\vec{h}; \vec{j})$	$D(\vec{h} \vec{k} \vec{h})$	$C(\vec{h}\vec{l})$
	Représentations graphiques.	$A \bigoplus_{h} \bigoplus_$	$ \begin{array}{c} & & & \\ & $	
	Graphes quantitatifs.	$C_2^2(6)$	$D_3^{3}(11)$	$C_2^2(9)$
	Graphes qualitatifs.	$D(\overrightarrow{j} \ \overrightarrow{i} \ \overrightarrow{j})$	$C(\vec{i},\vec{k})$	$D(\overrightarrow{1} \overrightarrow{i} \overrightarrow{1})$
i N2-H5NO2	Représentations graphiques.			
	Graphes quantitatifs.	$D_3^{3}(9)$	$C_2^2(8)$	$D_3^{3}(11)$

Tableau IVk : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		m C2-H2O6	n C3-H3AO4	0 C3-H3BO2
	Graphes qualitatifs.	D(m gm)	$D(\vec{n} \vec{g} \vec{n})$	$R(\overrightarrow{g} \circ \overrightarrow{o}) \text{ et } C(\overrightarrow{g} \circ \overrightarrow{o})$
g N2-H4NO2	Représentations graphiques.		$g \xrightarrow{B} A g \xrightarrow{B} n$	
	Graphes quantitatifs.	$D_3^{3}(11)$	$D_3^{-5}(11)$	$R_2^{-1}(6)$ et $C_2^{-2}(12)$
	Graphes qualitatifs.	$C(\vec{h},\vec{m})$	$C(\vec{h},\vec{n})$	$D(\overrightarrow{h} \overrightarrow{o} \overrightarrow{h})$
h N2-H4NO5	Représentations graphiques.	$A \bigoplus^{m} \bigcirc B \qquad A \bigoplus^{m} h$	$A \bigoplus^{n} \bigcirc B \qquad A \bigoplus^{n} \downarrow h \qquad h$	$ \begin{array}{c} & & & \\ & $
	Graphes quantitatifs.	$C_2^{2}(9)$	$C_2^{2}(8)$	$D_3^{3}(13)$
	Graphes qualitatifs.	$D(\overleftarrow{m} \overrightarrow{i} \overrightarrow{m})$	$D(\vec{n} \ \vec{i} \ \vec{n})$	$R(\vec{i} \overrightarrow{o} \overleftarrow{i} \overrightarrow{o}) \text{ et } C(\vec{i} \overrightarrow{o})$
i N2-H5NO2	Représentations graphiques.		$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	
	Graphes quantitatifs.	$D_3^{3}(11)$	$D_3^{3}(11)$	$R_4^{3}(18)$ et $C_2^{2}(12)$

Tableau IVI : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		j N2-H5N06	k C2-H2O3	l C2-H2O4	
	Graphes qualitatifs.	$D(\vec{j})$	$D(\vec{j} \vec{k} \vec{j})$	$C(\vec{j},\vec{1})$	
j N2-H5NO6	Représentations graphiques.	A J B	$ \begin{array}{c} \bigcirc B \\ j \\ k \\ A \\$		
	Graphes quantitatifs.	D	$D_3^{3}(11)$	$C_2^{2}(9)$	
k C2-H2O3	Graphes qualitatifs.		$C(\vec{k})$	$D(\vec{l} \vec{k} \vec{l})$	
	Représentations graphiques.		$A \xrightarrow{k} A \xrightarrow{k} A$	A A A A A A A A A A A A A A A A A A A	
	Graphes quantitatifs.		C(5)	$D_3^{3}(7)$	
l C2-H2O4	Graphes qualitatifs.			D(1)	
	Représentations graphiques.				
	Graphes quantitatifs.			D	

 Tableau IVm : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		m C2-H2O6	n C3-H3A04	0 C3-H3BO2
	graphes qualitatifs.	$C(\vec{j},\vec{m})$	$C(\vec{j},\vec{n})$	$D(\overrightarrow{j} \ \overrightarrow{o} \ \overrightarrow{j})$
j N2-H5NO6	Représentations graphiques.			
	Graphes quantitatifs.	$C_2^{2}(7)$	$C_2^2(8)$	$D_3^{3}(13)$
	Graphes qualitatifs.	$D(\overleftarrow{m} \overrightarrow{k} \overrightarrow{m})$	$D(\vec{n} \vec{k} \vec{n})$	$R(\overrightarrow{k} \ \overrightarrow{o} \ \overleftarrow{k} \ \overrightarrow{o}) \text{ et } C(\overrightarrow{k} \ \overrightarrow{o})$
k C2-H2O3	Représentations graphiques.	$ \begin{array}{c} & & & \\ & $	$ \begin{array}{c} & & & \\ & $	$\begin{array}{c} k \\ A \\$
	Graphes quantitatifs.	$D_3^{3}(7)$	$D_3^{3}(9)$	$R_4^4(18)$ et $C_2^2(8)$
	Graphes qualitatifs.	$C(\vec{l},\vec{m})$	$C(\vec{l},\vec{n})$	$D(\overrightarrow{l} \overrightarrow{o} \overrightarrow{l})$
l C2-H2O4	Représentations graphiques.		$A \bigoplus^{n} \bigoplus^{B} A \bigoplus^{n} \downarrow^{I} $	
	Graphes quantitatifs.	$C_2^{2}(4)$	$C_2^{2}(5)$	$D_3^{3}(9)$

Tableau IVn : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

Type de liaison H		m n C2-H2O6 C3-H3AO4		0 C3-H3BO2	
	Graphes qualitatifs.	D(m)	$R(\vec{m}\vec{n}\vec{m}\vec{n})$	$D(\overrightarrow{m} \overrightarrow{o} \overrightarrow{m})$	
m C2-H2O6	Représentations graphiques.	A B	m B m A		
	Graphes quantitatifs.	D	$R_4^{4}(14)$	$D_3^{3}(9)$	
	Graphes qualitatifs.		$D(\vec{n})$	$D(\vec{n} \ \vec{o} \ \vec{n})$	
n C3-H3AO4	Représentations graphiques.		● n → ○ A B		
	Graphes quantitatifs.		D	$D_3^{3}(9)$	
0	Graphes qualitatifs.			C(o)	
С3-Н3ВО2	Représentations graphiques.			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Graphes quantitatifs.			C(5)	

Tableau IVo : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé DL-asparaginium perchlorate.

VII- Réseau de liaison hydrogène dans la DL-asparginium perchlorate :

a) Liaison hydrogène de type O-H...O :

La structure étudiée présente une seule liaison hydrogène de type O-H...O établie entre les cations, c'est une chaîne infinie. Le graphe unitaire quantitatif s'écrit : $N_1 = C(7)$ (Figure 17). Cette liaison assure la jonction entre les couches cationiques (Figure 16).

Figure 16 : Modèle quantitatif de la liaison O-H...O.

b) Liaison hydrogène de type N-H...O:

Liaisons hydrogène de type N-H...O entre les cations :

Les deux liaisons hydrogène de type N-H...O (\mathbf{g} , \mathbf{i}) qui sont mises en jeu entre l'atome H(4N) et O(2); H(5N) et O(2) (Figure 17a) assurent respectivement la jonction entre les cations appartenant à la même couches et entre les couches cationiques. Ces liaisons sont des chaînes infinies C(7) (Figure 17b).

Figure 17 : Modèle quantitatif des liaisons hydrogène de type N-H...O entre les cations.

> Liaison hydrogène intramoléculaire de type N-H...O :

La structure du DL-asparaginium perchlorate présente une liaison hydrogène intramoléculaire rarement observée, elle est mise en jeu entre l'atome d'hydrogène H(2N) du groupement ammonium et l'atome d'oxygène O(3) du même cation organique. Le motif de cette liaison est noté **S(6)** (Figure 18).

Figure 18 : Modèle de la liaison hydrogène intramoléculaire de type N-H...O.

L'étude des graphes binaires du modèle des trois liaisons hydrogène de type N-H...O établies entre les cations met en évidence :

1- Deux chaînes infinies $C_2^{2}(9)$ qui assurent respectivement la jonction entre les entités cationiques appartenant à la même couche (c,g), et entre les couches (g,i).

2- Un cycle de quatre atomes donneurs, trois atomes accepteurs et un degré de 18 qui se déploie suivant les des deux axes cristallographique $\vec{a} \text{ et } \vec{b}$ formant ainsi un réseau bidimensionnel de cycle noté $R_4^3(18)$ (Figure 19).

Figure 19 : Graphe binaire quantitatif des liaisons hydrogène de type N-H...O entre cations.

Liaison hydrogène de type N-H...O entre cation et anion :

Les groupements $-NH_3^+$ et $-NH_2$ du cation asparaginium établissent six liaisons hydrogène de type N-H...O avec les anions perchlorate environnants. Elles se présentent sous forme de chaîne finie, les motifs de ces liaisons hydrogène (**b**, **d**, **e**, **f**, **h** et **j**), ont comme modèle **D**. Ces liaisons hydrogène donnent un réseau tridimensionnel qui assure la jonction entre les différentes entités (Figure 20b).

Figure 20 : Motifs et réseau des liaisons hydrogène de types N-H...O entre cation-anion.

Le graphe unitaire quantitatif des liaisons hydrogène de type N-H...O s'écrit : $N_1 = DDDDDD C(7)C(7)S(6)$.

La combinaison binaire de ces liaisons, donne des cycles et des chaînes infinies avec différents nombres de donneurs et d'accepteurs et différents degrés (Tableaux IVa...IVo).

La jonction entre les entités anioniques et cationiques est assurée par des cycles $R_6^5(24)$, suite à la combinaison ternaire des trois liaisons hydrogène de type N-H...O notées b, f et h (Figure 21). Ces cycles se déploient en zigzag le long de l'axe \vec{c} , formant ainsi un réseau bidimensionnel de cycles $R_6^5(24)$ (figure 21).

Figure 21 : Quelques graphes quantitatifs binaires et ternaires des liaisons hydrogène de type N-H...O entre les cations et les anions.

La combinaison binaire des liaisons hydrogène de type N-H...O entre cation et anion donne des cycles notés : $R_4^2(8)$, $R_4^4(12)$ et $R_1^2(4)$ qui se développent le long de l'axe \vec{b} à a = 0 et 1/2 (Figure 22).

Figure 22 : Graphe binaire quantitatif des liaisons hydrogène de type N-H...O entre cation-anion.

Les liaisons hydrogène de type N-H...O établie entre cations et entre cations et anions forment un réseau tridimensionnel (Figure 23).

Figure 23 : Réseau de liaison hydrogène de type N-H...O.

La combinaison binaire des deux liaisons hydrogène de type N-H...O entre cations et O-H...O donne des cycles de liaisons hydrogène $R_2^2(8)$ et $R_4^4(22)$ qui se développent et s'alternent suivant les deux axes cristallographique \vec{a} et \vec{b} , formant ainsi un réseau bidimensionnel de cycle et des chaînes infinies (Figure 24).

Figure 24 : Graphe binaire quantitatif des liaisons hydrogène de type N-H...O et O-H...O entre cations.

La combinaison binaire des liaisons hydrogène de type N-H...O entre cations et anions et O-H...O donne des chaînes finies $D_3^{3}(13)$ qui assurent la jonction entre les couches anioniques et les couches cationiques (Figure 25a et 25b).

On note la présence d'un cycle $R_3^3(13)$ suite à la combinaison ternaire de deux liaisons hydrogène de type N-H...O b et g avec la liaison hydrogène de type O-H...O a (Figure 25b).

Figure 25 : Graphes binaires quantitatif des liaisons hydrogène de type N-H...O et O-H...O.

c) Liaison hydrogène de type C-H...O :

L'édifice cristallin est renforcé par cinq liaisons hydrogène faibles de type C-H...O entre les cations et les anions et entre les cations.

> Liaisons hydrogène de type C-H...O entre les cations :

Deux interactions de type C-H...O (k et o) sont observées entre les cations qui sont sous forme de chaîne infinie C.

La jonction entre les couches cationiques est renforcée par un cycle $R_4^4(18)$ de liaison hydrogène qui se déploie le long des deux axes \vec{a} et \vec{b} respectivement à b = 1/3 et 2/3 et à a = 0 et 1/2, suite à la combinaison binaire de ces deux liaisons hydrogène de type C-H...O (Figure 26).

Figure 26: Motifs unitaires et graphe binaire quantitatif des liaisons hydrogène de type C-H...O entre les cations.

> Liaisons hydrogène de type C-H...O entre cations et anions :

Le DL-asparaginium perchlorate présente trois interactions faibles de type C-H...O entre cation et anions (\mathbf{l} , \mathbf{m} et \mathbf{n}). Le motif de chaque liaison hydrogène a comme modèle \mathbf{D} (Figure 27).

Figure 27 : Motifs des liaisons hydrogène de type C-H...O entre cations et anions.

Le graphe unitaire quantitatif de la liaison hydrogène de type C-H...O est : N1 = C(5)C(5)DDD.

La combinaison binaire de ces liaisons hydrogène donne :

- Une chaîne infinie $C_2^2(5)$ qui se développe le long de l'axe \vec{b} à a = 1/3 et 2/3.
- Une chaîne infinie $C_2^2(4)$ qui s'enfile suivant l'axe \vec{a} à b = 1/3 et 2/3.
- Des cycles $R_4^4(14)$ qui s'enfilent et s'alternent le long de l'axe **b** avec des cycles $R_6^6(18)$, suite à la combinaison ternaire de ces trois liaisons hydrogène à a = 1/2 (Figure 28).

Figure 28 : Graphe quantitatif binaire et ternaire de la liaison hydrogène de type C-H...O entre cations et anions.

La structure du composé DL-Asparginium perchlorate est construite principalement sur des cycles et des chaînes infinies qui se déploient suivant les deux directions cristallographique \vec{a} et \vec{b} suite à la combinaison binaire, ternaire de liaisons hydrogène moyennes (Figure 29a), ce qui explique le rétrécissement des deux paramètres a et b.

Figure 29a : Projection des différentes liaisons hydrogène suivant le plan (\vec{a}, \vec{b}) .

La combinaison binaire de liaisons hydrogène donne aussi des chaînes finies qui se développent suivant l'axe \vec{c} . On note que certaines liaisons ne peuvent se combiner toujours suivant la même direction, ce qui explique le grand paramètre c de 16.7002(2) Å (figure 29b et 29c).

Figure 29b : Projection des différentes liaisons hydrogène suivant le plan (\vec{b}, \vec{c})

Figure 29c : Projection des différentes liaisons hydrogène suivant le plan (\vec{a}, \vec{c})

présente liaisons hydrogène Le composé DL-asparaginium perchlorate 15 moyennes faibles. Le graphe unitaire quantitatif s'écrit : et $N_1 = DDDDDDDDDC(5)C(5)C(7)C(7)C(7)S(6).$

Le graphe binaire de base de la structure est une chaîne finie avec deux atomes donneurs, deux atomes accepteurs et un degré de 3 : $D_2^2(3)$, sa notation qualitative est $D(\mathbf{c} \cdot \mathbf{d})$ et $D(\mathbf{c} \cdot \mathbf{e})$. Le graphe binaire complexe est un cycle $\mathbf{R}_4^4(22)$, sa notation qualitative est $\mathbf{R}(\mathbf{a} \cdot \mathbf{g} \cdot \mathbf{a} \cdot \mathbf{g})$.

VIII- Etude comparative:

L'étude comparative entre le composé étudié et la L-asparaginium picrate **[26]** et la DL-asparaginium nitrate **[27]** révèle que :

1- Les trois composés cristallisent dans des groupes d'espace différents (Voir tableau V).

Composés.	Groupe d'espace et Z.		Paramètres de maille.
		B	a = 9.8607(1) Å.
DL-asparaginium perchlorate.	Pbca	Z = 8	b = 10.2891(1) Å.
			c = 16.7002(2) Å.
			$V = 1694.4(13) \text{ Å}^3.$
			a = 10.3670(4) Å.
L-asparaginium picrate.	P2 ₁	Z = 2	b = 5.1611(7) Å.
			c = 13.1200(3) Å.
			$\beta = 93.20(2)$ °.
			$V = 700.893(7) Å^3$.
			a = 7.9239(3) Å.
DL-asparaginium nitrate.	$P2_1/c$	Z = 4	b = 9.6080(2) Å.
			c = 10.6137(10) Å.
			$\beta = 107.11(3)^{\circ}.$
			$V = 772.92(3) Å^3.$

Tableau V : Données cristallographiques des trois composés.

2- Chacun de ces composés est formé d'une entité cationique monoprotonée et d'une entité anionique.

3- Les trois structures : DL-asparaginium perchlorate, DL-asparaginium nitrate et L-asparaginium picrate présentent le même type de liaisons hydrogène moyennes et faibles à savoir : N-H...O, O-H...O et C-H...O. On note également que les trois composés présentent une interaction intramoléculaire au niveau du groupement ammonium.

4- Les entités cationiques ne présentent pas le même environnement, on note la présence dans le composé étudié d'une liaison hydrogène à quatre centres (Figure 30a), une liaison à deux centres dans le composé à base de nitrate (Figure 30b) et aucune interaction dans le composé à base de picrate via l'atome d'hydrogène H1. Ce ci est dû d'une part à la disposition des entités cationiques et d'autre part à la géométrie des différents anions (Figure 30a).

a : Cation du DL-asparaginium perchlorate.

c: Cation du L-asparaginium picrate.

➢ Le groupement ammonium du cation du composé DL-asparaginium perchlorate présente presque le même environnement que le groupement ammonium du cation du DL-asparaginium nitrate car l'anion perchlorate ne participe qu'avec trois atomes d'oxygène. La petite différence se manifeste par la présence d'une liaison hydrogène moyenne de type N-H...O (N1-H2N...O4) formant ainsi une liaison hydrogène chélatée, ceci est dû à la géométrie plane de l'anion nitrate, et la géométrie tétraédrique de l'anion perchlorate qui éloigne les atomes d'oxygène (Figure 31a et 31b).

Figure 31: Environnement des groupements ammonium des deux composés DL-asparaginium perchlorate et DL-asparaginium nitrate.

➤ Un environnement différent est observé pour le groupement ammonium du composé L-asparaginium picrate, où on note la présence d'une liaison hydrogène à trois centres mise en jeu entre cations et entre cation-anion. Cette différence est due toujours à la géométrie de l'anion picrate où les trois groupements nitro sont tordus du plan du cycle (Figure 32).

Cation du L-asparaginium picrate.

L'anion picrate.

Figure 32: Environnement du groupement ammonium du composé L-asparaginium picrate.

5-

• La structure du présent travail est formée de doubles couches cationiques qui sont situés à c = 1/4 et 3/4 (Figure 33a). La jonction entre les cations appartenant à la même couche est assurée par des cycles $R_2^2(8)$, ces derniers s'enfilent et s'alternent le long de l'axe \vec{b} avec des cycles S(6) (Figure 33b).

• Chaque deux anions perchlorate sont insérés dans une des cavités créés entre les doubles couches cationiques (Figure 33b). Ces entités anioniques qui se regroupent par paire assurent la jonction entre les doubles couches cationiques (Figure 33c).

La géométrie tétraédrique de cet anion donne naissance à :

- Des cycles : $R_6^{-6}(26)$, suite à la combinaison quaternaire des liaisons hydrogène de type N-H...O et O-H...O.

- Des cycles $R_2^{3}(9)$ et $R_4^{2}(8)$ qui sont dus respectivement à la combinaison ternaire et binaire des liaisons hydrogène de type N-H...O, ces cycles s'alternent le long de l'axe \vec{b} à c =1/2 avec les cycles $R_6^{6}(26)$ (Figure 33b).

Figure 33 : Enchaînement des couches cationiques dans le composé DL-asparaginium perchlorate.

• Les entités cationiques du composé DL-asparaginium nitrate se développent en zigzag le long de l'axe $\vec{\mathbf{b}}$ à c =1/4 et 3/4. On note également que les entités cationiques de la couche située à 1/4 de l'axe $\vec{\mathbf{c}}$ ont la conformation D, et par application du plan de glissement de type c qui est perpendiculaire et à 1/4 de l'axe $\vec{\mathbf{b}}$ on obtient la deuxième couche des entités cationiques à 3/4 de l'axe $\vec{\mathbf{c}}$ et qui possèdent la conformation L, la jonction entre ces entités est assurée aussi par des cycles $R_2^2(8)$ qui se déploient et s'alternent le long de l'axe $\vec{\mathbf{b}}$ avec les cycles S(6) (Figure 34).

• L'insertion des anions dans le composé DL-asparaginium nitrate donne avec les cations DL-asparaginium des couches mixtes, la jonction entre ces couches mixtes est assurée par des liaisons hydrogène de type N-H...O entre les cations et les anions (Figure 34).

Figure 34 : Enchaînement des couches mixtes dans le composé DL-asparaginium nitrate.

• La jonction entre les cations du composé L-asparaginium picrate qui se développent en doubles couches suivant l'axe \vec{b} à c = 1/2, est assurée par des cycles $R_3^{3}(14)$ (Figue 35a). On note que ces cycles sont obtenus par la combinaison binaire de deux liaisons hydrogène de type N-H...O et les cycles $R_2^{2}(8)$ des deux structures à base de nitrate et de perchlorate sont obtenus par la combinaison binaire de type N-H...O, cette différence est dû à la taille de l'anion picrate.

• La cohésion entre les doubles couches cationiques est assurés par les anions picrate via des liaisons hydrogène de type N-H...O et O-H...O. Ces anions forment des doubles couches qui se développent suivant l'axe $\vec{\mathbf{b}}$ à c = 0 (Figure 35a). La projection suivant le plan $(\vec{\mathbf{a}}, \vec{\mathbf{b}})$ montre que les deux entités cationiques et anioniques forment des couches mixtes qui se déploient le long de l'axe $\vec{\mathbf{b}}$ à c = 1/3 et 2/3 (Figure 35b).

Figure 35 : Enchaînement des doubles couches cationiques et anioniques et des couches mixtes dans le composé L-asparaginium picrate.

IX- Conclusion :

Dans le cadre de l'étude des composés hybrides à base des acides aminés et d'autres acides minéraux, nous avons isolé un nouveau composé hybride à partir du DL-asparagine et d'acide perchlorique qui est le DL-asparaginium perchlorate.

Le composé est formé d'une entité cationique et d'une entité anionique. Chacune de ces deux entités forment des doubles couches qui s'alternent et sont parallèles au plan (\vec{b}, \vec{c}) .

La cohésion de l'édifice cristallin est assurée par un réseau tridimensionnel de liaisons hydrogène moyennes de type N-H...O et O-H...O et faibles de type C-H...O entre les cations et entre les cations et anions.

L'étude des liaisons hydrogène a mis en évidence la présence d'une interaction intramoléculaire de type N-H...O, liaison rarement observée dans les composés hybrides.

Pour bien décrire le réseau cristallin formé par ces liaisons hydrogène, l'étude des graphes qualitatifs et quantitatifs a été introduite et exploitée avec succès.

L'étude comparative entre le présent travail et deux composés à base de l'asparagine à savoir : le L-asparaginium picrate et le DL-asparaginium nitrate a mis en évidence que :

- Le composé étudié est le plus riche en liaisons hydrogène et que les trois composés présente une liaison hydrogène intramoléculaire.

– L'environnement en liaisons hydrogène des trois cations organiques a révélé que chaque cation a un environnement différent de l'autre, ceci est dû à la géométrie des trois anions minéraux, ce qui influe sur la disposition des différentes entités cationiques et anioniques dans l'édifice cristallin des trois structures.

Chapitre II

Synthèse, étude structurale et liaisons hydrogène du composé L-histidinium perchlorate à 100K. $C_6H_{10}N_3O_2^+$, ClO_4^- .

Synthèse, étude structurale et liaisons hydrogène du composé L-Histidinium perchlorate à 100 K C₆H₁₀N₃O₂⁺, ClO₄⁻

I- Introduction :

L'histidine est un des vingt acides aminés codés génétiquement dans l'ADN. D'un point de vue nutritionnel, l'histidine est considérée chez l'homme comme un acide aminé essentiel. Elle est produite beaucoup plus chez l'adulte que chez l'enfant, sa chaîne latérale a un caractère basique et comporte un cycle imidazole. L'histidine entre dans la composition de plusieurs protéines et enzymes avec un pourcentage molaire de 2, 1 comparé aux autres acides aminés, il est abondamment localisé dans l'hémoglobine et d'autres enzymes comme le déshydrogénase où elle entre dans la constitution du site actif par son groupement imidazole [28]. A cause de son radical imidazole qui agit en tant que donneur et accepteur de proton, la L-histidine a largement étudié par cristallographie en acide aminé libre [29], dans différents complexes métalliques [30], ainsi qu'en composés ioniques avec des anions minéraux tel que les phosphates [31] les chlorures [32]...etc.

Afin d'étudier les modèles de liaisons hydrogène de cet acide aminé, nous avons procédé à la synthèse et à l'étude structurale par diffraction des RX du composé hybride à base de la L-histidine et de l'acide perchlorique.

II- Partie expérimentale :

Une solution contenant la L-histidine dissoute dans l'eau distillée et l'acide perchlorique, avec un rapport de 1/1, a été maintenue sous agitation pendant vingt minutes à une température de 20°C. Après quelques jours d'évaporation, on a obtenu des cristaux incolores sous forme de plaquettes.

II-1- Protonation du cation organique :

Le noyau imidazole de l'histidine dispose d'un atome d'azote pouvant capter un proton qui est le N(2) (Figure 1).

Figure 1 : ORTEP-3 [16]. Site de protonation du cation L-Histidinium.

Une recherche bibliographique a été effectuée sur les composés hybrides à base de la histidine, on observe que cette matrice organique est toujours protonée au niveau de cet atome (N2) : L-histidinium dihydrogenmonophosphate monohydrate **[33]**, DL-histidine DL-tartrate **[34]**, L-histidinium trichloroacetate **[35]**, L-histidinium trifluoroacetate **[36]**.

III- Etude cristallographique :

III-1- Enregistrement des intensités :

La collection et l'enregistrement des intensités diffractées d'un monocristal de dimensions 0.3 x 0.2 x 0.02 mm ont été effectuées sur un diffractomètre à quatre cercles de type X Calibur Sapphir 2 muni d'un détecteur bidimensionnel CCD, en utilisant la radiation K α du Mo ($\lambda = 0.71073$ Å).

Les données cristallographiques et les conditions d'enregistrement sont représentées dans le tableau I.

III-2- Résolution et affinement de la structure :

Le traitement des données de diffraction à l'aide des programmes disponibles dans le logiciel WinGX **[13]** nous a permis de déterminer la structure.

Le modèle structural a été effectué par Sir92 **[14]**. Tous les atomes d'hydrogène ont été placés sur des cartes de Fourier différences lors de l'affinement de la structure par la méthode des moindres carrés, à l'aide de SHELXL-97 **[15]**.

L'affinement final a conduit aux facteurs de reliabilité non pondéré R = 2.32% et pondéré Rw = 6.41% avec une estimée de la variance de 1.141.

Les coordonnées atomiques, facteurs d'agitation thermiques anisotropiques, distances inter atomiques et angles de liaisons sont consignées dans les tableaux 1, 2, 3 et 4 (Annexe II).

Tableau I : Données cristallographiques et conditions d'enregistrement.

Données cristallographiques :

$C_6H_{10}N_3O_2^+$, ClO_4^- .	Radiation Ka du Mo
Mr = 255.62	Paramètres de la maille à partir de 12532 réflexions
Monoclinique P 2 ₁	
a = 4.995(10) Å	$\theta = 3.98-30.00^{\circ}$
b = 9.123(10) Å	$\mu = 0.431 \text{ mm}^{-1}$
c = 10.258(10) Å	T = 100 K
$\alpha = 90^{\circ}$	Plaques, incolores.
$\beta = 92.128(10)^{\circ}$	0.3 x 0.2 x 0.02 mm
$\gamma = 90^{\circ}$	$\mathbf{Z} = 2$
$V = 467.13(12) \text{ Å}^3$	
Dx = 1.817	

Conditions d'enregistrement :

Diffractomètre X Calibur Sapphir 2.	Rint = 0.0182
Kappa CCD	θ max = 30.00°
Mode de balayage : ω	$h = -7 \rightarrow 7$
12532 réflexions mesurées.	$k = -12 \rightarrow 12$
2711 réflexions indépendantes.	$l = -9 \rightarrow 14$
2605 réflexions avec $I>2\sigma(I)$.	

Affinement :

Affinement en F ²	
$R[F^2 > 2sigma(F^2)] = 0.0232$	$(\Delta/\sigma)_{\rm max} = 0.066$
$Rw(F^2) = 0.0641$	$\Delta/\rho_{max} = 0.395 \text{ Å}^{-3}.$
S = 1.141	$\Delta / \rho_{min} = -0.261 \text{\AA}^{-3}$.
2711 réflexions	
145 paramètres	

IV- Description de la structure :

L'unité asymétrique du composé L-histidinium perchlorate ($C_6H_{10}N_3O_2^+$, ClO_4^-) est constituée d'un anion minéral qui est le perchlorate et d'un cation organique monoprotoné, la L-histidinium. La jonction entre ces deux entités est assurée par des liaisons hydrogène moyennes de type N-H...O et faibles de type C-H...O (Figure 2).

Figure 2 : ORTEP-3. L'unité asymétrique du composé L-histidinium perchlorate.

Le groupement carboxylique (-COOH) ne peut pas coexister avec des bases faibles comme pour les amines (-NH₂). En milieu aqueux, ce groupement donne son proton au groupement amine. La L-histidine possède donc une structure zwitterionique (Figure 3).

Figure 3 : Configuration de la L-histidine.

La même configuration a été observée dans les composés ayant comme matrice organique la L-histidinium qui sont relevés de la littérature : L-histidinium tetrafluoroborate [37], DL-histidine hydrochloride dihydrate [38], L-histidine [39], L-histidinium hemihydrochloride tartrate tartaric acid dihydrate [40], L-(+)-histidine [41], DL-histidine [42].

V- Les liaisons hydrogène dans le composé L-histidinium perchlorate :

La L-histidinium présente seize liaisons hydrogène moyennes et faibles de type N-H...O et C-H...O qui sont établies entre les cations et entre les cations et les anions (Tableau II).

D-HA	D-H (Å)	HA (Å)	D-A (Å)	D-HA (°)
N1-H1NO4 ⁽ⁱⁱ⁾	0.89	2.59	3.2416(15)	131
N1-H1NO5 ⁽ⁱⁱ⁾	0.89	2.11	2.9852(15)	170
N1-H2NO1 ⁽ⁱⁱⁱ⁾	0.89	2.19	3.0535(15)	162
N1-H3NO2 ^(iv)	0.89	1.83	2.7129(14)	175
N2-H4NO1 ⁽ⁱⁱ⁾	0.86	2.07	2.9268(15)	171
N2-H4NO2 ⁽ⁱⁱ⁾	0.86	2.58	3.0548(16)	116
N3-H5NO6 ^(v)	0.86	2.54	3.0762(16)	121
N3-H5NO3 ^(vi)	0.86	2.09	2.9182(15)	163
C2-H2O1 ⁽ⁱⁱ⁾	0.98	2.51	3.4625(16)	163
C2-H2O2 ⁽ⁱⁱ⁾	0.98	2.47	3.1566(16)	127
C3-H3AO5 ^(iv)	0.97	2.68	3.5610(20)	152
C3-H3BO3 ⁽ⁱ⁾	0.97	2.41	3.1990(17)	138
C5-H5O3 ^(iv)	0.93	2.57	3.4848(18)	168
C5-H5O6 ^(vi)	0.93	2.67	3.2750(20)	124
C6-H6O5 ^(v)	0.93	2.60	3.2728(18)	130
C6-H6O6 ^(vii)	0.93	2.55	3.2013(17)	128

Tableau II : Liaisons hydrogène dans le composé L-histidinium perchlorate.

Codes de symétrie: (i) : x, y, z ; (ii) : 1-x, -1/2+y, 1-z ; (iii) : -x, -1/2+y, 1-z ; (iv) : -1+x, y, z ; (v) : -1+x, -1+y, z ; (vi) : -x, -1/2+y, -z ; (vii) : x, -1+y, z.

V-2- Environnement du cation L-histidinium :

L'entité cationique est engagée avec trois cations et six anions dans huit liaisons hydrogène modérées de type N-H...O et huit liaisons faibles de type C-H...O (Figure 4).

Figure 4 : Environnement de l'entité cationique $C_6H_{10}N_3O_2^+$. (On n'a représenté que les atomes des cations et des anions environnant pour la clarté de la figure.)

Le groupement ammonium NH_3^+ présente trois liaisons hydrogène : deux sont à deux centres et une chélatée, où l'atome d'hydrogène H(1N) est lié à l'atome d'azote N(1) par une liaison covalente, et il participe dans deux interactions intermoléculaires avec les atomes d'oxygène O(4) et O(5) appartenant au même anion, la somme des angles est de 359.91° valeur très proche de 360° (Figure 5).

Figure 5 : Configuration du groupement ammonium NH₃⁺.

Le groupement iminium présente une liaison hydrogène chélatée, où l'atome H(4N) établit une liaison covalente avec l'atome d'azote N(2) et il est engagé dans deux interactions intermoléculaires avec O(1) et O(2) qui sont liés au même atome de carbone C(1). La somme des angles a une valeur de 342.57° (Figure 6).

Figure 6 : Liaison hydrogène chélatée.

Le groupement imine présente une liaison hydrogène à trois centres, la somme des angles est de l'ordre de 359.12° (Figure 7).

Figure 7 : Configuration du groupement imine.

Chacun des deux atomes d'hydrogène H(5) et H(6) du cycle imidazole présente une liaison hydrogène à trois centres (Figure 8).

Figure 8 : Environnement des deux atomes H(5) et H(6).

Les deux atomes d'hydrogène H(3A) et H(3B) présentent deux liaisons hydrogène à deux centres (Figure 9).

Figure 9: Liaisons hydrogène à deux centres.

On observe une autre liaison hydrogène chélatée, où l'atome d'hydrogène H(2) qui est lié à l'atome de carbone C(2) par une liaison covalente participe dans deux interactions intermoléculaires les deux atomes O(1) et O(2) qui sont liés les deux à l'atome de carbone C(1).

La somme des angles est proche de 360°, elle a la valeur de 343.37° (Figure 10).

Figure 10 : Liaison hydrogène chélatée.

Les entités cationiques s'enfilent en zigzag le long de l'axe \vec{b} à a = 0 formant ainsi des doubles files cationiques parallèlement au plan (\vec{a}, \vec{b}) (Figure 11).

Figure 11 : Disposition des entités cationiques.

La jonction entre ces cations est assurée par des liaisons hydrogène modérées de type N-H...O et faibles de type C-H...O.

Ces doubles files cationiques qui sont situées à c = 1/2, s'enfilent suivant l'axe \vec{b} , généré par l'axe hélicoïdal 2₁ qui est parallèle à l'axe \vec{b} , (Figure 12).

Figure 12 : Liaisons hydrogène entre les couches cationiques.

La jonction entre deux doubles files est assurée par des doubles files anioniques à c = 1/4 et 3/4, formant ainsi des couches mixtes parallèlement au plan (\vec{b}, \vec{c}) (figure 13).

Figure 13 : Jonction entre deux couches cationiques.

VI- Graphes du modèle des liaisons hydrogène de la structure :

VI-1- Graphes qualitatifs :

Le cation du composé L-histidinium perchlorate établie seize liaisons hydrogène, formées entre les cations et entre les cations et les anions (Figure 14).

Figure 14 : Représentation graphique des différentes liaisons hydrogène dans le composé L-histidinium perchlorate.

Le composé étudié présente dix liaisons hydrogène qui sont des chaines finies D et six liaisons hydrogène des chaines infinies, ils ont comme modèle C (figure 15).

rigure 15 : Representation schematique des unterentes haisons nyurogene

La combinaison binaire des motifs des deux types de liaison hydrogène C-H...O et N-H...O donne des chaînes finies, infinies et des cycles (voir tableaux 6a... 6u annexe 2).

Le graphe unitaire qualitatif est formé des motifs des seize liaisons hydrogène, il s'écrit : $N_1 = D(\vec{a})D(\vec{b})D(\vec{g})D(\vec{h})D(\vec{k})D(\vec{l})D(\vec{m})D(\vec{o})D(\vec{p})C(\vec{c})C(\vec{d})C(\vec{e})C(\vec{f})C(\vec{l})C(\vec{j}).$

A partir des tableaux des liaisons covalentes (tableaux 5a et 5b annexe2) nous avons déterminés les différents graphes quantitatifs de cette structure.

VI-2- Graphes quantitatifs :

a) Liaison hydrogène de type N-H...O :

> Liaisons hydrogène de type N-H...O entre les cations :

Les quatre interactions intermoléculaires établies entre les cations (**c**, **d**, **e** et **f**) sont des chaînes infinies **C** (Figure 16a et 16b).

Figure 16 : Modèle des liaisons hydrogène de type N-H...O entre cations.

La combinaison binaire de ces interactions donne un cycle $R_1^2(4)$ (liaison chélatée), qui assure la jonction entre les entités cationiques de la même couche, et des chaînes infinies $C_2^2(10)$ et $C_2^2(12)$ (Tableaux 6a...6u, annexe 2), la combinaison ternaire de ces liaisons hydrogène donne aussi des cycles $R_3^2(11)$ et $R_3^2(13)$, ces derniers se déploient selon les deux axes cristallographiques \vec{a} et \vec{b} ce qui assure la jonction entre les différentes entités cationiques (Figure 17).

Figure 17: Graphes binaires et ternaires quantitatifs des liaisons hydrogène de type N-H...O entre cations.

Liaisons hydrogène de type N-H...O entre cation et anion :

Les quatre liaisons hydrogène de type N-H...O formées entre les cations et les anions sont des chaînes finies. Leurs motifs ont comme modèle **D** (Figure 18).

La combinaison binaire de ces liaisons nous donne un cycle $R_1^2(4)$ et des chaînes infinies $C_2^2(11)$ et $C_1^2(4)$ et la combinaison ternaire donne un enchainement de cycles $R_5^6(26)$ le long des deux axes \vec{a} et \vec{c} , ceci assure la jonction entre les couches cationiques et les couches anioniques (Figure 18).

Figure 18: Motif unitaire et graphe binaire et ternaire quantitatif des liaisons hydrogène de type N-H...O entre cation-anion.

La combinaison des liaisons hydrogène de type N-H...O entre cations et entre cations et anions donne des chaines finies, infinies et des cycles (Tableaux 6a...g, annexe 2), ceci forme un réseau tridimensionnel de liaisons hydrogène (Figure 19).

Figure 19 : Réseau de liaisons hydrogène de type N-H...O entre cations et entre cations et anions.

b) Liaisons hydrogène de type C-H...O :

> Liaisons hydrogène de type C-H...O entre les cations :

Les deux liaisons hydrogène faibles de type C-H...O (**i**, **j**) sont des chaînes infinies (**C**) (Figure 25). En combinant ces deux motifs, on obtient des cycles $\mathbf{R_1}^2(\mathbf{4})$ qui s'enfilent le long de l'axe $\mathbf{\vec{b}}$ à c = 1/2, assurent la jonction entre les cations appartenant à la même couche (Figure 20).

Figure 20 : Motif unitaire et graphe binaire quantitatif de la liaison C-H...O entre les cations.

Liaison hydrogène de type C-H...O entre les cations et les anions :

Les six liaisons hydrogène établies entre cation-anion sont des chaînes finies notées **D**. La combinaison binaire des liaisons hydrogène de type C-H...O entre les cations et les anions donne un cycle $R_2^2(8)$ et des chaînes infinies, avec différents degrés et différents nombres de donneurs et d'accepteurs (Tableaux 6a...6u, annexe 2). La combinaison quaternaire des liaisons hydrogène **k**, **l**, **o**, et **p** donne un cycle $R_3^3(8)$ qui s'enfile le long des deux axes \vec{a} et \vec{b} (Figure 21).

Figure 21 : Motifs unitaire et quelques graphes binaires et quaternaires des liaisons hydrogène de type C-H...O entre cation-anion.

Les liaisons hydrogène faibles de type C-H...O renforcent la cohésion entre les différentes entités et forment un réseau tridimensionnel de liaisons hydrogène (Figure 22).

Figure 22 : Liaisons hydrogène de type C-H...O.

Les différentes interactions intermoléculaires de type C-H...O et N-H...O forme un réseau tridimensionnel complexe de liaisons hydrogène qui est bâti essentiellement sur des chaines infinies qui se déploient le long \vec{b} et \vec{c} et qui sont générées par la combinaison binaires de liaisons hydrogène (Figure 23a et 23b). On note que ces chaînes infinies sont majoritaire suivant l'axe \vec{b} ce qui explique la différence entre les deux paramètres (b = 9.123(10) Å, c = 10.258(10) Å).

Figure 23a : Projection des différentes liaisons hydrogène suivant le plan (\vec{b}, c)

Figure 23b : Projection des différentes liaisons hydrogène suivant le plan (\vec{a}, \vec{c})

La figure 23c montre que suivant l'axe cristallographique \vec{a} , les liaisons hydrogène moyennes sont plus importantes et la combinaison donne des chaînes infinies et des cycles ce qui explique le rétrécissement du paramètre a qui à une valeur de 4.995(10) Å.

Figure 23c : Figure 23a : Projection des différentes liaisons hydrogène suivant le plan (\vec{a}, \vec{b})

Le composé L-histidinium perchlorate présente seize liaisons hydrogène, le graphe unitaire quantitatif s'écrit : $N_1 = DDDDDDDDDC(4)C(4)C(5)C(5)C(7)C(7)$. La combinaison binaire des motifs donne des chaînes finies et infinies et des cycles avec des degrés variables (Tableaux 6a...6u, annexe 2). Le graphe binaire quantitatif de base est partagé entre une chaîne infinie $C_1^2(4)$ et un cycle $R_1^2(4)$ avec un atome donneur et un atome accepteur, le graphe binaire quantitatif complexe est un cycle à quatre donneurs et quatre accepteurs : $D_3^3(17)$.

VIII-Etude comparative:

L'étude comparative effectuée entre les composés : DL-histidine DL-tartrate **[34]**, L-histidinium tetrafluoroborate **[37]** et le présent travail fait ressortir que :

1- Les deux composés : L-histidinium perchlorate et L-histidinium tetrafluoroborate sont iso structuraux, ils cristallisent dans le groupe d'espace (P2₁), contrairement au composé DL-histidine DL-tartrate qui cristallise dans les groupes d'espace P21/c (Tableau III).

Composés.	Groupe d'	espace et Z.	Paramètres de maille.
I histidinium nonohlonoto	D2	7 - 2	a = 4.995(10) Å b = 0.122(10) Å
L-msudmum perchiorate.	P21	$\mathbf{L} = \mathbf{Z}$	b = 9.125(10) Å c = 10.258(10) Å
			$\beta = 92.128(10)^{\circ}$
			V = 467.13(12)Å ³
			a = 5.0259(8) A
L-histidinium tetrafluoroborate.	$P2_1$	$\mathbf{Z} = 2$	b = 9.0890(2) A
			C = 10.2180(2) A $\beta = 93.482(15)^{\circ}$
			$V = 465.901(6) Å^3$
			a = 4.9695 (5) Å
DL-histidine DL-tartrate.			b = 13.4392 (12) Å
	P21/c	Z = 4	c = 19.2749 (18) Å
			$\beta = 90.253 (2)^{\circ}$
			$V = 1287.28(17) \text{ Å}^3$

Tableau III : Données cristallographiques des trois composés à base d'histidine.

2- L'unité asymétrique de ces trois structures est formée d'un cation organique et d'un anion minéral. Les matrices organiques des trois composés : L-histidinium perchlorate, L-histidinium tetrafluoroborate et DL-histidine DL-tartrate sont monoprotonées sur le même site.

3- Les deux cations des deux structures L-histidinium perchlorate et L-histidinium tetrafluoroborate ont le même environnement, ceci est dû à la même géométrie tétraédrique des deux anions d'une part et d'autre part à la participation des quatre atomes d'oxygène et de fluore des deux anions perchlorate et tetrafluoroborate dans des liaisons hydrogène. (Figure 24a et 24b).

La géométrie de l'anion tartrate impose un environnement différent de celui des deux cations des composés L-histidinium perchlorate et L-histidinium tetrafluoroborate (Figure 24c).

Figure 24 : Environnement des entités cationiques LHP, LHTF et DLHDLT.

4- Le composé étudié présente deux types de liaisons hydrogène à savoir : N-H...O et C-H...O établies entre cations et entre cations et anions, le composé L-histidinium tetrafluoroborate présente des liaisons hydrogène faibles et modérées à savoir : C-H...O, C-H...F, N-H...O et N-H...F établies entre les cations et entre les cations et les anions et le composé DL-histidine DL-tartrate présente trois types de liaison hydrogène qui sont C-H...O, O-H...O et N-H...O établies entre les cations, entre les cations et entre les anions.

Les seize interactions intermoléculaires dans le composé L-histidinium tetrafluoroborate sont établies entre les cations et entre les cations et les anions. Toutes les liaisons hydrogène qui sont formées entre les cations et les anions sont sous forme des chaines finies D et ceux qui sont formées entre les cations sont des chaines infinies C de la même façon que dans le composé étudié, donc le graphe unitaire quantitatif s'écrit : de ce composé ne change il pas et $N_1 = DDDDDDDDDDC(4)C(4)C(5)C(5)C(7)C(7).$

La combinaison binaire de ces motifs donne les mêmes chaînes finies, infinies et les cycles qui sont établies dans la L-histidinium perchlorate (Figure 25).

Figure 25 : Motif unitaire et quelques graphes binaires quantitatifs du composé L-histidinium tetrafluoroborate.

5-

• Les doubles couches cationiques dans le composé étudié sont situées à c = 1/2, elles se développent selon l'axe \vec{b} . Une succession des cycles de sept atomes $R_2^{-1}(7)$ se déploient en zigzag le long de l'axe \vec{b} (Figure 26a).

Dans le composé L-histidinium tetrafluoroborate, les mêmes cycles $R_2^{-1}(7)$ s'enfilent successivement en zigzag suivant l'axe \vec{b} à c = 0 (Figure 26b).

• Dans les deux structures L-histidinium perchlorate et L-histidinium tetrafluoroborate, les entités anioniques sont placées en zigzag dans les cavités créés entre les doubles couches cationiques, assurant ainsi la jonction entre ces doubles couches via une alternance des cycles $R_3^{3}(17)$ et $R_4^{5}(18)$, qui se développent parallèlement au plan $(\vec{\mathbf{b}}, \vec{\mathbf{c}})$. Ces anions sont situés à c = 0 dans le présent travail et à c = 1/2 pour la L-histidinium tetrafluoroborate (Figure 26a et 26b).

Figure 26 : Insertion de l'anion et son effet sur l'édifice cristallin dans les composés L-histidinium perchlorate et L-histidinium tetrafluoroborate.

• Les entités cationiques dans le composé DL-histidine DL-tartrate se déploient en zigzag le long de l'axe $\vec{\mathbf{b}}$ à c =1/4 et 3/4. On note également que les cations de la couche située à 1/4 de l'axe $\vec{\mathbf{c}}$ ont la conformation D, on obtient la deuxième couche des cations à 3/4 de l'axe $\vec{\mathbf{c}}$ possédant la conformation L par application du plan de glissement de type c qui est perpendiculaire et à 1/4 de l'axe $\vec{\mathbf{b}}$, (Figure 27a), la jonction entre ces entités est assurée par des cycles $R_1^2(4)$ qui se déploient en zigzag le long de l'axe $\vec{\mathbf{b}}$ (Figure 27b).

• La disposition des entités cationiques crée des cavités où s'insèrent les entités anioniques (Figure 27a). Ces entités anioniques se regroupent par paire le long de l'axe \vec{b} à c = 0 et 1/2, suite à l'existence du plan de glissement de type c perpendiculaire et à 1/4 de l'axe \vec{b} (Figure 27b). On note que l'anion qui forme l'unité asymétrique présente la configuration D, et par l'application de ce plan de glissement on obtient la deuxième configuration L (Figure 27b).

Figure 27 : Cohésion entre les deux entités cationiques dans le composé DL-histidine DL-tartrate.

La jonction entre les entités cationiques et anioniques est assurée par des cycles $R_8^{8}(42)$, suite à la combinaison quaternaire des liaisons hydrogène de type N-H...O et des cycles $R_4^{4}(20)$ et $R_1^{2}(5)$, suite à la combinaison binaire des liaisons hydrogène de type N-H...O, ces cycles s'alternent parallèlement au plan (\vec{b}, \vec{c}) (Figure 28).

Figure 28: Enchainement des couches cationiques et anioniques dans le composé DL-histidine DL-tartrate.

La géométrie de l'anion tartrate induit à un graphe unitaire quantitatif légèrement différent des structures à base de perchlorate et de tetrafluoroborate.
 N1 = DDDDDDDDDDC(5)C(5)C(8)C(8)R₂²(10).

VIII- Conclusion :

Le composé hybride L-histidinium perchlorate est formé par une matrice organique monoprotonée qui est la L-histidinium et un anion minéral qui est le perchlorate.

La structure cristalline est formée par des couches mixtes qui s'enfilent le long de l'axe $\vec{\mathbf{b}}$ à c = 1/4 et 3/4 et parallèlement au plan $(\vec{\mathbf{b}}, \vec{\mathbf{c}})$.

L'étude de la L-histidine par diffraction des Rayons X nous a permis de construire l'empilement cristallin qui est principalement assuré par des liaisons hydrogène moyennes et faibles et dont la combinaison binaire donne majoritairement des chaines infinies qui se déploient le long \vec{b} et \vec{c} .

L'enchaînement des liaisons hydrogène dans ce composé explique les paramètres de la maille, où on note des valeurs proches pour les paramètres b et c.

La construction du graphe binaire quantitatif du modèle des liaisons hydrogène a donnée des graphes binaire de base et complexes de type $C_1^2(4)$, $R_1^2(4)$ et $D_3^3(17)$.

L'étude comparative entre la L-histidinium tetrafluoroborate, DL-histidine DL-tartrate et le présent travail fait ressortir que le composé DL- histidine DL-tartrate présente moins de liaisons hydrogène, ceci est du essentiellement à la géométrie de l'anion minéral qui est totalement différente des deux anions perchlorate et tetrafluoroborate qui présentent la même géométrie tétraédrique.

Conclusion générale

L'étude des composés hybrides à base des acides minéraux et des matrices organiques, nous a permis de synthétiser et étudier par diffraction des RX a basse température deux composés riches en liaisons hydrogène qui assurent la cohésion de l'édifice cristallin.

– Le premier composé est le DL-asparaginium perchlorate qui est formé d'un cation organique : $C_4H_9N_2O_3^+$, et d'un anion minéral : ClO_4^- . Il cristallise dans le système orthorhombique. La structure du composé étudié est formée de double couches cationiques et anioniques qui s'enfilent

parallèlement au plan $(\vec{\mathbf{b}}, \vec{\mathbf{C}})$.

L'étude détaillée des interactions intermoléculaire a mis en évidence la présence de quinze liaisons hydrogène : dix moyennes de type N-H...O et O-H... O, et cinq faibles de type C-H...O qui sont établies entre les cations et entre les cations et les anions. Le cation du composé étudié présente deux liaisons hydrogène à trois centres, une liaison hydrogène à quatre centres et une chélatée, les autres liaisons sont à deux centres. Ce composé présente une interaction intramoléculaire de type N-H...O, liaison rarement observée dans les composés hybrides.

Le réseau cristallin est construit principalement sur des cycles et des chaines infinies suite à la combinaison binaire, ternaire, quaternaire de liaisons hydrogène, ce qui forme un réseau tridimensionnel très complexe.

La construction des graphes qualitatifs des différentes liaisons hydrogène de ce composé conduit à un graphe unitaire $N_1 = D(\vec{b})D(\vec{d})D(\vec{e})D(\vec{f})D(\vec{h})D(\vec{j})D(\vec{l})D(\vec{n})D(\vec{n})C(\vec{a})C(\vec{g})C(\vec{l})C(\vec{k})C(\vec{o})S(\vec{c})$.

L'étude comparative avec deux composés à base de l'asparagine à savoir : la L-asparaginium picrate et la DL-asparaginium nitrate a mis en évidence une différence de géométrie pour les trois anions minéraux ce qui influe sur la disposition des différentes entités cationiques et anioniques et sur le réseau des liaisons hydrogène.

– Le deuxième composé étudié est L-histidinium perchlorate de formule $C_6H_{10}N_3O_2^+$, ClO_4^- . Ce composé cristallise dans le système monoclinique.

La structure de ce composé est constituée de couches mixtes qui se déploient parallèlement au plan (\vec{b}, \vec{c}) .

L'édifice cristallin est assuré par seize liaisons hydrogène établies entre les cations et entre les cations et les anions, dont huit sont moyennes de type N-H...O et huit sont faibles de type C-H...O. Ce composé présente trois liaisons hydrogène chélatées et trois à trois centres, les liaisons qui restent sont à deux centres. La combinaison de ces types de liaisons hydrogène forme un réseau tridimensionnel complexe qui est fondé essentiellement sur des chaines infinies et finies de liaisons hydrogène qui se dévellopent suivant les deux axes cristallographiques \vec{b} et \vec{c} .

Le graphe unitaire quantitatif de cette structure contient des chaines finies et infinies, il s'écrit : $N_1 = DDDDDDDDDDC(4)C(4)C(5)C(5)C(7)C(7)$.

Le graphe quantitatif binaire de base est partagé entre une chaîne infinie $C_1^2(4)$ et un cycle $R_1^2(4)$, le graphe quantitatif binaire complexe est un cycle à $D_3^3(17)$.

L'étude comparative avec la L-histidinium tetrafluoroborate, DL-histidine DL-tartrate fait ressortir que la géométrie des anions influe sur l'enchainement des entités cationiques et anioniques, sur le nombre de liaisons hydrogène et par conséquent sur le graphe qualitatif et quantitatif du modèle des liaisons hydrogène.

Références

- [1]: R. K. O. Siegel, E. Freisinger, S. Metzger, B. Lippert. (1998). J. Am. Chem. Soc. 120, 12000-12007.
- [2]: C. R. Mayer, P. Herson, R. Thouvenot. (1999). Inorg. Chem. 38, 4159-4163.
- [3]: A. Mazeaud, Y. Dromzee, R. Thouvenot. (2000). Inorg. Chem. 39, 6152-6158.
- [4]: L. Bendjeddou, (2004). Thèse d'état. Département de chimie, Faculté des sciences. Université Mentouri Constantine.
- [5]: A. Ghosh, M. Bansal. Acta Cryst. (2003). D59, 620-626.
- [6]: A. Ghosh, M. Bansal. Acta Cryst. (1999). D55, 2005-2012.
- [7]: A. Cherouana, (2004). Thèse d'état. Département de chimie, Faculté des sciences. Université Mentouri Constantine.
- [8]: F. Cavillon, (2007). Thèse d'état. Université des sciences et technologies de Lille.
- [9]: J. D. Watson, F. H. Crick. Structures of deoxyribose nucleic acid. Nature (London) 171: 737-38, 1953.
- [10]: M. Kubucki, H. A. R. Bassyouni, W. P. Codding. Acta Cyst. (1997). C53, 739-742.
- [11]: J. L. Wang, Z. Berkovitch Yellin, L. Leiserowitz. Acta Cryst. (1985). B41, 341-348.
- [12]: Jacques J. Verbist, Mogens S. Lehmann, Thomas F. Koetzle, Walter C. Hamilton. Acta Cryst. (1972). B28, 3006.
- [13]: L. J. Farrujia, (1999). J. Appl. Cryst. 32, 837-838.
- [14]: Altomare. A, Cascarano. G, Giacovazzo. C, Guagliardi. A. (1993). J. Appl. Cryst. 26, 343-350.
- [15]: Sheldrick G. M, (1997). SHELXL97 and SHELXS97. University of Gottingen, Germany.
- [16]: L. J. Farrujia, (1997). J. Appl. Cryst. 30, 565.
- [17]: G. C. Ou, M. Zhang, X. Y. Yuan. Acta Cryst. (2008). E64, m1010.
- [18]: T. Birk, J. Bendix, H. Weihe. Acta Cryst. (2008). E64, m369-m370.
- [19]: N. Arulsamy, J. L. Crawford. Acta Cryst. (2007). E63, m2307.
- [20]: L. N. Kuleshova, P. M. Zorkii. Acta Cryst. (1980). B36, 2113-2115.
- [21]: M. C. Etter. (1990). Acc. Chem.Res. 95, 4601-4610.
- [22]: M. C. Etter, J. C. MacDonald, J. Bernstein. Acta Cryst. (1990). B46, 256-262.
- [23]: J. Bernstein, R. E. Davis, L. Shimoni, N. Chang. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- [24]: J. Bernstein, B. Ganter, J. Grell, U. Hengst, K. Kuske, R. Pöschel (1997). Report Math-AL-17- 1997. Université de technologie Dresden, Germany.
- [25]: J. Grell, J. Bernstein, G. Tinhofer. Acta Cryst. (1999). B55, 1030-1043.
- [26]: K. Anitha, S. Athimoolam, R. K. Rajaram. Acta Cryst. (2005). E61, o1463-o1465.
- [27]: N. Moussa Slimane, (2008). Thèse de magistère. Département de chimie, Faculté des sciences. Université Mentouri Constantine.
- [28]: L. Benguedouar, (2003). Thèse de magistère. Département de chimie, Faculté des sciences. Université Mentouri Constantine.
- [29]: J. J. Madden, E. L. McGandy, N. C. Seeman. Acta Cryst. (1972). B28, 2382-2388.
- [30]: W. T. Pennington, A. W. Cordes. Acta Cryst. (1984). C40, 1322-1324.
- [31]: R. H. Blessing. Acta Cryst. (1986). B42, 613-621.
- [32]: H. Fuess, D. Hohlwein, S. A. Mason. Acta Cryst. (1977). B33, 654-659.

- [33]: M. T. Averbuch Pouchot, A. Durif, J. C. Guitel. Acta Cryst. (1988). C44, 890-892.
- [34]: M. N. Johnson, N. Feeder. Acta Cryst. (2004). E60, o1273-o1274.
- [35]: S. Gokul Raj, G. Ramesh Kumar, R. Mohan, R. Jayavel, B. Varghese. Acta Cryst. (2006). E62, o1704-o1706.
- [36]: S. Gokul Raj, G. Ramesh Kumar, R. Mohan, R. Jayavel. Acta Cryst. (2006). E62, o5-o7.
- [37]: S. Gokul Raj, G. Ramesh Kumar, T. Raghavalu, R. Mohan, R. Jayavel. Acta Cryst. (2006). E62, o1178-o1180.
- [38]: I. Bennett, A. G. H. Davidson, Marjorie M. Harding, Isabelle Morelle. Acta Cryst. (1970). B26, 1722.
- [**39**]: J. J. Madden, E. L. McGandy, N. C. Seeman, M. M. Harding, A. Hoy. Acta Cryst. (1972). B28, 2382.
- [40]: K. Rajagopal, R. V. Krishnakumar, M. Subha Nandhinic, S. Natarajam. Acta Cryst. (2003). E59, o955-o958.
- [41]: J. J. Madden, E. L. McGandy, N. C. Seeman. Acta Cryst. (1972). B28, 2377.
- [42]: P. Edington, Marjorie M. Harding. Acta Cryst. (1974). B30, 204.

ANNEXES

Tableau 1Coordonnées atomiques et facteurs d'agitation thermiques isotropes (Ų) duDL-asparaginium perchlorate.

Atome	x	У	Z	U(eq) [Å ²]
Cl	0.47310(3)	0.19831(3)	0.51837(2)	0.013
O(4)	0.40556(10)	0.17283(10)	0.44286(6)	0.016
O(2)	0.45531(9)	0.59814(10)	0.63973(6)	0.014
O(5)	0.43441(10)	0.32805(10)	0.54535(6)	0.014
O(1)	0.58075(10)	0.69349(10)	0.73613(6)	0.016
O(3)	0.61641(10)	0.32443(9)	0.70706(6)	0.016
O(7)	0.43353(15)	0.10452(11)	0.57649(7)	0.031
O(6)	0.61759(11)	0.19651(11)	0.50613(7)	0.023
N(2)	0.71483(14)	0.37335(13)	0.82580(7)	0.020
N(1)	0.67333(11)	0.48835(10)	0.57091(6)	0.011
C(3)	0.77719(13)	0.49754(12)	0.70849(8)	0.013
C(2)	0.69855(13)	0.56921(12)	0.64330(7)	0.011
C(4)	0.69623(13)	0.39099(13)	0.74833(8)	0.013
C(1)	0.56297(13)	0.62141(12)	0.67246(8)	0.012
H(1N)	0.64356	0.53994	0.53029	0.017
H(2N)	0.60934	0.42731	0.58220	0.017
H(3N)	0.75166	0.44836	0.55598	0.017
H(4N)	0.77228	0.42290	0.85214	0.024
H(5N)	0.66979	0.31202	0.85114	0.024
H(1)	0.50713	0.72926	0.74855	0.024
H(2)	0.75461	0.64536	0.62631	0.013
H(3A)	0.85995	0.45923	0.68463	0.015
H(3B)	0.80610	0.56091	0.74970	0.015

Tableau 2Facteurs d'agitation thermiques anisotropes du DL-asparaginium perchlorate.

Atome	U11	U22	U33	U12	U13	U23
Cl	0.0164(2)	0.0105(2)	0.0112(2)	-0.0003(1)	-0.0021(1)	0.0004(1)
O(4)	0.0154(5)	0.0179(5)	0.0141(5)	-0.0035(4)	-0.0043(4)	-0.0027(4)
O(2)	0.0115(4)	0.0156(5)	0.0145(5)	0.0009(3)	0.0014(3)	0.0001(4)
O(5)	0.0165(5)	0.0126(4)	0.0144(5)	0.0005(3)	-0.0007(4)	-0.0024(4)
O(1)	0.0144(5)	0.0184(5)	0.0156(5)	0.0016(4)	0.0020(4)	-0.0059(4)
O(3)	0.0162(5)	0.0178(5)	0.0134(5)	-0.0047(4)	-0.0012(3)	0.0035(4)
O(7)	0.0587(9)	0.0180(6)	0.0177(6)	-0.0057(5)	0.0041(5)	0.0082(5)
O(6)	0.0144(5)	0.0267(6)	0.0265(6)	0.0060(4)	-0.0080(4)	-0.0079(5)
N(2)	0.0254(6)	0.0252(6)	0.0105(5)	0.0023(5)	-0.0010(4)	0.0022(5)
N(1)	0.0113(5)	0.0127(5)	0.0104(5)	0.0014(4)	0.0010(4)	0.0003(4)
C(3)	0.0102(5)	0.0143(6)	0.0134(6)	-0.0005(5)	-0.0018(4)	-0.0008(5)
C(2)	0.0103(5)	0.0108(5)	0.0120(5)	-0.0008(4)	0.0014(4)	-0.0013(4)
C(4)	0.0126(5)	0.0132(6)	0.0119(6)	0.0044(5)	0.0009(4)	-0.0003(5)
C(1)	0.0133(6)	0.0091(5)	0.0123(6)	-0.0007(4)	0.0028(4)	0.0024(5)

Tableau 3Distances (Å) interatomiques du DL-asparaginium perchlorate.

Atome1-Atome2	Distance
Cl-O(4)	1.450(2)
Cl-O(5)	1.460(2)
Cl-O(7)	1.423(2)
Cl-O(6)	1.440(2)
O(2)-C(1)	1.218(2)
O(1)-C(1)	1.308(2)
O(3)-C(4)	1.250(2)
N(2)-C(4)	1.319(2)
C(3)-C(2)	1.527(2)
C(3)-C(4)	1.511(2)
C(2)-C(1)	1.521(2)
N(1)-H(1N)	0.910(2)
N(1)-H(2N)	0.910(2)
N(1)-H(3N)	0.910(2)
N(2)-H(4N)	0.880(2)
N(2)-H(5N)	0.880(2)
O(1)-H(1)	0.840(1)
C(2)-H(2)	1.000(2)
C(3)-H(3A)	0.990(2)
C(3)-H(3B)	0.990(2)

Tableau 4 Angles (°) de liaisons du DL-asparaginium perchlorate.

Atome1-Atome2-Atome3	Angle
O(4)-Cl-O(5)	108.3(1)
O(4)-Cl-O(7)	110.2(1)
O(4)-Cl-O(6)	109.2(1)
O(5)-Cl-O(7)	109.8(1)
O(5)-Cl-O(6)	108.3(1)
O(7)-Cl-O(6)	111.1(1)
C(2)-C(3)-C(4)	113.3(2)
C(3)-C(2)-C(1)	112.9(2)
O(3)-C(4)-N(2)	123.6(2)
O(3)-C(4)-C(3)	119.2(2)
N(2)-C(4)-C(3)	117.3(2)
O(2)-C(1)-O(1)	126.4(2)
O(2)-C(1)-C(2)	123.6(2)
O(1)-C(1)-C(2)	110.0(2)
H(1)-O(1)-C(1)	109.5(2)
C(3)-C(2)-H(2)	107.5(2)
H(2)-C(2)-C(1)	107.5(2)
H(5N)-N(2)-H(4N)	120.0(2)
H(5N)-N(2)-C(4)	120.0(2)
H(4N)-N(2)-C(4)	120.0(2)
H(2N)-N(1)-H(3N)	109.5(2)
H(2N)-N(1)-H(1N)	109.5(2)
H(3N)-N(1)-H(1N)	109.5(2)
H(3A)-C(3)-H(3B)	107.7(2)
H(3A)-C(3)-C(2)	108.9(2)
H(3A)-C(3)-C(4)	108.9(2)
H(3B)-C(3)-C(2)	108.9(2)
H(3B)-C(3)-C(4)	108.9(2)

Tableau 1Coordonnées atomiques et facteurs d'agitation thermiques isotropes (Ų) du composéL-histidinium perchlorate.

Atome	X	У	Ζ	U(eq)
Cl	0.61530(5)	0.93347(3)	0.15930(2)	0.010
O(3)	0.53309(19)	0.79472(10)	0.10014(9)	0.013
O(2)	0.66481(17)	0.71757(10)	0.50056(9)	0.011
O(6)	0.5795(2)	1.0485(1)	0.06350(1)	0.018
O(1)	0.29060(17)	0.76366(10)	0.60586(8)	0.012
O(5)	0.89576(16)	0.92426(12)	0.20134(8)	0.015
O(4)	0.45825(19)	0.96379(11)	0.27071(9)	0.018
N(2)	0.2472(2)	0.3447(1)	0.22570(1)	0.010
N(1)	0.0503(2)	0.5083(1)	0.51770(1)	0.009
N(3)	-0.1047(2)	0.3363(1)	0.09770(1)	0.012
C(1)	0.4270(2)	0.6910(1)	0.52830(1)	0.009
C(5)	-0.0931(3)	0.4757(1)	0.14960(1)	0.011
C(4)	0.1286(3)	0.4812(1)	0.23110(1)	0.010
C(6)	0.1008(2)	0.2584(2)	0.14580(1)	0.012
C(3)	0.2388(3)	0.6034(1)	0.31340(1)	0.011
C(2)	0.2991(2)	0.5596(1)	0.45590(1)	0.008
H(2)	0.42856	0.47886	0.45738	0.010
H(5)	-0.21365	0.55156	0.13227	0.013
H(6)	0.13638	0.16077	0.12715	0.015
H(1N)	0.08823	0.48305	0.60009	0.013
H(2N)	-0.01542	0.43105	0.47416	0.013
H(3N)	-0.07048	0.58004	0.51556	0.013
H(4N)	0.39255	0.31924	0.26724	0.013
H(5N)	-0.22581	0.30484	0.04282	0.015
H(3A)	0.11118	0.68360	0.31137	0.013
H(3B)	0.40243	0.63865	0.27618	0.013

Tableau 2Facteurs d'agitation thermiques anisotropes de la L-histidinium perchlorate.

Atome	U11	U22	U33	U12	U13	U23
Cl	0.0099(1)	0.0088(1)	0.0101(1)	-0.0005(1)	-0.0023(1)	-0.0002(1)
O(3)	0.0165(4)	0.0089(4)	0.0140(4)	-0.0010(3)	-0.0033(3)	-0.0027(3)
O(2)	0.0089(4)	0.0105(4)	0.0151(4)	-0.0010(3)	0.0003(3)	-0.0007(3)
O(6)	0.0245(5)	0.0114(5)	0.0191(5)	-0.0022(4)	-0.0074(4)	0.0062(4)
O(1)	0.0115(4)	0.0107(4)	0.0138(4)	-0.0006(3)	0.0010(3)	-0.0038(3)
O(5)	0.0092(4)	0.0190(4)	0.0170(4)	0.0005(4)	-0.0040(3)	-0.0008(4)
O(4)	0.0147(4)	0.0235(6)	0.0153(4)	-0.0007(3)	0.0020(3)	-0.0073(3)
N(2)	0.0118(5)	0.0092(4)	0.0101(5)	0.0014(4)	-0.0018(4)	-0.0005(4)
N(1)	0.0084(4)	0.0091(4)	0.0093(5)	-0.0016(3)	0.0001(3)	-0.0005(4)
N(3)	0.0131(5)	0.0139(5)	0.0098(5)	-0.0011(4)	-0.0014(4)	-0.0011(4)
C(1)	0.0104(5)	0.0062(5)	0.0097(5)	-0.0004(4)	-0.0034(4)	0.0012(4)
C(5)	0.0120(5)	0.0108(5)	0.0101(5)	0.0001(4)	-0.0002(4)	0.0004(4)
C(4)	0.0117(5)	0.0091(5)	0.0086(5)	-0.0003(4)	0.0010(4)	0.0008(4)
C(6)	0.0144(6)	0.0107(5)	0.0115(5)	-0.0003(4)	0.0004(4)	-0.0006(4)
C(3)	0.0144(5)	0.0085(5)	0.0096(5)	-0.0017(4)	-0.0011(4)	0.0007(4)
C(2)	0.0082(5)	0.0073(5)	0.0096(5)	-0.0003(4)	-0.0001(4)	-0.0002(4)

Tableau 3 Distances (Å) interatomiques de la L-histidinium perchlorate.

Atome1-Atome2	Distance
Cl-O(3)	1.456(1)
Cl-O(6)	1.444(2)
Cl-O(5)	1.453(1)
Cl-O(4)	1.437(1)
O(2)-C(1)	1.255(2)
O(1)-C(1)	1.256(2)
N(2)-C(4)	1.381(2)
N(2)-C(6)	1.334(2)
N(3)-C(5)	1.379(2)
N(3)-C(6)	1.329(2)
C(1)-C(2)	1.536(2)
C(5)-C(4)	1.364(2)
C(4)-C(3)	1.492(2)
C(3)-C(2)	1.534(2)
C(2)-H(2)	0.980(2)
C(5)-H(5)	0.930(2)
C(6)-H(6)	0.930(2)
N(1)-H(1N)	0.890(2)
N(1)-H(2N)	0.890(2)
N(1)-H(3N)	0.890(2)
N(2)-H(4N)	0.860(2)
N(3)-H(5N)	0.860(2)
C(3)-H(3A)	0.970(2)
C(3)-H(3B)	0.970(2)

Tableau 4Angles (°) de liaisons de la L-histidinium perchlorate.

Atome1-Atome2-Atome3	Angle
O(3)-Cl-O(6)	108.8(1)
O(3)-Cl-O(5)	109.1(1)
O(3)-Cl-O(4)	110.2(1)
O(6)-Cl-O(5)	109.7(1)
O(6)-Cl-O(4)	110.1(1)
O(5)-Cl-O(4)	108.9(1)
C(4)-N(2)-C(6)	109.3(2)
C(5)-N(3)-C(6)	109.2(2)
O(2)-C(1)-O(1)	125.6(2)
O(2)-C(1)-C(2)	114.9(2)
O(1)-C(1)-C(2)	119.5(2)
N(3)-C(5)-C(4)	107.0(2)
N(2)-C(4)-C(5)	106.4(2)
N(2)-C(4)-C(3)	123.2(2)
C(5)-C(4)-C(3)	130.5(2)
N(2)-C(6)-N(3)	108.1(2)
C(4)-C(3)-C(2)	113.6(2)
C(1)-C(2)-C(3)	108.7(1)
C(1)-C(2)-H(2)	108.5(1)
C(3)-C(2)-H(2)	108.5(2)
H(4N)-N(2)-C(4)	125.4(2)
H(4N)-N(2)-C(6)	125.4(2)
H(1N)-N(1)-H(2N)	109.5(2)
H(1N)-N(1)-H(3N)	109.5(2)
H(2N)-N(1)-H(3N)	109.5(2)
H(5N)-N(3)-C(5)	125.4(2)
H(5N)-N(3)-C(6)	125.4(2)
N(3)-C(5)-H(5)	126.5(2)
H(5)-C(5)-C(4)	126.5(2)
N(2)-C(6)-H(6)	125.9(2)
N(3)-C(6)-H(6)	125.9(2)
C(4)-C(3)-H(3A)	108.8(2)
C(4)-C(3)-H(3B)	108.9(2)
H(3A)-C(3)-H(3B)	107.7(2)
H(3A)-C(3)-C(2)	108.8(2)
H(3B)-C(3)-C(2)	108.8(2)

LC	→ a	← a	→ b	← b	$\rightarrow c$	← c	→ d	- d	→ e	← e	$\rightarrow_{\rm f}$	← f	→ g	← g	$\rightarrow h$	← h	\rightarrow i	← i	\rightarrow	← j	$\rightarrow_{\mathbf{k}}$	← k	$\overrightarrow{1}$	← 1	\xrightarrow{m}	← m	\xrightarrow{n}	← n	→ o	← o	→ p	← p
← a	0	0	0	0	2	4	2	4	6	4	6	4	7	0	7	0	3	4	3	4	4	0	4	0	6	0	6	0	7	0	7	0
→ a	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	2	0	2	0	2	0	2	0	2	0	2
, b	0	0	0	0	2	4	2	4	6	4	6	4	7	0	7	0	3	4	3	4	4	0	4	0	6	0	6	0	7	0	7	0
→ b	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	0	0	2	0	2	0	2	0	0	0	2
← c	2	0	2	0	0	4	2	4	6	4	6	4	7	0	7	0	3	4	3	4	4	0	4	0	6	0	6	0	7	0	7	0
→ c	4	0	4	0	4	0	4	2	6	0	6	2	7	0	7	0	3	0	3	2	4	0	4	0	6	0	6	0	7	0	7	0
, d	2	0	2	0	2	4	0	4	6	4	6	4	7	0	7	0	3	4	3	4	4	0	4	0	6	0	6	0	7	0	7	0
\rightarrow d	4	0	4	0	4	2	4	0	6	2	6	0	7	0	7	0	3	2	3	0	4	0	4	0	6	0	6	0	7	0	7	0
← e	6	0	6	0	6	6	6	6	0	6	0	6	4	0	4	0	5	6	5	6	4	0	4	0	4	0	4	0	3	0	3	0
→ e	4	0	4	0	4	0	4	2	6	0	6	2	7	0	7	0	3	0	3	2	4	0	4	0	6	0	6	0	7	0	7	0
← f	6	0	6	0	6	6	6	6	0	6	0	6	4	0	4	0	5	6	5	6	4	0	4	0	4	0	4	0	3	0	3	0
→ f	4	0	4	0	4	2	4	0	6	2	6	0	7	0	7	0	3	2	3	0	4	0	4	0	6	0	6	0	7	0	7	0
→ g	7	0	7	0	7	7	7	7	4	7	4	7	0	0	0	0	6	7	6	7	5	0	5	0	3	0	3	0	3	0	3	0
	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	2	0	2	0	0	0	2	0	0
← h	7	0	7	0	7	7	7	7	4	7	4	7	0	0	0	0	6	7	6	7	5	0	5	0	3	0	3	0	3	0	3	0
$\xrightarrow{\mathbf{h}}$	0	2	0	2	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	2	0	2

Tableau 5a : Liaisons covalentes dans le composé L-histidinium perchlorate.

LC	→ a	← a	→ b	← b	$\rightarrow c$	← c	$\rightarrow d$, d	→ e	↓ e	\rightarrow f	← f	→ g	← 8	$\overrightarrow{\mathbf{h}}$	← h	↑ i	↓ i) →	← j	$\rightarrow \mathbf{k}$	← k	$\overrightarrow{1}$	↓ 1	\xrightarrow{m}	← m	↑ n	↓ n	→ o	↓ o) ₽	← p
← i	3	0	3	0	3	3	3	3	5	3	5	3	6	0	6	0	0	3	0	3	3	0	3	0	5	0	5	0	6	0	6	0
→ i	4	0	4	0	4	0	4	2	6	0	6	2	7	0	7	0	3	0	3	2	4	0	4	0	6	0	6	0	7	0	7	0
- j	3	0	3	0	3	3	3	3	5	3	5	3	6	0	6	0	0	3	0	3	3	0	3	0	5	0	5	0	6	0	6	0
→ i	4	0	4	0	4	2	4	0	6	2	6	0	7	0	7	0	3	2	3	0	4	0	4	0	6	0	6	0	7	0	7	0
← k	4	0	4	0	4	4	4	4	4	4	4	4	5	0	5	0	3	4	3	4	0	0	2	0	4	0	4	0	5	0	5	0
$\xrightarrow{\mathbf{k}}$	0	2	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	0	0	2	0	2	0	2	0	0	0	2
← 1	4	0	4	0	4	4	4	4	4	4	4	4	5	0	5	0	3	4	3	4	2	0	0	0	4	0	4	0	5	0	5	0
\rightarrow 1	0	2	0	2	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	2	0	2
← m	6	0	6	0	6	6	6	6	4	6	4	6	3	0	3	0	5	6	5	6	4	0	4	0	0	0	0	0	4	0	4	0
\xrightarrow{m}	0	2	0	2	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	2	0	2
← n	6	0	6	0	6	6	6	6	4	6	4	6	3	0	3	0	5	6	5	6	4	0	4	0	0	0	0	0	4	0	4	0
\xrightarrow{n}	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	2	0	2	0	0	0	2	0	0
لب 0	7	0	7	0	7	7	7	7	3	7	3	7	3	0	3	0	6	7	6	7	5	0	5	0	4	0	4	0	0	0	0	0
→ o	0	2	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	0	0	2	0	2	0	2	0	0	0	2
← p	7	0	7	0	7	7	7	7	3	7	3	7	3	0	3	0	6	7	6	7	5	0	5	0	4	0	4	0	0	0	0	0
→ p	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	2	0	2	0	0	0	2	0	0

Type de liaison H		a	b	с
		N1-H1NO4	N1-H1NO5	N1-H2N01
	Graphes qualitatifs.	D(a)	R(ab)	$D(\overrightarrow{a} \overrightarrow{c} \overrightarrow{a})$
a N1-H1NO4	Représentations graphiques.	● ^a → ○ A B		A
	Graphes quantitatifs.	D	$R_1^2(4)$	$D_3^{3}(9)$
	Graphes qualitatifs.		D(b)	D(b c b)
ь N1-H1NО5	Représentations graphiques.		A B	
	Graphes quantitatifs.		D	$D_3^{-3}(9)$
	Graphes qualitatifs.			$\mathbf{C}(\vec{\mathbf{c}})$
c N1-H2N01	Représentations graphiques.			$\begin{array}{ccc} c & c \\ A & A \\ \end{array} \xrightarrow{c} A \\ \end{array} \xrightarrow{c} A$
	Graphes quantitatifs.			C(5)

Tableau 6a : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.
Type de liaison H		d	e	f
		N1-H3NO2	N2-H4NO1	N2-H4NO2
	Graphes qualitatifs.	$D(\overrightarrow{a} \ \overrightarrow{d} \ \overrightarrow{a})$	$D(\overrightarrow{a} \overrightarrow{e} \overrightarrow{a})$	$D(\vec{a} \vec{f} \vec{a})$
a N1-H1NO4	Représentations graphiques.	$ \begin{array}{c} B \\ a \\ d \\ A \\ A \\ \end{array} \begin{array}{c} B \\ a \\ a \\ A \\ A \\ \end{array} \begin{array}{c} B \\ a \\ a \\ a \\ a \\ A \\ \end{array} \begin{array}{c} B \\ a \\ a \\ A \\ A \\ \end{array} \begin{array}{c} B \\ a \\ a \\ A \\ A \\ \end{array} \begin{array}{c} B \\ a \\ a \\ a \\ A \\ A \\ \end{array} \begin{array}{c} B \\ a \\ a \\ A \\ A \\ \end{array} \begin{array}{c} B \\ a \\ a \\ A \\ A \\ A \\ \end{array} \begin{array}{c} B \\ a \\ A$		$ \begin{array}{c} & & & \\ & $
	Graphes quantitatifs.	$D_3^{3}(9)$	$D_3^{3}(13)$	$D_3^{3}(13)$
	Graphes qualitatifs.	$D(\vec{b} \vec{d} \vec{b})$	$D(\vec{b} \vec{e} \vec{b})$	$D(\vec{b} \vec{f} \vec{b})$
b N1-H1NO5	Représentations graphiques.	$ \begin{array}{c} & & & \\ & $		$ \begin{array}{c} & & & \\ & $
	~ .	– 3(0)	OB The second se	UB D 3(10)
	Graphes quantitatifs.	$D_{3}^{3}(9)$	$D_{3}^{3}(13)$	$D_{3}^{3}(13)$
	Graphes qualitatifs.	$R(\vec{c} \ \vec{d} \ \vec{c} \ \vec{d})$ et $C(\vec{c} \ \vec{d})$	C(c [¯] e)	$C(\vec{c},\vec{f})$
c N1-H2N01	Représentations graphiques.	d c d c d c d c d c d c d c d c d c d c	e A e C A C e A C A C	T A T A T A T A T A T A T A T A T A T A
	Graphes quantitatifs.	$R_4^4(16)$ et $C_2^2(10)$	$C_2^{-1}(8)$	$C_2^{2}(12)$

Tableau 6b : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		g	h	i
		N3-H5NO6	N3-H5NO3	С2-Н2О1
	Graphes qualitatifs.	$C(\vec{a} \vec{g})$	$C(\overline{\mathbf{a}}\overline{\mathbf{h}})$	$D(\overrightarrow{a} \overrightarrow{i} \overrightarrow{a})$
a N1-H1NO4	Représentations graphiques.		$A \bigoplus_{a} \bigoplus_{b} B A \bigoplus_{b} B$	
	Graphes quantitatifs.	$C_2^{2}(11)$	$C_2^{2}(11)$	$D_3^{3}(10)$
b N1-H1NO5	Graphes qualitatifs.	$C(\overrightarrow{\mathbf{b}},\overrightarrow{\mathbf{g}})$	$C(\overrightarrow{b}h)$	$D(\overrightarrow{\mathbf{b}} \overrightarrow{1} \overrightarrow{\mathbf{b}})$
	Représentations graphiques.			
	Graphes quantitatifs.	$C_2^{2}(11)$	$C_2^{2}(11)$	$D_3^{3}(10)$
	Graphes qualitatifs.	$D(\overleftarrow{g} \overrightarrow{c} \overrightarrow{g})$	$D(\vec{h} \vec{c} \vec{h})$	$C(\vec{c},\vec{i})$
c N1-H2N01	Représentations graphiques.	$ \begin{array}{c} & & \\ & & $	$ \begin{array}{c} & & \\ & & & \\ & & $	
	Graphes quantitatifs.	$D_3^{3}(17)$	$D_3^{3}(17)$	$C_2^{-1}(5)$

Tableau 6c : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		j C2-H2O2	k C3-H3A05	l C3-H3BO3
	Graphes qualitatifs.	$D(\vec{a} \vec{j} \vec{a})$	$C(\vec{a},\vec{k})$	$C(\vec{a},\vec{l})$
a N1-H1N04	Représentations graphiques.	$ \begin{array}{c} & & & \\ & $		
	Graphes quantitatifs.	$D_3^{3}(10)$	$C_2^{2}(8)$	$C_2^{2}(8)$
	Graphes qualitatifs.	$D(\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{j}} \overrightarrow{\mathbf{b}})$	C(<mark>b</mark> k)	C(b t)
b N1-H1NO5	Représentations graphiques.			
	Graphes quantitatifs.	$D_3^{-3}(10)$	$C_2^{1}(6)$	$C_2^2(8)$
	Graphes qualitatifs.	$C(\vec{c} \ \vec{j})$	$D(\vec{k} \vec{c} \vec{k})$	$D(\overrightarrow{l}\overrightarrow{c}\overrightarrow{l})$
c N1-H2N01	Représentations graphiques.		$ \xrightarrow{C} \xrightarrow{B} \xrightarrow{A} \xrightarrow{C} \xrightarrow{C} \xrightarrow{A} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} C$	
	Graphes quantitatifs.	$C_2^{2}(9)$	$D_3^{3}(11)$	$D_3^{3}(11)$

Tableau 6d : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		m C5-H5O3	n C5-H5O6
	Graphes qualitatifs.	$C(\vec{a}, \vec{m})$	C(an)
a N1-H1N04	Représentations graphiques.		
	Graphes quantitatifs.	$C_2^{2}(10)$	$C_2^{2}(10)$
	Graphes qualitatifs.	$C(\overrightarrow{b}^{*}(\overrightarrow{m}))$	$C(\vec{b},\vec{n})$
b N1-H1NO5	Représentations graphiques.		
	Graphes quantitatifs.	$C_2^2(10)$	$C_2^2(10)$
	Graphes qualitatifs.	$D(\overleftarrow{\mathbf{m}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{m}})$	$D(\overleftarrow{n} \overrightarrow{c} \overrightarrow{n})$
c N1-H2NO1	Représentations graphiques.		$ \xrightarrow{c}_{A} \xrightarrow{c}_{B} \xrightarrow{A} \xrightarrow{c}_{A} \xrightarrow{c}$
	Graphes quantitatifs.	$D_3^{3}(15)$	$D_3^{3}(15)$

Tableau 6e : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		0 C6-H6O5	р С6-Н6Об
	Graphes qualitatifs.	C(a o)	$C(\vec{a}, \vec{p})$
a N1-H1N04	Représentations graphiques.		
	Graphes quantitatifs.	$C_2^2(11)$	$C_2^2(11)$
	Graphes qualitatifs.	C(b o)	$C(\vec{b},\vec{p})$
b N1-H1NO5	Représentations graphiques.		
	Graphes quantitatifs.	$C_2^{-1}(9)$	$C_2^{2}(11)$
	Graphes qualitatifs.	$D(\overleftarrow{\mathbf{c}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{o}})$	$D(\overrightarrow{\mathbf{p}} \ \overrightarrow{\mathbf{c}} \ \overrightarrow{\mathbf{p}})$
c N1-H2N01	Représentations graphiques.		
	Graphes quantitatifs.	$D_3^{3}(17)$	$D_3^{3}(17)$

Tableau 6f : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		d NI H2N O2	e Na HAN OI	f Na HAN - O2
	Granhes qualitatifs	$\Gamma(\vec{d})$		
	Graphes quantatiis.	C(u)		
d N1-H3NO2	Représentations graphiques.	$\begin{array}{ccc} d & d \\ A & A \\ A & A \end{array}$	d A d d A d A d A d A d A d A d A d A d	
	Graphes quantitatifs.	C(5)	$C_2^{2}(12)$	$C_2^2(12)$
	Graphes qualitatifs.		C(e)	$R(\vec{e} \cdot \vec{f}) et C(\vec{e} \cdot \vec{f})$
e N2-H4NO1	Représentations graphiques.		e e e A A A	e f f f f f f f f f f
	Graphes quantitatifs.		C(7)	$R_1^2(4)$ et $C_2^2(14)$
	Graphes qualitatifs.			$C(\vec{f})$
f N2-H4NO2	Représentations graphiques.			$ \begin{array}{cccc} & f & f \\ & A & A & A \end{array} $
	Graphes quantitatifs.			C(7)

Tableau 6g : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		g N3-H5NO6	h N3-H5N03	i C2-H201
	Graphes qualitatifs.	$D(\overrightarrow{g} \overrightarrow{d} \overrightarrow{g})$	$D(\mathbf{\vec{h}} \ \mathbf{\vec{d}} \ \mathbf{\vec{h}})$	$R(\vec{d} \ \vec{i} \ \vec{d} \ \vec{i})$ et $C(\vec{d} \ \vec{i})$
d N1-H3NO2	Représentations graphiques.		$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	$\begin{array}{cccc} \mathbf{i} & \mathbf{d} \\ \mathbf{i} & \mathbf{d} \\ \mathbf{d} \\$
	Graphes quantitatifs.	$D_{3}^{-3}(17)$	$D_{3}^{-3}(17)$	$R_4^4(16)$ et $C_2^2(9)$
	Graphes qualitatifs.	$D(\overleftarrow{g} \overrightarrow{e} \overrightarrow{g})$	$D(\overline{\mathbf{h}} \cdot \overline{\mathbf{e}} \cdot \overline{\mathbf{h}})$	$R(\vec{e}, \vec{i})$ et $C(\vec{e}, \vec{i})$
e N2-H4NO1	Représentations graphiques.		$ \begin{array}{c} \bigcirc B \\ & \bigcirc B \\ & & & & & \\ \bullet \\ & & & \bullet \\ A \\ & & & & \\ & & & & \\ B \end{array} $	
	Graphes quantitatifs.	$D_3^{3}(15)$	$D_{3}^{3}(15)$	$R_2^{1}(7)$ et $C_2^{2}(11)$
	Graphes qualitatifs.	$D(\overleftarrow{g} \overrightarrow{f} \overrightarrow{g})$	D(h f h)	$R(\vec{f} \cdot \vec{i})$ et $C(\vec{f} \cdot \vec{i})$
f N2-H4NO2	Représentations graphiques.	$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	i i f A A A
	Graphes quantitatifs.	$D_3^{3}(15)$	$D_3^{3}(15)$	$R_2^2(9)$ et $C_2^2(11)$

Tableau 6h : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		j C2 H2 O2	k C2 H2A - O5	
	Crambas suclitatifs	$\begin{array}{c} C2-H202 \\ \hline \rightarrow \rightarrow \rightarrow \leftarrow \rightarrow \rightarrow \end{array}$		<u> </u>
	Graphes quantatils.	$R(\mathbf{d} \mathbf{j} \mathbf{d} \mathbf{j})$ et $C(\mathbf{d} \mathbf{j})$	D(k d k)	D(1 d 1)
d N1-H3NO2	Représentations graphiques.	j d j d j A d d j j j j j A d A d		$ \xrightarrow{\mathbf{d}}_{\mathbf{A}}^{\mathbf{B}} \xrightarrow{\mathbf{d}}_{\mathbf{A}}^{\mathbf{A}} \xrightarrow{\mathbf{d}}_{\mathbf{A}}^{\mathbf{A}} \xrightarrow{\mathbf{d}}_{\mathbf{A}}^{\mathbf{B}} \xrightarrow{\mathbf{d}}_{\mathbf{A}}^{\mathbf{B}} $
	Graphes quantitatifs.	$R_4^{3}(14)$ et $C_2^{2}(9)$	$D_{3}^{-3}(11)$	$D_{3}^{3}(11)$
	Graphes qualitatifs.	$R(\vec{e})$ t $C(\vec{e})$	$D(\overrightarrow{\mathbf{k}} \overrightarrow{\mathbf{e}} \overrightarrow{\mathbf{k}})$	$D(\overrightarrow{le}\overrightarrow{l})$
e N2-H4NO1	Représentations graphiques.	j e e e e e e e e A A j A A		
	Graphes quantitatifs.	$R_2^2(9)$ et $C_2^2(11)$	$D_3^{3}(11)$	$D_3^{3}(11)$
	Graphes qualitatifs.	$R(\vec{f} \cdot \vec{j})$ et $C(\vec{f} \cdot \vec{j})$	$D(\overrightarrow{k} \overrightarrow{f} \overrightarrow{k})$	$D(\overrightarrow{l} \overrightarrow{f} \overrightarrow{l})$
f N2-H4NO2	Représentations graphiques.	j f f f f f f f f f f	$ \begin{array}{c} \bigcirc B \\ k \\ f \\$	
	Graphes quantitatifs.	$R_2^{1}(7)$ et $C_2^{2}(11)$	$D_3^{3}(11)$	$D_3^{3}(11)$

Tableau 6i : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		m C5-H5O3	n C5-H5O6	
	Graphes qualitatifs.	$D(\overrightarrow{\mathbf{m}} \overrightarrow{\mathbf{d}} \overrightarrow{\mathbf{m}})$	$D(\overline{\mathbf{n}} \overline{\mathbf{d}}, \overline{\mathbf{n}})$	
d N1-H3NO2	Représentations graphiques.	$ \begin{array}{c} \bigcirc B \\ & \bigcirc B \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & $	$ \begin{array}{c} & & & \\ & $	
	Graphes quantitatifs.	$D_3^{-5}(15)$	$D_3^{(15)}$	
	Graphes qualitatifs.	$D(\overleftarrow{m} \overrightarrow{e} \overrightarrow{m})$	$D(\overleftarrow{n} \overrightarrow{e} \overrightarrow{n})$	
e N2-H4N01	Représentations graphiques.		$ \xrightarrow{\mathbf{B}}_{\mathbf{A}} \xrightarrow{\mathbf{A}}_{\mathbf{B}} \xrightarrow{\mathbf{B}}_{\mathbf{A}} \xrightarrow{\mathbf{B}} \xrightarrow{\mathbf{B}}_{\mathbf{A}} \xrightarrow{\mathbf{B}} \xrightarrow{\mathbf{B}}_{\mathbf{A}} \xrightarrow{\mathbf{B}} \xrightarrow{\mathbf{B}}_{\mathbf{A}} \xrightarrow{\mathbf{B}} \xrightarrow{\mathbf{B}} \xrightarrow{\mathbf{B}} \xrightarrow{\mathbf{B}} \xrightarrow{\mathbf{B}} \xrightarrow{\mathbf{B}} \xrightarrow{\mathbf{B}} \xrightarrow{\mathbf{B}} \mathbf{B$	
	Graphes quantitatifs.	$D_3^{3}(13)$	$D_3^{3}(13)$	
	Graphes qualitatifs.	$D(\overleftarrow{m} \overrightarrow{f} \overrightarrow{m})$	$D(\overline{\mathbf{n}} \mathbf{f}^* \mathbf{n})$	
f N2-H4NO2	Représentations graphiques.	$ \begin{array}{c} \bigcirc B \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{c} & & & \\ & $	
	Graphes quantitatifs.	$D_3^{3}(13)$	$D_3^{3}(13)$	

Tableau 6j : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		0 C6-H6O5	р С6-Н6Об
	Graphes qualitatifs.	$D(\overrightarrow{\mathbf{o}} \overrightarrow{\mathbf{d}} \overrightarrow{\mathbf{o}})$	$D(\overrightarrow{p} \overrightarrow{d} \overrightarrow{p})$
d N1-H3NO2	Représentations graphiques.	d d A d d A d d A d d A d d A d d A d d A d d A d d A d d A d d A d d A d d A d d A d d A d d A d	$\begin{array}{c} & & \\$
	Graphes quantitatifs.	$D_3^{3}(17)$	$D_3^{3}(17)$
	Graphes qualitatifs.	$D(\overleftarrow{o} \overrightarrow{e} \overrightarrow{o})$	$D(\overleftarrow{p} \overrightarrow{e} \overrightarrow{p})$
e N2-H4NO1	Représentations graphiques.		
	Graphes quantitatifs.	$D_3^{3}(13)$	$D_3^{3}(13)$
	Graphes qualitatifs.	$D(\overleftarrow{o} \overrightarrow{f} \overrightarrow{o})$	$D(\overleftarrow{\mathbf{p}} \overrightarrow{\mathbf{f}} \overrightarrow{\mathbf{p}})$
f N2-H4NO2	Représentations graphiques.	$ \begin{array}{c} $	$ \begin{array}{c} & & & \\ & $
	Graphes quantitatifs.	$D_{3}^{3}(13)$	$D_{3}^{-3}(13)$

Tableau 6k : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		g	h	i
		N3-H5NO6	N3-H5NO3	С2-Н2О1
	Graphes qualitatifs.	$D(\overline{g})$	$C(\vec{g}, \vec{h})$	$D(\overleftarrow{g} \overrightarrow{i} \overrightarrow{g})$
g N3-H5NO6	Représentations graphiques.	● g A B	$A \bigoplus h \longrightarrow B A \bigoplus h \longrightarrow g g g g$ $h \longrightarrow B A \bigoplus h \longrightarrow B$	
	Graphes quantitatifs.	D	$C_1^{2}(4)$	$D_3^{3}(16)$
	Graphes qualitatifs.		$D(\vec{h})$	$D(\overline{h} \overrightarrow{i} \overrightarrow{h})$
h N3-H5NO3	Représentations graphiques.		● h → ⊖ A B	
	Graphes quantitatifs.		D	$D_3^{3}(16)$
	Graphes qualitatifs.			$C(\vec{1})$
1 C2-H201	Représentations graphiques.			• i →• i →•
	Graphes quantitatifs.			C(4)

Tableau 61 : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		j C2-H2O2	k C3-H3AO5	l C3-H3BO3
	Graphes qualitatifs.	$D(\overleftarrow{g} \ \overrightarrow{j} \ \overrightarrow{g})$	$C(\vec{g},\vec{k})$	$C(\overline{g},\overline{l})$
g N3-H5NO6	Représentations graphiques.			
	Graphes quantitatifs.	$D_3^{3}(16)$	$C_2^{2}(9)$	$C_2^{2}(9)$
h N3-H5NO3	Graphes qualitatifs.	$D(\overrightarrow{h} \overrightarrow{j} \overrightarrow{h})$	$C(\overrightarrow{h} \overrightarrow{k})$	$C(\vec{h},\vec{l})$
	Représentations graphiques.		$A \bigoplus h \longrightarrow B \qquad A \bigoplus h \rightarrow k \qquad k \qquad k \qquad k \qquad k \qquad h \rightarrow B \qquad A \bigoplus h \rightarrow B \rightarrow$	
	Graphes quantitatifs.	$D_3^{3}(16)$	$C_2^2(9)$	$C_2^{-1}(7)$
	Graphes qualitatifs.	$R(\overrightarrow{i})$ et $C(\overrightarrow{1})$	$D(\vec{k} \vec{i} \vec{k})$	$D(\overrightarrow{1} \overrightarrow{i} \overrightarrow{1})$
i C2-H2O1	Représentations graphiques.	j j i A A A j A A A	$ \begin{array}{c} & & & \\ & $	
	Graphes quantitatifs.	$R_1^2(4)$ et $C_2^2(8)$	$D_{3}^{3}(10)$	$D_3^{3}(10)$

Tableau 6m : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		m C5-H5O3	n C5-H5O6
	Graphes qualitatifs.	C(gm)	C(g ħ)
g N3-H5NO6	Représentations graphiques.		
	Graphes quantitatifs.	$C_2^2(7)$	$C_2^{-1}(5)$
	Graphes qualitatifs.	$C(\overrightarrow{h},\overrightarrow{m})$	$R(\vec{h},\vec{n})$
h N3-H5NO3	Représentations graphiques.	$A \bigoplus h \bigoplus B A \bigoplus h \bigoplus m m m m m h \bigoplus B A \bigoplus B A \bigoplus h \bigoplus B A \bigoplus B A \bigoplus h \bigoplus B A \bigoplus B B B A \bigoplus B B B A \bigoplus B B A \bigoplus B B A \bigoplus B B B A \bigoplus B B A \bigoplus B B A \bigoplus B B B A \bigoplus B B B A B B B B$	
	Graphes quantitatifs.	$C_2^{-1}(5)$	$R_2^2(7)$
	Graphes qualitatifs.	$D(\overline{\mathbf{m}} \ \overline{\mathbf{i}} \ \overline{\mathbf{m}})$	$D(\vec{n} \vec{i} \vec{n})$
i C2-H201	Représentations graphiques.		
	Graphes quantitatifs.	$D_3^{-3}(14)$	$D_3^{-3}(14)$

Tableau 6n : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		0 C6.H6_O5	р С6-Н6 Об	
	Graphes qualitatifs.	$R(\vec{g} \cdot \vec{o})$	$C(\vec{g}, \vec{p})$	
g N3-H5NO6	Représentations graphiques.	A G B		
	Graphes quantitatifs.	$R_2^2(7)$	$C_2^{-1}(5)$	
	Graphes qualitatifs.	$C(\vec{h} \vec{o})$	$C(\vec{h} \vec{p})$	
h N3-H5NO3	Représentations graphiques.	$A \bigoplus h \longrightarrow B A \bigoplus h$	$A \bigoplus h \longrightarrow B \qquad A \bigoplus h \longrightarrow p \qquad p \qquad p \qquad p \qquad h \longrightarrow B \qquad A \bigoplus h \longrightarrow B$	
	Graphes quantitatifs.	$C_2^2(7)$	$C_2^2(7)$	
	Graphes qualitatifs.	$D(\overleftarrow{o} \vec{i} \vec{o})$	$D(\overrightarrow{p} \overrightarrow{i} \overrightarrow{p})$	
i C2-H201	Représentations graphiques.			
	Graphes quantitatifs.	$D_3^{3}(16)$	$D_3^{3}(16)$	

Tableau 60 : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		j C2-H2 O2	k C3-H3A_05	l C3-H3B_O3
Graphes qualitatifs.		$C(\vec{j})$	$D(\vec{k} \vec{j} \vec{k})$	$D(\overrightarrow{1} \overrightarrow{j} \overrightarrow{1})$
j C2-H2O2	Représentations graphiques.	A J A A		
	Graphes quantitatifs.	C(4)	$D_3^{3}(10)$	$D_3^{3}(10)$
	Graphes qualitatifs.		$\mathbf{D}(\vec{\mathbf{k}})$	$C(\vec{k},\vec{l})$
k C3-H3AO5	Représentations graphiques.		● k ⊖ A B	
	Graphes quantitatifs.		D	$C_2^{2}(6)$
	Graphes qualitatifs.			$\mathbf{D}(\vec{\mathbf{l}})$
l C3-H3BO3	Représentations graphiques.			● I → ○ A B
	Graphes quantitatifs.			D

Tableau 6p : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		m C5-H5O3	n C5-H5O6
	Graphes qualitatifs.	$D(\overline{\mathbf{m}} \ \overline{\mathbf{j}} \ \overline{\mathbf{m}})$	$D(\hat{n} \vec{j} \vec{n})$
j C2-H2O2	Représentations graphiques.	$ \begin{array}{c} & & & \\ & $	j B B J B J J A J J J A J J A J J A J J A J J A J J A J J A J J A J J A J J A
	Graphes quantitatifs.	$D_3^{3}(14)$	$D_3^{3}(14)$
	Graphes qualitatifs.	$R(\vec{k},\vec{m})$	$C(\vec{k},\vec{n})$
k C3-H3AO5	Représentations graphiques.	A B	$A \xrightarrow{k} B \xrightarrow{A} \xrightarrow{k} n$
	Graphes quantitatifs.	$R_2^{2}(8)$	$C_2^{2}(8)$
	Graphes qualitatifs.	$C(\vec{l},\vec{m})$	$C(\vec{l},\vec{n})$
l C3-H3BO3	Représentations graphiques.		$A \bigoplus I \longrightarrow B \qquad A \bigoplus I \longrightarrow B$
	Graphes quantitatifs.	$C_2^{-1}(6)$	$C_2^{2}(8)$

Tableau 6q : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		0 C6-H6O5	р С6-Н6Об
	Graphes qualitatifs.	$D(\overrightarrow{o} \overrightarrow{j} \overrightarrow{o})$	$D(\mathbf{p} \ \mathbf{j} \ \mathbf{p})$
j C2-H2O2	Représentations graphiques.		
	Graphes quantitatifs.	$D_3^{3}(16)$	$D_3^{3}(16)$
	Graphes qualitatifs.	$C(\vec{k} \vec{o})$	$C(\vec{k} \vec{p})$
k C3-H3AO5	Représentations graphiques.		
	Graphes quantitatifs.	$C_2^{1}(7)$	$C_2^{2}(9)$
	Graphes qualitatifs.	C(lo)	$C(\vec{l}\vec{p})$
l C3-H3BO3	Représentations graphiques.		
	Graphes quantitatifs.	$C_2^{2}(9)$	$C_2^{2}(9)$

Tableau 6r : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Tableau 6s : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		m C5-H5O3	n C5-H5O6
	Graphes qualitatifs.	D(m)	$C(\vec{m},\vec{n})$
m C5-H5O3	Représentations graphiques.	● ^m → ○ A B	$A \bigoplus^{n} \bigoplus^{B} A \bigoplus^{n} \bigoplus^{m} $
	Graphes quantitatifs.	D	$C_1^2(4)$
	Graphes qualitatifs.		$D(\vec{n})$
n C5-H5O6	Représentations graphiques.		A B
	Graphes quantitatifs.		D

Type de liaison H		0 C6-H6O5	р С6-Н6Об
	Graphes qualitatifs.	$C(\vec{m o})$	$C(\vec{m} \vec{p})$
m C5-H5O3	Représentations graphiques.		
	Graphes quantitatifs.	$C_2^2(8)$	$C_2^{2}(8)$
	Graphes qualitatifs.	$C(\vec{n} \vec{o})$	$C(\vec{n} \vec{p})$
n C5-H5O6	Représentations graphiques.	$A \bigoplus^{\circ} \bigcirc B \qquad A \bigoplus^{\circ} \bigcirc B$	$A \bigoplus^{p} \bigcirc B \qquad A \bigoplus^{p}$ $n \qquad n \qquad n$ $p \longrightarrow B \qquad A \bigoplus^{p} \bigcirc B$
	Graphes quantitatifs.	$C_2^{2}(8)$	$C_2^{-1}(6)$

Tableau 6t : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Tableau 6u : Motifs unitaires et graphes binaires qualitatifs et quantitatifs du composé L-histidinium perchlorate.

Type de liaison H		0 C6-H6O5	р С6-Н6О6
	Graphes qualitatifs.	D(_o)	$C(\overrightarrow{o p})$
0 C6-H6O5	Représentations graphiques.	A B	
	Graphes quantitatifs.	D	$C_1^2(4)$
	Graphes qualitatifs.		$D(\vec{p})$
р С6-Н6О6	Représentations graphiques.		
	Graphes quantitatifs.		D

Résumé

- Le présent travail a été réalisé au laboratoire de Chimie Moléculaire, du Contrôle de l'environnement et de Mesures physico-chimiques du Département de Chimie à l'université Mentouri-Constantine, dans le cadre de l'étude des composés hybrides à base d'acides aminés comme matrice organique et d'acide perchlorique comme acide minérale.

- Nous avons synthétisé et étudié deux composés hybrides à base de perchlorate : le DL-asparaginium perchlorate ($C_4H_9N_2O_3^+$, ClO_4^-) et la L-histidinium perchlorate ($C_6H_{10}N_3O_2^+$, ClO_4^-).

- Le premier composé est formé d'un cation organique et d'un anion minéral. L'étude détaillée des interactions intermoléculaires a mis en évidence la présence de trois types de liaisons hydrogène modérées et faibles à savoir N-H...O, O-H... O et C-H...O. Le réseau tridimensionnel formé par ces différents types de liaisons hydrogène assure la jonction entre les entités de cette structure.

- Le deuxième composé est constitué d'une entité cationiques et d'une entité anionique. La cohésion de la structure est assurée par un réseau tridimensionnel de liaisons hydrogène de type N-H...O et C-H...O établies entre les cations et entre les cations et les anions.

- La théorie de Bernstein et de Grell appelée méthode des graphes nous a permis de construire les graphes qualitatifs et quantitatifs du modèle des liaisons hydrogène de ces deux composés pour mieux comprendre leurs empilements cristallin.

Abstract

- The present work has been realized in the laboratory of Molecular chemistry, of the Control of the environment and physico-chemical Measures belong to the chemistry Department in the Mentouri-Constantine university, within the framework of the study of the hybrid compounds based on amino acids as organic moieties and perchloric and phosphoric acids as mineral acids.

- We have synthesis and study two new hybrid compounds based on perchloric acid: DL-asparaginium perchlorate $(C_4H_9N_2O_3^+, ClO_4^-)$ and L-histidinium perchlorate $(C_6H_{10}N_3O_2^+, ClO_4^-)$.

- The first compound is formed of an organic cation and a mineral anion. The detailed study of intermolecular interactions put in evidence the presence of three types of hydrogen bonds moderate and weak: N-H...O, O-H...O and C-H...O. Three-dimensional network formed by these different types of hydrogen bonds assures the junction between entities of this structure.

- The second compound is constituted of a cationic entity and an anionic entity. The cohesion of the structure is assured by a three-dimensional network of hydrogen bonds moderate of type N-H...O, and weak of type C-H...O established between cations and between cations and anions.

- The theory of Bernstein and Grell called method of the graphs permitted us to construct qualitative and quantitative graphs of the model of the hydrogen bonds of these two composed to understand their crystalline network better.

 $(C_4H_9N_2O_3^+, ClO_4^-)$: . $(C_6H_{10}N_3O_2^+, ClO_4^-)$

•

•

N-H...O و N-H...O و الضعيفة من نوع

6

•C-H...0

_

N-H...O

.

و الضعيفة من نوع C-H...O

Résumé

- Le présent travail a été réalisé au laboratoire de Chimie Moléculaire, du Contrôle de l'environnement et de Mesures physico-chimiques du Département de Chimie à l'université Mentouri-Constantine, dans le cadre de l'étude des composés hybrides à base d'acides aminés comme matrice organique et d'acide perchlorique, et phosphorique comme acides minéraux.

- Nous avons synthétisé et étudié deux nouveaux composés hybrides à base de perchlorate : le DL-asparaginium perchlorate ($C_4H_9N_2O_3^+$, ClO_4^-) et la L-histidinium perchlorate ($C_6H_{10}N_3O_2^+$, ClO_4^-).

- Le premier composé est formé d'un cation organique et d'un anion minéral. L'étude détaillée des interactions intermoléculaires a mis en évidence la présence de trois types de liaisons hydrogène modérées et faibles à savoir N-H...O, O-H... O et C-H...O. Le réseau tridimensionnel formé par ces différents types de liaisons hydrogène assure la jonction entre les entités de cette structure.

- Le deuxième composé est constitué d'une entité cationiques et d'une entité anionique. La cohésion de la structure est assurée par un réseau tridimensionnel de liaisons hydrogène de type N-H...O et C-H...O établies entre les cations et entre les cations et les anions.

- La théorie de Bernstein et de Grell appelée méthode du graphe qualitatif et quantitatif nous a permis de construire les graphes du modèle des liaisons hydrogène de ces deux composés pour mieux comprendre leurs empilements cristallin.

 $(C_6H_{10}N_3O_2^+, ClO_4^-)$

 $(C_4H_9N_2O_3^+, ClO_4^-)$

O- و N-H...O

H...O و الضعيفة من نوع C-H...O

N-H...O و الضعيفة من نوع N-H...O