République Algérienne Démocratique et Populaire Ministère de l'enseignement supérieur et de la recherche scientifique

UNIVERSITE DES FRERES MENTOURI-CONSTANTINE FACULTE DES SCIENCES EXACTES DEPARTEMENT DE CHIMIE

N° d'ordre :49/D3C/2018 Série :10/Ch/2018

THESE

Présentée en vue de l'obtention du diplôme de Doctorat troisième cycle (LMD)

Spécialité: Chimie pharmaceutique

Étude phytochimique et évaluation des activités antioxydante, antibactérienne et cytotoxique de deux plantes du genre *Phagnalon* (Asteraceae)

Par

M^{me} Hanene CHERCHAR Epouse SAADI

Devant le jury :

Pr. Zahia KABOUCHE	(Université des frères Mentouri-Constantine)	Président
Dr. Djemaa BERREHAL	(Université des frères Mentouri-Constantine)	Rapporteur
Pr. Ahmed KABOUCHE	(Université des frères Mentouri-Constantine)	Examinateur
Pr. Zahia SEMRA	(Université Salah Boubnider-Constantine 3)	Examinateur
Pr. Abdelmalik BELKHI	RI (Université Salah Boubnider-Constantine 3)	Examinateur

Soutenue le 14/05/2018

Remerciements

Tout d'abord, je tiens à remercier Dieu Le Tout Puissant de m'avoir donné le courage, la volonté et la patience durant ce travail.

Je tiens à remercier très sincèrement Madame la professeure **Zahia KABOUCHE** pour m'avoir accueillie dans le laboratoire d'Obtention de Substances Thérapeutiques. Merci de m'avoir fait confiance et encouragée tout au long de ces années.

Je tiens particulièrement à remercier Madame le docteur **Djemaa BERREHAL** ma directrice de thèse pour m'avoir fait confiance, et m'avoir encouragée et conseillé toute au long de ce travail. Pour son soutien et sa grande générosité, qu'elle soit rassurée de ma profonde gratitude.

J'exprime ma sincère reconnaissance à Madame la Professeure **Nunziatina DE TOMMASI** de m'avoir accueillie au sein du son laboratoire de Natural Bioactive Molécule, université Degli Studi di Salerno et pour m'avoir permis d'effectuer une partie de ce travail dans les meilleures conditions.

J'aimerais également remercier Monsieur le Professeur Ahmed KABOUCHE de l'université frères Mentouri Constantine pour avoir accepté de juger ce travail.

J'adresse également mes remerciements à Madame la Professeure Zahia SEMRA, professeure à l'université de Salah Boubnider-Constantine 3 pour avoir accepté de juger ce travail.

Je suis très honorée de la présence en tant qu'examinateur de Monsieur Abdelmalik BELKHIRI, Professeur à l'université de Salah Boubnider-Constantine 3, je le remercie sincèrement.

J'adresse mes sincères remerciements à Mademoiselle Assia KHALFALLAH docteur de l'université de Mila, pour ses efforts, son soutien, sa disponibilité, sa compétence, ses conseils et pour toute l'attention qu'elle m'a porté.

Je ne voudrais pas oublier tous mes collègues que j'ai côtoyé au laboratoire LOST de l'université frères Mentouri Constantine, notamment Sara, Hamida, Aicha, khaizoran,

Meriem, Aya, Monira, Ilhem, Wafa, Maya, Abbes, Hichem, Seif, Rachida.....pour leurs encouragements.

Enfin je remercie tous ceux qui ont contribué de près ou de loin à l'élaboration de ce travail.

Dédicaces

È mes chers parents È mes frères et sœurs A mon mari È ma belle-famille A tous mes amis et collègues Kanene

Table des matières

Intr	oduction générale
	Partie 1 : Revue bibliographique
Cha	ipitre I : Aperçu bibliographique sur la famille des Asteraceae et sur le genre
1	Pnagnalon
1.	La famille des Asteraceae
	1.1. Présentation
	1.2. Distribution
	1.3. Caractéristique
	1.4. Utilisations et intérêts économiques des Asteraceae
2.	Aperçu bibliographique sur le genre <i>Phagnalon</i>
	2.1. Généralités
	2.2. Répartition géographique
	2.3. Description botanique
	2.4. Métabolites secondaires
	2.4.1. Les composés phénoliques (Les polyphénols)
	2.4.2. Les flavonoïdes
	2 4 3 Les triternènes
	244 Les stérols
	2.4.5 Autres constituents isolés du genre Phagnalon
	2.4.5. Addres constituants isoles du genie <i>I hughdion</i>
	2.5. Outilisations traditionnenes
2	2.0. Activities biologiques reconnues du genre <i>Phagnaton</i>
3.	Aspect botanique
	3.1. Phagnalon saxatile (L.) Cass
	3.1.1. Description botanique
	3.1.2. Place dans la systématique
	3.2. Phagnalon sordidum (L.) DC
	3.2.1. Description botanique
	3.2.2. Place dans la systématique
Cha	unitro II · Activitás biologiquos
	A ativité antiovudante
1.	1 1 Introduction
	1.1. Introduction
	1.2. Definition d un radical libre
	1.3. Les antioxydants
	1.3.1. Les antioxydants naturels
	1.3.2. Les antioxydants de synthèse
	1.4. Méthodes de détermination de l'activité antioxydante
	1.4.1. Méthode du DPPH [•]
	1.4.2. Piégeage de l'ABTS ⁺⁺
	1.4.3. Méthode du CUPRAC
	1.4.4. Test d'effet scavenger du superoxyde produit par DMSO alcalin
2.	Dosage des polyphénols
3.	Activité antibactérienne
2.	3.1. Méthode de détermination de l'Activité antibactérienne in vitro
	3.1.1 Méthode de diffusion sur disques (Antibiogramme)
	3.2 Détermination de la concentration minimale inhibitrice (CMI)
1	Activitá extotoxique
4.	

	4.1. Le test de viabilité	33
	Partie 2 : Matériel et méthodes	
Cha	pitre I : Matériel végétal, Séparation-Extraction et analyses	
1.	Phagnalon saxatile (L.) Cass	36
	1.1. Récolte du matériel végétal	36
	1.2. Extraction	36
	1.3. Traitement des extraits de <i>Phagnalon saxatile</i>	38
	1.4. Séparation et purification des extraits acétate d'éthyle et <i>n</i> -butanol	39
2.	Phagnalon sordidum L	44
	2.1. Récolte du matériel végétal	44
	2.2. Extraction	44
	2.3. Séparation et purification	46
	2.3.1. A partir de l'extrait chloroformique	46
	2.3.2. A partir de l'extrait butanolique	50
	2.3.3. A partir de l'extrait acétate d'éthyle	55
	1	
Cha	pitre II : Activités biologiques, dosage des polyphénols et flavonoïdes	
1.	Dosage des composés phénoliques	59
2.	Dosage des flavonoïdes	60
3.	Activité antioxydante	60
	3.1. Activité antiradicalaire DPPH	61
	3.2. Activité du piégeage de l'ABTS	61
	3.3. La réduction cuprique (CUPRAC)	62
	3.4. Test d'effet scavenger du superoxyde produit par DMSO alcalin	62
4.	Activité antibactérienne.	63
	4.1. Identification des souches	63
	4.2. Méthode de diffusion en milieu gélosé (antibiogramme)	63
	4.3. Détermination de la concentration minimale inhibitrice (CMI)	64
5.	La cytotoxicité	64
	Partie 3 : Résultats et discussion	
Cha	pitre I : Identification des produits isolés de Phagnalon saxatile	
1.	Elucidation structurale du composé Pp ₁	68
2.	Elucidation structurale du composé Pp ₂	72
3.	Elucidation structurale du composé Pp ₃	76
4.	Elucidation structurale du composé Pp ₄	86
5.	Elucidation structurale du composé Pp ₅	89
6.	Elucidation structurale du composé Pp ₆	95
7.	Elucidation structurale du composé Pp7	99
8.	Elucidation structurale du composé Pp ₈	103
9.	Elucidation structurale du composé Pp ₉	105
10.	Elucidation structurale du composé Pp_{10}	110
11.	Conclusion	115
Cha	pitre II : Identification des produits isolés de <i>Phagnalon sordidum</i>	
1.	Elucidation structurale du composé PC ₁	117
2.	Elucidation structurale du composé PC ₂	121
3.	Elucidation structurale du composé PB ₅	124
4.	Elucidation structurale du composé PB ₆	128

Elucidation structurale du composé $PB_{5...}$ Elucidation structurale du composé $PB_{6...}$ 128

	133
6. Elucidation structurale du composé PA ₈	
7. Elucidation structurale du composé PB ₉	135
8. Elucidation structurale du composé PA ₁₀	139
9. Elucidation structurale du composé PA ₁₁	141
10. Elucidation structurale du composé PB ₁₂	143
11. Elucidation structurale du composé PB ₁₃	145
12. Elucidation structurale du composé PB ₁₄	149
13. Elucidation structurale du composé pb_{15}	150
14. Elucidation structurale du composé PA ₁₆	151
15. Elucidation structurale du composé PA ₁₇	154
16. Conclusion	156

Chapitre III : Activités biologiques, dosage des polyphénols et flavonoïdes

1	Dosage des composés phénoliques	158
1.	Dosage des composes phenonques	150
2.	Dosage des flavonoïdes	159
3.	Activité antioxydante	160
	3.1. Activité anti-radicalaire DPPH	160
	3.2. Essai de décoloration du radical cation ABTS ^{.+}	161
	3.3. La réduction cuprique (CUPRAC)	162
	3.4.Test d'effet scavenger du superoxyde produit par DMSO alcalin	163
4.	Activité antibactérienne	164
5.	Activité cytotoxique des produits purs de l'espèce Phagnalon saxatile	165
Conc	lusion générale	168
		171
Référ	ences bibloigraphiques	171

Liste des figures

N°	Titre	Page
	Partie 1 : Revue bibliographique	
Chapitre I : Aperçu bibliographique sur la famille des Asteraceae et sur le genre		
	Phagnalon	
Figure 1	Schemas de différentes parties florales d'une Asteraceae.	/
Figure 2	Acides phénoliques, squelette benzoïque (I) et squelette cinnamique (II).	10
Figure 3	Structures des composés phénoliques isolés du genre <i>Phagnalon</i> .	12
Figure 4	Structure de base des flavonoïdes (Dacosta et al., 2003).	13
Figure 5	Structures des flavonoïdes isolés du genre Phagnalon.	14
Figure 6	Structures des triterpènes isolés du genre Phagnalon.	15
Figure 7	Noyau de base des stérols.	15
Figure 8	Structures des stérols isolés du genre Phagnalon.	16
Figure 9	Divers composés isolés du genre Phagnalon.	17
Figure 10	Phagnalon saxatile (L.) Cass.	19
Figure 11	Phagnalon sordidum L.	21
	Chapitre II : Activités biologiques	
Figure 12	Structures des dérivés de la vitamine E.	25
Figure 13	Structures de l'acide ascorbique.	26
Figure 14	Structures du β-carotène.	26
Figure 15	Structures de quelques flavonoïdes.	27
Figure 16	Structure des antioxydants synthétiques.	28
Figure 17	Transformation du radical DPPH [•] en DPPHH	28
Figure 18	Structure de l'acide 2,2'-Azinobis-(3-éthylBenzoThiazoline-6- Sulfonique) : forme réduite (ABTS) et forme radicale cation (ABTS ⁺⁺)	30
Figure 19	Réduction du complexe chromogène de Cu ⁺² -Nc.	30
Figure 20	Schéma simplifié de la méthode de l'antibiogramme.	32
Partie 2 : Matériel et méthodes Chapitre I : Matériel végétal, Séparation-Extraction et analyses		
Figure 21	Protocole d'extraction de la plante <i>P. saxatile</i> (L.) Cass.	37
Figure 22	Cartes phénoliques des extraits acétate d'éthyle et <i>n</i> -butanol de <i>Phagnalon saxatile</i> .	38
Figure 23	Schéma de séparation des extraits acétate d'éthyle et <i>n</i> -butanol de <i>Phagnalon saxatile</i> (L) Cass.	43
Figure 24	Extraction de <i>Phagnalon sordidum</i> L.	45

Figure 25	Schéma de séparation par CC et CLHP de l'extrait chloroformique de	49	
	Phagnalon sordidum L.		
Figure 26	Schéma de séparation de l'extrait butanolique de <i>Phagnalon sordidum</i>	54	
Figure 27	Schéma de séparation de l'extrait acétate d'éthyle de <i>Phagnalon</i>	57	
8	sordidum L.		
Cha	Chapitre II : Activités biologiques, dosage des polyphénols et flavonoïdes		
Figure 28	Courbe d'étalonnage de l'acide gallique	59	
Figure 29	Courbe d'étalonnage de la Quercétine	60	
	Partie 3 : Résultats et discussion Chapitre I : Identification des produits isolés de <i>Phagnalon savatile</i>		
Figure 30	Série spectrale UV du composé PP ₁	69	
Figure 21	Spectro DMN ¹ H du composé DD (DMSO 250 MHz)	71	
Figure 51	Spectre RMN H du compose PP ₁ (DMSO; 250 MHZ).	/1	
Figure 32	Série spectrale UV du composé PP_2 .	73	
Figure 33	Spectre RMN ¹ H du composé PP_2 (DMSO, 250 MHz).	75	
Figure 34	Spectre RMN ¹ H étalé du composé PP ₂ (DMSO, 250 MHz).	75	
Figure 35	Spectre de masse HR-ESI-MS du composé PP ₃ .	77	
Figure 36	Spectre RMN ¹ H du composé PP ₃ (DMSO, 600 MHz).	77	
Figure 37	Spectre RMN 13 C du composé PP ₃ (DMSO, 150 MHz).	78	
Figure 38	Spectre RMN ¹ H étalé du composé PP ₃ ⁻	79	
Figure 39	Spectre RMN ¹³ C du composé PP ₃ (DMSO, 150 MHz).	80	
Figure 40	Spectre COSY du composé PP ₃ .	81	
Figure 41	Spectre HSQC du composé PP ₃ .	82	
Figure 42	Spectre HMBC de δ_H 2.0 à 4.8 ppm du composé PP ₃ .	83	
Figure 43	Spectre HMBC de $\delta_{\rm H}$ 6.0 à 8.0 ppm du composé PP ₃ .	84	
Figure 44	Corrélation observées sur le spectre HMBC du composé PP _{3.}	84	
Figure 45	Spectres RMN ¹ H du composé PP_4 (CD ₃ OD, 600 MHz).	86	
Figure 46	Spectre RMN 13 C du composé PP ₄ (CD ₃ OD, 150 MHz).	86	
Figure 47	Spectre COSY du composé PP ₄ .	87	
Figure 48	Spectre HMBC du composé PP ₄ .	88	
Figure 49	Série spectrale UV du composé PP ₅ .	91	
Figure 50	Spectre RMN ¹ H du composé PP ₅ (CD ₃ OD, 600 MHz).	92	
Figure 51	Spectre RMN ¹ H étalé du composé PP ₅ (CD ₃ OD, 600 MHz).	93	
Figure 52	Plaque CCM de l'hydrolyse acide.	94	
Figure 53	Série spectrale UV du composé PP ₆ .	96	

Figure 54	Spectre RMN ¹ H du composé PP ₆ (CD ₃ OD, 600 MHz).	97
Figure 55	Spectre RMN ¹ H étalé du composé PP ₆ (CD ₃ OD, 600 MHz).	98
Figure 56	Série spectrale UV du composé PP ₇ .	101
Figure 57	Spectre RMN ¹ H du composé PP ₇ (DMSO, 250 MHz).	102
Figure 58	Spectre RMN ¹ H du composé PP ₈ (CD ₃ OD, 600 MHz).	104
Figure 59	Série spectrale UV du composé PP ₉ .	107
Figure 60	Spectre RMN ¹ H du composé PP ₉ (DMSO, 600 MHz).	108
Figure 61	Spectre RMN ¹ H étalé du composé PP ₉ (DMSO, 600 MHz).	109
Figure 62	Spectre de masse HR-ESI-MS du composé PP ₁₀ .	110
Figure 63	Spectre RMN ¹ H du composé PP ₁₀ (DMSO, 600 MHz).	111
Figure 64	Spectre RMN ¹³ C du composé PP ₁₀ (DMSO, 150 MHz).	111
Figure 65	Spectre HSQC du composé PP ₁₀ .	112
Figure 66	Spectre HMBC du composé PP ₁₀ .	113
Figure 67	Corrélation observées sur le spectre HMBC du composé PP _{10.}	113
Chapitre II : Identification des produits isolés de Phagnalon sordidum		
Figure 68	Spectre RMN ¹ H du composé PC ₁ (CD ₃ OD, 600 MHz).	117
Figure 69	Spectre HSQC du composé PC ₁ .	118
Figure 70	Spectre HMBC du composé PC ₁ .	119
Figure 71	Spectre COSY du composé PC ₁ .	120
Figure 72	Spectre RMN ¹ H du composé PC ₂ (CD ₃ OD, 600 MHz).	122
Figure 73	Spectre HMBC du composé PC ₂ .	122
Figure 74	Spectre RMN ¹ H du composé PB ₅ (CD ₃ OD, 600 MHz).	124
Figure 75	Spectre COSY du composé PB ₅ .	125
Figure 76	Spectre HSQC du composé PB ₅ .	126
Figure 77	Spectre HMBC du composé PB ₅ .	127
Figure 78	Spectre RMN ¹ H du composé PB ₆ (CD ₃ OD, 600 MHz).	129
Figure 79	Spectre COSY du composé PB ₆ .	130
Figure 80	Spectre HMBC du composé PB ₆ .	131
Figure 81	Spectre RMN ¹ H du composé PB ₇ (CD ₃ OD, 600 MHz).	132
Figure 82	Spectre RMN ¹ H du composé PB ₈ (CD ₃ OD, 600 MHz).	134
Figure 83	Spectre RMN ¹ H du composé PB ₉ (CD ₃ OD, 600 MHz).	136
Figure 84	Spectre RMN ¹³ C du composé PB ₉ (CD ₃ OD, 150 MHz).	137

Figure 85	Spectre COSY du composé PB ₉ .	137
Figure 86	Spectre HMBC du composé PB ₉ .	138
Figure 87	Spectre RMN ¹ H du composé PA_{10} (CD ₃ OD, 600 MHz).	140
Figure 88	Spectre RMN ¹ H du composé PA ₁₁ (CD ₃ OD, 600 MHz).	142
Figure 89	Spectre RMN ¹ H du composé PB_{12} (CD ₃ OD, 600 MHz).	144
Figure 90	Spectre RMN ¹ H du composé PB_{13} (CD ₃ OD, 600 MHz).	146
Figure 91	Spectre COSY du composé PB_{13} .	147
Figure 92	Spectre HMBC du composé PB ₁₃ .	147
Figure 93	Spectre RMN ¹ H du composé PB ₁₄ (CD ₃ OD, 600 MHz).	149
Figure 94	Spectre RMN ¹ H du composé PB ₁₅ (DMSO, 600 MHz).	150
Figure 95	Spectre RMN ¹ H du composé PA_{16} (CD ₃ OD, 600 MHz).	151
Figure 96	Spectre HSQC du composé PA ₁₆ .	152
Figure 97	Spectre HMBC du composé PA ₁₆ .	153
Figure 98	Spectre RMN ¹ H du composé PA ₁₇ (CD ₃ OD, 600 MHz).	154
Figure 99	Spectre HMBC du composé PA ₁₇ .	155

Liste des tableaux

N°	Titre	Page
Partie 1 : Revue bibliographique		
Chapitre I : Aperçu bibliographique sur la famille des Asteraceae et sur le genre		
Tableau 1	Les composés phénoliques isolés du genre <i>Phagnalon</i> .	11
Tableau 2	Les flavonoïdes isolés du genre Phagnalon.	13
Tableau 3	Les triterpènes isolés du genre Phagnalon.	14
Tableau 4	Les stérols isolés du genre Phagnalon.	16
Tableau 5	Les propriétés thérapeutiques d'espèces du genre Phagnalon.	18
Tableau 6	Description de P. saxatile (L.) Cass. (Quèzel et Santa., 1963).	19
Tableau 7	Description de P. sordidum L. (Quèzel et Santa., 1963).	20
	Partie 2 : Matériel et méthodes	
(Chapitre I : Matériel végétal, Séparation-Extraction et analyses	
Tableau 8	Rendement des extraits de Phagnalon saxatile (L) Cass.	36
Tableau 9	Résultats du fractionnement du mélange extrait acétate d'éthyle + n -	39
Tablaan 10	Sous fractionnement de la fraction E ₁ , sur colonne de gel de polyamide.	40
Tableau IV	Sous-fractionnement de la fraction Γ_{12} sur colonne de get de since.	40
Tableau 11	Sous-fractionnement de la fraction F_{16} sur colonne de gel de silice.	41
Tableau 12	Rendement des extraits de Phagnalon sordidum L.	44
Tableau 13	Fractionnement de l'extrait chloroformique sur colonne de gel de silice normale	46
Tableau 14	Résultats de séparation par chromatographie sur colonne de	50
	Sephadex® LH20 de l'extrait <i>n</i> -butanol.	
Tableau 15	Résultats de séparation par chromatographie sur colonne de Sephadex \mathbb{R} L H20 de l'extrait acétate d'éthyle	55
	Partie 3 : Résultats et discussion	
Ch	apitre I : Identification des produits isolés de <i>Phagnalon saxatile</i>	
Tableau 16	Données spectrales UV du composé Pp ₁ .	69
Tableau 17	Déplacements chimiques en RMN ¹ H (250 MHz) du composé PP ₁ dans DMSO.	71
Tableau 18	Données spectrales UV du composé PP ₂ .	73
Tableau 19	Déplacements chimiques en RMN ¹ H (250 MHz) du composé PP ₂ dans DMSO.	76
Tableau 20	Déplacements chimiques en RMN ¹ H (600 MHz) et RMN ¹³ C (150 MHz) du composé PP ₃ dans DMSO.	85
Tableau 21	Déplacements chimiques en RMN ¹ H (600 MHz) et RMN ¹³ C (150 MHz) du composé PP ₄ dans CD ₃ OD.	88
Tableau 22	Données spectrales UV du composé PP ₅ .	90
Tableau 23	Déplacements chimiques en RMN 1 H (600 MHz) du composé PP ₅ dans CD ₃ OD.	93

Tableau 24	Données spectrales UV du composé PP ₆ .	95
Tableau 25	Déplacements chimiques en RMN 1 H (600 MHz) du composé PP ₆ dans CD ₃ OD.	98
Tableau 26	Données spectrales UV du composé PP ₇ .	100
Tableau 27	Déplacements chimiques en RMN ¹ H (250 MHz) du composé PP ₇ dans DMSO.	102
Tableau 28	Déplacements chimiques en RMN ¹ H (600 MHz) du composé PP_8 dans CD_3OD .	104
Tableau 29	Données spectrales UV du composé PP ₉ .	106
Tableau 30	Déplacements chimiques en RMN ¹ H (600 MHz) du composé PP ₉ dans DMSO.	109
Tableau 31	Déplacements chimiques en RMN ¹ H (600 MHz) et RMN ¹³ C (150 MHz) du composé PP_{10} dans DMSO.	114
Cha	pitre II : Identification des produits isolés de <i>Phagnalon sordidum</i>	
T 11 22	\mathbf{D}_{1}	120
Tableau 32	Deplacements chimiques en RMIN H (600 MHz) et RMIN $^{\circ}$ C (150 MHz) du composé PC ₁ dans CD ₃ OD.	120
Tableau 33	Déplacements chimiques en RMN ¹ H (600 MHz) et RMN ¹³ C (150	123
	MHz) du composé PC_2 dans CD_3OD .	
Tableau 34	Déplacements chimiques en RMN ¹ H (600 MHz) et RMN ¹³ C (150 MHz) du composé PB ₅ dans CD ₂ OD	127
Tableau 35	Déplacements chimiques en RMN ¹ H (600 MHz) et RMN ¹³ C (150	131
	MHz) du composé PB_6 dans CD_3OD .	
Tableau 36	Déplacements chimiques en RMN ¹ H (600 MHz) du composé PB_8 dans CD_3OD .	134
Tableau 37	Déplacements chimiques en RMN ¹ H (600 MHz) et RMN ¹³ C (150 MHz) du composé PB ₉ dans CD ₃ OD.	138
Tableau 38	Déplacements chimiques en RMN ¹ H (600 MHz) et RMN ¹³ C (150 MHz) du composé PA_{10} dans CD_3OD .	140
Tableau 39	Déplacements chimiques en RMN ¹ H (600 MHz) et RMN ¹³ C (150 MHz) du composé PA_{11} dans CD_3OD .	142
Tableau 40	Déplacements chimiques en RMN ¹ H (600 MHz) du composé PB_{12} dans CD_3OD .	144
Tableau 41	Déplacements chimiques en RMN ¹ H (600 MHz) du composé PB_{13} dans CD_3OD .	148
Tableau 42	Déplacements chimiques en RMN ¹ H (600 MHz) et RMN ¹³ C (150 MHz) du composé PA_{16} dans CD_3OD .	153
Tableau 43	Déplacements chimiques en RMN ¹ H (600 MHz) et RMN ¹³ C (150 MHz) du composé PA_{17} dans CD_3OD .	155
Chapitre III : Activités biologiques, dosage des polyphénols et flavonoïdes		
Tableau 44	Teneur en phénols totaux des plantes P. saxatile et P. sordidum.	158
Tableau 45	Teneur en flavonoïdes des plantes P. saxatile et P. sordidum.	159
Tableau 46	Pouvoir anti-radicalaire (DPPH [·]) des extraits étudiés.	160
Tableau 47	Pouvoir d'inhibition de l'ABTS ^{.+} par les extraits étudiés.	161
Tableau 48	Réduction du CUPRAC par les extraits étudiés.	162

Tableau 49	Pouvoir d'inhibition CI ₅₀ des extraits étudiés par DMSO alcalin.	163
Tableau 50	Activité antibactérienne (zone d'inhibition) des extraits étudiés.	164
Tableau 51	Résultats des CMI de l'activité antibactérienne des extraits étudiés.	165
Tableau 52	L'activité cytotoxique des produits de l'espèce Phagnalon saxatile.	166

Liste des abréviations

Solvants et réactifs :

AcOEt : acétate d'éthyle CHCl₃ : chloroforme CD₃OD : méthanol deutéré DMSO : diméthylsulfoxyde EtOH : éthanol MeOH : méthanol

Techniques de chromatographie :

CC : Chromatographie sur Colonne **CCM :** Chromatographie sur Couche Mince **CLHP :** Chromatographie Liquide Haute Performance

Détermination structurale :

ax: axial **COSY** : correlated spectroscopy **d** : doublet **dd** : doublet de doublet dt : doublet de triplet dl : doublet large eq: équatorial J (Hz) : constante de couplage exprimée en Hz HMBC : Heteronuclear Multiple Bonding Connectivity HSQC: Heteronuclear Single Quantum Connectivity **m**: multiplet m/z : masse/charge d'un ion **RMN**: Résonance Magnétique Nucléaire **RMN**¹**H**: Résonance Magnétique Nucléaire du proton RMN¹³C : Résonance Magnétique Nucléaire du carbone 13 **s** : singulet sl : singulet large **t**: triplet UV : ultra-violet δ : déplacement chimique exprimé en ppm

Activité biologiques :

CI₅₀: Concentration inhibitrice à 50% CMI : Concentration Minimale Inhibitrice

Introduction générale

Introduction générale

Les végétaux supérieurs ont la capacité de synthétiser, par des voies métaboliques complexes, de nombreux composés qu'ils utilisent pour diverses fonctions adaptatives notamment en réponse aux stress biotiques et abiotiques qu'ils peuvent subir. Les plantes renferment donc une large variété de molécules chimiques (peptides, terpènes, polyphénols, alcaloïdes...) de propriétés physico-chimiques très différentes et qui présentent différentes activités biologiques (antitumorale, antivirale, antimicrobienne, antioxydante, cicatrisante...). Il est par ailleurs aujourd'hui reconnu que les plantes constituent une source importante de molécules bioactives.

Ces dernières années, les substances naturelles connaissent un intérêt croissant dans de nombreux domaines. En effet, avec un public de plus en plus réticent à consommer des produits contenant des molécules issues de la synthèse chimique, un certain nombre de secteurs industriels (cosmétique, pharmaceutique, agroalimentaire) se tournent de nouveau vers l'incorporation de ces molécules d'origine naturelle, aux caractéristiques chimiques et biologiques originales, dans leurs formulations. La valorisation de ces principes actifs d'origine naturelle représente donc un potentiel économique énorme.

Selon l'organisation mondiale de la santé (OMS), 80% de la population africaine ont toujours recours à la médecine traditionnelle pour les soins (**de Silva et al., 1997**; **Mukherjee et al., 2006**)., d'où l'intérêt que suscite cette médecine au sein des organisations africaines et internationales, et en particulier l'investigation phytochimique des ressources végétales de la médecine traditionnelle. Cette médecine est la plus accessible en termes économique, géographique et culturel.

L'Algérie possède une richesse floristique considérable. On compte environ 3000 espèces de plantes dont 15% sont endémiques (**Quézel et Santa., 1963**). Ce potentiel de plantes médicinales comporte des milliers d'espèces présentant divers intérêts, et est toujours peu exploré du point de vue chimique et pharmacologique. Ce domaine constitue, un axe non négligeable de travaux recherches scientifiques, plus particulièrement dans le domaine des substances naturelles bioactives.

Le présent travail consiste à effectuer l'extraction, l'isolement et l'identification des métabolites secondaires ainsi que les activités biologiques de deux plantes médicinales algériennes appartenant au genre *Phagnalon* de la famille des Asteraceae.

Le présent manuscrit est réparti en trois parties :

- la première partie a été consacrée à des généralités et données bibliographiques. Le premier chapitre de cette partie est un aperçu bibliographique sur la famille des Asteraceae et du genre *Phagnalon* suivie par une description des propriétés pharmacologiques et travaux antérieurs effectués sur le genre *Phagnalon* et qui se termine par le positionnement des deux espèces *Phagnalon saxatile* (L.) Cass. et *Phagnalon sordidum* L. dans la systématique des Asteraceae. Le deuxième chapitre comprend des généralités sur les activités antioxydante, antibactérienne et cytotoxique.
- la deuxième partie comprend la description de nos travaux d'extraction, d'isolement, de purification des métabolites secondaires et des tests biologiques effectués sur des deux espéces étudiées, *Phagnalon saxatile* (L.) Cass., *Phagnalon sordidum* L.
- La dernière partie comporte la discussion des résultats de l'étude phytochimique des deux espéces étudiées ainsi que les résultats des tests d'activités antioxydante, antibactérienne et cytotoxique.

Partie 1 Revue bibliographique

Chapitre I Aperçu bibliographique sur la famille des Asteraceae et sur le genre *Phagnalon*

1. La famille des Asteraceae : 1.1. Présentation :

Le mot « Aster » du grec signifie étoile, en relation avec la forme de la fleur. Les Asteraceae (anciennement appelées Composées) sont une famille appartenant aux Dicotylédones comprenant plus de 1500 genres et plus de 25000 espèces décrites dont 750 endémiques, C'est une des familles la plus importante des Angiospermes. Ce sont presque toujours des plantes herbacées avec souvent des racines charnues : rhizomateuses, tubéreuses ou pivotantes (**Crete et al., 1965**). D'après Quezel et Santa, en Algérie il en existe 109 genres et environ 408 espèces (**Quèzel et Santa., 1963**).

1.2. Distribution :

Les Asteraceae ont une distribution mondiale, se trouvent partout sauf en Antarctique et sont surtout nombreux dans les régions tropicales et subtropicales (l'Amérique notamment centrale, le Brésil de l'est, les Andes, l'Afrique méditerranéenne, l'Asie centrale et le sud-ouest de la Chine).

1.3. Caractéristique :

Les Asteraceae ont la caractéristique commune d'avoir des fleurs réunies en capitules c'est-à dire serrées les unes à coté des autres, sans pédoncules placées sur l'extrémité d'un rameau ou d'une tige ou entourées d'une structure formée par des bractées florales. Cette structure en forme de coupe ou de collerette est appelé un involucre (**Barkely et al., 2006**).

La fleur des Asteraceae est très particulière: les étamines sont soudées par leurs anthères déhiscentes vers l'intérieur. Sous les stigmates sont situées des "brosses à pollen". Ceci est adapté à un mode de pollinisation «à piston». La croissance rapide du style permet un brossage du pollen et sa récupération. Une fois que le stigmate a traversé le tube formé par les anthères, les stigmates se déplient et exposent leur face gluante au pollen. Il faut considérer qu'à ce moment-là, du nectar est sécrété (figure 1).

L'inflorescence est ordinairement un compact de fleurs sessiles tubulées et/ou ligulées sous- tendu par un involucre de bractées disposées sur un à plusieurs rangs. Les bractées peuvent être herbacées, scarieuses ou épineuses. Sur le réceptacle, les bractéoles, si elles sont présentes, peuvent prendre la forme d'écailles, de soies ou de paillettes. Le

Chapitre I

capitule est entouré à la base généralement par 1 à 6 séries de bractées dont l'ensemble forme l'involucre.

Les fruits sont des akènes, souvent couronnés d'une aigrette de soies appelée Pappus (figure 10) qui favorise la dispersion des graines par le vent (**Usher et al., 1966**).

Les feuilles sont le plus souvent alternes. Elles peuvent aussi être opposées ou réunies en rosette principale (Pâquerette) (Usher et al., 1966).

Pour déterminer la plupart des plantes de cette famille, il est nécessaire de récolter des capitules défleuris, portant des fruits mûrs ou au moins déjà bien formés. L'observation des bractées de l'involucre est également très importante.

1.4. Utilisations et intérêts économiques des Asteraceae :

Cette vaste famille est économiquement importante, elle fournit des plantes alimentaires: La laitue est la plante la plus cultivée de la famille, suivie de l'artichaut, de l'endive, du salsifis, de la chicorée, de l'estragon et du tournesol. De nombreuses autres espèces ont une utilisation ornementale, telle que la marguerite, le dahlia, le zinnia, le cosmos, le chrysanthème et l'aster. Plusieurs espèces sont utilisées en pharmacie: l'Arnica (*Arnica montana* L.), la camomille (*Matricaria chamomilla* L. et *Anthemis nobilis* L.), le pied de chat (*Antenaria Djioca* Gartn), le tussilage (*Tussilago farfara* L.). Certains genre comme le *Pyrethrum* fournissent un insecticide, d'autres (genre *Artemisia*) sont utilisés comme plantes médicinales et dans la fabrication de liqueurs comme l'absinthe ou le génépi (**Gaussen et al., 1982**).

2. Aperçu bibliographique sur le genre Phagnalon :

2.1. Généralités :

Le nom du genre *Phagnalon*, est dû à Cassini Gabriel (1818). C'est une anagramme de *gnaphalon* (ou *gnaphallon*), terme qui désignait en grec la bourre floconneuse des matelas et qui est à l'origine du genre *Gnaphalium*. Les *Phagnalons* sont connus localement par les noms « Foddia » ou « Arfedj » (**Borullard et al., 1997; Quèzel et Santa., 1963**).

Le genre *Phagnalon* (Asteraceae) est représenté par environ 40 espèces réparties de la Macaronésie à l'Himalaya et à l'Éthiopie. Il est rangé dans la tribu des *Gnaphalieae*. Les plantes de ce genre ont deux sortes de fleurs dans chaque capitule : celles du milieu sont en tube, à 5 dents; celles du pourtour sont en languette très étroite. Ce sont des plantes vivaces, couvertes de poils plus ou moins cotonneux, ligneuses dans leur partie inférieure, à fleurs jaunes ou jaunâtres (**Qaiser et al., 1985; Qaiser et al., 1986**).

2.2. Répartition géographique :

Le genre *Phagnalons* comprend 40 espèces originaires de la région méditerranéenne ou de l'Asie centrale. En Algérie il existe quatre phagnalons principaux (*P. sordidum* (L.) DC., *P. garamantum* M., *P. saxatile* (L.) Cass., *P. rupestre* (L.) DC.), ainsi que de nombreuses espèces hybrides ont été signalés (**Salgues et al., 1963**; **Quèzel et Santa., 1963**).

On le trouve dans les rochers, de la région méditerranéenne des Alpes-Maritimes aux Pyrénées centrales, Drome, l'Ardèche et l'Aveyron, Corse, Espagne, Italie (Salgues et al., 1963).

2.3. Description botanique :

Selon Quezel le genre *Phagnalon* est défini : capitules hétérogames, multiflores et discoïdes. Fleurs du rayon femelles, fertiles ou stériles, sur plusieurs rangs et à corolle filiforme; celles du centre hermaphrodites et à corolle tubuleuse. Involucre campanulé ou subhémisphérique, à bractées sur 3 ou plusieurs rangs imbriquées, scarieuses sur les bords; les extérieures plus courtes et à la fin étalées en étoile. Réceptacle plan et nu. Akènes petits, sans côtes, cylindriques et poilus. Aigrette à poils unisériés et brièvement ciliés. Plantes rupestres vivaces, multicaules. Tiges rameuses et tomenteuses. Capitules sur des pédoncules longs et grêles, solitaires ou agglomérés 2-6. Feuilles entières ou dentées, étroites. Fleurs Jaunes (**Quèzel et Santa., 1963**).

2.4. Métabolites secondaires :

En biologie végétale, les composés produits par les plantes sont subdivisés en deux groupes de molécules. Les métabolites primaires et les métabolites secondaires. Les métabolites secondaires sont des composés biosynthétisés naturellement par les végétaux, mais qui ne participent pas directement au métabolisme végétal (Laitinen et al., 2000). Nous estimons que chaque végétal produit au moins une centaine de ces métabolites, classés dans trois catégories principales selon leurs structures : les alcaloïdes, les stéroïdes et terpénoïdes, et les polyphénols, ou composés phénoliques (**Ramawat et al., 2008**).

Les travaux phytochimiques effectués sur le genre *Phagnalon* ont été réalisés uniquement sur quatre espèces (*P. rupestre*, *P. saxatile*, *P. sordidum* et *P. purpurescens*).

Les métabolites secondaires de ces espèces sont constitués de flavonoïdes, des composés phénoliques de triterpènes, et de stérols (Góngora et al., 2002; Conforti et al., 2010; Epifano et al., 2002; Zdero et al., 1991).

2.4.1. Les composés phénoliques (Les polyphénols) :

Les composés phénoliques correspondent à une grande variété de substances .L'élément structural fondamental qui les caractérise est la présence d'au moins un noyau benzénique auquel est directement lié un groupement hydroxyle ainsi que des groupes fonctionnels (ester, méthyle ester, glycoside ...).

Chapitre I

Ces polyphénols peuvent être regroupés en de nombreuses classes qui se différencient d'abord par la complexité du squelette de base (allant d'un simple C6 à des formes très polymérisées), ensuite par les degrés de modification de ce squelette (degré d'oxydation, d'hydroxylation, de méthylation ...), enfin par les liaisons possibles de ces molécules de base avec d'autres molécules (glucides, lipides, protéines...).

Ces composés dérivent de la voie de l'acide shikimique qui donne de l'acide gallique et de l'acide cinnamique (figure2). Ces dernières sont à l'origine des phénols simples et condensés, des tanins hydrolysables et condensés, et des flavonoïdes (**Richard et al., 2010**).

Figure 2 : Acides phénoliques, squelette benzoïque (I) et squelette cinnamique(II).

Les composés phénoliques les plus courantes dans le genre *Phagnalon* sont les dérivées de l'acide caféique. Le tableau 1 représente les composés phénoliques isolés du genre *Phagnalon*.

composés phénoliques	Structure	Espèce	Référence
Acide chlorogénique	1	•	
Acide méthylchlorogénique	2	P. saxatile	Conforti et al., 2010
3,5-di-O-cafféoylquinique	3	P. saxatile	Conforti et al., 2010
méthyle ester		P. rupestre	Góngora et al., 2002
acide 3,5-di-O- cafféoylquinique	4	P. saxatile	Conforti et al., 2010
		P. rupestre	Góngora et al., 2002
4, 5-di- <i>O</i> - cafféoylquinique méthyl ester	5	P. rupestre	Góngora et al., 2002
acide 4,5-di-O- cafféoylquinique	6	P. rupestre	Góngora et al., 2002
Acide caféique	7	P. saxatile	Conforti et al., 2010
$1-O-\beta$ -glucopyranosyl-2(3',3'-	8	P. saxatile	Conforti et al., 2010
diméthylallyl) hydroquinone		P. rupestre	Góngora et al., 2001
1- O - β -glucopyranosyl-2(3'-	0	P. saxatile	Conforti et al., 2010
hydroquinone	9	P. rupestre	Góngora et al., 2001
1- <i>O</i> -(4''- <i>O</i> -cafféoyl)-β- glucopyranosyl-2-(3', 3'- diméthylallyl) hydroquinone	10	P. rupestre	Góngora et al., 2001
Prénylhydroquinone glycoside $1-O-\beta$ -glucopyranosyl-1,4- dihydroxy-2-(3'-hydroxy-3'- méthylbutyl) benzène	11	P. rupestre	Góngora et al., 2002
1-(2,4-Dihydroxy-6- methoxyphenyl) ethanone	12	P. sordidum	Zdero et al., 1991

Tableau 1 : Les composés phénoliques isolés du genre Phagnalon.

Les structures des composés phénoliques qui sont isolés des espèces du genre *Phagnalon* cités dans le tableau 1, sont présentées dans la figure 3 :

Chapitre I

Figure 3 : Structures des composés phénoliques isolés du genre Phagnalon.

2.4.2. Les flavonoïdes :

Le nom flavonoïde provient du mot Flavus qui signifie «jaune» (**Malesèv et al., 2007**). Ils sont tous de la même structure chimique de base, ils possèdent un squelette carboné de quinze atomes de carbones constitué de deux cycles aromatiques (A) et (B) qui sont reliés entre eux par une chaîne de 3 carbones en formant ainsi l'hétérocycle (C) (figure 4) (**Erdman et al., 2005**). Généralement, la structure des flavonoïdes est représentée selon le système C6-C3-C6 (**Emerenciano et al., 2007**) en formant une structure de type diphényle propane dont des groupements hydroxyles, oxygènes, méthyles, ou des sucres peuvent être attachés sur les noyaux de cette molécule (**Malesèv et al., 2007**). Selon (**Erdman et al., 2005**), nous les divisons en 6 classes:

- Flavone et flavonols représentent la majorité des flavonoïdes.
- > Les flavanols, les flavanones, les anthocyanidines et les isoflavones.

Figure 4 : Structure de base des flavonoïdes (Dacosta et al., 2003).

Les flavonoïdes isolés du genre Phagnalon sont regroupés dans le tableau 2:

Tableau 2 : Les flavonoïdes isolés du genre Phagnalon.

Flavonoïde	Structure	Espèce	Référence
Apigénine-7- O - β -glucoside	13	P. saxatile	Conforti et al., 2010
		P. rupestre	Góngora et al., 2002
Apigénine	14	P. saxatile	Conforti et al., 2010
Lutéoline-7- O - β -glucoside	15	P. rupestre	Góngora et al., 2002
Lutéoline-7- O - β -glucuronide	16		
Lutéoline-4'- O - β -glucoside	17		
Lutéoline	18	P. saxatile	Conforti et al., 2010

Les structures des flavonoïdes cités dans le tableau 2 sont présentées dans la figure 5 :

Figure 5 : Structures des flavonoïdes isolés du genre Phagnalon.

2.4.3. Les triterpènes :

Les triterpènes sont des substances d'origine organique en C30 (30 atomes de carbone) de la famille des terpènes. Très répandus dans la nature, on les trouve notamment dans les résines, à l'état libre, sous forme estérifiée ou hétérosidique.

Le tableau 3 comprend des triterpènes isolés du genre Phagnalon.

Tableau 3 : Les triterpènes isolés du genre Phagnalon.

Triterpènes	Structure	Espèce	Référence
Lupéol	19		
Bétulin	20	P. sordidum	Epifano et al., 2002
Acide bétulinique	21		
Acide oléanolique	22	P. purpurescens	Zdero et al., 1991

Les structures des triterpène cités dans le tableau 3, sont présentées dans la figure 6 :

Figure 6 : Structures des triterpènes isolés du genre Phagnalon.

2.4.4. Les stérols :

Un stérol est un composé possédant un noyau de stérane dont le carbone 3 est porteur d'un groupe hydroxyle (figure 7). Les stérols sont considérés comme une sous-classe des stéroïdes. Ce sont des molécules présentes chez la plupart des végétaux.

Figure 7 : Noyau de base des stérols.

Chapitre I

Le tableau 4 présente les stérols qui sont isolés du genre Phagnalon.

Tableau 4 : Les stérols isolés	du genre	Phagnalon.
--------------------------------	----------	------------

stérols	Structure	Espèce	Référence
Daucostérol	23	P. sordidum	Epifano et al., 2002
β -sitostérol	24	P. purpurescens	Zdero et al., 1991
Stigmastérol	25		

Les structures des stérols qui sont isolés des espèces du genre *Phagnalon* cités dans le tableau 4, sont présentées dans la figure 8 :

Figure 8 : Structures des stérols isolés du genre Phagnalon.

2.4.5. Autres constituants isolés du genre Phagnalon:

Figure 9 : Divers composés isolés du genre Phagnalon.

2.5. Utilisations traditionnelles :

Les *Phagnalons* sont largement utilisés en médecine traditionnelle. En Islande, *Phagnalon sordidum* est utilisé seul ou mélangé avec *Lippi acitriodora* et/ou *Malva sylvestris* pour guérir la lithiase rénale (**Epifano et al., 2002**). D'autre part, les bédouins du désert du Néguev, utilisent l'écorce de *Phagnalon rupestre*, pour la guérison des brûlures. Néanmoins, en médecine populaire, les palestiniens utilisent la plante entière pour traiter l'asthme, maux de tête, et comme un analgésique pour les maux de dents (**Ali-Shtayeh et al., 1998**).

2.6. Activités biologiques reconnues du genre Phagnalon :

Le tableau 5 représente les propriétés thérapeutiques d'espèces du genre Phagnalon.

Espèce	Propriété thérapeutique	Référence
P. rupestre	Anti-oxydante	Haddouchi et al., 2014
	Antimicrobienne	Wamidh et al., 2010
	Cytotoxicité	Wamidh et al., 2010
	Anti-inflammatoire	Ali-Shtayeh et al., 1998
P. saxatile	Anti-oxydante	Haddouchi et al., 2014
	Anti-inflammatoire	Teixeira et al., 2004
	Antiallergique	Carini et al., 2001
	Antibactérien	Tomás-Barberán et al.,
	Antifongique	1990
P. graecum	Anti-oxydante	Erdogan Orhan et al., 2013
P. sordidum	Anti-oxydante	Chikhi et al., 2013

Tableau 5 : Les propriétés thérapeutiques d'espèces du genre Phagnalon.

3. Aspect botanique :

3.1. Phagnalon saxatile (L.) Cass.

3.1.1. Description botanique :

C'est une plante méditerranéenne, assez commune, qui croît sur les murs et les rochers, mais aussi dans les pelouses rocailleuses. Les feuilles, très étroites, sont vertes sur la face supérieure et cotonneuse en dessous. Les capitules sont solitaires à l'extrémité des rameaux. Les bractées externes sont recourbées vers l'extérieur.

Tableau 6 : Description de P. saxatile (L.) Cass. (Quèzel et Santa., 1963).

Partie de la plante	Description
Feuilles inférieures	Linéaires-lancéolées, blanches-tomenteuses
Feuilles supérieures	Etroitement linéaires, vertes ou blanchâtres
Capitules	Toujours solitaires
Bractées	Glabres, scarieuses
Fleurs	Jaunes
Tiges	Dressées, très rameuses

Figure 10 : Phagnalon saxatile (L.) Cass.

3.1.2. Place dans la systématique :

Son classement dans la systématique est comme suit :

Règne : Plantae

Embranchement : Angiospermes

Classe : Dicotylédones

Sous classe : Gamopétales

Ordre : Astérales

Famille : Asteraceae

Genre : *Phagnalon*

Espèce : *P. saxatile* (L.) Cass.

3.2. Phagnalon sordidum (L.) DC.

3.2.1. Description botanique :

Les *P. sordidum* sont des herbes vivaces répandues dans toute la région méditerranéenne. Ils sont blanchâtres, et leurs odeurs sont désagréables. Les feuilles, très étroites, sont enroulées sur les bords. Les capitules sont groupés par deux à six à l'extrémité des rameaux. Les bractées sont bien appliquées contre le capitule.

Tableau 7 : Description de P. sordidum L. (Quèzel et Santa., 1963).

Partie de la plante	Description
Rameau	Jeunes rameaux anguleux et glanduleux-hispides.
Feuilles inférieures	obovales-lancéolées, atténuées en pétiole et semi-amplexicaules.
Feuilles supérieures	linéaires, à marge révolutée, semi-amplexicaules.
Capitules	de 1-1,3 cm de diamètre.
Réceptacle	glabre à bractées larges, toutes à marge scarieuse.
Fleurs	Jaunes à sommet pourpre.
Akènes	Akènes à aigrette constituée par 4-5 soies fragiles et très longues.

Figure 11 : Phagnalon sordidum L.

3.2.2. Place dans la systématique :

Son classement dans la systématique est comme suit :

Règne : Plantae

Embranchement : Angiospermes

Classe : Dicotylédones

Sous classe : Gamopétales

Ordre : Astérales

Famille : Asteraceae

Genre : *Phagnalon*

Espèce : P. sordidum (L.) DC
Chapitre II Activités biologiques

1. Activité antioxydante :

1.1. Introduction :

Ces dernières années, l'intérêt porté aux antioxydants naturels, en relation avec leurs propriétés thérapeutiques, a augmenté considérablement. Des recherches scientifiques dans diverses spécialités ont été développées pour l'extraction, l'identification et la quantification de ces composés à partir de plusieurs substances naturelles à savoir, les plantes médicinales et les produits agroalimentaires (**Popovici et al., 2009**).

1.2. Définition d'un radical libre :

Les radicaux libres sont des atomes ou des molécules portant un électron non apparié. Cette propriété rend ces éléments très réactifs du fait de la tendance de cet électron à se réapparier, déstabilisant ainsi d'autres molécules. Les molécules ainsi transformées deviennent à leur tour d'autres radicaux libres et initient ainsi une réaction en chaîne. C'est typiquement ce qui se passe lors de la peroxydation lipidique (**Dacosta et al., 2003**).

Parmi toutes les espèces radicalaires susceptibles de se former dans les cellules, il convient de distinguer un ensemble restreint de composés radicalaires qui jouent un rôle particulier en physiologie et que nous appellerons radicaux libres primaires, qui dérivent directement de l'oxygène. Les autres radicaux libres, dits radicaux secondaires (radical peroxyle ROO', radical alkoxyle RO'), se forment par réaction de ces radicaux primaires sur les composés biochimiques de la cellule (**Novelli et al., 1997**).

L'ensemble des radicaux libres primaires est souvent appelé "espèces réactives de l'oxygène" (ROS). Cette appellation n'est pas restrictive. Elle inclut les radicaux libres de l'oxygène proprement dit : radical superoxyde O_2^{\bullet} , radical hydroxyl 'OH, monoxyde d'azote NO', mais aussi certains dérivés oxygénés réactifs non radicalaires dont la toxicité est importante : l'oxygène singulet 1O_2 , peroxyde d'hydrogène H₂O₂, peroxynitrite ONOO⁻ (Favier et al., 2003).

1.3. Les antioxydants :

Les antioxydants sont des substances capables de neutraliser ou de réduire les dommages causés par les radicaux libres dans l'organisme et permettent de maintenir au niveau de la cellule des concentrations non cytotoxiques de ROS. Notre organisme réagit donc de façon constante à cette production permanente de radicaux libres et on distingue au niveau des cellules deux lignes de défense inégalement puissantes pour détoxifier la cellule (**Favier et al., 2003**).

1.3.1. Les antioxydants naturels :

Les antioxydants d'origine naturelle sont présents dans presque toutes les plantes et les micro-organismes. Les antioxydants naturels les plus importants sont la vitamine E (tocophérol), les caroténoïdes (β -carotène), la vitamine C (l'acide ascorbique), les polyphénols en particulier les flavonoïdes.

> Vitamine E :

La vitamine E est un antioxydant majeur liposoluble. C'est un composé amphiphile, il joue un rôle important dans l'organisme par son action antioxydante au niveau cellulaire. Il existe dans la nature plusieurs dérivés de la vitamine E à activités différentes (α , β , γ , δ -tocophérol, tocotriénols...). L' α -tocophérol est la forme biologiquement la plus active, ainsi que γ -tocophérol est la plus abondante dans l'alimentation.

δ-tocophérol

Figure 12 : Structures des dérivés de la vitamine E.

➢ Vitamine C :

L'acide ascorbique (vitamine C) est considérée comme étant l'un des antioxydants naturels puissants et moins toxique (**Bendich et al., 1986**; **Weber et al., 1996**). Il est hydrosoluble et se trouve avec des concentrations élevées dans plusieurs aliments. En général, l'acide ascorbique réagit avec les oxydants il peut mettre fin à la chaine des réactions radicalaires par transfert d'électrons par le transférer d'un seul électron.

Figure 13 : Structures de l'acide ascorbique.

> Vitamine A :

La vitamine A est une vitamine liposoluble, elle existe sous deux formes : le rétinol et ses dérivés d'origine animale et les caroténoïdes d'origine végétale (**Wolinsky et al., 1998**). Le béta-carotène est le principal précurseur de la vitamine A (figure 14). Les autres caroténoïdes peuvent être de puissants antioxydants, mais ils sont moins connus et abondants (**Shils et al., 2006**).

Figure 14 : Structures du β -carotène.

> Polyphénols :

Les polyphénols sont des molécules organiques présentent d'une manière ubiquiste dans les végétaux, ils sont issus du métabolisme secondaire. Ils sont caractérisés par la présence de plusieurs groupements phénoliques, un ou plusieurs cycles aromatiques portant un ou plusieurs hydroxyles. Ils se divisent en plusieurs groupes : les coumarines, les chromones, les stiblènes, les lignanes, les tanins, les lignines et les flavonoïdes. Ces derniers constituent la plus importante catégorie de polyphénols, ils sont résponsables de la coloration des fleurs et des fruits. Les flavonoïdes se comportent principalement comme des antioxydants primaires, en stabilisant les radicaux peroxydes. Cependant ils peuvent aussi désactiver les autres espèces réactives de l'oxygène (ERO) (l'anion superoxyde (O_2°), le radical hydroxyl ('OH), oxygène singulet ($^{1}O_{2}$), ils jouent un rôle dans l'inhibition de la lipoxygénase et chélation des métaux (**Sarni-Manchado et al., 2006**). Les flavonoïdes sont très abondants dans les légumes, les feuilles des légumes (salades, choux, épinards...), ainsi que dans les téguments externes des fruits. De nombreux travaux ont montré que certains fruits et légumes sont très riche en flavonoïdes (**Justen et al., 1998**). Plusieurs études in vitro ont montré que la quercétine est un excellent antioxydant, de tous les flavonoïdes, c'est le plus puissant capteur des ERO.

	R ₁	R ₂	R ₃	R ₄	R ₅
Apigénine	Н	Н	Н	OH	Н
Lutéoline	Н	Н	OH	OH	Н
Quercétine	OH	Н	OH	OH	Н
kamphérol	OH	Н	Н	OH	Н

Figure 15 : Structures de quelques flavonoïdes.

1.3.2. Les antioxydants de synthèse :

Il existe plusieurs antioxydants synthétiques dont les squelettes sont souvent dérivés des antioxydants naturels (Lee et al., 2009). Dans l'industrie alimentaire, les antioxydants synthétiques, tels que le butylhydroxyanisole (BHA), le butylhydroxytoluène (BHT), et la gallate propylée (PG) (figure 16) sont largement utilisés parce qu'ils sont efficaces et moins chers que les antioxydants naturels. Cependant, leur sécurité est très discutée car ils sont susceptibles de manifester des effets secondaires et même toxiques (Lisu et al., 2003).

Figure 16 : Structure des antioxydants synthétiques.

1.4. Méthodes de détermination de l'activité antioxydante :

Il existe une multitude de tests pour la mesure de l'activité antioxydante. Elles peuvent être classées en deux groupes selon leurs mécanismes : soit par le transfert d'atome d'hydrogène, soit par le transfert d'un simple électron (**Sanchez-Moreno et al., 2002**; **Huang et al., 2005**).

1.4.1. Méthode du DPPH[•] :

Le DPPH (2,2-diphényl-1-picryhydrazyl) est un radical stable de couleur violette en solution. Lorsqu'il est réduit en présence d'une substance réductrice (par un mécanisme combinant le transfert d'un atome d'hydrogène et le transfert d'électrons), la couleur de la solution devient jaune. Plus la substance est antioxydante et plus la coloration violette initiale va disparaitre. On apprécie ce changement de couleur grâce à un enregistrement à la longueur 540 nm (à l'aide d'un spectrophotomètre) (figure 17).

Figure 17 : Transformation du radical DPPH' en DPPHH

Le piégeage des radicaux libres par des antioxydants est tributaire de deux types de mécanismes:

- la libération de l'atome d'hydrogène du groupement hydroxyle (cinétique rapide de certaines acides et dérivées phénoliques).
- la libération d'un électron (cinétique lente des dérivées glycosylées et des anthocyanes) (Huang et al., 2005, Nanjo et al., 1996).

Dans le cas des composés phénoliques (Φ -OH), le mécanisme principal d'action est le piégeage des radicaux libres par le transfert de l'atome H sur le DPPH alors transformé en une molécule stable DPPHH (**Molyneux et al., 2004**; **Sanchez-Moreno et al., 1998**) :

$DPPH' + \Phi OH \rightarrow DPPHH + \Phi O'$

Plusieurs voies réactionnelles sont alors possibles qui forment des structures plus au moins stables :

 $\Phi O' + \Phi O' \to \Phi O \text{-} O \Phi$

$DPPH' + \Phi O' \rightarrow \Phi O \text{-} DPPH$

$\Phi O \bullet (\text{semi-quinone})^{-H \bullet} \rightarrow \Phi = O (\text{quinone})$

La capacité anti-radicalaire (capacité à fixer des radicaux libres, donc à arrêter la propagation de la réaction en chaîne) ne peut être mesurée directement, mais par contrôle de l'effet de la réactivité. Plusieurs facteurs influent sur le potentiel antioxydant et la cinétique de réduction, notamment les conditions de la réaction (temps, rapport Antioxydant/DPPH[•], type de solvants, pH) et le profil phénolique en particulier (**Molyneux et al., 2004**).

1.4.2. Piégeage de l'ABTS⁺⁺ :

L'acide 2,2'-azinobis-(3-éthylbenzothiazoline-6-sulfonique) est également un radical libre et stable. Il est très utilisé pour évaluer le pouvoir antioxydant des fluides biologiques, des mélanges complexes ou bien des composés purs. Ce radical est capable de réagir avec des antioxydants classiques de type phénols et thiols mais aussi avec tout composé donneur d'hydrogène ou d'électron (**Rice-Evans et al., 1994, 1995**). Ce radical cation est facilement formé par oxydation en présence de persulfate de potassium pour donner une solution colorée en vert-bleu. Le radical formé est stable avec des coefficients

d'extinction molaire élevés à 416, 650 et 734 nm. La concentration de ce radical peut être déterminée en mesurant l'absorbance à ces longueurs d'onde.

Figure 18 : Structure de l'acide 2,2'-Azinobis-(3-éthylBenzoThiazoline-6-Sulfonique): forme réduite (ABTS) et forme radicale cation (ABTS⁺⁺)

1.4.3. Méthode du CUPRAC :

La méthode CUPRAC (cupric ion Reducing Antioxidant Capacity) est basée sur le suivie de la diminution de l'absorbance accrue du complexe Néocuproéne (NC), cuivre $(Cu^{+2})Nc_2-Cu^{+2}$. En effet, en présence d'un agent antioxydant, le complexe cuivre-neocuproéne est réduit et cette réaction est quantifié spectrophotometriquement a une longueur d'onde de 450 nm (**Apak et al., 2004**). Le principe de ce test se base sur la conversion des hydroxyles phénoliques en quinones à travers la réduction du complexe Cu^{+2} -Nc, produisant ainsi un complexe chromogène de Cu^{+2} -Nc qui absorbe à 450 nm (figure 19).

Figure 19 : Réduction du complexe chromogène de Cu⁺²-Nc.

1.4.4. Test d'effet scavenger du superoxyde produit par DMSO alcalin :

Dans cette méthode, la concentration de superoxyde dans le système DMSO alcalin correspond à la concentration d'oxygène dissous dans du DMSO. Dans les vaisseaux fortement bouchés, le radical superoxyde est stable plus de 24 h; toutefois dans les vaisseaux ouverts diminue rapidement sa concentration. La diminution de l'absorbance à 560 nm avec des antioxydants indiqué la consommation de superoxyde généré (**Elizabeth et al., 1990; Klatt et al., 2000; Reddy et al., 2008; Srinisavan et al., 2007**).

2. Dosage des polyphénols :

Dans la plupart des plantes, les flavonoïdes sont considérés comme des pigments polyphénoliques responsables des colorations des fleurs et des fruits (Swarnlata et al., 2007). Les phénols totaux sont des métabolites secondaires synthétisés par les plantes pendant leur développement (Harborne et al., 1982; Pridham et al., 1960) mais aussi comme réponse aux conditions de stress tels que infections, blessures, radiation UV (Beckman et al., 2000; Nicholson et al., 1992). Les phénols possèdent un large spectre d'activités biochimiques comme des effets antioxydants, des effets antimutagénniques et des effets anticancérigènes (Nakamura et al., 2003; Tapiero et al., 2002). La détermination de la teneur en phénols totaux des extraits bruts des plantes *P. saxatile* et *P. sordidum* a été faire en utilisant la méthode colorimétrique (Folin-Ciocalteux).

3. Activité antibactérienne :

Comme toute cellule, les bactéries sont constituées d'un noyau, isolé ou diffus, un protoplasme contenant des granulations et des vacuoles, une paroi parfois d'une capsule (NCCLS., 2003).

Certaines bactéries sont mobiles grâce à des cils vibratiles. Selon leur mode de nutrition et leur comportement vis-à-vis de l'oxygène, les bactéries sont classées en aérobies et en anaérobies.

Les bactéries se reproduisent selon deux modes :

la division simple ou scissiparité.

la sporulation, la spore représentant la forme de résistance et de dissémination du germe.

3.1. Méthode de détermination de l'Activité antibactérienne in vitro :

Il existe trois méthodes pour déterminer l'activité antibactérienne in vitro:

- ✓ Méthode de diffusion sur disques.
- ✓ Méthode de diffusion en puits.
- ✓ Méthode de microatmosphère.

3.1.1. Méthode de diffusion sur disques (Antibiogramme) :

C'est une technique utilisée en bactériologie médicale appelée méthode de disques ou méthode par diffusion en milieu gélose. La technique consiste à utiliser des disques de papier imprégnés des différentes substances à tester, puis dépose à la surface d'une gélose uniformément ensemencée avec une suspension de la bactérie à étudier. Apres incubation, les colonies se développent à la surface de la gélose laissant des zones vierges autour des disques appelées zones d'inhibitions. Plus le diamètre de la zone d'inhibition est grand, plus la souche est sensible à la substance testée, plus il est petit plus la bactérie est résistante. Le diamètre de ces zones d'inhibition est proportionnel à l'activité antibactérienne de l'extrait sur la souche testée (figure 20).

Figure 20 : Schéma simplifié de la méthode de l'antibiogramme.

On peut exprimer cette activité soit en indiquant directement le diamètre de la zone d'inhibition en millimètre, soit en traduisant en croix le degré d'activité (Guerin-Faublee et al., 1999).

3.2. Détermination de la concentration minimale inhibitrice (CMI) :

La CMI est la plus faible concentration de la substance pour laquelle il n'y a pas de croissance visible à l'œil nu après un temps d'incubation de 18 à 24 h. Sa détermination a été faite par observation du trouble induit par la croissance des germes étudiés dans chaque tube. La CMI a été la plus petite concentration pour laquelle il n'y a pas eu de trouble observé à l'œil nu (**Toty et al., 2013**).

4. Activité cytotoxique :

Le cancer est devenu un véritable problème de santé par le monde : il représente la $2^{\text{ème}}$ cause de mortalité dans les pays développés et devient également un problème majeur de santé dans les pays en développement. Ces derniers ont dès lors recours à la médecine traditionnelle, qui utilise largement des recettes à base de plante. En s'appuyant sur les données ethno-phytothérapeutiques et/ou ethnopharmacologiques, les chercheurs ont pensé à isoler puis identifier diverses substances d'origine naturelle possédant des propriétés pharmacologiques intéressantes et ce dans bien des domaines. S'agissant du cancer, les produits naturels ont été à la base de bien des progrès dans les traitements appliqués.

4.1. Le test de viabilité :

Afin d'évaluer l'activité antiproliférative des produits de *Phagnalon saxatile* (L) Cass un test de viabilité des cellules est réalisé. Le test MTT (3-[4,5-diméthylthiazol-2yl] diphényltétrazolium bromure, Sigma) est un test colorimétrique basé sur la capacité des mitochondries fonctionnelles des cellules à réduire, via la succinate déshydrogénase (**Mosmann et al., 1983**), le produit MTT en cristaux de formazan détectables en spectrométrie visible après leur dissolution dans du DMSO (diméthylsufoxide). Il permet alors d'évaluer les effets des traitements étudiés sur la croissance globale d'une population cellulaire donnée, en déterminant le nombre de cellules vivantes restant au sein de la culture cellulaire analysée.

Partie 2 Matériel et méthodes

Chapitre I Matériel végétal, Séparation-Extraction et analyses

1. Phagnalon saxatile (L.) Cass. :

1.1. Récolte du matériel végétal :

Le matériel végétal étudié a été récolté en Avril 2013 à Constantine en période de floraison par Mr. Kamel Kabouche, et identifié par le professeur Gérard De Belair (Université d'Annaba). Après séchage dans un endroit sec et à l'abri des rayons solaires, les parties aériennes ont été coupées en petits morceaux et pesées (1250 g).

1.2. Extraction :

1.25 Kg des parties aériennes de la plante pulvérisée séchées ont subi une macération dans un mélange hydro-alcoolique (EtOH/H₂O, 8 :2, v/v), en répétant cette opération 3 fois avec renouvellement du solvant (24 à 48 heures/3fois). Les extraits obtenus ont été évaporés à sec, puis dilué avec de l'eau distillée. La solution obtenue est laissée au repos pendant une nuit pour décantation. Cette décantation permet le dépôt de la chlorophylle, des cires, du sable, etc....Après filtration on obtient une phase aqueuse.

A l'aide d'une ampoule à décanter on procède à des extractions successives de type liquide-liquide, en utilisant des solvants de polarité croissante et en commençant par l'éther de pétrole, chloroforme, l'acétate d'éthyle et on finit par le *n*-butanol.

Les phases organiques récupérées sont concentrées sous pression réduite à sec et pesées. Les rendements d'extraction sont donnés dans le tableau 8 :

Extrait	Masse (g)	Rendement (%)
Éther de pétrole	1.05	0.08
Chloroformique	1.86	0.14
Acétate d'éthyle	11.32	0.90
<i>n</i> -butanol	25.31	2.02

Tableau 8 : Rendement des extraits de Phagnalon saxatile (L) Cass.

La figure 21 montre les différentes étapes du processus d'extraction de la plante *P. saxatile* (L) Cass.

Figure 21 : Protocole d'extraction de la plante P. saxatile (L.) Cass.

1.3. Traitement des extraits de Phagnalon saxatile :

Chaque extrait subit une chromatographie sur couche mince afin d'avoir une idée sur les produits à isoler et donc pouvoir choisir l'extrait à étudier.

Notre choix s'est porté sur celui de l'extrait butanolique et acétate d'éthyle riches en flavonoïdes, qui ont subi une chromatographie bidimensionnelle sur plaque de polyamide dans les systèmes S_1 et S_2 , pour avoir les empreintes flavoniques et avoir une idée sur les bons systèmes de séparation de ces extraits (figure 22).

- La $1^{\text{ère}}$ dimension S_1 : Toluène-MeOH-MEC (4:3:3).
- La 2^{ème} dimension **S**₂ : H₂O-MeOH-MEC-acétylacétone (13:3:3:1).

Figure 22 : Cartes phénoliques des extraits acétate d'éthyle et *n*-butanol de *Phagnalon saxatile*.

Ce test a montré que ces extraits possèdent le même profil (figure 22) et montre un bon nombre de composés flavoniques, leurs couleurs sous la lampe UV indiquent que ce sont des flavones ou des flavonols substitués en position 3.

1.4. Séparation et purification des extraits acétate d'éthyle et *n*-butanol :

10 g de l'extrait *n*-butanol avec 10 g d'extrait acétate d'éthyle ont été fractionnés par chromatographie sur colonne de gel de polyamide SC6 (le poids de la phase stationnaire est trente fois le poids de l'extrait). L'élution est réalisée par un gradient de polarité du système toluène/méthanol. Des fractions de 150 mL sont recueillies, leur suivi est effectué par chromatographie sur couche mince de gel de silice. L'examen de plaques CCM est réalisé sous lumière UV à 254 nm et à 365 nm avec des différents systèmes. Les fractions de compositions similaires sont rassemblées et évaporées. 20 fractions ont été ainsi obtenues (tableau 9).

Tableau 9 : Résultats du fractionnement du mélange extrait acétate d'éthyle + n-butanol parchromatographie sur colonne de gel de polyamide.

N° de lot	Fraction	Système	Système d'élution	
		Toluène	MeOH	
1-9	F_1	100-98	0-2	Traces
10-18	F ₂	98	2	Mélange de
19-24	F ₃	98	2	produits en très
25-29	F ₄	96	4	faible
30-35	F ₅	96	4	Quantité
36-51	F ₆	96-92	4-8	
52-54	F ₇	92	8	Mélange
55-62	F ₈	92	8	complexe
63-70	F ₉	92-88	8-12	
71-84	F ₁₀	88	12	produit
				majoritaire
85-102	F ₁₁	88-85	12-15	Mélange
				complexe
103-116	F ₁₂	85	15	Mélange
				séparable
117-127	F ₁₃	80	20	Mélange
				inséparable

128-146	F ₁₄	80-75	20-25	Mélange +
				précipité
147-161	F ₁₅	75-70	25-30	produit
				majoritaire
162-182	F ₁₆	70-60	30-40	Mélange
				séparable
183-202	F ₁₇	60	40	Mélange +
				précipité
203-248	F ₁₈	50-30	50-70	
249-253	F ₁₉	0	100	Mélange
254-260	F ₂₀	0	100	complexe

Étude de la fraction F₁₀

Un précipite jaune a été formé dans la fraction F_{10} , que nous avons récupéré et lavé au méthanol PP₁ (20 mg).

Étude de la fraction F₁₂

Cette fraction est chromatoraphiée sur une colonne de gel de silice 63 µm éluée avec le système gradient CHCl₃/MeOH. Le suivi des sous fractions obtenues est réalisé par chromatographie sur couche mince CCM en phase normale, visualisée sous lumière UV en utilisant le même système. Par conséquent, 5 sous fractions ont été regroupées (tableau 10).

Tableau 10 : Sous-fractionnement de la fraction F_{12} sur colonne de gel de silice.

N° de lot	Sous fraction	Observation
1-10	f ₁	Traces
11-22	f ₂	Produit pur
23-35	f ₃	Produit pur
36-50	f ₄	Précipité
51-65	f ₅	Trainée

- La sous fraction f_2 contient le composé PP₂ (10 mg) à l'état pur.

-La chromatographie sur couche mince a montré que la sous fraction f_3 contient le composé PP_4 (12 mg).

- La sous fraction f_4 contient le composé PP₃ (5 mg) sous forme de précipité qui a été lavé au méthanol.

Étude de la fraction F₁₄

La fraction F_{14} contient un précipité que nous avons récupéré et lavé au méthanol pour obtenir 16 mg de produit PP₅, à l'état pur.

Étude de la fraction F₁₅

La formation d'un précipité dans la fraction F_{15} , le précipité est lavé avec du MeOH pour obtenir 41 mg du composé PP_6 .

Étude de la fraction F₁₆

Cette fraction a été chromatographiée sur une colonne de gel de silice, éluée avec le système gradient CHCl₃/MeOH. 6 Sous-fractions ont été regroupées selon leurs profils en CCM, réalisés dans le même système de la colonne (tableau 11).

N° de lot	Sous fraction	Observation
1-15	f ₁	Mélange
16-35	f ₂	Produit pur
36-52	\mathbf{f}_3	Mélange de 2 produits
53-70	f ₄	précipité
71-86	f_5	Trainée
87-105	f_6	

-La sous fraction f_2 contient le composé PP₇ (4 mg), à l'état pur.

-La sous fraction f_3 a été purifié sur colonne de gel de silice, en utilisant le système CHCl₃/MeOH (13:2) pour donner le produit pur PP₈ (6 mg).

-La sous fraction f₄ contient le composé PP₉ (4 mg) sous forme de précipité.

Étude de la fraction F₁₇

La fraction F_{17} contient un précipité blanc, c'est le composé PP_{10} (32 mg) qui a été lavé par le méthanol.

Figure 23 : Schéma de séparation des extraits acétate d'éthyle et *n*-butanol de *Phagnalon saxatile* (L.) Cass.

2. Phagnalon sordidum L.:

2.1. Récolte du matériel végétal :

Le matériel végétal étudié a été récolté en Mai 2016 en phase de floraison à Guelma, et identifié par le professeur Gérard De Belair (Université d'Annaba). Après séchage dans un endroit sec et à l'abri des rayons solaires, les parties aériennes ont été pulvérisées et pesées (1300 g).

2.2. Extraction :

1.3 Kg de la plante sèche, sont mis à macérer trois fois dans un mélange éthanol/eau (80/20: V/V) pendant 24 heures. Les phases obtenues sont concentrés puis traitées avec l'eau distillée. Après filtration, la phase aqueuse obtenue est épuisée successivement par l'éther de pétrole, chloroforme, l'acétate d'éthyle et le *n*-butanol.

Les phases organiques obtenues sont concentrées sous pression réduite à sec et pesées. Les rendements d'extraction sont donnés dans le tableau 12 :

Tableau	12 :	Rendement	des	extraits	de	Phagnald	on s	ordidum	L
---------	------	-----------	-----	----------	----	----------	------	---------	---

Extrait	Masse (g)	Rendement (%)
Ether de pétrole	0.8	0.06
Chloroformique	1.9	0.1
Acétate d'éthyle	11	0.8
<i>n</i> -butanol	20	1.53

L'extraction de Phagnalon sordidum L. est résumée dans l'organigramme suivant (figure 24).

Figure 24 : Extraction de *Phagnalon sordidum* L.

Chaque extrait subit une chromatographie sur couche mince afin d'avoir une idée sur l'éluant ou le système d'élution qui donnerait les meilleurs résultats.

2.3. Séparation et purification :

2.3.1. A partir de l'extrait chloroformique :

Une masse de 1.8 g de l'extrait chloroformique est déposée sur une colonne chromatographique de gel de silice 60 M (0.04-0.063 mm) préparée dans le chloroforme, avec un gradient d'élution chloroforme/méthanol. Des fractions de 25 mL ont été recueillies et regroupées en fonction de leurs profil en CCM visualisée sous lampe UV (254 et 365nm) puis révélées à l'acide sulfurique, pour obtenir 23 fractions (tableau 13).

Tableau 13	: Fractionnement	de	l'extrait	chloroformique	sur	colonne	de	gel	de	silice
normale.										

Système d'élution Les lots		Les fractions La masse (m				
CHCl ₃ %	MeOH%					
100	0	1-12	F_1	5.1		
100	0	13-20	F ₂	115.6		
100	0	21-29	F ₃	45.5		
100	0	30-36	F_4	62.7		
100	0	37-43	F ₅	51.8		
100	0	44-47	12.2			
100	0	48-54	F ₇	32.8		
100	0	55-73	F_8	79.5		
100	0	74-89	F9	25.6		
100	0	90-100	F ₁₀	12.4		
99	1	101-110	F ₁₁	15.5		
99	1	111-131	F ₁₂	58.7		
99	1	132-178	F ₁₃	103.4		
97	3	179-205	F ₁₄	103.8		
97	3	206-219	19 F ₁₅			
95	5	220-229	F ₁₆	80.8		

95	5	230-248	F ₁₇	105
95	5	249-276	F ₁₈	79.2
95	5	277-295	F ₁₉	33.9
95	5	296-313	F ₂₀	43.5
90	10	314-341	F ₂₁	104.5
90	10	342-349	F ₂₂	18.3
0	100	350-360	F ₂₃	382.8

Parmi les 23 fractions obtenues, seules les fractions F₁₂, F₁₃, F₁₆ et F₁₈ ont été traitées.

Étude de la fraction F₁₂

La fraction F_{12} a été soumise à une chromatographie par CLHP en utilisant les conditions chromatographiques suivantes :

Colonne semi-préparative C18.

Système d'élution isocratique : 50% H₂O/50% MeOH.

La concentration de la fraction : 100 mg/mL (dans le MeOH).

Le volume injecté : 100µl.

Débit : 2 mL/min

• Cette séparation nous a permis d'obtenir un produit pur PC_2 (0.8 mg).

Étude de la fraction F₁₃

La fraction F₁₃ a été chromatographiée par CLHP dans les conditions suivantes :

Colonne semi-préparative C18.

Système d'élution isocratique : 55% H₂O/45% MeOH.

La concentration de la fraction : 100 mg/mL (dans le MeOH).

Le volume injecté : 100µl.

Débit : 2 mL/min.

• Un composé a été obtenu PC_4 (1 mg).

➢ Étude de la fraction F₁₆

Cette fraction est chromatoraphiée par CLHP avec les conditions suivantes :

Colonne semi-préparative C18.

Système d'élution isocratique : 50% H₂O/50% MeOH.

La concentration de la fraction : 100 mg/mL (dans le MeOH).

Le volume injecté : 100µl.

Débit : 2 mL/min

• Un produit pur a été obtenu $PC_1(1.1 \text{ mg})$.

Étude de la fraction F₁₈

La fraction F₁₈ a été chromatographiée par CLHP dans les conditions suivantes :

Colonne semi-préparative C8.

Système d'élution isocratique : 60% H₂O/40% MeOH.

La concentration de la fraction : 100 mg/mL (dans le MeOH).

Le volume injecté : 100µl.

Débit : 2 mL/min

Cette séparation nous a permis d'obtenir un produit pur PC_{19} (0.6 mg).

Figure 25 : Schéma de séparation par CC et CLHP de l'extrait chloroformique de *Phagnalon sordidum* L.

2.3.2.A partir de l'extrait butanolique :

L'extrait butanolique (2.5 g) a subi un premier fractionnement sur colonne chromatographique de gel de Sephadex® LH20 éluée avec le MeOH pour donner 21 fractions (tableau 14). Le fractionnement sur gel de Sephadex® permet de séparer les molécules d'un extrait selon leur poids moléculaire.

Tableau 14 : Résultats de séparation par chromatographie sur colonne de Sephadex® LH20de l'extrait *n*-butanol.

Les lots	Les fractions	La masse (mg)
1-6	F_1	5.9
7-13	F ₂	313.2
14-16	F ₃	312.2
17-19	$\mathbf{F_4}$	479.7
20-24	\mathbf{F}_{5}	122.7
25-27	F ₆	74.5
28-30	F ₇	62.8
31-33	F_8	42.9
34-36	F9	51.5
37-40	F ₁₀	30.2
41-44	F ₁₁	95
45-47	F ₁₂	37.2
48-50	F ₁₃	9.9
51-53	F ₁₄	10.8
54-56	F ₁₅	19.7
57-60	F ₁₆	30.6
61-65	F ₁₇	33
66-72	F ₁₈	78.8
73-79	F ₁₉	104.4
80-82	F ₂₀	25.3
83-100	F ₂₁	21.8

Chapitre I

Parmi les 21 fractions obtenues, on a procédé à la séparation des fractions F_3 , F_4 , F_5 F_6 , F_9 , F_{10} , F_{18} et F_{19} , cela est basé sur leur richesse en produits ainsi que sur leurs poids relativement importants.

Étude de la fraction F₃

La fraction F_3 est soumise par la suite à l'opération de purification en utilisant CLHP semi préparative avec les conditions suivantes :

Colonne semi-préparative C8.

Système d'élution isocratique : 70% H₂O/30% MeOH.

La concentration de la fraction : 100 mg/mL (dans le MeOH).

Le volume injecté : 100µl.

Débit : 2 mL/min

Cette séparation nous a permis d'obtenir deux produits purs PB_5 (0.7 mg) et PB_{20} (1 mg).

Étude de la fraction F₄

Cette fraction est chromatoraphiée par CLHP avec les conditions suivantes :

Colonne semi-préparative C8.

Système d'élution isocratique : 65% H₂O/35% MeOH.

La concentration de la fraction : 100 mg/mL (dans le MeOH).

Le volume injecté : 100µl.

Débit : 2 mL/min

✤ Ainsi, 3 composés ont été isolés PB₁₈ (0.7 mg), PB₃ (0.4 mg) et PB₇ (2 mg).

Étude de la fraction F5

La fraction F_5 a été soumise à une chromatographie par CLHP en utilisant les conditions chromatographiques suivantes :

Chapitre I

Colonne semi-préparative C8.

Système d'élution isocratique : 65% H₂O/35% MeOH.

La concentration de la fraction : 100 mg/mL (dans le MeOH).

Le volume injecté : 100µl.

Débit : 2 mL/min

♦ 2 composés ont été isolés PB_6 (0.6 mg) et PB_{21} (1.2 mg).

➢ Étude de la fraction F₆

La fraction F₆ contient le composé PB₉ (5 mg) sous forme de précipité qui a été lavé.

Étude de la fraction F₉

Cette fraction est chromatoraphiée par CLHP avec les conditions suivantes :

Colonne semi-préparative C8.

Système d'élution isocratique : 70% H₂O/30% MeOH.

La concentration de la fraction : 100 mg/mL (dans le MeOH).

Le volume injecté : 100µl.

Débit : 2 mL/min

✤ Ainsi, un composés a été isolés PB₁₃ (0.5 mg).

➢ Étude de la fraction F₁₀

Un précipite jaune a été formé dans la fraction F_{10} , que nous avons récupéré et lavé pour obtenir le produit PB_{14} (3.5 mg), à l'état pur.

Étude de la fraction F₁₈

La fraction F_{18} contient le composé PB_{15} (4 mg) sous forme de précipité qui a été lavé.

Étude de la fraction F₁₉

La fraction F_{19} contient un précipité, c'est le composé PB_{12} (5 mg), à l'état pur (après lavage).

Figure 26 : Schéma de séparation de l'extrait butanolique de Phagnalon sordidum L.

2.3.3. A partir de l'extrait acétate d'éthyle :

Le fractionnement de 2.5 g de l'extrait acétate d'éthyle a été effectué sur une colonne de gel de Sephadex® LH20 éluée avec le MeOH. Des fractions de 10 mL sont recueillies pour donner 18 fractions.

Tableau 15 : Résultats de séparation par chromatographie sur colonne de Sephadex® LH20de l'extrait acétate d'éthyle.

Les lots	Les fractions	La masse (mg)
1-4	F ₁	7.2
5-6	F ₂	18.2
7-10	F ₃	118.4
11-12	F_4	74.8
13-17	F ₅	546.7
18-20	F ₆	99.6
21-23	\mathbf{F}_{7}	195
24-25	F ₈	75.5
26-29	F9	658.5
30-31	F ₁₀	257.3
32-35	F ₁₁	227.8
36-39	F ₁₂	61.3
40-43	F ₁₃	36.9
44-50	F ₁₄	69
51-57	F ₁₅	47.1
58-60	F ₁₆	10.5
61-65	F ₁₇	10.2
66-80	F ₁₈	8.4

Parmi les 18 fractions obtenues, on a procédé à la séparation des fractions F₆, F₇ et F₈.

Chapitre I

Étude de la fraction F₆

Cette fraction est chromatoraphiée par CLHP avec les conditions suivantes :

Colonne semi-préparative C8.

Système d'élution isocratique : 70% H₂O/30% MeOH.

La concentration de la fraction : 100 mg/mL (dans le MeOH).

Le volume injecté : 100µl.

Débit : 2 mL/min

Cette séparation nous a permis d'obtenir trois produits purs PA₁₀ (0.9 mg), PA₁₆ (0.2 mg) et PA₁₇ (0.4 mg).

Étude de la fraction F7

La fraction F_7 a été soumise à une chromatographie par CLHP en utilisant les conditions suivantes :

Colonne semi-préparative C8.

Système d'élution isocratique : 70% H₂O/30% MeOH.

La concentration de la fraction : 100 mg/mL (dans le MeOH).

Le volume injecté : 100µl.

Débit : 2 mL/min

• Un produit pur a été isolé PA_{11} (0.8 mg).

Étude de la fraction F₈

La fraction F_8 est soumise par la suite à l'opération de purification en utilisant CLHP semi préparative avec les conditions suivantes :

Colonne semi-préparative C8.

Système d'élution isocratique : 80% H₂O/20% MeOH.

La concentration de la fraction : 100 mg/mL (dans le MeOH).

Le volume injecté : 100µl.

Débit : 2 mL/min

Cette séparation nous a permis d'obtenir un produit pur PA₈ (1.2 mg).

Figure 27 : Schéma de séparation de l'extrait acétate d'éthyle de *Phagnalon sordidum* L.
Chapitre II Activités biologiques dosage des polyphénols et flavonoïdes

1. Dosage des composés phénoliques :

La teneur en composés phénoliques des extraits éther de pétrole, chloroforme, acétate d'éthyle et butanolique des deux plantes : *Phagnalon saxatile* L. et *Phagnalon sordidum* L. est estimée selon la méthode de Folin-Ciocalteu (**Kanoun et al., 2014**) qui est basée sur la réduction en milieux alcalin d'un mélange de phosphotungestène (WO_4^{2-}) phosphomolybdique (MoO_4^{2-}) du réactif de Folin par les groupements oxydables des composés phénoliques, conduisant à la formation d'un produit de réduction de couleur bleue. Ces derniers présentent un maximum d'absorption à 765 nm dont l'intensité est proportionnelle à la quantité de polyphénols présents dans l'échantillon (**Georgé et al., 2005**).

Brièvement, 200 μ L de l'extrait dilué est mélangé avec 1 mL du réactif de Folin et de 800 μ L de CO₃(Na)₂. Après un repos de 30 minutes d'incubation à température ambiante l'absorbance est mesurée à 765nm.

La quantité de polyphénols totaux, exprimée en mg équivalents d'acide gallique pour 1g d'extrait, est déterminée à partir d'une droite d'étalonnage tracée en présence de l'acide gallique (figure 28).

Figure 28 : Courbe d'étalonnage de l'acide gallique

2. Dosage des flavonoïdes :

La teneur en flavonoïdes des extraits bruts a été déterminée selon la méthode de Topçu (**Topçu et** *al.*, **2007**). Le principe de la méthode est basé sur la formation d'un complexe entre Al^{+3} et les flavonoïdes. Une courbe d'étalonnage est établie avec la Quercétine et les résultats sont exprimés en équivalence de la Quercétine.

A un volume de 50 μ L de l'extrait, on ajoute 130 μ L de MeOH puis 10 μ L de CH₃COOK. Ensuite, 10 μ L de nitrate d'aluminium sont additionnés. Le mélange est laissé à l'obscurité pendant 40 minutes à température ambiante, puis la lecture est faite à 415 nm. la Quercétine (25-175 μ g/mL) est le standard utilisé pour établir la courbe d'étalonnage à partir de laquelle le dosage des flavonoïdes des extraits est calculée (figure 29). Le résultat est exprimé en mg d'équivalents de la Quercétine par gramme d'extrait.

Figure 29 : Courbe d'étalonnage de la Quercétine

3. Activité antioxydante :

L'évaluation de l'activité antioxydante des extraits éther de pétrole, chloroforme, acétate d'éthyle et butanolique des deux plantes : *Phagnalon saxatile* L. et *Phagnalon sordidum* L. a été déterminée par le test au DPPH, ABTS, CUPRAC et test de DMSO alcalin.

3.1. Activité antiradicalaire DPPH :

Le principe de cette méthode est de mesurer la capacité d'inhibition du radical stable 1,1-Diphényl-2-Picrylhydrazyl ou DPPH selon la méthode de Blois (1958).

Un volume de 40 μ L de différentes concentrations de chaque échantillon testé ont est déposé sur une microplaque à 96 puits, de même pour les antioxydants standard BHA et BHT, puis on ajoute à chaque puits 160 μ L d'une solution méthanolique de DPPH (0,4 mM) (**Brand-Williams et al., 1995**; **Burits et al., 2000**). Le contrôle négatif est préparé en parallèle, en mélangeant 40 μ L du méthanol avec 160 μ L d'une solution méthanolique de DPPH, à la même concentration utilisée. Après incubation à température ambiante et à l'obscurité pendant 30 min, l'absorbance a été mesurée à 517 nm en insérant la microplaque dans le spectrophotomètre.

L'activité antiradicalaire est exprimée en pourcentage de DPPH réduit selon la formule :

AAR (%) =
$$[(A_C - A_E) A_C] X 100$$

AAR (%) : Pourcentage de l'Activité Anti-Radicalaire.

A_C : Absorbance en absence de l'extrait (contrôle négatif).

A_E : Absorbance en présence de l'extrait.

La concentration d'extrait réduisant 50% de DPPH (CI_{50}) est obtenue à partir de la courbe donnant l'AAR en fonction de la concentration de l'extrait.

3.2. Activité du piégeage de l'ABTS :

L'analyse spectrophotométrique de l'activité de piégeage de l'ABTS⁺⁺ a été déterminée selon le procédé de Re (**Re et al., 1999**), avec de légères modifications. L'ABTS⁺⁺ a été produit par la réaction entre 7 mM de l'ABTS dans l'eau et 2,45 mM de persulfate de potassium est stockée dans l'obscurité à température ambiante pendant 12 h. L'oxydation de l'ABTS commence immédiatement mais l'absorption n'est pas maximale et se stabilise après 6 heures de temps. Le radical cation est stable sous cette forme depuis plus de 2 jours dans le stockage dans l'obscurité à la température ambiante. Avant utilisation, l'ABTS a été dilué pour obtenir une absorbance de 0,708 \pm 0,025 à 734 nm. Ensuite, 160 µL de la solution de L'ABTS⁺⁺ ont été ajoutés à 40 µL de la solution d'extrait à différentes

concentrations. Après 10 min, l'absorbance a été mesurée à 734 nm en utilisant un lecteur de microplaques à 96 puits.

Les pourcentages d'inhibition ont été calculés pour chaque concentration par rapport à une absorbance à blanc de méthanol. La capacité de piégeage des L'ABTS⁺⁺ a été calculée en utilisant l'équation suivante:

ABTS⁺⁺ % d'Inhibition =
$$[(A_{contrôle} - A_{échantillon})/A_{contrôle}] \times 100$$

Où :

A _{contrôle}: est l'absorbance de la réaction ne contenant que les réactifs.

A échantillon: est l'absorbance de la réaction contenant les réactifs et l'extrait.

3.3. La réduction cuprique (CUPRAC) :

La réduction du cuivre a été déterminée par la méthode CUPRAC décrite par Apak (**Apak et al., 2004**). Une solution est préparée avec le mélange des volumes de : 50 μ L Cu (II) (10 mM), 50 μ L neocuprine (7,5 mM), et 60 μ L de solution tampon NH₄Ac (1 M, pH = 7,0). Différentes concentrations d'extrait ont été ajoutées au mélange initial afin de rendre le volume final de 200 μ L. Les microplaques de 96 puits ont été mises à l'abri de la lumière, et après 1 h, l'absorbance est mesurée à 450 nm. La capacité de réduction des extraits a été comparée à celles de le BHA et du BHT. Les résultats ont été calculés à titre de A_{0.5} (μ g / mL) correspondant à la concentration indiquant 0,50 d'absorbance.

3.4. Test d'effet scavenger du superoxyde produit par DMSO alcalin :

L'activité de piégeage des radicaux superoxydes a été déterminée par la méthode de Elizabeth (**Elizabeth et al., 1990**). Brièvement, 40 μ L de l'extrait dilué est mélangé avec 130 μ L de DMSO alcalin (20 mg de NaOH est dissoute dans 1 mL de MeOH et compléter par le DMSO a 100 mL) et 30 μ l NBT (10 mg dans 10 mL de l'eau distillé). Enfin l'absorbance est mesurée à 560 nm.

Le pourcentage d'inhibition de la production d'anion superoxyde (Activité scavenger) a été calculé en utilisant la formule suivante :

% Activité scavenger =
$$[(A_E - A_C) / A_E] \times 100$$

A_E : absorbance en présence de l'extrait.

A_C : absorbance en absence de l'extrait.

4. Activité antibactérienne :

L'évaluation de l'activité antibactérienne des extraits chloroformique et éther de pétrole de l'espèce *Phagnalon saxatile* L. a été réalisée par la méthode de Bauer (**Bauer et al., 1966**) et NCCLS (**NCCLS et al., 1993**). Elle a été effectuée au laboratoire de microbiologie au centre hospitalo-universitaire Ben Badis de Constantine (CHUC).

4.1. Identification des souches :

Les souches testées sont :

- Des souches de référence (ATCC) provenant de l'institut Pasteur d'Alger (*Escherichia coli* ATCC 25922, *Pseudomanas aeruginosa* ATCC 27853, *Staphylococcus aureus* ATCC 43300).
- Des souches hospitalières (SH) de prélèvements des malades du CHU (*Escherichia coli*, *Pseudomanas aeruginosa*, *Staphylococcus aureus*, *Klebsiella pneumoniae*, *salmonella heidelberg*, *shigella sonnei*, *enterobacter aerogenes*).

4.2. Méthode de diffusion en milieu gélosé (antibiogramme) :

La technique utilisée dans notre travail est la technique de CLSI (CLSI et al., 2007). Dans des boites de 9 cm contenant la gélose Mueller-Hinton dont l'épaisseur doit être de 4 mm répartie uniformément des disques du 6 mm (du papier Wattman N° 3 stérillisés), imprégnés des dilutions des extraits à tester, sont déposés à la surface du milieu, préalablement ensemencé en utilisant un écouvillon. Des disques imprégnés d'ampicilline (10 μ g/mL) servant de témoin positif, ont été aussi déposés sur la surface de la gélose inoculée. Après 20 minutes de prédiffusion des solutions, les boîtes de Pétri sont incubées à l'étuve pendant 18 à 24 heurs à 37°C, les disques s'entourent de zones d'inhibition circulaires correspondant à une absence de développement.

Pour chaque bactérie on mesure la zone de clarification en millimètres tout autour des disques.

4.3. Détermination de la concentration minimale inhibitrice (CMI) :

La CMI est définie comme étant la plus basse concentration capable d'empêcher une croissance bactérienne visible. La CMI n'est pas totalement bactéricide et une partie de l'inoculum est capable de se développer après disparition du compose inhibiteur (**Mann et al., 2000**).

Procédé :

- Préparer une culture de la bactérie à étudier en milieu liquide.
- Repiquer 0,1 mL de Bacille à Gram négatif, 0,3 mL de Cocci à Gram positif de la culture de 18 heures dans 10 mL de bouillon Coeur-Cervelle.
- Mettre à l'étuve a 37°C pendant 2 heures.
- Mettre 2 mL de chaque dilution de la gamme de l'extrait déjà préparée dans une boite de pétri.
- Ajouter 18 mL de la gélose M-H chauffé à 45°C et bien mélangé dans chaque boite de pétri.
- Laisser les boites de pétri quelques minutes sur la paillasse pour que la gélose se solidifie.
- Ensemencer en stries, à l'aide d'une anse de platine toutes les boites contenant l'extrait.
- Incuber les boites pendant 18 heures dans l'étuve a 37°C.

Lecture :

 Après incubation à 37°C pendant 18 heures, la CMI est définie comme étant la plus petite concentration de la fraction d'étude pour laquelle aucune croissance n'est visible, comparativement au témoin sans fraction.

5. La cytotoxicité :

Les tests ont été réalisés contre les lignées cellulaires HT1080, A549 et MCF7, dont le milieu de culture est constitué du milieu MEM commercial ajouté de 10 % de SVF (sérum de veau fœtal) et 1% d'antibiotique (pénicilline).

Pour chaque culture cellulaire, les cellules sont conservées dans un incubateur à 37° C et 5% CO₂. Le milieu de culture est changé tous les 3 ou 4 jours.

Lorsque les cellules sont à confluence (le jour de l'entretien), nous avons réalisé l'ensomensement des plaques (une suspension de 20000 /mL pour les plaques 24 puits soit 1 mL par puits).

Pour chaque produit, une solution mère à 50 mM ou 25mMa été préparée dans le DMSO. Ensuite, une série de dilutions dans le milieu de culture a été réalisée de $5*10^{-5}$ M à $2.5*10^{-6}$ M. Les produits à tester sont distribuées dans les puits selon des dilutions croissanteset laissées au contact des cellules. Chaque dilution a été testée sur 3 puits distincts (en triplicat).

Après 72 heures de culture dans un incubateur à 37 $^{\circ}$ C et 5% CO₂, la lecture est réalisée selpon Promega Manufacures.

Partie 3 Résultats et discussion

Chapitre I Identification des produits isolés de *Phagnalon saxatile*

Les structures des produits isolés ont été établies par la combinaison des données de RMN ¹H, RMN ¹³C mono et bidimensionnelle, des expériences de la spectrophotométrie d'absorption ultraviolette, aussi par spectrométrie de masse haute résolution HR-ESI, de l'hydrolyse acide ont été nécessaires et par comparaison avec les données de la littérature.

1. Elucidation structurale du composé PP₁:

L'élucidation structurale d'un composé flavonique peut nécessiter des analyses par spectrophotométrie UV à l'aide de réactifs (Markham et al., 1982 ; Mabry et al., 1970).

- La fluorescence noire violette sous lumière de Wood est caractéristique d'une flavone ou d'un flavonol substitué en 3.
- Le spectre UV (figure 30, tableau16), enregistré dans le méthanol, donne deux bandes d'absorption, une bande I à 345 nm et l'autre bande II à 269 nm, indiquant un squelette de type flavone pour le composé PP₁.
- Un effet bathochrome, observé après l'ajout de NaOH (Δλ = +61 nm) avec une augmentation d'intensité lumineuse, indique la présence d'un OH libre en position 4'. L'apparition d'une nouvelle bande dans le même spectre à 330 nm suggère la présence d'un OH libre en position 7.
- L'addition de NaOAc à la solution méthanolique induit un effet bathochrome de la bande
 II de 6 nm confirmant ainsi la présence d'un OH libre en position 7.
- L'absence d'un effet hypsochrome de la bande I après l'addition de HCl au système (MeOH+AlCl₃) indique l'absence d'un système *ortho* di-hydroxylé sur le cycle B. Ceci est confirmé par le faible déplacement de la bande I ($\Delta\lambda$ = +9nm), en comparant le spectre (MeOH+NaOAc+ H₃BO₃) comparativement au spectre enregistré dans le MeOH.
- > L'effet bathochrome de la bande I ($\Delta\lambda$ = +45 nm) observé sur le spectre enregistré dans (MeOH+AlCl₃) par rapport au spectre enregistré dans MeOH indique la présence d'un groupement OH libre en position 5.

Réactifs	$\lambda_{\max}(\mathbf{nm})$			T / // /·
	Bande I	Autres bandes	Bande II	Interpretation
MeOH	345	-	269	Flavone
NaOH	406	330	265	OH libre en position 4' OH libre en position 7
NaOAc	385	320	275	OH libre en position 7
NaOAc+H ₃ BO ₃	354	-	270	Pas de <i>ortho</i> di-OH sur le cycle B
AlCl ₃	390	363	275	OH libre en position 5
AlCl ₃ +HCl	385	353	275	Pas de <i>ortho</i> di-OH sur le cycle B
Le spectre de NaOH est stable Après 5min				

Tableau 16 : Données spectrales UV du composé PP₁.

Ces données permettent la proposition de la structure partielle suivante pour le produit PP₁:

Le spectre RMN ¹H (figure 31, tableau 17) montre que le cycle B est disubstitué, en montrant les signaux caractéristiques d'un flavone qui apparaissent comme suit :

- > Un singulet large d'intégration 1H à $\delta_{\rm H}$ = 6.18 ppm attribuable à H-6.
- > Un singulet large d'intégration 1H à $\delta_{\rm H}$ = 6.49 ppm attribuable à H-8.
- > Un singulet d'intégration 1H à $\delta_{\rm H}$ = 6.89 ppm attribuable à un proton en position 3.
- → Un doublet d'intégration 1H à $\delta_{\rm H}$ = 6.92 ppm avec une constante de couplage *J* = 8.9 Hz, caractéristique d'un couplage *ortho* attribuable à H-5'.
- → Un doublet d'intégration 1H à $\delta_{\rm H}$ = 7.55 ppm avec une constante de couplage *J* = 2.0 Hz, caractéristique d'un couplage *méta* attribuable à H-2'.
- > Un doublet dédoublé d'intégration 1H à $\delta_{\rm H}$ = 7.58 ppm (*J* = 8.9 ; 2.0 Hz) attribuable à H-6'.
- → Un singulet d'intégration 3H à $\delta_{\rm H}$ = 3.90 ppm révélant la présence d'un groupement méthoxyle dans la molécule, ce qui permet de le placer en position 3'.

Figure 31 : Spectre RMN ¹H du composé PP₁ (DMSO, 250 MHz).

Proton	$\delta_{\rm H} {\rm m} (J {\rm Hz})$
H-3	6.89 s
Н-6	6.18 d (2.0)
H-8	6.49 d (2.0)
H-2'	7.55 d (2.0)
H-5'	6.92 d (8.9)
H-6'	7.58 dd (8.9, 2.0)
OCH ₃	3.90 s

Les différentes données spectroscopiques permettent d'identifier la structure du composé PP₁:

2. Elucidation structurale du composé PP₂:

- La fluorescence noire violette sous la lampe UV du composé PP₂ et la valeur de la bande I à 334 (figure 32, tableau 18) enregistré dans le méthanol orientent vers une structure flavonique de type flavone.
- L'addition de NaOH induit un effet bathochrome (Δλ = + 60 nm) avec l'augmentation de son intensité lumineuse indiquant la présence d'un OH libre en position 4', l'apparition d'une nouvelle bande à 327 nm dans le même spectre indique la présence d'un OH libre en position 7. L'addition de NaOAc provoque un déplacement bathochromique de la bande II de 7 nm par rapport au spectre enregistré dans le MeOH confirme la présence d'un OH libre en position 7.
- > L'effet bathochrome de la bande I ($\Delta\lambda = +51$ nm) observé après addition de HCl à la solution méthanolique contenant AlCl₃ par rapport à la solution métanolique, indique la présence d'un groupement OH libre en position 5.
- L'absence d'un déplacement hypsochrome de la bande I en comparant le spectre enregistré dans (AlCl₃+HCl) par rapport au spectre enregistré dans AlCl₃ laisse prévoir l'absence de système *ortho* di-OH sur le cycle B, cela est confirmé par l'absence du déplacement bathochromique de la bande I après l'ajout de (NaOAc+H₃BO₃) par rapport à la solution métanolique.

	$\lambda_{\max}(\mathbf{nm})$.
Réactifs	Bande I	Autres Bandes	Bande II	Interpretation
MeOH	334	-	268	Flavone
NaOH	394	327	275	OH libre en position 4'
				Off hore en position 7
NaOAc	370	299	275	OH libre en position 7
NaOAc+H ₃ BO ₃	345	301	270	Pas de <i>ortho</i> di-OH sur le cycle B
AlCl ₃	385	349-303	276	OH libre en position 5
AlCl ₃ +HCl	385	349-303	276	Pas de <i>ortho</i> di-OH sur le cycle
				D
Le spectre de NaOH est stable Après 5min				

Tableau 18 : Données spectrales UV du composé PP₂.

Ces données permettent de proposer au composé PP2 une structure partielle suivante :

L'examen du spectre RMN ¹H enregistré dans DMSO (figure 33, tableau 19) et son étalement (figure 34) montre le squelette de l'Apigénine caractérisé par :

- → Deux doublets d'intégration 1H chacun l'une à $\delta_{\rm H} = 6,20$ ppm et l'autre à $\delta_{\rm H} = 6,48$ ppm avec une constante de couplage (*J* = 2,0 Hz) attribuable à H-6 et H-8 respectivement.
- > Un singulet à $\delta_{\rm H}$ = 6.80 ppm d'intégration 1H, attribuable à H-3.
- → Un doublet à $\delta_{\rm H}$ = 6.95 ppm d'intégration 2H avec une constante de couplage (*J* = 7.6 Hz) attribuable à H-3' et H-5'.
- → Un doublet à $\delta_{\rm H}$ = 7.95 ppm d'intégration 2H avec une constante de couplage (*J* = 7.6 Hz) attribuable à H-2' et H-6', par ailleurs, un signal sous forme d'un singulet qui apparait à $\delta_{\rm H}$ = 13 ppm est attribuable à OH-5.

Figure 33 : Spectre RMN ¹H du composé PP₂ (DMSO, 250 MHz).

Figure 34 : Spectre RMN ¹H étalé du composé PP₂ (DMSO, 250 MHz).

Proton	$\delta_{\rm H} { m m} (J { m Hz})$
H-3	6.80 s
H-6	6.20 sl (2.0)
H-8	6.48 sl (2.0)
H-3'/5'	6.95 d (7.6)
H-2'/6'	7.95 d (7.6)

Tableau 19 : Déplacements chimiques en RMN ¹H (250 MHz) du composé PP₂ dans DMSO.

L'ensemble de ces analyses spectrales nous a permis d'identifier la structure du produit PP_2 comme suit :

3. Elucidation structurale du composé PP₃:

Le spectre de masse haute résolution obtenu en HR-ESI-MS en mode positif (figure 35), montre un pic d'ion pseudo-moléculaire à m/z 363,1053 [M+Na] ⁺, soit une masse moléculaire égale à 340.1, correspondant à une formule brute en C₁₆H₂₀O₈.

Figure 35 : Spectre de masse HR-ESI-MS du composé PP₃.

L'allure des spectres RMN ¹H (figure 36) et ¹³C (figure 37) du composé PP₃ suggère la présence d'un cycle aromatique, un système oléfinique, un sucre et un groupement méthyle.

Figure 36 : Spectre RMN ¹H du composé PP₃ (DMSO, 600 MHz).

Figure 37 : Spectre RMN ¹³C du composé PP₃ (DMSO, 150 MHz).

Le spectre RMN ¹H étalé (figures 38) montre :

- Les signaux de protons de cycle aromatique apparaissent dans les champs faibles sous forme de :
- Doublet d'intégration 1 H à 7.11 ppm (J= 8.9 Hz) caractéristique d'un couplage ortho.
- Doublet d'intégration 1 H à 7.04 ppm (J= 2.8 Hz) caractéristique d'un couplage méta.

- Doublet dédoublé d'intégration 1 H à 6.81 ppm (J=8.9; 2.8 Hz) caractéristique de deux couplages *ortho* et *méta*.

Un système oléfinique :

- Deux signaux sous forme d'un doublet d'intégration 1H chacun à 6.61 ppm et 7.99 ppm avec une constante de couplage (J = 16.6 Hz) caractéristique d'un couplage *trans*.

Un groupement méthyle sous forme d'un singulet d'intégration 3 H à 2.33 ppm.

Un signal sous forme d'un doublet d'intégration 1 H à 4.66 ppm (J= 7.5 Hz) caractéristique d'un proton anomérique. Les autres signaux entre 3.17 à 3.70 ppm caractéristiques aux protons du sucre.

Figure 38 : Spectre RMN ¹H étalé du composé PP₃⁻

Le spectre de RMN 13 C (figure 39) indique la présence de 16 carbones dont 6 sont attribués au cycle aromatique, 4 a la partie oléfinique et 6 au sucre. On distingue quelques carbones caractéristiques :

- le cycle aromatique porte deux carbones oxygénés à δ_C 149.7 ppm et 153.2 ppm, indique la présence d'un noyau hydroquinone.

- deux carbones éthyléniques à δ_C 128,0 ppm et 138,7 ppm.
- un carbone résonant à 199.1 ppm indique la présence d'une fonction cétone.
- un carbone anomérique à 102,9 ppm.
- un méthyle à 27.4 ppm.

Figure 39 : Spectre RMN ¹³C du composé PP₃ (DMSO, 150 MHz).

A partir du proton anomérique à 4,66 ppm (d, J = 7,5 Hz), l'expérience COSY (figure 40) permet de mettre en évidence la présence de sept protons d'un hexose. Les constantes de couplage vicinales, mesurées à partir du spectre de RMN ¹H, entre les protons H-2" et H-3" (J = 8,3 Hz) et H-3" et H-4" (J = 8,9 Hz) sont tous supérieurs à 7 Hz et les déplacements chimiques des carbones de cet ose (figure 39) montrent qu'il s'agit d'un β -glucopyranoside (**Agrawal et al., 1992**).

Figure 40 : Spectre COSY du composé PP₃.

Dans le spectre COSY homonucléaires (figure 40) de ce composé, on observe aussi le couplage H-H entre les protons éthyléniques résonnant à 6.61 ppm et à 7.99 ppm ainsi qu'entre les protons aromatiques résonnant à 7.04 et à 7.11 ppm et le proton à 6.81 ppm.

L'analyse du spectre HSQC (figures 41) de ce composé montre les corrélations C-H entre :

Les protons du cycle aromatique résonant dans les champs faibles et les carbones correspondants :

- H-3 à 7.04 ppm et le carbone résonant à 112.8 ppm.
- H-5 à 6.81 ppm et le carbone résonant à 119.3 ppm.
- H-6 à 7.11 ppm et le carbone résonant à 119.6 ppm.

Les protons éthyléniques et les carbones correspondants :

- H-4' à 7.99 ppm et le carbone résonant à 138.7 ppm.
- H-3' à 6.61 ppm et le carbone résonant à 128.0 ppm.

Le proton anomérique et le carbone correspondant :

- H-1" à 4.66 ppm et le carbone résonant à 102.9 ppm.

Figure 41 : Spectre HSQC du composé PP₃.

L'analyse des spectres HMBC (figures 42 et 43) nous permet la confirmation de la partie aglycone, l'identification de la partie carbonyle et la localisation de cette dernière ainsi que la liaison éthylénique.

- Une corrélation entre le groupement méthyle à $\delta_H = 2.33$ ppm et le carbonyle à $\delta_C = 199.6$ ppm ce qui indique que le méthyle est porté par le carbone C-2'. Ce dernier montre des taches de corrélation avec le H- 3' et le H- 4'.
- Deux autre corrélations sont observées entre le proton H-4' et les carbones C-1 ($\delta_C = 149.7$ ppm) et C-3 ($\delta_C = 112.8$ ppm) de l'hydroquinone indiquant que cette substitution est réalisée au niveau du C-2.
- Le spectre HMBC montre aussi une corrélation entre le proton anomérique H-1" à δ_H
 = 4.66 ppm et le carbone C-1 (δ_C = 149.7 ppm) de l'hydroquinone indiquant que le β D-glucose est fixé en position 1.

Ce spectre montre aussi les corrélations suivantes :

- Entre le carbone C-1 et les protons H-5, H-3, H-6 et H-4'.
- Entre le carbone C-4 et le proton H-6.
- Entre le carbone C-2 et les protons H-3' et H-6.
- Entre le carbone C-5 et le proton H-3.

Figure 42 : Spectre HMBC de δ_H 2.0 à 4.8 ppm du composé PP₃.

Figure 43 : Spectre HMBC de δ_H 6.0 à 8.0 ppm du composé PP₃.

Figure 44 : Corrélation observées sur le spectre HMBC du composé PP_{3.}

Les valeurs des déplacements chimiques des protons et des carbones sont dressées dans le tableau 20.

Position	$\delta_{\rm H} { m m} (J{ m Hz})$	δ_{c}
1	-	149.7
2	-	125.6
3	7.04 d (2.8)	112.8
4	-	153.2
5	6.81 dd (8.9-2.8)	119.3
6	7.11 d (8.9)	119.6
1'	2.33 s	27.4
2'	-	199.1
3'	6.61 d (16.6)	128.0
4'	7.99 d (16.6)	138.7
1"	4 66 d (7 5)	102.9
2"	3 29 m	73.9
	3.25 t (8.3)	77.0
4"	3.17 t (8.9)	70.2
5"	3.24 m	77.5
6"	3.48 m	61.3
	3.69 brd (11.6)	

Tableau 20 : Déplacements chimiques en RMN 1 H (600 MHz) et RMN 13 C (150 MHz) du composé PP₃ dans DMSO.

Toutes ces données spectrales permettent d'identifier ce composé comme nouveau avec la structure suivante :

4. Elucidation structurale du composé PP₄:

L'analyse des spectres de RMN 1 H et 13 C du composé Pp₄ (figure 45 et 46), montre comme pour le composé Pp₃, la présence d'un hydroquinone, un système oléfinique et un sucre.

Figure 45 : Spectres RMN ¹H du composé PP₄ (CD₃OD, 600 MHz).

Figure 46 : Spectre RMN ¹³C du composé PP₄ (CD₃OD, 150 MHz).

La différence notable entre ce composé et le composé PP_3 se situe au niveau de la partie oléfinique et cela par la disparition du signal du carbonyle 2' et l'apparition d'un groupement méthyle à 1.73 ppm et deux protons méthyléniques déblindé à 3.43 ppm. Les deux protons méthyléniques corrèlent sur le spectre COSY avec le proton oléfinique H-2' à 5.25 ppm (figure 47).

Figure 47 : Spectre COSY du composé PP₄.

Le spectre HMBC (figure 48) montre une corrélation entre les deux groupements méthyle à 1.73 ppm et à 1.76 ppm et le carbone quaternaire C-3' à 133.2 ppm ce qui indique que les deux méthyles sont portés par le carbone C-3'.

• Trois taches de corrélation entre les deux protons du carbone C-1' et les trois atomes de carbones qui résonnent à $\delta_C = 124.1$ ppm, $\delta_C = 133.2$ ppm et à $\delta_C = 134.0$ ppm qui ne peut être que le C-2', C-3' et C-2 respectivement.

Figure 48 : Spectre HMBC du composé PP₄.

Les déplacements chimiques des signaux observés en RMN du ¹H et du ¹³C sont présentés dans le tableau 21.

Tableau 21 : Déplacements chimiques en RMN 1 H (600 MHz) et RMN 13 C (150 MHz) du composé PP₄ dans CD₃OD.

Position	$\delta_{\rm H} {\rm m} (J {\rm Hz})$	δ _c
1	-	150.1
2	-	134.0
3	6.58 d (2.9)	113.8
4	-	153.6
5	6.55 dd (8.7-2.9)	116.8
6	7.15 d (8.7)	118.4
1'	3.43 d (7.6)	29.2
2'	5.33 t (6.18)	124.1
3'	-	133.2
CH ₃	1.73 s	17.9
CH ₃	1.76 s	25.9
1"	4.75 d (7.4)	104.1
2"	3.40 m	75.1
3"	3.37 t	78.3
4"	3.36 t	71.5
5"	3.47 m	78.0
6"	3.72 m	62.6
	3.90 brd (12.5)	

L'analyse conjuguée des spectres RMN ¹H, ¹³C, COSY et HMBC a permis de déterminer sans ambiguïté la nature de ce composé PP₄, identifiée comme le 1-*O*- β -glucopyranosyl-2(3',3'-diméthylallyl) hydroquinone, isolée à partir des parties aériennes de *Phagnalon rupestre* (**Góngora et al., 2001**), et *Phagnalon saxatile* (**Conforti et al., 2010**).

5. Elucidation structurale du composé PP₅ :

La fluorescence noire violette sous lumière de Wood est caractéristique d'une flavone ou d'un flavonol substitué en 3.

L'étude de la série spectrale UV du composé PP5 (figure 49, tableau 22) montre :

- Le maximum d'absorption de la bande I à (λmax= 334 nm) dans le spectre enregistré dans le méthanol indique qu'il s'agit d'un flavone.
- L'addition de NaOH provoquant un déplacement bathochrome de la bande I ($\Delta\lambda$ = + 55 nm) avec l'augmentation de l'intensité lumineuse indique la présence d'un OH libre en position 4'. L'absence d'une nouvelle bande entre 320-335nm suggère une substitution de l'hydroxyle en position 7. Ce qui est confirmé par l'absence de déplacement bathochrome de la bande II après addition de NaOAc par rapport à celle du spectre enregistré dans le méthanol.
- L'absence du déplacement hypsochrome de la bande I en comparant les spectres (AlCl₃+
 HCl) et AlCl₃ laisse prévoir l'absence d'un système *ortho* dihydroxylé sur le cycle B. cela

est confirmé par l'absence du déplacement bathochromique de la bande I après l'ajout de (NaOAc+H₃BO₃) par rapport à la solution métanolique.

Le déplacement bathochrome de la bande I enregistré dans le spectre (AlCl₃ + HCl) comparativement à celui enregistré dans le méthanol ($\Delta\lambda$ = + 47 nm) indique la présence d'un OH libre en 5.

Tableau 22 : Données spectrales UV du composé PP5.

	$\lambda_{\max}(\mathbf{nm})$			T (), (
Reactifs	Bande I	Autres Bandes	Bande II	
МеОН	334	-	268	Flavone
NaOH	389	-	268	OH libre en position 4'
				OR en position 7
NaOAc	340	-	268	OR en position 7
NaOAc+H ₃ BO ₃	334	-	268	Pas de <i>ortho</i> di-OH sur le cycle B
AlCl ₃	383	347-299	276	OH libre en position 5
AlCl ₃ +HCl	381	340-298	276	Pas de ortho di-OH sur le cycle
				В
Le spectre de NaOH est stable Après 5min				

Ces données permettent la proposition de la structure partielle suivante :

Le spectre RMN ¹H, enregistré dans le méthanol à 600 MHz (figure 50, tableau 23) et son étalement (figure 51), oriente vers la structure d'un flavone substitué en position 7, ce spectre montre :

- → Un doublet d'intégration 1H à $\delta_{\rm H}$ = 6.53 ppm avec une constante de couplage (*J* = 2.1 Hz) attribuable à H-6.
- > Un singulet à $\delta_{\rm H}$ = 6.68 ppm qui ne peut être attribué qu'au proton H-3.
- → Un doublet d'intégration 1H à $\delta_{\rm H}$ = 6.85 ppm avec une constante de couplage (*J* = 2.1 Hz) attribuable à H-8.
- → Deux signaux sous forme d'un doublet d'intégration 2H à $\delta_{\rm H}$ = 7.92 ppm et $\delta_{\rm H}$ = 6.95 ppm avec une constante de couplage J = 8.8 Hz (un couplage *ortho*) attribuables respectivement aux protons H-2'/6' et H-3'/5'.
- → Un doublet d'intégration 1H à $\delta_{\rm H}$ = 5.09 ppm avec une constante de couplage (*J* = 7.1 Hz) caractéristique d'un proton anomérique d'un sucre H₁".
- > Dans l'intervalle de $\delta_{\rm H} = 3.00 4.00$ ppm, on trouve les signaux des protons du sucre.

Figure 50 : Spectre RMN 1 H du composé PP₅ (CD₃OD, 600 MHz).

Figure 51 : Spectre RMN ¹H étalé du composé PP₅ (CD₃OD, 600 MHz).

Tableau 23 : Déplacements chimiques en RMN	¹ H (600 MHz) du composé PP ₅ dans CD ₃ OD.
--	--

Proton	$\delta_{\rm H} \ { m m} \ (J \ { m Hz})$
H-3	6.68 s
Н-6	6.53 d (2.1)
H-8	6.85 d (2.1)
H-3'/5'	6.95 d (8.8)
H-2'/6'	7.92 d (8.8)
H-1"	5.09 d (7.1)
	5.09 u (7.1)

L'hydrolyse acide de ce composé a libéré le glucose comme sucre identifié par cochromatographie en présence d'oses standards (figure 52).

Figure 52 : Plaque CCM de l'hydrolyse acide.

Les différentes données spectroscopiques RMN 1 H, la série spectrale UV et l'hydrolyse acide permettent d'identifier la structure du composé PP₅:

6. Elucidation structurale du composé PP₆:

- La fluorescence noire violette, sous la lampe de Wood indique un squelette flavone ou d'un flavonol substitué en 3.
- le spectre UV du produit effectué dans le méthanol (figure 53, tableau 24) permettent d'observer deux bandes d'absorption, l'une à $\lambda max = 334$ nm et l'autre à $\lambda max = 268$ nm indiquant qu'il s'agit d'un flavonoïde de type flavone.
- > L'addition de NaOH induit un effet bathochrome de la bande I ($\Delta\lambda$ =+43 nm) avec diminution de l'intensité lumineuse indiquant la présence d'un OR en position 4'.
- L'addition de NaOAc provoque un déplacement bathochrome de la bande II (Δλ=+5) par rapport au spectre enregistré dans le MeOH indique la présence d'un OH libre en position 7.
- > Le déplacement bathochrome ($\Delta\lambda$ =+46 nm) de la bande I observe dans le spectre UV enregistré dans le chlorure d'aluminium acidifié (AlCl₃ + HCl), comparativement à celui enregistré dans le méthanol, indique la présence d'un groupement hydroxyle en position 5.
- L'absence d'un effet hypsochrome de la bande I après l'addition de HCl au système (MeOH+AlCl₃) indique l'absence d'un système *ortho* di-hydroxylé sur le cycle
 B. Ceci est confirmé par le faible déplacement de la bande I (Δλ= +6 nm), en comparant le spectre (MeOH+NaOAc+ H₃BO₃) comparativement au spectre enregistré dans le MeOH.

Réactifs	$\lambda_{\max}(\mathbf{nm})$			T
	Bande I	Autres Bandes	Bande II	interpretation
МеОН	334	-	268	Flavone
NaOH	377	-	268	OR en position 4'
NaOAc	360	-	273	OH libre en position 7
NaOAc+H ₃ BO ₃	340	-	270	Pas de <i>ortho</i> di-OH sur le cycle B
AlCl ₃	383	349	275	OH libre en position 5
AlCl ₃ +HCl	380	345	279	Pas de <i>ortho</i> di-OH sur le cycle
				В
Le spectre de NaOH est stable Après 5min				

Tableau 24 : Données spectrales UV du composé PP₆.

Ces données permettent la proposition de la structure partielle suivante pour le produit PP₆ :

Le spectre RMN ¹H enregistré dans le méthanol à 600 MHz (figure 54, tableau 25) et son étalement (figure 55) montre que le produit PP_6 c'est un flavonoïde de type flavone disubstitué sur le cycle B, ce ci confirme par les signaux qui résonnent comme suit :

- Deux doublets d'intégration 1H chacun, le premier à 6.10 ppm avec une constante de couplage 2.0 Hz, attribuable à H-6 et le second à 6.34 ppm avec une constante de couplage 2.0 Hz, attribuable à H-8.
- > Un singulet d'intégration 1H à 6.50 ppm, correspondant à H-3.
- > Un doublet d'intégration 1H à 7.22 ppm avec une constante de couplage J = 8.5 Hz (*ortho*), correspondant à H-5'.
- Un doublet dédoublé d'intégration 1H à 7.36 ppm (J = 8.5 ; 2.2 Hz), caractéristique d'un proton en couplage *ortho* et *méta*, en position 6'.
- Un doublet d'intégration 1H à 7.35 ppm avec une constante de couplage 2.2 Hz (couplage *méta*), attribuable à H-2'.
- ➢ Un doublet d'intégration 1H à 4.84 ppm avec une constante de couplage (J = 7.6 Hz) caractéristique d'un proton anomérique d'un sucre H₁".
- > Dans l'intervalle de $\delta_{\rm H} = 3.20 4.00$ ppm, on trouve les signaux des protons du sucre.

Figure 54 : Spectre RMN 1 H du composé PP₆ (CD₃OD, 600 MHz).

Figure 55 : Spectre RMN ¹H étalé du composé PP₆ (CD₃OD, 600 MHz).

Tableau 25 : Déplacements chimiques en RMN ¹H (600 MHz) du composé PP₆ dans CD₃OD.

Proton	$\delta_{\rm H} {\rm m} (J {\rm Hz})$
H-3	6.50 s
H-6	6.10 d (2.0)
H-8	6.34 d (2.0)
H-2' H-5' H-6'	7.35 d (2.2) 7.22 d (8.5) 7.36 dd (8.5, 2.2)
H-1"	4.84 d (7.6)

L'hydrolyse acide du composé PP_6 a libéré le glucose comme sucre identifié par cochromatographie en présence d'oses standards (figure 52).

L'ensemble de ces analyses spectrales ainsi que la comparaison avec celles rapportées dans la littérature (**Conforti et al., 2010**) nous a permis d'identifier la structure du produit PP_6 comme étant :

7. Elucidation structurale du composé PP7:

- Le spectre UV du composé PP₇ dans le MeOH présente deux bandes d'absorbances maximales : la bande I à 349 nm et la bande II à 267 nm (figure 56, Tableau 26) en plus de la coloration violette noire sous la lamp UV, prévoyant soit un flavonol substitué en 3, soit une flavone.
- L'apparition d'un épaulement au niveau de la bande II indique que le cycle B est disubstitué.
- L'ajout du NaOH induit un déplacement bathochrome de la bande I de 55 nm avec augmentation de l'intensité lumineuse, indiquant la présence d'un OH libre en position 4'. L'apparition d'une nouvelle bande dans ce même spectre à 327 nm révèle la présence d'un OH libre en position 7.
- Le déplacement bathochrome de la bande II de 5 nm, après addition de NaOAc comparativement au spectre enregistré dans le méthanol, confirme la présence d'un OH libre en position 7.
- Le déplacement bathochrome de la bande I de 39 nm, observé après addition de AlCl₃+ HCl comparativement à celui enregistré dans le méthanol confirme la présence d'un OH libre en 5.

L'addition de H₃BO₃ à la solution (MeOH+NaOAc) provoque un effet bathochrome de la bande I (Δλ = + 26 nm) indiquant la présence d'un système 3',4'-dihydroxy sur le cycle B, ceci est confirmée par le déplacement hypsochrome de la bande I (Δλ = - 33 nm), observé sur le spectre enregistré dans (MeOH+AlCl₃+HCl), comparativement à celui enregistré dans la solution (MeOH+AlCl₃).

Réactifs	$\lambda_{\max}(\mathbf{nm})$			•
	Bande I	Autres Bandes	Bande II	Interpretation
МеОН	349	-	267	Flavone
NaOH	404	327	268	OH libre en position 4'
				OH libre en position 7
NaOAc	385	326	272	OH libre en position 7
NaOAc+H ₃ BO ₃	375	-	260	ortho di-OH sur le cycle B
AlCl ₃	421	385	273	OH libre en position 5
AlCl ₃ +HCl	388	-	275	ortho di-OH sur le cycle B
Le spectre de NaOH est stable Après 5min				

Tableau 26 : Données spectrales UV du composé PP₇.

Ces données spectrales UV sont en accord avec celles rapportées dans la littérature pour la lutéoline (**Jay et al., 1974**).

L'examen du spectre RMN ¹H enregistré dans DMSO (figure 57, tableau 27) confirme le squelette de la Lutéoline caractérisé par :

- > Un singulet d'intégration 1H à δ = 6,65 ppm attribuable à H-3.
- Deux singulets large d'intégration 1H chacun à 6.15 ppm et 6.35 ppm attribuable à H-6 et H-8 respectivement.
- Un signal à 7,42 ppm correspond en fait à deux signaux superposés l'un deux sous forme d'un doublet dédoublé (J = 7,1 Hz, J = 2,0 Hz) caractérisant H-6' et l'autre sous forme d'un doublet (J = 2,0 Hz) caractérisant H-2'. Par ailleurs, le signal sous forme de doublet qui apparait à 6,85 ppm (J = 8,9 Hz) est attribuable à H-5'.

Figure 57 : Spectre RMN ¹H du composé PP₇ (DMSO, 250 MHz).

Tableau 27 : Déplacements chimiques en RMN ¹H (250 MHz) du composé PP₇ dans DMSO.

Proton	$\delta_{\rm H} {\rm m} (J {\rm Hz})$
H-3	6658
H-6	6.15 sl
H-8	6.35 sl
11.0	
H-2'	7.41 d (2.0)
H-5'	6.85 d (8.9)
H-6'	7.42 dd (8.9, 2.0)

Ces données confirment la structure précédente menant ainsi à la Lutéoline.

8. Elucidation structurale du composé PP₈:

L'examen du spectre RMN ¹H (figure 58) de ce composé montre la présence de deux groupements cafféyol résonnent comme suit :

- Deux doublets d'intégration 1H chacun à $\delta_{\rm H} = 6,24$ ppm et à $\delta_{\rm H} = 7,57$ ppm avec une constante de couplage *trans* (*J* = 15.9 Hz) attribuable aux H-8' et H-7' respectivement.

- Deux doublets couplent entre eux en *trans* (J = 15.9 Hz), intégrant chacun pour un proton à 6,36 ppm (H-8") et à 7.65 ppm (H-7").

- Deux système ABX lors de l'apparition d'un signal sous forme d'un doublet d'intégration 2H à 7.09 ppm (J = 2.1 Hz) attribuable aux protons H-2', H-2" respectivement, et un signal sous forme d'un doublet dédoublé d'intégration 2H à 6.99 ppm (J = 8.2-2.1 Hz) attribuable aux protons H-6', H-6" respectivement.

- Deux doublets d'intégration 1H chacun à $\delta_{\rm H} = 6,81$ ppm et à $\delta_{\rm H} = 6,82$ ppm avec une constante de couplage (J = 8.2 Hz) attribuable à H-5' et H-5" respectivement.

Le même spectre montre également l'existence d'un groupement méthoxyle à $\delta_{\rm H}$ = 3.75 ppm, ainsi que la présence d'un acide quinique caractérisé par trois signaux d'intégration 1H chacun à 4.01 ppm (*J* = 8.2-3.3 Hz), 5.33 ppm et 5.43 ppm attribuable aux protons H-4, H-3 et H-5 respectivement. Le déblindage des déplacements chimiques des protons H-3 et H-5 explique la présence de deux groupements cafféyol aux positions 3 et 5 (**Pauli et al., 1998**).

Chapitre I

D'autre part, le proton H-4 est observé ayant un couplage axiale-axiale (J = 6.5 Hz). Ceci nous a permis d'établir la conformation structurale du cycle quinique. En effet, le premier groupe O-cafféoyle est en position équatoriale et le second en position axiale dans les positions respectivement 5 et 3.

Figure 58 : Spectre RMN ¹H du composé PP₈ (CD₃OD, 600 MHz).

Les valeurs des déplacements chimiques des protons du composé PP₈ sont dressées dans le tableau 28.

Tableau 28 : Déplacements chimiques en RMN 1 H (600 MHz) du composé PP₈ dans CD₃OD.

Position	δ _H m (<i>J</i> Hz)
1	-
2	2. 29 m
	2.33 m
3	5.33 m
4	4.01 dd (6.5-3.1)
5	5.43 m
6	2.17 m
	2.36 m
7	-

3.74 s
_
7.09 d (2.0)
-
_
6 80 d (8 2)
6.00 dd (8.2, 2.1)
757 d(150)
7.57 d (15.9)
6.24 d (15.9)
-
-
7.09 d (2.0)
_
(91 4 (9 2))
0.81 d (8.2)
6.99 dd d (8.2-2.1)
7.65 d (15.9)
6.36 d (15.9)
-

La comparaison des déplacements chimiques de PP_8 avec celles rapportées dans la littérature (**Pauli et al., 1998**) nous a permis d'attribuer les signaux des protons enregistrés dans le tableau 29 et donc la structure finale de ce compose :

9. Elucidation structurale du composé PP₉:

La fluorescence noire violette sous lumière de Wood est caractéristique d'une flavone ou d'un flavonol substitué en 3.

- Le spectre UV (figure 59, tableau 29) enregistré dans le méthanol donne deux bandes d'absorption, une bande I à 348 nm et une autre bande II à 266 nm, indiquant un squelette de type flavone pour le composé PP₉.
- L'apparition d'un épaulement au niveau de la bande II indique que le cycle B est bisubstitué.
- L'effet bathochromique (Δλ = + 42 nm) observé après l'addition de NaOH avec augmentation de son intensité lumineuse indique la présence d'un OH libre en position 4'. L'absence d'une nouvelle bande entre 320 et 335 nm suggère l'absence d'un OH libre en position 7.
- L'ajout de NaOAc à la solution méthanolique n'induit pas de déplacement bathochrome de la bande II, ce qui signifie que le groupement hydroxyle, en position 7, est substitué.
- L'addition de H₃BO₃ à la solution (MeOH+NaOAc) provoque un effet bathochrome de la bande I (Δλ = + 28 nm) indiquant la présence d'un système 3',4'-dihydroxy sur le cycle B, ce ci est confirmée par le déplacement hypsochrome de la bande I (Δλ = -53 nm), observé sur le spectre enregistré dans (MeOH+AlCl₃+HCl), comparativement à celui enregistré dans la solution (MeOH+AlCl₃).
- Après l'ajout de HCl à la solution de (AlCl₃+MeOH), on observe un déplacement bathochromique de la bande I de ($\Delta\lambda = +27$ nm) par rapport a celle observé dans le spectre enregistré dans MeOH, indiquant la présence d'un groupement OH libre en position 5.

Réactifs	$\lambda_{\max}(\mathbf{nm})$			T
	Bande I	Autres Bandes	Bande II	Interpretation
MeOH	348	-	266	Flavone
NaOH	390	-	266	OH libre en position 4'
NaOAc	412	-	266	OR en position 7
NaOAc+H ₃ BO ₃	376	-	261	ortho di-OH sur le cycle B
AlCl ₃	428	-	274	OH libre en position 5
AlCl ₃ +HCl	375	-	275	ortho di-OH sur le cycle B
Le spectre de NaOH est stable Après 5min				

Tableau 29 : Données spectrales UV du composé PP₉.

Ces données permettent la proposition de la structure partielle suivante :

L'analyse du spectre RMN ¹H (figure 60) et son étalement (figure 61) montre:

- Un signal sous forme d'un doublet d'intégration 1H à 6,44 ppm avec une constante de couplage J =1.8 Hz attribuable à H-6.
- > Un autre signal sous forme de doublet et également d'intégration 1H à 6.79 ppm avec la même constante de couplage (J = 1.8 Hz) attribuable à H-8.
- > Un singulet d'intégration 1H à 6.75 ppm, correspondant au proton H-3.
- > Par ailleurs, le signal sous forme de doublet (J = 8.4 Hz) qui apparaît à 6,90 ppm, avec une intégration de 1H est attribuable à H-5'.
- Un signal à 7.45 ppm, d'intégration 1H sous forme d'un doublet dédoublé, (J = 8.4 Hz et J = 1.8 Hz) attribuable à H-6'.
- > Un signal à 7,76 ppm, d'intégration 1H sous forme d'un doublet (J = 1.8 Hz) correspondant au proton H-2'.
- ➢ Un doublet d'intégration 1H à 5.08 ppm avec une constante de couplage (J = 7.8 Hz) caractéristique d'un proton anomérique d'un sucre H₁".

Figure 60 : Spectre RMN ¹H du composé PP₉ (DMSO, 600 MHz).

Figure 61 : Spectre RMN ¹H étalé du composé PP₉ (DMSO, 600 MHz).

Tableau 30 : Déplacements chimiques en RMN ¹H (600 MHz) du composé PP₉ dans DMSO.

Proton	$\delta_{\rm H} {\rm m} (J {\rm Hz})$
H-3	6.75 s
Н-6	6.44 d (1.8)
H-8	6.79 d (1.8)
H-2'	7.42 d (1.8)
H-5'	6.90 d (8.4)
H-6'	7.45 dd (8.4, 1.8)
H-1"	5.08 d (7.8)

L'hydrolyse acide du composé PP₉ a libéré le glucose comme sucre identifié par cochromatographie en présence d'oses standards (figure 52).

La combinaison des résultats de la spectroscopie RMN ¹H, la série spectrale UV et l'hydrolyse acide mènent à la structure suivante :

10. Elucidation structurale du composé PP₁₀ :

Le spectre de masse haute résolution obtenu par HR-MS-ESI (figure 62) montre un ion pseudo-moléculaire à m/z 338,9549 $[M+Na]^+$ (calculé 338,9549) qui correspond à la formule brute C₉H₉KO₈S.

Figure 62 : Spectre de masse HR-ESI-MS du composé PP₁₀.

Le spectre RMN ¹H du composé PP₁₀ suggère un composé phénolique tétrasubstitué. Ce spectre (figure 63) révèle la présence de deux protons aromatiques à $\delta_{\rm H}$ = 7.42 ppm (d, *J* = 2 Hz); $\delta_{\rm H}$ = 7.76 ppm (d, *J* = 2 Hz). La valeur de la constante de couplage indique que ces deux protons sont en position *méta* attribuable aux protons H-2 H-6 respectivement. Le spectre RMN ¹H montre aussi deux singules d'intégration 3H à 3.86 ppm et à 3.89 ppm sont assignés à deux groupements méthoxyles.

Figure 63 : Spectre RMN ¹H du composé PP₁₀ (DMSO, 600 MHz).

Le spectre RMN ¹³C (figure 64) indique la présence de 9 carbones dont 2 methoxy, 6 carbones aromatique dont 2 éthyléniques résonnent à 110.7 ppm et à 118.7 ppm respectivement et 4 carbones quaternaires dont trois oxygénés et une fonction carbonyle résonant à δ 168.2 ppm.

Figure 64 : Spectre RMN ¹³C du composé PP₁₀ (DMSO, 150 MHz).

Chapitre I

L'analyse du spectre HSQC (figure 65) permet de corréler chaque proton à son carbone : C-2 (110.7 ppm), C-6 (118.7 ppm) et les deux méthoxyles (56.7 ppm et 52.3 ppm).

Figure 65 : Spectre HSQC du composé PP₁₀.

Les données relatives aux spectres RMN ¹H et RMN ¹³C indiquent :

Le spectre HMBC (figure 66) a montré une corrélation entre le methoxy ($\delta_H = 3,86$ ppm) et le carbone du carbonyle ($\delta_c = 168.2$ ppm). Ce dernier a montré aussi des corrélations avec les protons H-2 et H-6 indique que la fonction ester est attaché au cycle aromatique en position 1.

Le spectre HMBC a montré aussi des corrélations entre le groupe méthoxy ($\delta_H = 3,89$ ppm) et le C-3 ($\delta_c = 150.0$ ppm), ce qui a permis l'attribution de OCH₃ en position C-3.

Figure 66 : Spectre HMBC du composé PP₁₀.

Le spectre de masse (figure 62) montre la présence d'un groupe sulfate, ceci a été confirmée par précipitation avec BaCl₂, après hydrolyse acide de PP_{10} (**Xiao et al., 2002**).

Les déplacements chimiques des signaux observés en RMN du ¹H et du ¹³C sont dressés dans le tableau 31.

Tableau 31 : Déplacements chimiques en RMN 1 H (600 MHz) et RMN 13 C (150 MHz) du composé PP₁₀ dans DMSO.

Position	$\delta_{\rm H} { m m} (J { m Hz})$	δ _c
1	-	121.2
2	7.42 d (1.9)	110.7
3	-	145.5
4	-	141.5
5	-	150.0
6	7.76 d (1.9)	118.7
CO	-	168.2
7-OCH ₃	3.86 s	52.3
3-OCH ₃	3.89 s	56.7

L'ensemble des données précédentes nous permet ainsi d'établir la structure du composé PP_{10} comme étant le Potassium 4-hydroxy-3-methoxybenzoate de méthyl-5-sulfate. Cette molécule isolé déjà de *Tamarix balansae* J. Gay (**Benmerache et al., 2017**).

11. Conclusion :

L'étude phytochimique portée sur les extraits acétate d'éthyle et butanolique des parties aériennes de *Phagnalon saxatile* a conduit à l'isolement et l'identification de :

- 6 flavonoïdes : Chrysoériol, Apigénine, Apigétrine, Lutéoline 4'-O- β -D-glucopyranoside, Cynaroside, Lutéoline, dont le Chrysoériol est isolé pour la première fois du genre *Phagnalon*.

- un acide -3,5-Di-*O*- Caffeoylquinique méthyl ester et un Potassium 4-hydroxy-3methoxybenzoate de méthyl-5-sulfate, ce dernier composé est isolé pour la première fois de la famille.

- 2 hydroquinone glucoside il s'agit de $1-O-\beta$ -glucopyranosyl-2(3',3'-diméthylallyl) hydroquinone et du $1-O-\beta$ -D-glucopyranosyl-1,4-dihydroxy-2-((E) 2-oxo-3-butenyl) benzene. A notre connaissance, cette dernière molécule est isolée pour la première fois, par voie naturelle.

Chapitre II Identification des produits isolés de *Phagnalon sordidum*

Les structures des produits isolés ont été élucidées principalement par l'utilisation des techniques de résonance magnétique nucléaire (RMN) du proton ¹H et du carbone ¹³C à une dimension, et à séquences multi-impulsionnelles à deux dimensions homonucléaires ¹H-¹H COSY et hétéronuclaires ¹H-¹³C HSQC, ¹H- ¹³C HMBC ainsi que sur la comparaison avec les données de la littérature.

1. Elucidation structurale du composé PC₁:

Le spectre de RMN ¹H (figure 68) de cette molécule montre deux doublets d'intégration d'un proton pour chacun à $\delta_{\rm H} = 6,14$ ppm (J = 2.6 Hz) et $\delta_{\rm H} = 5,60$ ppm (J = 2.6 Hz).

Sur le spectre HSQC (figure 69) ces deux protons montrant des taches de corrélations avec le même carbone qui apparait à $\delta c = 118,7$ ppm, cette observation indique que ces deux protons sont portés par le même carbone éthylénique. A partir du spectre COSY, ces signaux montrent un couplage caractéristique d'une γ -lactone α , β - insaturé. Ce couplage est attribué aux interactions H-13a/H-7 et H-13b/H-7.

Figure 68 : Spectre RMN ¹H du composé PC_1 (CD₃OD, 600 MHz).

Figure 69 : Spectre HSQC du composé PC₁.

L'étude du spectre HSQC (figure 69) et HMBC (figure 70) montrent la présence des groupements suivants :

- cinq carbones quaternaires dont :
 - Un carbonyle à $\delta_{\rm C} = 171.1$ ppm.
 - Trois à $\delta_C = 140.0$ ppm ; $\delta_C = 134.4$ ppm et $\delta_C = 127.6$ ppm attribuables à des carbones éthyléniques.
 - Un à $\delta_{\rm C}$ = 44.0 ppm.
- > Quatre CH dont:
 - Un à $\delta_c = 83.9$ ppm (oxygéné) caractéristique d'un CH de fermeture d'une γ -lactone sesquiterpénique.
 - deux autres CH oxygénés à $\delta_C = 72.0$ ppm et $\delta_C = 73,4$ ppm.
 - Un non oxygénés à $\delta_{\rm C}$ = 49.9 ppm.
- ➢ Quatre CH₂ dont :
 - Un éthylénique à $\delta_{\rm C} = 118.7$ ppm.
 - Trois non oxygénés à $\delta_C = 24.1$ ppm, $\delta_C = 35.6$ ppm et $\delta_C = 38.3$ ppm.

> Deux CH₃ à $\delta_{\rm C}$ = 16.6 ppm et $\delta_{\rm C}$ = 17.0 ppm.

Figure 70 : Spectre HMBC du composé PC₁.

Tous ces éléments convergent vers un squelette de type sesquiterpène lactone comportant une double liaison exocyclique et substitué par deux méthyles et deux groupements hydroxyles.

Sur le spectre COSY (figure 71), les deux protons H-13a et H-13b montrent une tache de corrélation avec le proton apparaissant sous forme d'un multiplet qui ne peut être attribué qu'à H-7. Ce dernier montre des taches de corrélations avec les protons apparaissant à $\delta_H = 4,69$ ppm (d, J = 11,5 Hz), $\delta_H = 1.68$ ppm (m) et $\delta_H = 2.17$ ppm (m), ces trois protons ne peuvent être attribué qu'à H-6, H-8a et H-8b respectivement. Les deux protons montrant des corrélations avec ces 2 derniers sont attribués à H-9a et H-9b. Sachant que les lactones sesquiterpéniques sont fermées soit en C-6 soit en C-8, nous avons examiné le spectre HSQC (figure 69) de ce composé. En effet, sur ce spectre, le carbone du groupement CH à $\delta_C = 83.9$ ppm, caractéristique par la valeur de son déplacement chimique d'un CH de fermeture d'une γ -lactone, montre une tache de corrélation avec H-7. Par ailleurs, les deux protons résonnant à $\delta_H = 1.84$ ppm et $\delta_H = 1.90$ ppm montrant des taches de corrélations avec deux protons l'un à $\delta_H = 3.79$ ppm et l'autre à $\delta_H = 3.95$ ppm

ne peuvent être attribué qu'à H-2a et H-2b. Cette analyse confirme bien la nature eudesmanolide de ce squelette sesquiterpénique.

Figure 71 : Spectre COSY du composé PC₁.

Retournant au spectre HMBC (figure 70), le méthyle à $\delta_H = 1.07$ ppm montre des taches de corrélation avec les carbones C-10 ($\delta_C = 44.0$ ppm), C-1 ($\delta_C = 72.0$ ppm) et C-5 ($\delta_C = 134.4$ ppm) ce qui indique que le méthyle est porté par le C-10. A l'inverse, le méthyle résonnant à $\delta_H = 2.03$ ppm, montrant des taches de corrélations avec les carbones C-3 ($\delta_C = 73.4$ ppm), C-4 ($\delta_C = 127.6$ ppm) et C-5 ($\delta_C = 134.4$ ppm) indiquant que ce méthyle est porté par le carbone C-4.

Tableau 32 : Déplacements chimiques en RMN 1 H (600 MHz) et RMN 13 C (150 MHz) du composé PC₁ dans CD₃OD.

Position	$\delta_{\rm H} {\rm m} (J {\rm Hz})$	δ _c
1	3.95 d	72.0
2	1.84 m	35.6
	1.90 m	
3	3.79 d (12.9)	73.4
4	-	127.6
5	-	134.4
6	4.69 d (11.5)	83.9
7	2.69 m	49.9
8	1.68 m	24.1

	2.17 m	
9	1.42 m	38.3
	2.16 m	
10	-	44.0
11	-	139.7
12	-	171.1
13	5.60 d (2.6)	118.7
	6.14 d (2.6)	
14	1.01 s	17.0
15	2.03 s	16.6

L'analyse des spectres de RMN ¹H, HSQC, COSY et HMBC permet d'identifier le composé PC_1 comme étant l'Arméfoline. Ce sesquiterpène a été isolé antérieurement à partir des parties aériennes d'*Artemisia mexicana* var. angustifolia (**Mata et al., 1984**).

2. Elucidation structurale du composé PC₂:

Une grande similitude est observée entre le spectres RMN ¹H (figure 72) de ce composé et le composé PC₁. On note également comparativement au spectre proton du composé PC₁, la disparition de signal correspondant au proton H-3 à 3.79 ppm, ainsi que le déblindage du signal à 199.0 ppm pour le carbone oxygéné (C-3) suggère cette fois la présence d'une fonction carbonyle en position 3. Cette hypothèse est confirmée par les corrélations observée sur le spectre HMBC (figure 73) entre les protons H-2a, H-2b et CH₃-15 et le C-3.

Figure 72 : Spectre RMN ¹H du composé PC₂ (CD₃OD, 600 MHz).

Figure 73 : Spectre HMBC du composé PC₂.

Position	$\delta_{\rm H} {\rm m} (J {\rm Hz})$	δ _c
1	3.82 d	74.3
2	2.58 m	42.7
	2.62 m	
3	-	199.0
4	-	130.0
5	-	155.0
6	4.95 dd (11.8, 1.4)	83.4
7	2.90 m	49.9
8	1.80 m	23.7
	2.26 m	
9	1.60 m	38.8
	2.24 m	
10	-	40.0
11	-	138.0
12	-	170.0
13	5.64 d (3.1)	118.2
	6.15 d (3.1)	
14	1.27 s	17.0
15	2.01 s	13.0

Tableau 33 : Déplacements chimiques en RMN 1 H (600 MHz) et RMN 13 C (150 MHz) du composé PC₂ dans CD₃OD.

Le composé PC_2 est donc identifié comme Arméxifoline, isolée à partir des parties aériennes d'*Artemisia mexicana* var. Angustifolia (**Mata et al., 1984**).

3. Elucidation structurale du composé PB₅ :

L'examen du spectre RMN ¹H (figure 74), enregistré dans CD_3OD , montre la présence de :

- Deux doublet à $\delta_{\rm H}$ = 5.26 ppm (J = 5.9 Hz) et $\delta_{\rm H}$ = 5.33 ppm (J = 5.9 Hz) d'intégration 1H chacun attribuable à H-3 et H-4 respectivement.

- Un singulet à $\delta_{\rm H}$ = 2.60 ppm d'intégration 3H attribuable à un CH₃.

- 3 signaux d'intégrations 1H chacun à $\delta_{\rm H}$ = 7.01 ppm (d, J = 8.5 Hz), $\delta_{\rm H}$ = 8.03 ppm (dd, J = 1.7 Hz, J = 8.5 Hz) et $\delta_{\rm H}$ = 8.15 ppm (d, J = 1.7 Hz) attribuables aux trois protons aromatiques (H-3', H-4' et H-6').

- Une partie osidique caractérisée par le proton anomérique d'un sucre $\delta_{\rm H} = 4.40$ ppm (J = 8.0 Hz) ainsi que les autres signaux de ce sucre résonnent entre $\delta_{\rm H} = 3,27$ ppm et $\delta_{\rm H} = 4,00$ ppm. - Des signaux oléfiniques à $\delta_{\rm H} = 5.47$ ppm ((1H, br s, H_{1a}), $\delta_{\rm H} = 5.49$ ppm ((1H, br s, H_{1b}), $\delta_{\rm H} = 4.39$ ppm ((1H, d, J = 12.4 Hz, H_{5a}) et $\delta_{\rm H} = 4.57$ ppm ((1H, d, J = 12.4 Hz, H_{5b}).

Figure 74 : Spectre RMN 1 H du composé PB₅ (CD₃OD, 600 MHz).

L'analyse des spectres COSY (figure 75) et HSQC (figure 76) permet d'identifier le sucre comme étant β -D-glucopyranoside à partir de l'anomère à 4.40 ppm (J = 8.0 Hz), caractérisé par les protons H-2", H-3", H-4" H-5", H-6" (**Agrawal et al., 1992**).

Dans le spectre COSY homonucléaires (figure 75) de ce composé, on observe aussi le couplage H-H entre les protons du cycle aromatique résonnant à $\delta_H = 8.03$ ppm, $\delta_H = 8.15$ ppm et $\delta_H = 7.01$ ppm, entre les protons oléfiniques résonnant à $\delta_H = 5.26$ ppm et à $\delta_H = 5.33$ ppm ainsi que entre les protons H-5a ($\delta_H = 4.39$ ppm) et H-5b ($\delta_H = 4.57$ ppm).

Figure 75 : Spectre COSY du composé PB₅.

L'analyse du spectre HSQC (figure 76) permet de corréler chaque carbone à son proton correspondant.

Figure 76 : Spectre HSQC du composé PB₅.

Le spectre HMBC (figure 77) montre une corrélation H-C entre le groupement méthyle à 2,60 ppm et le carbonyle à 197.9 ppm ce qui indique que le méthyle est porté par le carbonyle (C-7). Des taches de corrélation entre les protons H-4', H-6' et le carbone C-7 indiquant que ce carbonyle est lié au carbone C-5'. Ce même spectre montre une corrélation entre le proton anomèrique $\delta_{\rm H} = 4.40$ ppm et le carbone C-5 ($\delta_{\rm C} = 71.8$ ppm) de la génine indiquant que le glucose est fixé sur la génine en position 5. Une autre corrélation est observée entre le proton H-4 ($\delta_{\rm H} = 5.33$ ppm) et le carbone C-1' ($\delta_{\rm C} = 130.3$ ppm) du cycle aromatique indiquant que cette substitution est réalisée au niveau du C-1' de cycle.

Figure 77 : Spectre HMBC du composé PB₅.

Tableau 34 : Déplacements chimiques en RMN 1 H (600 MHz) et RMN 13 C (150 MHz) du composé PB₅ dans CD₃OD.

Position	$\delta_{\rm H} {\rm m} (J {\rm Hz})$	δ _c
1	5.47 br s	114.7
	5.49 br s	
2	-	139.1
3	5.26 d (5.9)	89.5
4	5.33 d (5.9)	71.7
5	4.39 d (12.4)	71.8
	4.57 d (12.4)	
6	2.60 s	26.0
7	-	197.9
1'	-	130.3
2'	-	164.5
3'	7.01 d (8.5)	110.6
4'	8.03 dd (8.5, 1.7)	132.8
5'	-	132.4
6'	8.15 d (1.7)	128.4
1"	4.40 d (8.0)	103.2
2"	3.27 m	75.0
3"	3.27 m	77.1

Chapitre II

Identification des produits isolés de Phagnalon sordidum

4"	3.29 m	71.3
5"	3.39 m	77.4
6"	3.70 m	62.5
	3.90 brd (11.5)	

Le composé PB_5 est donc identifié comme : 3,4-dihydroxy-4-(2-hydroxy-4-acetylphenyl)-2-[(-O-glucopyranosyl)methyl]-but-1-ene (nauplathizine), qui est le même composé isolé de *Nauplius aquaticus* (L) (**Chaari et al., 2005**).

4. Elucidation structurale du composé PB₆:

Le spectre RMN ¹H (figure 78) du composé PB_6 montre :

- Deux signaux de protons de cycle aromatique apparaissent dans les champs faibles sous forme de doublet d'intégration 2H chacun à 7.18 ppm et à 7.98 ppm avec une constante de couplage J= 8.6 Hz caractéristique d'un couplage *ortho*. Ces deux signaux montrent la disubstitution du cycle aromatique en position 1 et 4.
- Un singulet intégrant pour 3H à 2.59 ppm caractéristique d'un groupement méthyle.
- La présence d'une partie osidique est clairement notée, confirmée notamment avec le proton anomérique à 5,07 ppm (*J* = 6.7 Hz), plusieurs autres signaux sont observés entre 3 et 4 ppm correspondant sans doute aux protons de la partie osidique.

Figure 78 : Spectre RMN ¹H du composé PB₆ (CD₃OD, 600 MHz).

On observe dans le spectre COSY (figure 79) les sept protons du sucre qui couplent entre eux avec de grandes valeurs de constante de couplage. Leurs déplacements chimiques ainsi que les déplacements de leurs carbones (tableau 35) sont caractéristiques d'un β -D-glucopyranoside (**Agrawal et al., 1992**).

Figure 79 : Spectre COSY du composé PB₆.

L'examen du spectre HMBC (figure 80) confirme toutes ces suggestions, on observe : - Une tache de corrélation entre le proton anomérique H-1" et le carbone C-1 qui résonne à 162.0 ppm, ce qui permet de le placer en position 1.

- Une tache de corrélation entre le carbonyle résonnant à 199.2 ppm et les protons du méthyle qui résonne à 2,59 ppm, ce carbonyle corrèle également avec les protons du cycle aromatique résonnant à 7.98 ppm indique que le carbonyle est attaché au cycle en position 4.

Figure 80 : Spectre HMBC du composé PB₆.

Tableau 35 : Déplacements chimiques en RMN	1 H (600 MHz) et RMN 13 C (150 MHz) du
composé PB ₆ dans CD ₃ OD.	

Position	$\delta_{\rm H} {\rm m} (J {\rm Hz})$	δ _c
1	-	162.0
2, 6	7.18 d (8.6)	116.7
3, 5	7.98 d (8.6)	131.0
4	-	130.5
CH ₃	2.59 s	26.0
СО	-	199.2
1"	5.07 d (6.7)	100.8
2"	3.49 m	73.0
3"	3.49 m	77.0
4"	3.41 m	71.0
5"	3.49 m	77.4
6"	3.71 m	61.4
	3.90 brd (11.5)	

L'analyse des spectres de RMN ¹H, COSY et HMBC permet d'identifier le composé PB₆ comme étant l'Ameliaroside. Cette molécule a isolée déjà de Salicaceae (**Dommisse et al., 1986**).

5. Elucidation structurale du composé PB7:

L'examen du spectre RMN ¹H enregistré dans CD₃OD (figure 81) permet d'identifier le composé PB₇ comme étant : $1-O-\beta$ -glucopyranosyl-2(3',3'-diméthylallyl) hydroquinone, qui est le même composé PP₁₀ isolé de *Phagnalon saxatile* (L) Cass. et a été déjà bien détaillé dans la première partie.

Figure 81 : Spectre RMN ¹H du composé PB₇ (CD₃OD, 600 MHz).

Le composé PB7 est donc identifié comme :

6. Elucidation structurale du composé PA₈:

L'étude du spectre RMN ¹H (figure 82) montre la présence des signaux caractéristiques d'un acide caféique :

- Un système ABX lors de l'apparition d'un signal sous forme d'un doublet d'intégration 1H à 6.80 ppm (J = 8.2 Hz caractéristique d'un couplage *ortho*) attribuable à H-5, un signal sous forme d'un doublet dédoublé d'intégration 1H à 6.96 ppm (J = 8.2-2.0 Hz caractéristique de deux couplages *ortho* et *méta*) attribuable à H-6 et un doublet d'intégration 1H à 7.05 ppm (J = 2.0 Hz caractéristique d'un couplage *méta*) attribuable à H-2.

- Deux doublets d'intégration 1H chacun à $\delta_{\rm H} = 6,24$ ppm et à $\delta_{\rm H} = 7,55$ ppm avec une constante de couplage (J = 15.9 Hz) caractéristique d'un couplage *trans* attribuables aux H-8 et H-7 respectivement.

Figure 82 : Spectre RMN ¹H du composé PB₈ (CD₃OD, 600 MHz).

Tableau 36 : Déplacements chimiques en RMN 1 H (600 MHz) du composé PB₈ dans CD₃OD.

Position	$\delta_{\rm H} {\rm m} (J {\rm Hz})$
1	-
2	7.05 d (2.0)
3	-
4	-
5	6.80 d (8.2)
6	6.96 dd (8.2, 2.0)
7	7.75 d (15.9)
8	6.24 d (15.9)
9	-

La comparaison des déplacements chimiques de PB_8 avec celles rapportées dans la littérature (**Pauli et al., 1998**) nous a permis de déterminer les valeurs de tous les protons enregistrés dans le tableau 39 et donc la structure finale de ce compose est la suivante :

7. Elucidation structurale du composé PB₉:

L'allure de spectre RMN 1 H (figure 83) du composé PB₉ suggère la présence d'un acide caféique et un acide quinique.

Les signaux caractéristiques de l'acide caféique apparaissent comme suivants :

- Doublet d'intégration 1H à 6.82 ppm (J= 8.2 Hz) caractéristique d'un couplage *ortho* attribuable à H-5'.

- Doublet d'intégration 1H à 7.10 ppm (J= 1.6 Hz) caractéristique d'un couplage *méta* attribuable à H-2'.

- Doublet dédoublé d'intégration 1H à 6.98 ppm (J= 8.2; 1.6 Hz) caractéristique de deux couplages *ortho* et *méta* attribuable à H-6'.

- Deux signaux sous forme d'un doublet d'intégration 1H chacun à 6.30 ppm et 7.60 ppm avec une constante de couplage (J = 15.9 Hz) caractéristique d'un couplage *trans* attribuables aux protons H-8' et H-7' respectivement.

Les signaux caractéristiques de l'acide quinique apparaissent sous forme de trois signaux d'intégration 1H chacun à 4.21 ppm (dd, J= 8.7 ; 2.9 Hz), 3.76 ppm (m) et 5.37 ppm (m) attribuables aux protons H-4, H-3 et H-5 respectivement.

- Des multiplets entre δ_H = 2.08 ppm et δ_H = 2.30 ppm attribuables aux protons H-2_{ax}, H-2_{eq}, H-6_{ax} et H-6_{eq}.

Figure 83 : Spectre RMN ¹H du composé PB₉ (CD₃OD, 600 MHz).

Cette attribution est confirmée d'une part, par le spectre RMN ¹³C (figure 84) qui montre 16 carbones dont 9 sont attribués à l'acide caféique et 7 au acide quinique, et d'autre part par le spectre COSY (figure 85) qui montre des corrélations entre les protons de l'acide caféique (H-2' et H-6', H-6' et H-5', H-7' et H-8') et de l'acide quinique (H-2_{ax}/H-2_{eq} et H-3, H-3 et H-4, H-4 et H-5, H-5 et H-6_{ax}/H-6_{eq}).

Figure 84 : Spectre RMN ¹³C du composé PB₉ (CD₃OD, 150 MHz).

Figure 85 : Spectre COSY du composé PB₉.

On remarque sur le spectre HMBC (figure 86) que le carbone quaternaire C-9' qui résonne à $\delta_{C} = 168.8$ ppm corrèle avec le proton H-5 ce qui permet d'attacher l'acide caféique en position 5 de l'acide quinique.

Figure 86 : Spectre HMBC du composé PB₉.

Tableau 37 : Déplacements chimiques en RMN 1 H (600 MHz) et RMN 13 C (150 MHz) du composé PB₉ dans CD₃OD.

Position	$\delta_{\rm H} {\rm m} (J {\rm Hz})$	δ _c
1	-	76.5
2	ax 2.09 m	38.2
	eq 2.18 m	
3	4.21 m	71.9
4	3.76 dd (8.7, 2.9)	73.7
5	5.37 m	71.6
6	ax 2.09 m	39.0
	eq 2.25 m	
7	-	177.5
1'	-	127.8
2'	7.10 d (1.6)	115.2
3'	-	147.1
4'	-	149.6
5'	6.82 d (8.2)	116.8

6'	6.98 dd (8.2, 1.6)	123.0
7'	7.60 d (15.9)	146.8
8'	6.30 d (15.9)	115.3
9'	-	168.8

L'analyse des spectres de RMN ¹H, ¹³C, COSY et HMBC permet d'identifier le composé PB₉ comme étant l'acide chlorogénique (acide 5-*O*-caféoylquinique) (**Pauli et al., 1998**).

8. Elucidation structurale du composé PA₁₀ :

Une grande similitude est observée entre le spectre RMN ¹H (figure 87) du composé PA_{10} et celui du composé PB_9 . On retrouve tous les signaux caractéristiques du composé PB_9 . La différence réside en l'apparition d'un méthoxy sur le spectre du composé PA_{10} à 3.74 ppm, indique que le méthoxy est porté par le carbonyle (C-7).

Figure 87 : Spectre RMN 1 H du composé PA₁₀ (CD₃OD, 600 MHz).

Tableau 38 : Déplacements chimiques en RMN 1 H (600 MHz) et RMN 13 C (150 MHz) du composé PA₁₀ dans CD₃OD.

Position	$\delta_{\rm H} {\rm m} (J {\rm Hz})$
1	-
2	ax 2.14 m
	eq 2.17 m
3	4.13 m
4	3.70 dd (7.3, 2.0)
5	5.37 m
6	ax 2.03 m
	eq 2.23 m
7	-
OCH ₃	3.74 s
1'	-
2'	7.07 d (2.0)
3'	-
4'	-
5'	6.79 d (8.2)
6'	6.97 dd (8.2, 2.0)
7'	7.61 d (15.9)
8'	6.32 d (15.9)
9'	-

Le composé PA₁₀ est donc identifié comme : Methyl 5-O-caffeoylquinate.

9. Elucidation structurale du composé PA₁₁:

Le spectres de RMN ¹H (figure 88) du composé PA_{11} montrent de grandes ressemblances avec le composé PA_{10} décrit précédemment. Ils permettent d'observer tous les signaux de l'acide caféique, l'acide quinique et le groupement méthoxyle, la seule différence notable réside au déblindage du signal à 5.30 ppm pour le proton H-3 avec le blindage du proton H-5 à 4.16 ppm suggère cette fois l'attachement de l'acide caféique en position 3 de l'acide quinique.

Figure 88 : Spectre RMN ¹H du composé PA₁₁ (CD₃OD, 600 MHz).

Tableau 39 : Déplacements chimiques en	1 RMN 1 H (600	0 MHz) et RMN	13 C (150 MHz) du
composé PA ₁₁ dans CD ₃ OD.			

Position	$\delta_{\rm H} { m m} (J { m Hz})$	δ_{c}
1	-	76.4
2	ax 2.14 m	36.6
	eq 2.17 m	
3	5.30 m	70.4
4	3.76 dd (10.1, 2.7)	70.7
5	4.16 td (6.7, 3.3)	68.9
6	ax 2.03 m	36.6
	eq 2.23 m	
7	-	174.0
OCH ₃	3.72 s	51.6
1'	-	126.2
2'	7.07 d (1.7)	113.6
3'	-	145.8
4'	-	148.3
5'	6.97 d (8.0)	115.1
6'	6.86 dd (8.0, 1.7)	121.6
7'	7.57 d (15.9)	145.5
8'	6.24 d (15.9)	113.7
9'	-	166.9

Ces données permettent d'attribuer sans ambigüité au composé PA₁₁ la structure connue de : Methyl 3-*O*-caffeoylquinate.

10.Elucidation structurale du composé PB₁₂:

L'analyse du spectre de RMN ¹H (figure 89) du composé PB_{12} montre la présence de deux groupements de l'acide caféique et un acide quinique.

Premièrement, il y'a une superposition des protons des deux cafféoyles, on a observé deux doublets à $\delta_{\rm H} = 7.65$ ppm (J = 15.9 Hz) et à $\delta_{\rm H} = 7.57$ ppm (J = 15.9 Hz) correspondant respectivement aux protons H-7" et H-7'. Ces derniers révèlent des couplages avec les protons H-8" et H-8' à $\delta_{\rm H} = 6.36$ ppm et à $\delta_{\rm H} = 6.24$ ppm des chaines latérales des deux groupements caffeoyles indiquant des *trans*-conjugaisons (**Pauli et al., 1998**). Un système de type ABX lors de l'apparition d'un signal (J = 2.1 Hz) apparait à $\delta_{\rm H} = 7.09$ ppm attribuable à H-2' et H-2".

- Un doublet dédoublé résonant à $\delta_{\rm H}$ = 6.97 ppm attribuable à H-6' et H-6".
- Un doublet (J = 8.2 Hz), à $\delta_{\text{H}} = 6.81$ ppm est attribué à H-5' et H-5".

Deuxièmement, sur le spectre RMN ¹H, les signaux des protons H-5 ($\delta_{\rm H} = 5.42$ ppm) et H-3 ($\delta_{\rm H} = 5.33$ ppm) apparaissent déblindés par rapport a leurs positions dans l'acide quinique non substitué indiquant que les groupements cafféoyles sont rattachés aux hydroxyles des positions 5 et 3 (**Pauli et al., 1998**). Par contre, le signal blindé du proton H-4 ($\delta_{\rm H} = 4.00$ ppm) montre que l'hydroxyle lié au carbone correspondant est libre. D'autre part, le proton H-4 est observé ayant un couplage axiale-axiale (J = 6.4 Hz). Ceci nous a permis d'établir la conformation structurale du cycle quinique. En effet, le premier groupe *O*-

cafféoyle est en position équatoriale et le second en position axiale dans les positions respectivement 5 et 3.

Figure 89 : Spectre RMN 1 H du composé PB₁₂ (CD₃OD, 600 MHz).

Tableau 40 : Déplacements chimiques en RMN 1 H (600 MHz) du composé PB₁₂ dans CD₃OD.

Position	$\delta_{\rm H} {\rm m} (J {\rm Hz})$
1	-
2	ax 2. 21 m
	eq 2.34 m
3	5.33 m
4	4.00 dd (6.4-3.1)
5	5.42 td (8.8, 4.0)
6	ax 2.36 m
	eq 2.17 m
7	-
1'	-
2'	7.09 d (2.1)
3'	_
4'	-
5'	6.81 d (8.2)
6'	6.97 dd (8.2-2.1)
7'	7.57 d (15.9)

8'	6.26 d (15.9)
9'	-
1″	-
2"	7.09 d (2.1)
3"	-
4″	-
5"	6.82 d (8.2)
6"	6.97 dd (8.2-2.1)
7"	7.65 d (15.9)
8″	6.36 d (15.9)
9"	-

Ces données permettent d'attribuer sans ambigüité au composé PB_{12} la structure connue d'acide 3,5-di-O-Caffeoylquinique (**Pauli et al., 1998**).

11.Elucidation structurale du composé PB₁₃:

Le spectre RMN ¹H enregistré dans le méthanol (figure 90, tableau 41) montre que le produit PB_{13} c'est un flavonoïde de type di-hydro flavone, ce ci confirme par les signaux qui résonnent comme suit :

- Deux multiplets d'intégration 1H chacun à δ_H = 2.78 ppm et à δ_H = 3.14 attribuables respectivement à H-3a et H-3b.

- Un triplet intégrant pour 1H à δ_{H} = 5.35 ppm attribuable à H-2.

- Deux singulets large, intégrant chacun pour un proton à 6.22 ppm (H-6) et 6.24 ppm (H-8) indiquant ainsi la substitution du cycle A en positions 5 et 7.

- Un doublet avec un couplage *méta* résonne à $\delta_{\rm H} = 6.93$ ppm et un doublet de doublet à $\delta_{\rm H} = 6.81$ ppm avec un couplage *ortho* et *méta* respectivement dues aux protons H-2' et H-6', un

doublet avec un couplage *ortho* due à H-5' apparaissant à $\delta_{\rm H}$ = 6.80 ppm indiquant ainsi une substitution du cycle B en position 4' et 3'.

- La présence d'une partie osidique est clairement notée, confirmée notamment avec le proton anomérique à $\delta_{\rm H} = 5.00$ ppm (J = 6.6 Hz), plusieurs autres signaux sont observés entre 3 et 4 ppm correspondant sans doute aux protons de la partie osidique.

Figure 90 : Spectre RMN ¹H du composé PB₁₃ (CD₃OD, 600 MHz).

L'analyse de spectre COSY (figure 91) permet d'identifier le sucre comme étant β -D-glucopyranoside (**Agrawal et al., 1992**). Ce spectre montre aussi les corrélations entre les trois protons du cycle C (H-3a-H-3b/H-2).

Figure 91 : Spectre COSY du composé PB₁₃.

La corrélation observée sur le spectre HMBC entre le carbone anomérique C-1" et les protons H-6 et H-8 confirme que le glucose est attaché à la génine en position 7 (figure 92).

Figure 92 : Spectre HMBC du composé PB₁₃.

Position	$\delta_{\rm H} { m m} (J { m Hz})$
2	5.35 t
3	2.78 m
	3.14 m
4	-
5	-
6	6.22 d
7	-
8	6.24 d
9	-
10	-
1'	-
2'	6.93d
3'	-
4'	-
5'	6.80 d
6'	6.81dd
1"	5.00 d (6.6)
2"	3.49 m
3"	3.49 m
4"	3.41 m
5"	3.49 m
6"	3.71 m
	3.90 brd (11.5)

Tableau 41 : Déplacements chimiques en RMN 1 H (600 MHz) du composé PB₁₃ dans CD₃OD.

Ces données permettent d'attribuer sans ambigüité au composé PB_{13} la structure connue de :

12. Elucidation structurale du composé PB₁₄ :

Le spectre de RMN ¹H (figure 93) montre que le composé PB_{14} est le même composé PP_1 isolé de *Phagnalon saxatile* (L) Cass. et a été déjà bien détaillé dans la première partie.

Figure 93 : Spectre RMN 1 H du composé PB₁₄ (CD₃OD, 600 MHz).

Le composé PB₁₄ est donc identifié comme :

13. Elucidation structurale du composé PB₁₅ :

Le spectre de RMN ¹H (figure 94) de ce composé est identique avec celui du composé PP₉ isolé de *Phagnalon saxatile* (L) Cass. et a été déjà bien détaillé dans la première partie.

Figure 94 : Spectre RMN ¹H du composé PB₁₅ (DMSO, 600 MHz).

Le composé PB₁₅ est donc identifié comme :

14. Elucidation structurale du composé PA₁₆:

Le spectre de RMN du ¹H enregistré dans le méthanol (figure 95) du composé PA₁₆ indique la présence d'un système ABX : les signaux δ_{H} = 6.85 ppm (d, *J*= 8.2 Hz), δ_{H} = 7.42 ppm (d, *J*= 1.7 Hz) et δ_{H} = 7.47 ppm (dd, *J*= 8.2 -1.7 Hz) correspondant aux trois protons aromatiques.

Sur le même spectre, on constate la présence d'un singulet d'intégration 3H à δ_{H} = 2.52 ppm caractéristique d'un groupement méthyle.

Figure 95: Spectre RMN ¹H du composé PA₁₆ (CD₃OD, 600 MHz).

Le spectre de HSQC (figure 96) montre des taches de corrélations entre chaque proton et le carbone qui le porte.

Figure 96 : Spectre HSQC du composé PA₁₆.

Les attributions des carbones restants ont été complétées par l'étude du spectre de corrélation hétéronucléaire à longue distance HMBC enregistrés dans le méthanol (figure 97) qui montre une corrélation entre le groupement méthyle et le carbonyle (δ_{C} = 199.1 ppm) indique que le méthyle est liée avec CO, et la corrélation entre le CH₃ et le carbone à δ_{C} = 130.1 ppm ce qui permet de placer le carbonyle en position 1.

La présence de deux carbones oxygénés à δ_C = 147.0 ppm et δ_C = 153.1 ppm indique que le cycle aromatique est substitué par deux groupements hydroxyles.

Figure 97 : Spectre HMBC du composé PA₁₆.

Tableau 42 : Déplacements ch	himiques en RMN ¹ H (600	MHz) et RMN 13 C (150 MH	z) du
composé PA ₁₆ dans CD ₃ OD.			

Position	$\delta_{\rm H} \ { m m} \ (J \ { m Hz})$	δ _C
1	-	130.1
2	7.42 d (1.7)	115.5
3	-	147.0
4	-	153.1
5	6.85 d (8.2)	115.8
6	7.47 dd (8.2-1.7)	123.4
СО	-	199.1
CH_3	2.52 s	56.4

L'ensemble des données spectroscopiques nous conduit à proposer pour ce composé, la structure suivante :

15. Elucidation structurale du composé PA₁₇:

Les spectres de RMN ¹H (figure 98) et de HMBC (figure 99) du composé PA_{17} est très proche de celui du composé PA_{16} , la seule différence se réside au niveau de l'acétyle et cela par la disparition de groupement méthyle et l'apparition d'un singulet d'intégration 1H à δ_{H} = 9.72 ppm caractéristique d'un groupement aldéhyde.

Figure 98 : Spectre RMN ¹H du composé PA₁₇ (CD₃OD, 600 MHz).

Figure 99 : Spectre HMBC du composé PA₁₇.

Tableau 43 : Déplacements chimiques en RMN 1 H (600 MHz) et RMN 13 C (150 MHz) du composé PA₁₇ dans CD₃OD.

Position	$\delta_{\rm H} { m m} (J { m Hz})$	δ _c
1	-	130.1
2	7.35 d (1.7)	115.0
3	-	147.2
4	-	153.2
5	6.93 d (7.9)	115.4
6	7.32 dd (8.2-1.7)	126.0
СОН	9.71 s	192.4

Le composé PA₁₇ est donc identifié comme :

16. Conclusion :

L'étude phytochimique réalisée sur les parties aériennes de l'espèce *Phagnalon sordidum* a conduit à l'isolement et à la caractérisation de 21 composés purs dont 15 ont été identifiés, les autres sont en cours d'identification.

Deux sesquiterpènes lactoniques

- Arméfoline
- Arméxifoline

Trois flavonoïdes

- Chrysoériol
- Cynaroside
- Eriodictyol 7-O- β -D-glucopyranoside.

Un hydroquinone glucoside

• $1-O-\beta$ -glucopyranosyl-2(3',3'-diméthylallyl) hydroquinone

Un acide phénolique

• Acide caféique.

Quatre dérivés de l'acide chlorogénique

- acide 5-*O* caféoylquinique (Acide chlorogénique)
- Methyl 5-O-caffeoylquinate
- Methyl 3-*O*-caffeoylquinate
- acide 3,5-di- *O*-Caffeoylquinique.

Un dérivé d'*O*-hétéroside

• 3,4-dihydroxy-4-(2-hydroxy-4-acetylphenyl)-2-[(-*O*-β-D- glucopyranoside)methyl]but-1-ene (nauplathizine)

Trois composés phénoliques

- Ameliaroside
- 3,4-Dihydroxyacetophenone
- 3,4-dihydroxybenzaldehyde

Chapitre III Activités biologiques dosage des polyphénols et flavonoïdes

1. Dosage des composés phénoliques :

La détermination de la teneur en phénols totaux des extraits bruts de *P. saxatile* et *P. sordidum* a été faite en utilisant la méthode colorimétrique (Folin-Ciocalteux). La teneur en polyphénols des extraits : chloroformique (ECPA), acétate d'éthyle (EAPA) et butanolique (EBPA) de la plante *P. saxatile*, chloroformique (ECPO), acétate d'éthyle (EAPO) et butanolique (EBPO) de l'espèce *P. sordidum* varie entre $60.6\pm1,98$ et 402.4 ± 5.37 mg/g de matière sèche (tableau 44).

Les résultats montrent que les extraits acétate d'éthyle et butanolique des deux plantes sont riches en polyphénols, en comparant avec les extraits chloroformique. En effet, les extraits EAPA et EAPO sont les plus riches en polyphénols (402.4±5.37mg/g, 394.8±0.00mg/g respectivement).

Plantes	Extraits	Teneur en phénols totaux (mg/g)
	ECPA	78.4±1.41
Phagnalon saxatile	EAPA	402.4±5.37
	EBPA	374.9±4.38
	ECPO	60.6±1,98
Phagnalon sordidum	EAPO	394.8±0.00
	EBPO	327.6±1.13

Tableau 44 : Teneur en phénols totaux des plantes P. saxatile et P. sordidum.

L'extrait acétate d'éthyle de *Phagnalon graecum* semble être le plus riche en polyphénols (219.08 \pm 6.96 mg/g) en comparant avec les extraits MeOH et CHCl₃ (150.74 \pm 4.95 mg/g, 47.07 \pm 4.33 mg/g, respectivement) (**Erdogan et al., 2013**). D'après les valeurs de ce dosage les plantes étudiée *P. saxatile* et *P. sordidum* sont plus riches en polyphénols que *Phagnalon graecum*.

2. Dosage des flavonoïdes :

Le dosage des flavonoïdes des extraits bruts de *P. saxatile* et *P. sordidum* a été réalisé selon la méthode de nitrate d'aluminium en utilisant comme standard la quercétine, les teneurs en flavonoïdes sont exprimées en mg EQ/g d'extrait (tableau 45).

Plantes	Extraits	Teneur en flavonoïdes (mg/g)
	ECPA	62.06±2.21
Phagnalon saxatile	EAPA	136.25±6.54
	EBPA	148.00±0.71
	ECPO	29.25±0,18
Phagnalon sordidum	EAPO	179.00±5.66
	EBPO	122.00±5.66

 Tableau 45 : Teneur en flavonoïdes des plantes P. saxatile et P. sordidum.

Les résultats, présentés dans le tableau 45, montrent que les teneurs en flavonoïdes varient entre les différents extraits. On remarque que les extraits acétate d'éthyle et butanolique des deux plantes sont riches en flavonoïdes en comparant avec les extraits chloroformiques. L'extrait EAPO de *P. sordidum* enregistre un maximum de flavonoïdes (179.00 \pm 5.66 mg/g) tandis que les extraits EBPO et ECPO renfèrment des teneurs de 1.64 à 6.11 fois plus faibles (122.00 \pm 5.66 et 29.25 \pm 0,18 mg/g, respectivement).

En ce qui concerne les extraits de *P. saxatile*, l'EBPA a montré une meilleure richesse en flavonoïdes (148.00±0.71 mg/g), par rapport à l'extrait EAPA et l'ECPA.

Cependant ces valeurs sont nettement inférieures à celles des extraits chloroforme, acétate d'éthyle et méthanol de l'espèce *Phagnalon graecum* qui a montré une meilleure richesse en flavonoïdes (711.46±8.71, 380.45±6.14 et 285.61±6.25 mg/g, respectivement) (**Erdogan et al., 2013**).

3. Activité antioxydante :

Il existe plusieurs méthodes pour déterminer l'activité antioxydante. Dans cette étude les propriétés antioxydantes des extraits d'éther de pétrole, de chloroforme, d'acétate d'éthyle et de *n*-butanol des espèces *Phagnalon saxatile* et *Phagnalon sordidum* ont été testées par quatre méthodes : radical libre DPPH', ABTS^{.+}, CUPRAC et DMSO alcalin. Les résultats, sauf pour le dosage CUPRAC, ont été enregistrés à la concentration 50% d'inhibition (CI₅₀).

3.1. Activité anti-radicalaire DPPH⁻ :

Les pourcentages d'inhibition de l'activité anti-radicalaire révèlent que tous les extraits étudiés des deux plantes sauf les extraits EEPO et ECPO de la plante *P. sordidum* ont des propriétés antioxydantes intéressantes (tableau 46).

Plantes	Extraits	CI ₅₀ (µg/mL)	CI ₅₀ du BHA	CI ₅₀ du BHT
			(µg/mL)	(µg/mL)
	EEPA	35.54±2.17		
Phagnalon	ECPA	16.97±0.96		
saxatile	EAPA	15.58±0.10		
	EBPA	10.37±0.94	5.73±0.41	22.32±1.19
	EEPO	>200		
Phagnalon	ECPO	77.83±2.58		
sordidum	EAPO	13.19±1.51		
	EBPO	24.19±3.04		

Tableau 46 : Pouvoir anti-radicalaire (DPPH[•]) des extraits étudiés.

D'après le tableau 46, les extraits ECPA, EAPA et EBPA du *P. saxatile* ont présenté une meilleure activité antiradicalaire avec une $CI_{50}=16.97\pm0.96 \ \mu g/mL$, $CI_{50}=15.58\pm0.10 \ \mu g/mL$ et $CI_{50}=10.37\pm0.94 \ \mu g/mL$ respectivement, même supérieure à celle du standard le BHT ($CI_{50}=22.32\pm1.19 \ \mu g/mL$). L'extrait EEPA a aussi manifesté une bonne activité en comparant avec le BHT. Par contre, l'extrait EEPO de *P. sordidum* n'a montré aucune activité anti-radicalaire, alors que l'activité antioxydante manifestée par l'extrait ECPO $(IC_{50}=77.83\pm2.58\mu g/mL)$ est 3 fois inférieure à celle du standard BHT.

En comparaison avec l'antioxydant standard, l'extrait EAPO, avec une $CI_{50}=13.19\pm1.51 \ \mu g/mL$, est deux fois plus grande que celle du BHT alors que l'extrait EBPO, avec une $CI_{50}=24.19\pm3.04 \ \mu g/mL$ est très proche de la valeur du BHT.

En se basant sur ces résultats obtenus, on peut conclure que la variation de capacité antioxydante de ces extraits comparativement à celle du témoin BHT pourrait être principalement due à la présence des flavonoïdes, des acides caffeoylquinique et d'autre composés phénoliques, et à leur taux dans ces extraits (tableau 44).

3.2. Essai de décoloration du radical cation ABTS^{.+} :

Les résultats de ce test montrent que les extraits testés ont une activité antioxydante, mais aucun d'entre eux n'a montré une meilleure activité que les standards BHA ($CI_{50}=1.81\pm0.10 \ \mu g/mL$) et BHT ($CI_{50}=1.29\pm0.30 \ \mu g/mL$) (tableau 47).

Plantes	Extraits	CI ₅₀ (µg/mL)	CI ₅₀ du BHA	CI ₅₀ du BHT
			(µg/mL)	(µg/mL)
	EEPA	34.21±0.57		
Phagnalon	ECPA	5.53±1.14		
saxatile	EAPA	3.73±0.25		
	EBPA	3.60±0.24	1.81±0.10	1.29±0.30
	EEPO	55.99±0.59		
Phagnalon	ECPO	13.62±0.56		
sordidum	EAPO	3.02±0.25		
	EBPO	5.31±0.50		

Tableau 47 : Pouvoir d'inhibition de l'ABTS⁺ par les extraits étudiés.

Pour *P. saxatile*, les extraits ECPA, EAPA et EBPA ont montré une meilleure activité antioxydante par rapport au extrait EEPA, avec des CI_{50} de $5.53\pm1.14 \ \mu g/mL$, $3.73\pm0.25 \ \mu g/mL$ et $3.60\pm0.24 \ \mu g/mL$, respectivement, dues à une richesse en flavonoïdes tels que les dérivés de la Lutéoline et Apigénine mais elle reste inférieure à celles des standards BHA ($CI_{50}=1.81\pm0.10 \ \mu g/mL$) et BHT ($CI_{50}=1.29\pm0.30 \ \mu g/mL$).

Les résultats obtenus montrent que les deux extraits EAPO et EBPO de la plante *P*. *sordidum*, sont plus actifs que les autres extraits EEPO et ECPO, ils montrent aussi que l'extrait EAPO est le plus actif ($CI_{50}=3.02\pm0.25 \ \mu g/mL$), cela est due à la présence des flavonoïdes (Chrysoériol, Cynaroside et Taxifoline 7-*O*- β -D-glucopyranoside) dans cet extrait.

3.3. La réduction cuprique (CUPRAC) :

En comparant les résultats de la réduction cuprique de nos extraits avec celle des standards, on constate qu'aucun extrait n'a montré une meilleure activité que le BHA.

Le classement des extraits par ordre d'efficacité est le suivant :

BHA (3.64 μg/mL)>EAPO (5.59 μg/mL)>EAPA (5.63 μg/mL)>EBPA (7.39 μg/mL)> EBPO (8.62 μg/mL)>BHT (9.62 μg/mL)>ECPA (15.01 μg/mL)>ECPO(24.38 μg/mL)>EEPA (64.70μg/mL)> EEPO (89.75μg/mL) (tableau 48).

Plantes	Extraits	A _{0.5} (µg/mL)	A _{0.5} du BHA	A _{0.5} du BHT
			(µg/mL)	(µg/mL)
	EEPA	64.70±4.67		
Phagnalon	ECPA	15.01±0.31		
saxatile	EAPA	5.63±0.11		
	EBPA	7.39±0.07	3.64±0.19	9.62±0.87
	EEPO	89.75±0.00		
Phagnalon	ECPO	24.38±0.56		
sordidum	EAPO	5.59±0.08		
	EBPO	8.62±0.15		

Tableau 48 : Réduction du CUPRAC par les extraits étudiés.

D'après ce classement, on remarque que les extraits EAPO, EAPA, EBPA et EBPO ont manifesté une forte activité inhibitrice du CUPRAC qui est meilleure que celle de standard BHT. Les extraits polaires sont très riches en polyphénols. Les polyphénols présents dans *P. saxatile* et *P. sordidum* sont probablement responsables de l'inhibition du CUPRAC.

3.4. Test d'effet scavenger du superoxyde produit par DMSO alcalin :

Les résultats obtenus montrent que tous les extraits présentent l'effet scavenger d'une manière dose dépendante (tableau 49).

Tableau 49 : Pouvoir d'inhibition CI ₅₀ des extraits étudiés pa	ar DMSO alcalin.
--	------------------

Plantes	Extraits	CI ₅₀ (µg/mL)	CI ₅₀ de l'acide	CI ₅₀ de l'a-
			ascorbique	tocophérol
			(µg/mL)	(µg/mL)
	EEPA	37.15±0.77		
Phagnalon	ECPA	5.24±0.89		
saxatile	EAPA	2.26±0.21		
	EBPA	2.20±0.18	7.59±1.16	31.52±2.22
	EEPO	26.53±2.16		
Phagnalon	ECPO	14.02±0.73		
sordidum	EAPO	8.59±1.54		
	EBPO	5.48±0.32		

Les résultants des CI₅₀ (tableau 49) de *P. saxatile* montre que les extraits EAPA et EBPA présentent l'effet scavenger le plus puissant (2.26±0.21 µg/mL, 2.20±0.18 µg/mL respectivement) suivi par l'extrait ECPA (5.24±0.89 µg/mL). L'extrait le moins actif parmi les extraits de *P. saxatile* c'est l'extrait EEPA avec une CI₅₀ de 37.15±0.77 µg/mL et il est 15 fois moins actif que l' EBPA. Ces résultats sont très significatifs en comparant avec CI₅₀ de l'acide ascorbique (7.59±1.16 µg/mL). Les extraits polaires de *P. saxatile* EAPA et EBPA ont été trouvé les plus riches en polyphénols qui sont probablement responsables du taux élevé d'effet scavenger.

L'extrait le plus actif, parmi les extraits de *P. sordidum*, c'est l'EBPO avec une CI₅₀ de 5.48 ± 0.32 µg/mL suivi par l'EAPO, l'ECPO (8.59 ± 1.54 et 14.02 ± 0.73 µg/mL, respectivement) et l'EEPO 26.53 ± 2.16 µg/mL. Concernant l'extrait EBPO est le plus actif que les autres. Cette différence est due à la présence des flavonoïdes et des acides phénoliques dans cet extrait qui influe sur leur activité.

De ces résultats d'études de l'activité antioxydante, par 4 méthodes complémentaires, il apparaît que les deux espèces montrent une bonne activité qui peut être expliqué par la nature des composés phénoliques isolés qui sont des acides phénoliques tel que l'acide caféique et ses dérivés; les flavonoïdes comme la Lutéoline et l'Apigénine glycosylée.

4. Activité antibactérienne :

Dans cette étude, nous nous sommes intéressés à évaluer l'activité antibactérienne des deux extraits de *P. saxatile* (EEPA et ECPA) par la méthode de diffusion sur disque. Les extraits à tester vis-à-vis de 10 germes pathogènes, dont 3 souches de références et 7 souches hospitalières. L'extrait EEPA a permis d'obtenir des valeurs importantes de diamètre d'inhibition pour les souches : *Pseudomonas aeruginosa* ATCC 27853 avec une zone d'inhibition de 18 mm et *Klebsiella pneumoniae* SH avec une inhibition modérée de 15 mm (tableau 50) et un effet inhibiteur prometteur vis-à-vis des autres souches. Cependant, l'ECPA était plus actif contre *Escherichia coli* ATCC 25922 (15 mm) et *Escherichia coli* SH (15 mm).

	Zone d'inhibition (mm)		
Microorganisme	EEPA	ECPA	Ampicilline
Escherichia coli ATCC 25922	10	15	18
Escherichia coli SH	10	15	-
Staphylococcus aureus ATCC 43300	9	11	30
Staphylococcus aureus SH	11	11	-
Pseudomonas aeruginosa ATCC 27853	18	13	-
Pseudomonas aeruginosa SH	11	13	-
Klebsiella pneumoniae SH	15	14	14
Enterobacter aerogenes SH	10	13	20
Salmonella heidelberg SH	14	10	-
Shigella sonnei SH	12	12	-

Tableau 50 : Activité antibactérienne (zone d'inhibition) des extraits étudiés.

Ces valeurs des zones d'inhibition nous ont encouragées à procéder à la détermination de la CMI dont les valeurs ont varié entre 1280 et 20 μ g/mL (tableau 54). La

meilleure CMI a été constatée pour l'extrait chloroformique vis-à-vis des trois souches testées à une concentration de $20 \ \mu g/mL$ (tableau 51).

	CMI (µg/mL)		
Microorganisme	EEPA	ЕСРА	Ampicilline
Escherichia coli ATCC 25922	80	20	10
Escherichia coli SH	80	80	-
Staphylococcus aureus ATCC 43300	80	80	5
Staphylococcus aureus SH	80	80	-
Pseudomonas aeruginosa ATCC 27853	80	20	-
Pseudomonas aeruginosa SH	80	20	-
Klebsiella pneumoniae SH	80	80	10
Enterobacter aerogenes SH	80	80	-
Salmonella heidelberg SH	80	1280	-
Shigella sonnei SH	80	80	-

Tableau 51 : Résultats des CMI de l'activité antibactérienne des extraits étudiés.

Par ailleurs, il a été rapporté que les extraits éthanol et eau de l'espèce *P. rupestre* possèdent une activité antibactérienne vis-à-vis de *S. aureus*, *E. coli*, *P. aeruginosa* and *K. pneumoniae* (Ali-Shtayeh et al., 1998).

Ces résultats bibliographiques viennent conforter nos résultats d'effet antibactérien des extraits EEPA er ECPA vis-à-vis des souches testées.

5. Activité cytotoxique des produits purs de l'espèce *Phagnalon saxatile* :

L'activité cytotoxique des produits purs (PP_3 , PP_4 et PP_{10}) de l'espèce *Phagnalon saxatile* a été réalisée contre les cellules HT1080, A549 et MCF7. Les composés concernés par l'évaluation de leur activité cytotoxique sont reportés dans le tableau 52.
Composé	Structure	CI ₅₀ / (µM)		
		HT1080	A549	MCF7
PP ₃	HO $\frac{2^{n}}{3^{n}} \xrightarrow{0^{n}} \frac{0}{2^{n}} \xrightarrow{0^{n}} 0^{-1} \xrightarrow{0^{n}} \frac{1}{2^{n}} \xrightarrow{0^{n}} \frac{1}{2^{n}} \xrightarrow{0^{n}} 0^{-1} \xrightarrow{0^{n}} \frac{1}{2^{n}} \xrightarrow{0^{n}} \xrightarrow{0^{n}} \frac{1}{2^{n}} \xrightarrow{0^{n}} \xrightarrow{0^{n}} \frac{1}{2^{n}} \xrightarrow{0^{n}} $	48 ± 1.1	-	-
PP ₄	HO 3° 2° OH 5° 5° 5° 5° 5° 0H 1° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5°	33.2 ± 0.5	77.0±0.9	37.0 ± 0.7
PP ₁₀	осн ₃ 6 5 4 0 0 4 0 С н 3 0 С н ₃	44.0 ± 0.8	-	-

Tableau 52 : L'activité cytotoxique des produits de l'espèce Phagnalon saxatile.

On constate, à partir de ce tableau, que les trois composés ont montré des activités cytotoxiques avec des valeurs de CI_{50} comprises entre 33.2 et 48 µM vis-à-vis les lignées cellulaires HT1080. Le composé Pp₄ étant le plus actif avec des CI₅₀ de 33.2, 37.0 et 77.0 vis-à-vis des lignées cellulaires fibrosarcomes (HT1080), les lignées de cellules tumorales mammaires (MCF7) et les lignées cellulaires cancéreuses du poumon (A549) respectivement. En revanche, les composés Pp₃ et Pp₁₀ se sont révélés être totalement inactifs vis-à-vis des lignées cellulaires MCF7 et A549.

Conclusion générale

Conclusion Générale

Dans le cadre de recherche de substances naturelles biologiquement actives, deux espèces du genre *Phagnalon* de la famille des Asteraceae : *Phagnalon saxatile* (L) Cass., *Phagnalon sordidum* L. ont fait l'objet de l'étude phytochimique et biologique (Activités antioxydante, antibactérienne et cytotoxique).

En ce qui concerne *Phagnalon saxatile*, les travaux d'extraction, séparation et de purifications de la phase acétate d'éthyle et butanolique nous ont permis d'isoler et d'identifier, par l'analyse spectroscopique (UV-Visible, la RMN et ses séquences, bidimensionnelle : COSY, HSQC, HMBC, l'hydrolyse acide ainsi que la spectrométrie de masse) et par comparaison avec la littérature, dix produits :

- Chrysoériol
- Apigénine
- Apigénine 7-*O*-β-D- glucopyranoside (Apigétrine)
- Lutéoline
- Lutéoline 4'-*O*-β-D-glucopyranoside
- Lutéoline7-O- β -D- glucopyranoside (Cynaroside)
- Potassium 4-hydroxy-3-methoxybenzoate de méthyl-5-sulfate
- acide 3,5-Di-O- Caffeoylquinique méthyl ester
- 1-*O*-β-glucopyranosyl-2(3',3'-diméthylallyl) hydroquinone
- 1-*O*-β-D-glucopyranosyl-1,4-dihydroxy-2-[(E) 2-oxo-3-butenyl)]benzene

A notre connaissance, le dernier composé est isolé pour la première fois dans le règne végétal.

L'investigation phytochimique des parties aériennes de l'espèce *Phagnalon sordidum* a conduit à l'isolement de 21 composés dont 15 ont été identifiés.

2 composés ont été isolés de la phase chloroformique:

- Arméfoline
- Arméxifoline

8 composés obtenus à partir de la phase butanolique dont 3 flavonoïdes, deux acides caffeoylquinique, une hydroquinone glucoside, un *O*-hétéroside et un composés phénolique glucoside.

- Chrysoériol
- Cynaroside

- Eriodictyol 7-O- β -D-glucopyranoside
- acide 3,5-di- *O*-Caffeoylquinique.
- acide 5-*O* acide caféoylquinique (Acide chlorogénique)
- 1-*O*-β-glucopyranosyl-2(3',3'-diméthylallyl) hydroquinone
- 3,4-dihydroxy-4-(2-hydroxy-4-acetylphenyl)-2-[(-*O*-β-D- glucopyranoside)methyl]but-1-ene (nauplathizine)
- Ameliaroside

Et 5 composés isolés de la phase acétate d'éthyle :

- Acide caféique.
- Methyl 3-O-caffeoylquinate
- Methyl 5-O-caffeoylquinate
- 3,4-Dihydroxyacetophenone
- 3,4-dihydroxybenzaldehyde

Le potentiel antioxydant de *Phagnalon saxatile* (L.) Cass. et *Phagnalon sordidum* L. a été déterminé par 4 méthodes différentes : DPPH, ABTS, CUPRAC et la méthode d'effet scavenger du superoxyde. Les résultats ont montré que les extraits testés possèdent une bonne activité antioxydante grâce à sa composition riche en flavonoïdes et polyphénols, révélée par le dosage des flavonoïdes et des polyphénols totaux.

L'activité antibactérienne des extraits éther de pétrole et chloroformique de l'espèce *Phagnalon saxatile* a été testée vis-à-vis de dix souches bactériennes (ATCC et SH) par la méthode de diffusion sur disque et de détermination de la CMI. L'extrait éther de pétrole a présenté la meilleure antibactérienne contre *Pseudomonas aeruginosa* ATCC et *Klebsiella pneumoniae* SH, tandis que *Escherichia coli* ATCC et *Escherichia coli* SH étaient les souches les plus inhibées par l'extrait chloroforme.

Les produits $(1-O-\beta-D-glucopyranosyl-1,4-dihydroxy-2-((E) 2-oxo-3-butenyl)$ benzene, $1-O-\beta$ -glucopyranosyl-2(3',3'-diméthylallyl) hydroquinone et le Potassium 4hydroxy-3-methoxybenzoate de méthyl-5-sulfate) isolés de *Phagnalon saxatile*, ont manifesté une activité cytotoxique modérée, par la méthode du MTT.

Références bibliographiques

Références bibliographiques

[NCCLS]. (2003). National Committee for Clinical Laboratory Standards. M100-S13(M2). Disk Diffusion Supplemental Tables. Wayne, PA: NCCLS.

[NCCLS]. (1993). Performance standards for antimicrobial disk susceptibilities tests; Villionova, PA, USA: Approch Standard NCCLS: Publication M2-A5.

Agrawal PK. (1992). NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry, 31: 3307-3330.

Ali-Shtayeh MS, Yaghmour RM, Faidi YR, Salem K, Al-Nuri MA. (1998). Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J. Ethnopharmacol, 60: 265-271.

Apak R, Guclu K, Ozyurek M, Karademir SE. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, Using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J. Agric. Food. Chem, 52: 7970-7981.

Barkely TM, Brouillet L, Strother JL. (2006). Flora of North America- Asteraceae, 19: 3-69.

Bauer AW, Kirby WM, Sherries JC, Turck M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clim. Pathol, 45: 493-496.

Blois MS. (1958). Antioxidant determinations by the use of stable free radical. Nature, 181: 1199-1200.

Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner DDM. (1986). The antioxidant role of vitamin C. free Radic. Bio. Med, 2: 419-444.

Beckman CH. (2000). Phenolic-storing cells : keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants. Physiol. Mol. Plant. Pathol, 57: 101-110.

Borullard B. (1997). Dictionnaire: Plantes et champignons, P 73.

Brand-Williams W, Cuvelier ME, Berset C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmitel–Wissenschauft und Tech, 28: 25-30.

Burits M, Bucar F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytother. Res, 14: 323-328.

Carini M, Aldini G, Furlanetto S, Stefani R, MaffeiFacino R. (2001). LC coupled to ion-trap MS for the rapid screening and detection of polyphenol antioxidants from *HelichrysumStoechas*. J. Pharm. Biomed. Anal, 24: 517-526.

Chikhi I, Allali H, Dib MEA, Merghache D, Medjdoub H, Boufeldja T. (2013). Antioxidant activities and phytochemical study of extracts of two *phagnalons* species growing in Algeria. Inter. J. Tradi. Herb. Med, 1: 49-53.

Clinical and Laboratory Standards Institute. (2007). Methods for determining bactericidal activity of antimicrobial agents. Tentative standard M 26-T. Wayne, PA: National Committee for Clinical Laboratory Standards.

Conforti F, Rigano D, Formisano C, Bruno M, Loizzo MR, Menichini F, Senatore F. (2010). Metabolite profle and in vitro activities of *Phagnalon saxatile* (L.) Cass, relevant to treatment of Alzheimer's disease. J. Enzyme. Inhib. Med. Chem, 25: 97-104.

Crete P. (1965). Précis de botanique. Masson, Paris, édition 2, P 429.

Dacosta Y. (2003). Les phytonutriments bioactifs. Yves Dacosta (Ed). Paris, P 317.

De silvaT. (1997). Industrial utilization of medicinal plants in developing countries. Bodeker G, Bhat KKS, Burley J, Vantomme P (Eds.), Medicinal plants for forest conservation and healthcare, vol. 11FAO. Rome, Italy, P 38-48.

Dommisse RA, Hoof LV, Vlietinck AJ. (1986). Structural analysis of phenolic glucosides from Salicaceae by NMR spectroscopy. Phytochemistry, 25: 1201-1204.

Emerenciano VP, Barbosa KO, Scotti MT, Ferriro MJP. (2007). Self organisating maps in chemotaxonomic studies of Asteraceae: a classification of tribes using flavonoid data. J. Braz. Chem. Soc, 18: 891-899.

Epifano F, Marcotullio C, Menghini L. (2002). Constituents of *Phagnalon sordidum*. Chem. Nat. Compd, 38: 204-205.

Erdman J, Balentine JD, Arab L, Beecher G, Dwyer JT, Folts J, Harnly. (2005). Flavonoids and heart health: Proceeding of the ILSI North America flavonoids workshop, Washington. J. Nutr, 137: 718-737.

Erdogan IO, Sezer FS, Demirci B, Ozturk N, Husnu KCB, Sener B. (2013). Phytochemical characterization of *Phagnalon graecum* Boiss.by HPLC and GC-MS with its Enzyme Inhibitory and Antioxidant Activity Profiling by Spectrophotometric Methods. Food. Anal. Methods, 6: 1-9.

Favier A. (2003). Le stress oxydant: intérêt conceptuel et expérimental dans la compréhension des mécanismes des maladies et potentiel thérapeutique. L'Actualité chimique, 108-117.

Favier A. (2006). Stress oxydant et pathologies humaines. Ann. Pharm. Fr, 64: 390-396.

Gaussen H, Leroy F. (1982). Précis de botanique (Végétaux supérieurs), 2^{ème} édition, 424-426.

George S, Brat P, Alter P, Amiot MJ. (2005). Rapid determination of polyphenols and 13 vitamin C in plant-derived products. J. Agric. Food. Chem, 53: 1370-1373.

Góngora L, Giner RM, Máñez S, Recio MC, Ríos JL. (2001). New prenylhydroquinone glycosides from *Phagnalon rupestre*. J. Nat. Prod, 64: 1111-1113.

Góngora L, Máñez S, Giner RMRecio MC, Gray AI, Rios JL. (2002). Phenolic glycosides from *Phagnalon rupestre*. Phytochemistry, 59: 857-860.

Góngora L, Máñez S, Giner RM, Recio MC, Rios JL. 2002. Phagnalon rupestre as a source of compounds active on contact hypersensitivity. Planta. Med, 68:561–564.

Guerin-Faublee V, Carret G. (1999). L'antibiogramme, principes, méthodologie, intérêt et limites. Journées Nationales GTV- INRA, 5-12.

Haddouchi F, Chaouche TM, Ksouri R, Medini F, Sekkal FZ, Benmansour A. (2014). Antioxidant activity profiling by spectrophotometric methods of aqueous methanolic extracts of *Helichrysum stoechas* subsp. *rupestre* and *Phagnalon saxatile* subsp. *Saxatile*. Chin. J. Nat. Med, 12: 415-422.

Harborne JB. (1982). Introduction to ecological biochemistry, 2nd edition, Academic Press, New York.

Huang D, Ou B, Prior RI. (2005). The chemistry behind antioxidant capacity assays. J. Agric. Food. Chem, 53: 1841-1856.

Jay M, Gonnet JF. (1974). Les flavonoides de deux Lentibulariacées: *Pinguicula vulgaris* et *Utricularia vulgaris*. Biochem. Syst. Ecol, 2: 47-51.

Justen U, Knuthsen P, Leth T. (1998). Quantitative analysis of flavonols, flavones and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode spectrometric detection. J. array and mass Chromatogr, 799: 101-110.

Kanoun K, Belyagoubi-Benhammou N, Ghembaza N, Atik Bekkara F. (2014). Comparative studies on antioxidant activities of extracts from the leaf, stem and berry of *Myrtus communis* L. Int. Food. Res. J, 21: 1957-1962.

Klatt P, Lamas S. (2000). Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur. J. Biochem, 267:4928–4944.

Kohen R, Nyska A. (2002). Invited Review: Oxidation of Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification. Toxicol. Path, 30: 620-650.

Kunchandy E, Rao MNA. (1990). Oxygen radical scavenging activity of curcumin. Int. J. Pharm, 58: 237-240.

Laitinen ML, Juikunen-Tiitto R, Rousi M. (2000). Variation in phenolic compounds within a birch (Betula pendela) population. J. Chem. Ecol. 7: 1609-1622.

Lee CY, Sharma A, Cheong JE, Nelson JL. (2009). Synthesis and antioxidant properties of dendritic polyphenols. Bioorganic Med. Chem. Lett, 19: 6326-6330.

Li HB, Cheng KW, Wong CC, Fan KW, Chen F. Jiang Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food. Chem, 102: 771-776.

Lisu W, Jui-Hung Y, Hsiao-Ling L Wul MJ. (2003). Antioxidant effect of methanol extracts from *Lotus Plumule* and *Blossom* (Nelumbo nucifera Gertn). J. Food. Drug. Anal, 11: 60-66.

Malesèv D, Kuntié V. (2007). Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J. Serb. Chem. Soc, 72: 921-939.

Mann CM, Cox SD, Markham JL. (2000). Letters in applied Microbiolgy, 30: 294-297.

Mata R, Delgado G, Romo De Vivar A. (1984). Sesquiterpene lactones of *Artimisia mexicana* var. Angustifolia. Phytochemistry, 23: 1665-1668.

Molyneux P. (2004). The use of stable free radical diphenylpicrilhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Tech, 26: 211-219.

Mabry TJ, Markham KR, Thomas MB. (1970). The systematic identification of flavonoids. Springer- Verlag. Berlin.

Markham KR, Chari VM. (1982). Carbon-13 NMR spectroscopy of flavonoids. In: The Flavonoids: Advances in Research (Harborne, J.B., Mabry, T.J.). Chapman & Hall, London.

Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65: 55-63.

Mukherjee PK, Wahil A. (2006). Integrated approaches towards drug development from Ayurveda and other Indian système of medicine. J. Etnopharmacol, 103: 25-35.

Nakamura Y, Watanabe S, Miyake N, Kohno H, Osawa T. (2003). Dihydrochalcones : evaluation as novel radical scavenging antioxidants. J. agric. Food. Chem, 51: 3309-3312.

Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y. (1996). Scavenging effects of tea catechins and their derivatives on 1,1-dipheny-2-picrylhydrazyl radical. Free Radic. Biol. Md, 21: 895-902.

Nicholson RL. (1992). Hammerschmidt R. phenolic compounds and their role in disease resistance. Annu. Rev. Phytopathol, 30: 369-389.

Novelli GP. (1997). Role of free radicals in septic shock. J. Physiol. Pharmacol, 48: 517-527.

Pauli GF, Poetsch F, Nahrstedt A. (1998). Structure assignment of natural quinic acid derivatives using Proton Nuclear Magnetic Resonance techniques. Phytochem. Anal, 9: 177-185.

Pridham JB. (1960). Phenolics in plants in health and disease. Pergamon Press, New York.

Popovici C, Saykova I, Tylkowski B. (2009). Evaluation de l'activité antioxydant des composés phénoliques par la réactivité avec le radical libre DPPH. Revue de génie industriel, 4: 25-39.

Qaiser M, Lack HW. (1985). The Genus *Phagnalon* (Asteraceae, Inuleae) in Arabia. J. Willdenowia, 15: 3-22.

Qaiser M, Lack HW. (1986). The Genus *Phagnalon* (Asteraceae, Inuleae) in Tropical Africa. J. Willdenowia, 5: 437-450.

Quèzel P, Santa S. (1962-1963). Nouvelle Flore de l'Algérie et des régions désertiques méridionales. Vol. 1-2. Ed. CNRS, Paris France.

Ramawat KJ, Merillon JM. (2008). Bioactives molecules and medicinal plant. Edition Springer Verlag Berlin Héidelberg.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Bio. Med, 26: 1231–1237.

Reddy BS, Reddy RKK, Reddy BP, Ramakrishna S, Diwan PV. (2008). Potential in vitro antioxidant and protective effects of *Soymida febrifuga* on ethanol induced oxidative damage in HepG2 cells. Food. Chem. Tox, 46: 3429-3442.

Rice-Evans C, Miller NJ. (1994). Total Antioxidant Status in Plasma and Body Fluids. Methods Enzymol, 234: 279-293.

Rice-Evans C, Miller NJ, Bowell PG, Bramley PM, Pridham JB. (1995). The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res, 22: 375-383.

Richard D, Giraud N, Pradere F, Soubaya T. (2010). Biologie: Les métabolites secondaires des végétaux. Duonod, Paris.

Salgues R. (1963). Sur quelques huiles essentielles nouvelles ou peu connues. Materiae Vegetables, 1:139-147.

Sanchez-Moreno C, Larrauri-Jose A, Saura-Calixto F. (1998). A Procedure to Measure the Antiradical Efficiency of Polyphenols. J. Sci. Food. Agric, 76: 270-276.

Sanchez-Moreno C. (2002). Review: Methods used to evaluate the free radical scavenging activity in food and biological systems. Food. Sci. Technol. Int, 8: 121-137.

Sarni-Manchado P, Cheynier V. (2006). Les polyphénols en agroalimentaire, Lavoisier, Editions Tec & Doc, 398.

Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ. (2006). Modern Nutrition in Health and Disease. Tenth Edition. Lippincott Williams & Wilkins.

Srinisavan R, Chandrasekar MJN, Nanjan MJ, Suresh B. (2007). Antioxidant activity of Caesalpinia digyna root. J. Ethnopharmacol, 113: 284–291.

Swarnlata S, Mahendra SA, Shailedra S. (2007). Flavonoids : a nutrition protection agaist oxidative and UV induced cellular damages. Pharmacogn. Rev , 1: 30-40.

Tapiero H, Tew KD, Nguyen BA G, Mathé G. (2002). Polyphenols : do they play a role in the prevention of human pathologies. Biomed. Pharmacother, 56: 200-207.

Teixeira Da Silva JA. (2004). Mining the essential oils of the anthemideae. Afr. J. Biotechnol, 3: 706-710.

Tomás-Barberán F, Iniesta-Sanmartín E, Tomás-Lorente F, Rumbero A. (1990). Antimicrobial Phenolic Compounds From Three Spanish *Helichrysum* species. Phytochemistry, 29: 1093-1095.

Topçu G, Ay A, Bilici A, Sarıkürkcü C, Öztürk M, Ulubelen A. (2007). A new flavone from antioxidant extracts of *Pistacia terebinthus*. Food. Chem, 103: 816-822.

Toty AA, Guessennd N, Bahi C, Kra AM, Otokore DA, Dosso M. (2013). Évaluation *in-vitro* de l'activité antibactérienne de l'extrait aqueux de l'écorce de tronc de *Harungana madagascariensis* sur la croissance de souches multi-résistantes. Bulletin de la Société oyale des Sciences de liège, 82: 12-21.

Usher, G. (1966). A dictionary of botany, including terms used in biochemistry, soil science and statistics constable& Co Ltd, London.

Wamidh H, Talib, Adel M. Mahasneh. (2010). Antimicrobial, Cytotoxicity and Phytochemical Screening of Jordanian Plants Used in Traditional Medicine. Molecules, 15: 1811-1824.

Weber P, Bendich A, Schalch W. (1996). Vitamin C and human healthareview of recent data relevant to human requiremnts. Int. J. vit. Nut. Res, 66: 19-30.

Wolinsky I. (1998). Nutrition in Exercise and Sport. 3th edition. New York: CRC Press.

Xiao K, Xuan L, Xu Y, Bai D, Zhong D. (2002). Constituents from *Polygonum cuspidatum*. Chem. Pharm. Bull, 50: 605-608.

Zdero C, Bohlmann F, Anderberg AA. (1991). Leysseral derivatives from *Anisothrix integra* and *Phagnalon purpurescens*. Phytochemistry, 30: 3009-3011.

Résumé

Nos travaux phytochimiques et biologiques concernent les parties aériennes de deux espèces appartenant à la famille des Asteraceae : *Phagnalon saxatile* (L) Cass. et *Phagnalon sordidum* L. Différentes méthodes chromatographiques de séparation ont permis l'isolement de dix composés des extraits acétate d'éthyle et butanolique de *Phagnalon saxatile* dont un nouveau, et vingt un composés de *Phagnalon sordidum*.

La détermination structurale a été réalisée par les différentes méthodes d'analyses spectroscopiques : résonance magnétique nucléaire et ses différentes applications (RMN-¹H, RMN-¹³C, COSY, HSQC et HMBC), la spectrometrie de masse, l'ultra-violet, l'hydrolyse acide ainsi que par la comparaison des résultats avec les données de la littérature.

4 méthodes ont été utilisées pour évaluer l'activité antioxydante de *Phagnalon sordidum* et *Phagnalon saxatile*. Cette dernière a montré une bonne activité avec les 4 méthodes : DPPH, ABTS, CUPRAC et la méthode d'effet scavenger du superoxyde alors que *Phagnalon sordidum* a manifesté une activité modérée avec les tests du DPPH et CUPRAC.

Par ailleurs, les extraits éther de pétrole et chloroformique de l'espèce *Phagnalon* saxatile ont montré une activité antibactérienne modérée vis-à-vis de dix souches testées. Les produits $(1-O-\beta-D-glucopyranosyl-1,4-dihydroxy-2-((E) 2-oxo-3-butenyl)$ benzene, $1-O-\beta$ -glucopyranosyl-2(3',3'-diméthylallyl) hydroquinone et le Potassium 4-hydroxy-3-methoxybenzoate de méthyl-5-sulfate) isolés de *Phagnalon saxatile*, ont manifesté une activité cytotoxique modérée, par la méthode du MTT.

Mots clés : Asteraceae, *Phagnalon saxatile*, *Phagnalon sordidum*, activité antioxydante, activité antibactérienne, cytotoxicité.

Abstract

Our phytochemical and biological works concerned the aerial parts of two species belonging to Asteraeae family : *Phagnalon saxatile* (L) Cass. and *Phagnalon sordidum* L. Several chromatographic methods allowed us to isolate ten products from the *n*-butanol and ethyl acetate extracts of *Phagnalon saxatile* from which one is new, and twenty one products from *Phagnalon sordidum*.

Structures were determined by different spectral methods: nuclear magnetic resonance with different applications (NMR ¹H, NMR ¹³C, COSY, HSQC and HMBC), the mass spectrometry, UV, acid hydrolysis as well as comparison with literature data.

4 methods were used to evaluate the antioxidant activity of *Phagnalon sordidum* and *Phagnalon saxatile*. The latter showed a good activity by the use of 4 methods: DPPH, ABTS, CUPRAC and superoxide radical scavenging activity by alkaline DMSO whereas *Phagnalon sordidum* exhibited a moderate activity with DPPH and CUPRAC tests.

Furthermore, petroleum ether and chloroform extracts from *Phagnalon saxatile* showed moderate antibacterial activity against the tested strains. The isolated products (1-O- β -D-glucopyranosyl-1,4-dihydroxy-2-((E) 2-oxo-3-butenyl) benzene, 1-O- β -glucopyranosyl-2(3',3'-diméthylallyl) hydroquinone and Potassium 4-hydroxy-3-methoxybenzoique acide methyl ester-5-sulfate) from *Phagnalon saxatile* showed a moderate cytotoxic activity by the use of MTT method.

Keywords : Asteraceae, *Phagnalon saxatile*, *Phagnalon sordidum*, antioxidant activity, antibacterial activity, cytotoxicity.

ملخص

خصت أشغالنا الفيتوكيميائية و البيولوجية الأجزاء الهوائية لنبتتين تنتميان إلى عائلة Asteraceae هما : Phagnalon sordidum L و Phagnalon saxatile (L) Cass. Phagnalon saxatile (L) لقد مكنتنا مختلف طرق الفصل الكروماتو غرافي من عزل 10 مركبات من مستخلصي خلات الاثيل و البوتانولي لنبتة (L) Phagnalon saxatile Cass. حيث أن واحد منها جديد إلى جانب 21 مركب من نبتة .

تم التعرف البنيوي على المركبات المعزولة من النبنتين باستعمال مختلف الطرق الطيفية كمطيافية الرنين النووي المغناطيسي بمختلف تقنياتها أحادية و ثنائية البعد

(RMN-¹H, RMN-¹³C, COSY, HSQC et HMBC) و مطيافية الكتلة و مطيافية الأشعة الفوق البنفسجية كما استعملنا الطرق الكميائية المتمثلة في الاماهة الحمضية إلى جانب مقارنة النتائج مع معطيات المراجع.

استخدمت أربع طرق لتقييم الفعالية المضادة للأكسدة و المتمثلة في:CUPRAC, ABTS, DPPH و طريقة . Phagnalon sordidum L ل d'effet scavenger du superoxyde و Phagnalon saxatile (L) Cass. أظهرت . أظهرت . sordidum L نشاطا جيدا مع الطرق الأربعة بينما كانت نتائج النبتة Phagnalon assatile (L) Cass.

من جهة أخرى أظهر مستخلصي ايثر البترول و الكلوروفورم فعالية مضادة للبكتيريا من ضعيفة إلى متوسطة ضد عشرة أنواع من البكتيريا المختبرة باستعمال طريقة l'antibiogramme. كان للمركبات المعزولة -O-β-D) glucopyranosyl-1,4-dihydroxy-2-((E) 2-oxo-3-butenyl) benzene, 1-O-β-glucopyranosyl-2(3',3'-diméthylallyl) hydroquinone, Potassium 4-hydroxy-3-methoxybenzoate de méthyl-5sulfate)

من النبتة Phagnalon saxatile نشاطا معتدلا ضد الخلايا السامة باستعمال طريقة MTT.

الكلمات المفتاحية : Phagnalon sordidum ، Phagnalon saxatile ، Asteraceae ، فعالية مضادة للأكسدة، فعالية مضادة للبكتيريا، السمية الخلوية.

Article

Check for updates

A new 2-alkylhydroquinone glucoside from *Phagnalon* saxatile (L.) Cass

Hanene Cherchar^a, Meriem Lehbili^a, Djemaa Berrehal^a, Hamid Morjani^c, Abdulmagid Alabdul Magid^b, Laurence Voutquenne-Nazabadioko^b, Ahmed Kabouche^a and Zahia Kabouche^a

^aUniversité des frères Mentouri-Constantine, Département de chimie, Laboratoire d'Obtention des Substances Thérapeutiques (LOST), Constantine, Algeria; ^bICMR-UMR CNRS 7312, Groupe Isolement et Structure, URCA, Reims, France; ^cFaculté de Pharmacie, MEDyC UMR CNRS 7369, URCA, Reims, France

ABSTRACT

A new 2-alkylhydroquinone glucoside, 1-O- β -D-glucopyranosyl-1,4dihydroxy-2-((*E*) 2-oxo-3-butenyl)benzene (**1**), in addition to nine known compounds were isolated from the aerial parts of *Phagnalon saxatile* (L.) Cass. (Asteraceae). Their structures were identified based on spectroscopic methods including 1D and 2D NMR, mass spectrometry (HR-ESI-MS), UV spectral analyses and by comparison with literature data. The cytotoxic activity of three isolated compounds (**1–3**) was evaluated against fibrosarcoma (HT1080), human lung cancer (A549) and breast cancer (MCF7) cell lines.

ARTICLE HISTORY

Received 23 May 2017 Accepted 19 August 2017

KEYWORDS

Phagnalon saxatile (L.) Cass; Asteraceae; alkylhydroquinone glucoside; cytotoxic activity

CONTACT Zahia Kabouche 🖾 zahiakabouche@umc.edu.dz

Supplemental data for this article can be accessed at https://doi.org/10.1080/14786419.2017.1375918.

© 2017 Informa UK Limited, trading as Taylor & Francis Group

1. Introduction

Phagnalon is one of the Euro-Mediterranean genuses, which is represented by about 36 species distributed throughout Northeastern tropical Africa, the Macaronesian region, the Mediterranean basin, the Irano-Turanian and the Saharo-Arabian regions, but its greatest diversity is found in the Arabian Peninsula (Abid and Qaiser 2008). Phagnalon species are used in folk medicine as antiallergic, antioxidant, anti-inflammatory and in the treatment of asthma and headache (Ali-Shtayeh and Yaghmour 1998; Conforti et al. 2010; Haddouchi et al. 2014). Many reports have shown that *Phagnalon* species possess biological properties e.q. hypertensive, anticholinesterase, antimicrobial, antibacterial, antiproliferative and cytotoxic activities (Hausen and Schulz 1977; Conforti et al. 2010; Wamidh and Mahasneh 2010a, 2010b). The phytochemistry of the genus Phagnalon is not well-known, only four of the 36 recorded Phagnalon species have been subjected to phytochemical examination. It appears that flavones glycosides (apigenin and its derivative and luteolin and its derivatives), prenylhydroquinone glycosides and dicaffeoylquinic acid derivatives are characteristics to this genus (Dolci and Tira 1982; Góngora et al. 2001; 2002; Conforti et al. 2010). In addition, terpenoids were reported from *Phagnalon* species (Bicchi et al. 1979; Epifano et al. 2002). Phagnalon saxatile (L.) Cass. growing in Algeria is a fairly common Mediterranean plant, which grows on walls and rocks, but also in rocky lawns. The leaves, very narrow, are green on the upper side and cottony underneath. The heads are solitary at the extremity of the branches. The external bracts are bent outwards (Quezel and Santa 1963). The essential oil of the aerial parts of the plant was found to contain sesquiterpenes, fatty acids and waxes (Conforti et al. 2010). In addition, 3,3-dimethylallyl-p-benzoguinone and flavonoids such as apigenin, apigenin-7-glucoside and luteolin were reported from this plant but phytochemical data are incomplete and pharmacological information on the plant and its metabolites are lacking (Conforti et al. 2010). In the present work, a new 2-alkylhydroquinone glucoside (1), along with nine known compounds (2-10), was isolated from the air-dried extracts of P. saxatile. The cytotoxic activity of the three most original compounds (1-3) was tested against HT1080, A549 and MCF7 cells lines.

2. Results and discussion

The EtOAc and the *n*-BuOH extracts of the aerial parts of *P. saxatile* (L) Cass. were subjected to combined chromatographic methods to obtain a new 2-alkylhydroquinone glucoside (**1**) (Figure 1), in addition to nine known compounds (**2–10**) (see Figure S1). They include potassium 4-hydroxy-3-methoxybenzoic acid methyl ester-5-sulphate (**2**) (Benmerache et al. 2017), hydroquinone glucoside, 1-*O*- β -D-glucopyranosyl-1,4-dihydroxy-2-(3',3'-dimethyl-allyl)benzene (**3**) (Góngora et al. 2001), six flavonoids, apigenin 7-*O*- β -D-glucopyranoside (**4**), luteo-lin-4'-*O*- β -D-glucopyranoside (**5**), luteolin-7-*O*- β -D-glucopyranoside (**6**), 3'-methoxyluteolin (**7**), apigenin (**8**) and luteolin (**9**) (Dommisse et al. 1986; Agrawal and Bansal 1989; Nacer et al. 2006; Touafek et al. 2011), and dicaffeoylquinic acid derivative, 3,5-di-*O*-caffeoylquinic acid methyl ester (**10**) (Timmermann and Hoffmann 1983). The isolated compounds were identified by analysis of ¹H and ¹³C NMR spectra along with 2D experiments (COSY, HMBC, HSQC, NOESY and HMBC) and by comparison with those reported in the literature.

Compound **1** displayed a pseudo-molecular ion peak at m/z 363.1053 [M + Na]⁺ (Calcd for C₁₆H₂₀O₈Na, 363.1056) indicating its molecular formula to be C₁₆H₂₀O₈. The ¹H NMR

Figure 1. Chemical structure of compound 1 isolated from P. saxatile (L.) Cass.

spectrum displayed the signal pattern typical of an alkylhydroguinone (David et al. 1998; Góngora et al. 2001): three aromatic protons (H-3, H-5 and H-6) exhibited an ABX system (δ_{μ} 7.04, 6.81 and 7.11, respectively), two olefinic protons conjugate to a carbonyl group at δ_{μ} 6.61 and 7.99, and one methyl group at $\delta_{_{
m H}}$ 2.33 arising from a prenyl residue. This was confirmed by analysis of the ¹³C NMR spectrum, which showed six aromatic signals, two of them were oxygenated (δ_c 149.7 and 153.2), two olefinic carbons (δ_c 128.1 and 138.1), one methyl (δ_{c} 27.4) and one carbonyl carbon (δ_{c} 199.1). The analysis of COSY spectrum showed correlation between the two olefinic protons with the coupling constant of 16.6 Hz, indicating a trans configuration of the double bond. In the HMBC spectrum, the carbon of a ketone group at $\delta_{\rm C}$ 199.1 showed correlations with the two olefinic protons H-3' at $\delta_{\rm H}$ 6.61 and H-4' at $\delta_{\rm H}$ 7.99 and the methyl H₃-1' at δ_{μ} 2.33. These latter were correlated to the carbon C-3' (δ_{c} 128.0), indicating the presence of a 3-buten-2-one moiety as in a phenyl butanoid glucoside, isolated from *Hypochoeris radicata* (Ohmura et al. 1989). In addition, an anomeric proton at δ_{μ} 4.66 and six methine protons, appearing between 3.17 and 3.65 ppm, were attributed using the COSY spectrum. Their corresponding carbons identified by the HSQC spectrum are characteristic of a glucopyranose moiety (Ohmura et al. 1989; Góngora et al. 2001) (see Table S1). The HMBC spectrum indicated that the glucose was attached to the hydroxylated carbon C-1 at δ_c 149.7 which correlated to the anomeric proton H-1" at δ_{μ} 4.66. This was confirmed by the ROESY correlation between the aromatic proton H-6 and H-1". The olefinic proton H-4' at δ_{μ} 7.99 showed HMBC correlations with carbons C-1, C-2 and C-3, indicating that the butanone moiety was attached to the C-2 position. This was confirmed by the HMBC correlation between the quaternary carbon C-2 at $\delta_{\rm C}$ 125.6 to the olefinic proton H-3'. The remaining oxygenated carbon C-4 (δ_{c} 153.2) exhibited a ${}^{3}J_{C-H}$ correlation with the aromatic proton H-6 (δ_c 7.11). All these results led us to identify compound **1** as 1-O- β -D-glucopyranosyl-1,4dihydroxy-2-((E) 2-oxo-3-butenyl)benzene.

The cytotoxic activity of methyl 3,5-dicaffeoylquinate (**10**) was previously described. It inhibited cell proliferation of HT-29 (Hu et al. 2011) and HeLa cells (Hu et al. 2014), but was inactive on MCF7 and KB cells (Watchara et al. 2016). As flavonoids **4–9** are well-known compounds found in most plant species, we have evaluated only the cytotoxic activity of the three most original compounds from this species. The new alkylhydroquinone glucoside **1** and its derivative **3**, and the potassium 4-hydroxy-3-methoxybenzoic acid methyl ester-5-sulphate (**2**), previously isolated in our laboratory for the first time (Benmerache et al.

4 😔 H. CHERCHAR ET AL.

2017), were tested for their cytotoxic activity against HT1080, MCF7 and A549 cell lines (Table S2). Compound **3**, showed moderate cytotoxic activity against HT1080, MCF7 and K562 cells with IC_{50} values of 33.2, 37.0 and 77.0 μ M, respectively. Compounds **1** and **2** showed also moderate cytotoxicity on HT1080 cells only with IC_{50} values of 48.0 and 44.0 μ M, respectively. The butanone side chain in compound **1** seems to be unfavourable to the cytotoxic activity compared to the isoprenyl side chain in compound **3**.

3. Experimental

3.1. General experimental procedures

NMR spectra were carried in MeOH- d_4 and DMSO on Bruker Avance DRX III 500 instruments. HR-ESI-MS experiment was performed using a Micromass Q-TOF micro instrument. Compounds were observed under UV light at 254 and 365 nm or visualised by spraying the dried plates with 50% H₂SO₄, followed by heating. CC was carried out on Kieselgel 60 (63– 200 mesh) or polyamid SC6 Merck.

3.2. Plant material

The aerial parts of *P. saxatile* (L.) Cass. were collected in April 2013 from Constantine (Eastern Algerian). The plant was authenticated by Mr. Kamel Kabouche. A voucher specimen (LOST Phs04/13) was deposited at the herbarium of the Laboratory of Therapeutic Substances (LOST), faculty of Sciences, University of Constantine, Algeria.

3.3. Extraction and isolation

Air-dried aerial part of *P. saxatile* (L.) Cass. (1200 g) were extracted with the mixture of ethanol and water (8:2) for 48 h, at room temperature. The solvent was removed under reduced pressure. The 80% EtOH extract was suspended in water and fractionated with solvents of increasing polarity to obtain petroleum ether (1.05 g), CHCl₃ (1.86 g), EtOAc (11.32 g) and *n*-BuOH (25.31 g) fractions. The *n*-BuOH and EtOAc fractions were combined (20 g) and column chromatographed on polyamid SC6 eluting with a gradient of toluene-MeOH with increasing polarity to yield 20 fractions (F1–F20, respectively). Compounds **7** (20 mg), **4** (16 mg), **5** (12.5 mg) and **2** (15 mg) were precipitated from fractions F10, F14, F15 and F17, respectively. Fraction F12 (673 mg) was separated on silica gel column chromatography eluted with CHCl₃–MeOH with increasing polarity to afford compounds **1** (7 mg), **3** (9 mg) and **8** (10 mg). Fraction F16 (915 mg) was further subjected to silica gel column chromatography eluted with CHCl₃–MeOH with increasing polarity to give compounds **6** (4.5 mg), **9** (4 mg) and **10** (6 mg).

3.3.1. 1-O-β-D-glucopyranosyl-1,4-dihydroxy-2-((E) 2-oxo-3-butenyl)benzene(1)

Was obtained as a white amorphous solid, $[\alpha]_D^{20} + 48^\circ$ (*c* 0.58, MeOH), ¹H NMR (600 MHz, DMSO): δ_H 7.04 (d, *J* = 2.8 Hz, H-3), 6.81 (dd, *J* = 8.9, 2.8 Hz, H-5), 7.11 (d, *J* = 8.9 Hz, H-6), 6.61 (d, *J* = 16.6 Hz, H-3'), 7.99 (d, *J* = 16.6 Hz, H-4'), 2.33 (s, 3H-1'), 4.66 (d, *J* = 7.5 Hz, H-1''), 3.29 (m, H-2''), 3.25 (t, *J* = 8.3 Hz, H-3''), 3.17 (t, *J* = 8.9 Hz, H-4''), 3.24 (m, H-5), 3.48 (m, H-6''a), 3.69 (brd, *J* = 11.6 Hz, H-6''b), ¹³C NMR (150 MHz, DMSO): δ c 149.7 (C-1), 125.6 (C-2), 112.8 (C-3),

153.2 (C-4), 119.3 (C-5), 119.6 (C-6), 27.4 (C-1'), 199.1 (C-2'), 128.0 (C-3'), 138.7 (C-4'), 102.9 (C-1"), 73.9 (C-2"), 77.0 (C-3"), 70.2 (C-4"), 77.5 (C-5"), 61.3 (C-6"). HR-ESI-MS [M + Na]⁺m/z 363.1053 (Calcd for C₁₆H₂₀O₈Na, 363.1056).

3.4. Cell proliferation assay

The fibrosarcoma cells HT1080 were cultured in Minimum Essential Media (MEM), while human lung cancer cells A549 and MCF7 were cultured in Dulbecco's Modified Eagle's Medium (DMEM), supplemented with 10% foetal bovine serum (FBS) and 1% Penicillin Streptomycin (PS) at 37 °C with 5% CO₂ and harvested every three days for maintenance. Compounds **1–3** were dissolved in DMSO to be tested.

HT1080, A549 and MCF7 cells were plated at a density of 10⁴ cells/mL in 24-well plates, in fully humidified incubator (5% $CO_{2'}$ 37 °C). After 24 h, the culture medium was discarded and cells were treated with the compounds in a fresh culture medium at various concentrations for 72 h. Therefore, the cells were washed once with 1 mL of D-PBS and then detached with 0.2% Trypsin/EDTA. Cell counting was carried out on a KOVA[®] slide and with a phase contrast microscope as indicated by the manufacturer's. Camptothecin and doxorubicin were used as positive control. The results of these assays were used to determine the IC₅₀ as the concentration of each compound which induced 50% inhibition of cell growth.

4. Conclusions

In summary, one new 2-alkylhydroquinone glucoside, together with nine known compounds, including six flavonoids, were isolated from the aerial parts of *P. saxatile* (L.) Cass. Four from the six known flavonoids: apigenin (**8**), apigenin 7-*O*- β -D-glucopyranoside (**4**), luteolin (**9**) and luteolin-4'-*O*- β -D-glucopyranoside (**5**) were previously isolated from *P. saxatile* (L.) Cass. (Conforti et al. 2010). Luteolin-7-*O*- β -D-glucopyranoside (**6**) was previously reported from *P. rupestre* (Góngora et al. 2002), and 3'-methoxyluteolin (**7**) was isolated for the first time from the *Phagnalon* genus. The prenylhydroquinone 1-*O*- β -D-glucopyranosyl-1,4-dihydroxy-2-(3',3'-dimethylallyl)benzene (**3**) was isolated from *P. rupestre* (Góngora et al. 2001), and 3,5-di-*O*-caffeoylquinic acid methyl ester (**10**) was reported from *P. rupestre* (Góngora et al. 2002) and *P. saxatile* (L.) Cass. (Conforti et al. 2010). Potassium 4-hydroxy-3-methoxybenzoic acid methyl ester-5-sulphate was isolated for the first time from the *Phagnalon* genus.

Compound **3**, showed a moderate cytotoxic activity against HT1080, MCF7 and K562 whereas compounds **1** and **2** showed also moderate cytotoxicity on HT1080 cell line only.

Supporting information

Cytotoxic activity of compounds **1–3**, Figure S1 and HR-ESI-MS, ¹H and ¹³C NMR, COSY, HMBC, HSQC and NOESY spectra for compound **1**.

Acknowledgements

The authors are grateful to DGRSDT-MESRS (Algeria), for financial support and the Groupe Isolement et Structure of the Institut de Chimie Moleculaire de Reims (France) for technical help and registering of NMR data and MS.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

- Abid R, Qaiser M. 2008. Cypsela morphology of some genera in the tribe gnaphalieae (Asteraceae) from Pakistan. Pak J Bot. 40(2):473–485.
- Agrawal PK, Bansal MC. 1989. Flavonoid glycosides. In: Agrawal PK, editor. Carbon-13 NMR of flavonoids. Amsterdam: Elsevier; p. 283–364.
- Ali-Shtayeh MS, Yaghmour MS, Faidi YR, Salem K, Al-Nuri MA. 1998. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J Ethnopharmacol. 60:265–271.
- Benmerache A, Benteldjoune M, Alabdul Magid A, Abedini A, Berrehal D, Kabouche AC, Gangloff S, Voutquenne-Nazabadioko L, Kabouche Z. 2017. Chemical composition, antioxidant and antibacterial activities of Tamarix balansae J. Gay aerial parts. Nat Prod Res. 10:1–8. doi:10.1080/14786419.201 7.1299729.
- Bicchi C, Frattini C, Nano GM. 1979. Hexahydrofarnesyl acetone from *Phagnalon rupestre*. Relata Tech. 11:64–104.
- Conforti F, Rigano D, Formisano C, Bruno M, Loizzo MR, Menichini F, Senatore F. 2010. Metabolite profile and *in vitro* activities of *Phagnalon saxatile* (L.) Cass, relevant to treatment of Alzheimer's disease. J Enzyme Inhib Med Chem. 25:97–104.
- David JM, Chàvez JP, Chai HB, Pezzuto JM, Cordell GA. 1998. Two new cytotoxic compounds from *Tapirira guianensis*. J Nat Prod. 61:287–289.
- Dolci M, Tira S. 1982. Flavonoids of Gnaphalieae: *Phagnalon* species. Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend. 116:315–318.
- Dommisse RA, Van Hoof L, Vlietinck AJ. 1986. Structural analysis of phenolic glucosides from salicaceae by NMR spectroscopy. Phytochemistry. 25:1201–1204.
- Epifano F, Marcotullio MC, Menghini L. 2002. Constituents of *Phagnalon sordidum*. J Chem Nat Compd. 38:204–205.
- Góngora L, Giner RM, Máñez S, Recio MC, Ríos JL. 2001. New prenylhydroquinone glycosides from *Phagnalon rupestre*. J Nat Prod. 64:1111–1113.
- Góngora L, Máñez S, Giner RMRecio MC, Gray Al, Rıos JL. 2002. Phenolic glycosides from *Phagnalon rupestre*. Phytochemistry. 59:857–860.
- Góngora L, Máñez S, Giner RM, Recio MC, Rios JL. 2002. Phagnalon rupestre as a source of compounds active on contact hypersensitivity. Planta Med. 68:561–564.
- Haddouchi F, Chaouche TM, Ksouri R, Medini F, Sekkal FZ, Benmansour A. 2014. Antioxidant activity profiling by spectrophotometric methods of aqueous methanolic extracts of *Helichrysum stoechas* subsp. *rupestre* and *Phagnalon saxatile* subsp. *Saxatile*. Chinese J Nat Med. 12:415–422.
- Hausen BM, Schulz KH. 1977. On sensitizing capacity of naturally occurring quinones3. New contact allergen (2-dimethylallyl-1,4-benzoquinone) from *Phagnalon*. Planta Med. 32:287–296.
- Hu W, Shen T, Wang MH. 2011. Cell cycle arrest and apoptosis induced by methyl 3,5-dicaffeoyl quinate in human colon cancer cells: Involvement of the PI3 K/Akt and MAP kinase pathways. Chem Biol Interact. 194:48–57.
- Hu T, He X-W, Jiang J-G. 2014. Functional Analyses on Antioxidant, Anti-inflammatory, and Antiproliferative Effects of Extracts and Compounds from Ilex latifolia Thunb., a Chinese Bitter Tea. J Agri Food Chem. 62:8608–8615.
- Nacer A, Bernard A, Boustie J, Touzani R, Kabouche Z. 2006. Aglycone flavonoids of *Centaurea tougourensis* from Algeria. Chem Nat Compd. 42:190–191.
- Ohmura K, Miyase T, Ueno A. 1989. Sesquiterpene glucosides and aphenylbutanoid glycoside from *Hyprochoeris radicata*. Phytochemistry. 28:1919–1924.
- Quezel P, Santa S. 1963. Nouvelle Flore de l'Algérie et des régions désertiques méridionales. Vol. 1-2. Ed. CNRS, Paris France.

- Timmermann BN, Hoffmann JJ. 1983. Constituants of *Chrysothamnus paniculatus 3*: 3,4,5-tricaffeoylquinic acid (a new shikimate prearomatic) and 3,4-, 3,5- and 4,5-dicaffeoylquinic acids. J Nat Prod. 46:365–368.
- Touafek O, Kabouche Z, Brouard I, Bermejo JB. 2011. Flavonoids of *Campanula alata* Desf. and their antioxidant activity. Chem Nat Compd. 45:968–969.
- Wamidh HT, Mahasneh AM. 2010a. Antimicrobial, cytotoxicity and phytochemical screening of Jordanian plants used in traditional medicine. Molecules. 15:1811–1824.
- Wamidh HT, Mahasneh AM. 2010b. Antiproliferative activity of plant extracts used against cancer in traditional medicine. Sci Pharm. 78:33–45.
- Watchara S, Ratsami L, Somdej K, Kwanjai K. 2016. Cytotoxic and antimalarial constituents from aerial parts of *Sphaeranthus indicus*. Phytochem Lett. 17:278–281.

Résumé

Nos travaux phytochimiques et biologiques concernent les parties aériennes de deux espèces appartenant à la famille des Asteraceae : *Phagnalon saxatile* (L) Cass. et *Phagnalon sordidum* L. Différentes méthodes chromatographiques de séparation ont permis l'isolement de dix composés des extraits acétate d'éthyle et butanolique de *Phagnalon saxatile* dont un nouveau, et vingt un composés de *Phagnalon sordidum*.

La détermination structurale a été réalisée par les différentes méthodes d'analyses spectroscopiques : résonance magnétique nucléaire et ses différentes applications (RMN-¹H, RMN-¹³C, COSY, HSQC et HMBC), la spectrometrie de masse, l'ultra-violet, l'hydrolyse acide ainsi que par la comparaison des résultats avec les données de la littérature.

4 méthodes ont été utilisées pour évaluer l'activité antioxydante de *Phagnalon* sordidum et *Phagnalon saxatile*. Cette dernière a montré une bonne activité avec les 4 méthodes : DPPH, ABTS, CUPRAC et la méthode d'effet scavenger du superoxyde alors que *Phagnalon sordidum* a manifesté une activité modérée avec les tests du DPPH et CUPRAC.

Par ailleurs, les extraits éther de pétrole et chloroformique de l'espèce *Phagnalon* saxatile ont montré une activité antibactérienne modérée vis-à-vis de dix souches testées. Les produits $(1-O-\beta-D-glucopyranosyl-1,4-dihydroxy-2-((E) 2-oxo-3-butenyl)$ benzene, $1-O-\beta$ -glucopyranosyl-2(3',3'-diméthylallyl) hydroquinone et le Potassium 4-hydroxy-3-methoxybenzoate de méthyl-5-sulfate) isolés de *Phagnalon saxatile*, ont manifesté une activité cytotoxique modérée, par la méthode du MTT.

Mots clés : Asteraceae, *Phagnalon saxatile*, *Phagnalon sordidum*, activité antioxydante, activité antibactérienne, cytotoxicité.

Abstract

Our phytochemical and biological works concerned the aerial parts of two species belonging to Asteraeae family : *Phagnalon saxatile* (L) Cass. and *Phagnalon sordidum* L. Several chromatographic methods allowed us to isolate ten products from the *n*-butanol and ethyl acetate extracts of *Phagnalon saxatile* from which one is new, and twenty one products from *Phagnalon sordidum*.

Structures were determined by different spectral methods: nuclear magnetic resonance with different applications (NMR ¹H, NMR ¹³C, COSY, HSQC and HMBC), the mass spectrometry, UV, acid hydrolysis as well as comparison with literature data.

4 methods were used to evaluate the antioxidant activity of *Phagnalon sordidum* and *Phagnalon saxatile*. The latter showed a good activity by the use of 4 methods: DPPH, ABTS, CUPRAC and superoxide radical scavenging activity by alkaline DMSO whereas *Phagnalon sordidum* exhibited a moderate activity with DPPH and CUPRAC tests.

Furthermore, petroleum ether and chloroform extracts from *Phagnalon saxatile* showed moderate antibacterial activity against the tested strains. The isolated products (1-O- β -D-glucopyranosyl-1,4-dihydroxy-2-((E) 2-oxo-3-butenyl) benzene, 1-O- β -glucopyranosyl-2(3',3'-diméthylallyl) hydroquinone and Potassium 4-hydroxy-3-methoxybenzoique acide methyl ester-5-sulfate) from *Phagnalon saxatile* showed a moderate cytotoxic activity by the use of MTT method.

Keywords : Asteraceae, *Phagnalon saxatile*, *Phagnalon sordidum*, antioxidant activity, antibacterial activity, cytotoxicity.