République Algérienne Démocratique et Populaire Ministère de l'enseignement supérieur et de la recherche scientifique

UNIVERSITE FRERES MENTOURI CONSTANTINE

FACULTE DES SCIENCES EXACTES DEPARTEMENT DE CHIMIE

N⁰ d'ordre :..... N⁰ de série :.....

THESE

Présentée pour obtenir le diplôme de Doctorat en Sciences en Chimie organique

OPTION :

Phytochimie

Etude phytochimique et évaluation des activités biologiques de deux plantes du genre *Sedum* (Crassulaceae)

Par : BENSOUICI Chawki

Devant le jury composé de :

Président : Rapporteur :	Prof. A. Kabouche Prof. Z. Kabouche	Université frères Mentouri Constantine Université frères Mentouri Constantine
Examinateurs	:	
	Prof. S. Akkal	Université frères Mentouri Constantine
	Prof. A. Zellagui	Université Larbi Ben'Mhidi (OEB)
	Prof. L. Arrar	Université Ferhat Abbes (Sétif)
	Prof. A. Baghiani	Université Ferhat Abbes (Sétif)

Année 2014-2015

Remerciements

En préambule, je souhaite rendre grâce à Dieu, le Clément et Miséricordieux de m'avoir donné la force, le courage et la patience de mener à bien ce modeste travail

Je tiens à remercier sincèrement mon encadreur Pr. **KABOUCHE ZAHIA**, Professeur à l'Université frères Mentouri Constantine 1, de m'avoir suivi et dirigé tout au long de la réalisation de ce mémoire. Je la remercie aussi pour la confiance qu'elle a placée en moi, pour sa disponibilité permanente, pour sa patience et ses conseils.

Je souhaite également remercier les membres du jury, Mr. KABOUCHE AHMED, professeur à l'Université frères Mentouri Constantine 1 qui m'a fait l'honneur d'accepter d'être président de jury.

Je remercie également Mr. AKKAL SALAH, professeur à l'Université frères Mentouri Constantine 1 et Mr. ZELLAGUI AMAR, professeur à l'Université Larbi Ben'Mhidi (OEB), Mr. ARRAR LEKHMISSI, professeur à l'Université Ferhat Abbes (Sétif) et Mr. BAGHIANI ABDERRAHMANE, professeur à l'Université Ferhat Abbes (Sétif), pour l'importance qu'ils ont accordé à mon travail en acceptant d'être membres de ce jury et pour le temps qu'ils ont consacré à l'examen de ce mémoire.

Enfin, mes remerciements vont également à l'équipe de l'université de Mugla, Pr. Mehmet Öztürk, Pr. Mehmet Emin Duru et à tous ceux et celles qui, de près ou de loin, m'ont apporté aide et encouragements. Qu'ils trouvent ici l'expression de ma profonde gratitude

Chawki

Je dédie ce mémoire

À mes chers parents

À mes frères et sœurs

À tous mes amis

Liste des abréviations

DPPH : 1,1-Diphényl-2-PicrylHydrazyl

ABTS : 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonique)

ATCC : American Type Culture Collection

BHA : ButylHydroxyAnisole

BHT : ButylHydroxyToluene

CMI : Concentration Minimale Inhibitrice

CUPRAC : Cupric Reducing Antioxidant Capacity

EDTA : Ethylenediaminetetraacetic acid

CI₅₀ : Concentration Inhibitrice à 50%

NCCLS : National Committee for Clinical Laboratory Standard

CCM : Chromatographie sur Couche Mince

CLHP : Chromatographie Liquide Haute Performance

LC/MS : Chromatographie Liquide couplée à la spectrométrie de masse

LC/MS/MS : Chromatographie Liquide couplée à deux spectrométries de masse

COSY : Correlated Spectroscopy

d : doublet

dd : doublet de doublet

DEPT : Distortionless Enhancement by Polarization Transfer

HMBC : Heteronuclear Multiple Bonding Connectivity

HSQC : Heteronuclear Single Quantum Connectivity

J(Hz) : constante de couplage exprimée en Hertz

RMN¹**H** : Résonance Magnétique Nucléaire du proton

RMN 13C : Résonance Magnétique Nucléaire du carbone

COSY: Correlation spectroscopy

UV : Ultra-Violet

 λ max : longeur d'onde maximale

 μg : Micro-gramme

ECSC : Extrait chloroformique de Sedum caeruleum

EASC: Extrait acétate d'éthyle de Sedum caeruleum

EBSC: Extrait butanolique de *Sedum caeruleum*

EHSP: Extrait hexane de *Sedum pubescens*

ECSP: Extrait chloroformique de *Sedum pubescens*

EBSP: Extrait butanolique de *Sedum pubescens*

Liste des tableaux

Nº	Titre	Page
1	Usages et propriétés de quelques espèces du genre Sedum	12
2	Distribution des Acides phénoliques dans le genre Sedum	13
3	Distribution des Flavonoïdes dans le genre Sedum	17
4	Distribution des coumarines dans le genre Sedum	30
5	Distribution des terpenoides dans le genre Sedum	32
6	Distribution des alcaloïdes dans le genre Sedum	35
7	Distribution des mégastigmanes dans le genre Sedum	39
8	Distribution d'autres composés dans le genre Sedum	42
9	Classification des polyphénols	57
10	Structures des diffèrent flavonoïdes aglycones étudiés	61
11	Fragment ESI-MS/MS des flavones 1-6	63
12	Fragment ESI-MS/MS des flavonols 7-11	64
13	Fragment ESI-MS/MS des flavonones 12-15	65
14	Résultats de séparation par chromatographie sur colonne de gel de silice de	92
	la fraction chloroformique	
15	Résultats de séparation de la fraction F ₄	93
16	Résultats de séparation de la fraction F ₁₅	93
17	Résultats de séparation de la fraction F ₁₉	94
18	Résultats de séparation de la fraction F ₆₉	94
19	Résultats de séparation de la fraction F74	95
20	Résultats de séparation de la fraction F77	95
21	Résultats de séparation de la fraction F ₉₁	95
22	Résultats de séparation de la fraction F ₁₀₆	96
23	Résultats de séparation par chromatographie sur colonne de gel de silice de	96

	la fraction acétate d'éthyle	
24	Résultats de séparation de la fraction AC ₁₀	98
25	Résultats de séparation de la fraction AC ₁₀	98
26	Résultats de séparation de la fraction AC ₁₂	98
27	Résultats de séparation de la fraction AC ₁₂	99
28	Résultats de séparation de la fraction AC ₁₄	99
29	Résultats de séparation de la fraction AC ₁₅	99
30	Résultats de séparation de la fraction AC ₁₂₂	100
31	Calibration de LC/MS/MS en présence des standards	104
32	Données de la série spectrales UV du produit F60	118
33	Données de la RMN ¹ H du produit F60 (DMSO-d ₆ à 400 MHz)	119
34	Données de la série spectrale UV du produit AC10	123
35	Données de la RMN ¹ H du produit AC10 (CD ₃ OD, 400 MHz)	124
36	Données de la série spectrale UV	131
37	Données de la RMN ¹ H du produit AC122	132
38	Données RMN ¹³ C (400 MHz, CD ₃ OD) du produit AC122	133
39	Déplacements chimiques en RMN ¹ H (400MHz) et RMN ¹³ C (100 MHz) du	142
	produit F19 dans le DMSO-d ₆	
40	Déplacements chimiques en RMN ¹ H (400 MHz) et RMN ¹³ C du composé F75enregistré dans le DMSO-d ₆	155
41	Données RMN ¹³ C (100 MHz, DMSO-d ₆) du produit F72	165
42	Composés de l'extrait butanolique identifiés par LCMSMS	199
43	Polyphénols totaux de Sedum caeruleum et Sedum pubescens.	203
44	Inhibition du radical DPPH par les extraits de S. caeruleum et S. pubescens	204

45	Activité des extraits de Sedum caeruleum sur les ions chélates	208
46	Inhibition du CUPRAC par les extraits de Sedum caeruleum	209
47	Inhibition du CUPRAC par les extraits de Sedum pubescens	210
48	Activité de blanchissement du β-carotène par les extraits de <i>Sedum</i> <i>caeruleum</i>	212
49	Activité de blanchissement du β-carotène par les extraits de <i>Sedum</i> <i>pubescens</i>	213
50	Activité antiradicalaire (ABTS) des extraits de Sedum pubescens	214
51	Inhibition de l'acétylcholinestérasepar les extraits de Sedum caeruleum	215
52	Inhibition de labutyrylcholinestérase par les extraits de Sedum caeruleum	217
53	Activité anti-inflammatoire in vivo de Sedum caeruleum	219
54	Résultats de l'activité antibactérienne de l'ECSC	220

Liste des figures

Nº	Titre	Page
1	Photos de la plante sedum caeruleum.	11
2	Photos de la plante Sedum pubescens	11
3	Structures des acides phénoliques isolés du genre Sedum	16
4	Squelette de base des flavonoïdes	17
5	Structures des flavonoïdes isolés du genre Sedum	29
6	Structures des coumarines isolées du genre Sedum	31
7	Structures des terpenoides isolés du genre Sedum	34
8	Structures des alcaloïdes isolés du genre Sedum	39
9	Structures des mégastigmanes isolés du genre Sedum	41
10	Structures des autres composés isolés du genre Sedum	42
11	Détection des acides gras par LC/MS/MS	55
12	Classification des polyphénols	59
13	Nomenclature adoptée pour le retrocyclisation et différents clivages observés	62
	dans cette étude	
14	Fréquence d'utilisation des méthodes d'évaluation in vitro de l'activité	70
	antioxydante	
15	Principaux composés naturels (ou synthétisés) possédant des propriétés	71
	antioxydantes	
16	Transformation du radical DPPH [•] en DPPH	73
17	Formation et piégeage du radical ABTS ⁺⁺ par un antioxydant donneur de H [•]	75
18	Réduction du complexe chromogène de Cu ⁺² -Nc	76
19	Sites d'ions métalliques par les flavonoïdes	77
20	Mécanisme chimiques de la méthode d'Ellman's	78

21	Schéma d'extraction de Sedum caeruleum	90
22	Spectre RMN ¹ H du produit F60 (CD ₃ OD,400 MHz)	120
23	Spectre RMN ¹ H étalé du produit F60 (CD ₃ OD,400 MHz)	121
24	Spectre RMN ¹ H du produit AC14 (CD ₃ OD,400 MHz)	126
25	Spectre RMN ¹ H étalé 1 du produit AC14 (CD ₃ OD,400 MHz)	127
26	Spectre RMN ¹ H étalé 2 du produit AC14 (CD ₃ OD,400 MHz)	128
27	Identification par HPLC du produit AC14	129
28	Spectre RMN ¹ H du produit AC122 (CD ₃ OD,400 MHz)	135
29	Spectre RMN ¹ H étalé 1 du produit AC122 (CD ₃ OD,400 MHz)	136
30	Spectre cosy ¹ H- ¹ H du produit AC122 (CD ₃ OD,400 MHz)	137
31	Spectre HSQC ¹ H- ¹ H du produit AC122 (CD ₃ OD, 100 MHz)	138
32	Chromatogramme LC/MS/MS du produit AC122	139
33	Spectrométrie de masse LC/MS/MS du produit AC122	139
34	Spectre RMN ¹ H du produit F19 (DMSO-d ₆ , 400 MHz)	142
35	Spectre RMN ¹ H étalé du produit F19 (DMSO-d ₆ , 400 MHz)	144
36	Spectre Dept 135 du produit F19 (DMSO-d ₆ , 100 MHz)	145
37	Spectre Dept 135 étalé du produit F19 (DMSO-d ₆ , 100 MHz)	146
38	Spectre COSY étalé du produit F19 (DMSO-d ₆ , 400 MHz)	147
39	Spectre COSY étalé du produit F19 (DMSO-d ₆ , 400 MHz)	148
40	Spectre HSQC du produit F19 (DMSO-d ₆ , 400 MHz)	149
41	Spectre HSQC du produit F19 (DMSO-d ₆ , 400 MHz)	150
42	Spectre HMBC du produit F19 (DMSO-d ₆ , 400 MHz)	151
43	Spectre HMBC du produit F19 (DMSO-d ₆ , 400 MHz)	152
44	Spectre RMN ¹ H du produit F75 (DMSO-d ₆ ,400 MHz)	156

45	Spectre RMN ¹ H du produit F75 (DMSO-d ₆ ,400 MHz)	157
46	Spectre RMN ¹ H du produit F75 (DMSO-d ₆ ,400 MHz)	168
47	Spectre RMN ¹ H du produit F75 (DMSO-d ₆ ,400 MHz)	169
48	Spectre HSQC du produit F75 (DMSO-d ₆ ,400 MHz)	161
49	Spectre HSQC étalé du produit F75 (DMSO-d ₆ ,400 MHz)	162
50	Spectre COSY du produit F75 (DMSO-d ₆ ,400 MHz)	163
51	Spectre HMBC du produit F75 (DMSO-d ₆ ,400 MHz)	164
52	Spectre RMN ¹ H du produit F72 (CD ₃ OD,400 MHz)	167
53	Spectre RMN ¹ H du produit F72 (DMSO-d ₆ ,400 MHz)	168
54	Spectre RMN ¹ H du produit F72 (DMSO-d ₆ ,400 MHz)	169
55	Spectre RMN ¹ H du produit F72 (CD ₃ OD,400 MHz)	170
56	Spectre Dept 135 du produit F72 (DMSO-d ₆ , 100 MHz)	171
57	Spectre Dept 135 du produit F72 (DMSO-d ₆ , 100 MHz)	172
58	Chromatogramme de l'ionisation positive de l'extrait butanolique de S.caeruleum	174
59	Chromatogramme de l'ionisation négativede l'extrait butanolique de S.caeruleum	174
60	Chromatogramme du produit 1	175
61	Spectre de masse du produit 1	175
62		
	Chromatogramme du produit 2	176
63	Spectre de masse du produit 2	176 176
63 64	Chromatogramme du produit 2 Spectre de masse du produit 2 Chromatogramme du produit 3	176 176 177
63 64 65	Chromatogramme du produit 2 Spectre de masse du produit 2 Chromatogramme du produit 3 Spectre de masse du produit 3	176 176 177 177
63 64 65 66	Chromatogramme du produit 2 Spectre de masse du produit 2 Chromatogramme du produit 3 Spectre de masse du produit 3 Chromatogramme du produit 4	176 176 177 177 178
63 64 65 66 67	Chromatogramme du produit 2 Spectre de masse du produit 2 Chromatogramme du produit 3 Spectre de masse du produit 3 Chromatogramme du produit 4 Spectre de masse du produit 4	176 176 177 177 178 178

69	Spectre de masse du produit 5	179
70	Chromatogramme du produit 6	180
71	Spectre de masse du produit 6	180
72	Chromatogramme du produit 7	181
73	Spectre de masse du produit 7	181
74	Chromatogramme du produit 8	182
75	Spectre de masse du produit 8	182
76	Chromatogramme du produit 9	183
77	Spectre de masse du produit 9	183
78	Chromatogramme du produit 10	184
79	Spectre de masse du produit 10	184
80	Chromatogramme du produit 11	185
81	Spectre de masse du produit 11	185
82	Chromatogramme du produit 12	186
83	Spectre de masse du produit 12	186
84	Chromatogramme du produit 13	187
85	Spectre de masse du produit 13	187
86	Chromatogramme du produit 14	188
87	Spectre de masse du produit 14	188
88	Chromatogramme du produit 15	189
89	Spectre de masse du produit 15	189
90	Chromatogramme du produit 16	190
91	Spectre de masse du produit 16	190
92	Chromatogramme du produit 17	191

93	Spectre de masse du produit17	191
94	Chromatogramme du produit 18	192
95	Spectre de masse du produit 18	192
96	Chromatogramme du produit 19	193
97	Spectre de masse du produit 19	193
98	Chromatogramme du produit 20	194
99	Spectre de masse du produit 20	194
100	Chromatogramme du produit 21	195
101	Spectre de masse du produit 21	195
102	Chromatogramme du produit 22	196
103	Spectre de masse du produit 22	196
104	Chromatogramme du produit 23	197
105	Spectre de masse du produit 23	197
106	Activité antiradicalaire (DPPH) des extraits de S. caeruleum et S. pubescens	205
107	Chromatogrammes d'utilisation de l'HPLC pour l'évaluation de l'activité antiradicalaire DPPH	207
108	Activité métal chélate des extraits de Sedum caeruleum	208
109	Test de la capacité antioxydante par réduction du cuivre CUPRAC par les	209
	extraits de Sedum caeruleum	
110	Test de la capacité antioxydante par réduction du cuivre CUPRAC par les	211
	extraits de Sedum pubescens	
111	Activité de blanchissement du β-carotène par les extraits de Sedum	212
	caeruleum	
112	Activité de blanchissement du β-carotène par les extraits de Sedum	213
	pubescens	
113	Activité antiradicalaire (ABTS) des extraits de sedum pubescens	214
114	Inhibition de l'acétylcholinestérase par les extraits de Sedum caeruleum	216

115	Inhibition de la butyrylcholinestérase par les extraits de Sedum caeruleum	217

Introduction générale

D'après les estimations, 80 pour cent des substances utilisées sont d'origine végétale [1]. La dépendance vis-à-vis des plantes est particulièrement marquée dans les pays en voie de développement, où la médecine est souvent absente ou trop coûteuse.

L'emploi de plantes médicinales sous diverses formes est lié à la médecine que l'on appelle traditionnelle, qui a été la médecine de l'humanité pour des millénaires et continue de l'être pour la population mondiale [2].

Les plantes médicinales constituent une source infinie de substances à activités biologiques et pharmacologiques très variées [3].

Il y a environ 200 ans, Friedrich Sertümer isole le premier composé pur et pharmacologiquement actif d'une plante : la morphine, du latex de *Papaver somniferum*. Un paradigme s'opère alors : il est désormais possible de purifier, de caractériser et d'étudier les substances responsables de l'activité biologique d'une plante. La pharmacologie prend son essor, et, par la suite, de nombreuses substances actives sont découvertes et caractérisées.

Une étude récente publiée dans le Lancet, portant sur 170 000, personnes montre que des antioxydants de synthèse (vit. A,C,E +Sélénium) ne protègent pas contre le cancer mais plus encore que leur association avec du bêta-carotène de synthèse augmente le risque de mortalité normale [4].

Une autre étude réalisée à Baltimore sur 135 000 patients révèle que la vitamine E de synthèse à dose élevée pourrait augmenter la mortalité, en devenant pro-oxydante, alors que la vitamine E naturelle est un antioxydant reconnu [5].

Pour cela, il ya une tendance croissante à trouver des antioxydants naturels sûrs et efficaces à utiliser dans les industries alimentaires et pharmaceutiques [6].

Selon Atta-ur-Rahman et Choudhary [7], les antioxydants réguliers peuvent arrêter ou ralentir la dégénérescence neuronale qui peut empêcher la progression de la maladie d'Alzheimer. Cette maladie est la forme grave de la démence, et les médicaments inhibiteurs de l'acétylcholinestérase (AChE) sont utilisés pour traiter la maladie d'Alzheimer. La plupart de ces médicaments provoquent un trouble du rythme cardiaque (bradycardie), du foie, de l'estomac et de l'intestine et causent des toxicités [8]. Pour ces raisons, l'amélioration et la manipulation des anticholinestérasiques et des antioxydants de la nature sûre sont souhaitées.

1

Les chercheurs intéressés par l'identification et la détermination des substances actives dans un remède à base de plantes doivent développer des méthodes validées pour la caractérisation chimique complète et la quantification des principaux composés. Cependant, les effets pharmacologiques souvent ne peuvent pas être attribués à une certaine substance active, mais une sorte de constituants contribuent à eux ou un effet de synergie entre les composés existe.

Par ailleurs, les composés phénoliques sont présents dans le matériel végétal dans une grande variabilité structurale, ils ont été rapportés par certaines études récentes de manifester diverses activités pharmacologiques, comme anti-cancer anti-inflammatoire, hépatoprotectrice , anti-athérogène, antimicrobienne et des effets oestrogéniques [9-13]. HPLC-MS/MS est la méthode de choix pour l'analyse des composés phénoliques, car elle est une technique puissante, robuste et flexible.

La flore algérienne est riche en plantes médicinales traditionnellement utilisées pour leurs propriétés multiples. Le genre *Sedum* appartient à la famille des Crassulaceae qui est composée de plus de 1500 espèces de plantes succulentes que l'on retrouve à travers l'hémisphère nord. Les *Sedum* (ou orpins) peuvent être des plantes de rocaille ou de petits arbustes. Ils stockent de l'eau dans leurs feuilles et donnent des fleurs en étoile à 5 branches (parfois 4 ou 6). Ils ont généralement 2 fois plus d'étamines que de pétales [14].

Dans ce contexte de recherche de nouvelles molécules naturelles qui peuvent remplacer les molécules synthétiques et, en continuité aux travaux réalisés dans le laboratoire d'obtention de substances thérapeutiques, nous avons effectué des travaux phytochimiques et biologiques sur deux espèces du genre *Sedum: Sedum caeruleum* et *Sedum pubescens*

Ce travail est divisé en trois parties dont la première a été consacrée à des généralités et données bibliographiques. Le premier chapitre de cette partie est un aperçu bibliographique sur la famille des Crassulaceae comportant une présentation botanique et géographique de la famille des Crassulaceae et du genre *Sedum* suivie par une description des propriétés pharmacologiques et travaux antérieurs effectués sur le genre *Sedum* et qui se termine par le positionnement des deux espèces *S. caeruleum* et *S. pubescens* dans la systématique des Crassulaceae.

2

Le deuxième chapitre a été consacré aux généralités sur la technique LC-ESI-MS/MS, et à son utilisation dans l'identification des polyphénols. Le troisième chapitre comprend des généralités sur les activités antioxydante, anticholinestérase, anti-inflammatoire, cytotoxique et antibactérienne.

La seconde partie concerne la description du matériel végétal et les méthodes d'extractions, séparations et analyse LC-ESI-MS/MS ainsi que les méthodes d'évaluation des activités antioxydante, anticholinestérase, anti-inflammatoire, cytotoxique et antibactérienne.

La dernière partie de ce travail comprend la discussion des résultats de l'étude phytochimique de la plante *Sedum caeruleum* ainsi que les composés identifiés par analyse LC/MS/MS de l'extrait butanolique de cette plante en plus des résultats d'étude des activités antioxydante, anticholinestérase, anti-inflammatoire, cytotoxique et antibactérienne.

Références :

- A.B. Cunningham, 1993. African medicinal plants. Setting priorities at the interface between conservation and primary healthcare. People and Plants Working Paper. UNESCO
- 2- W. WHO. Traditional Medicine Strategy 2002-2005, rap. tech., Geneva. WHO, 2002.
- 3- L. Hambaba, K. Boudjellal, M. Abdeddaim, M.C. Aberkane, K. Boudiaf, 2012. Étude in vitro des activités antimicrobienne et antioxydante des extraits du fruit d ' *Elaeagnus angustifolia* L .Phytochemistry, 350–356.
- 4- G. Bjelakovic, D. Nikolova, RG. Simonetti, C. Gluud, 2004 Antioxidant supplements for prevention of gastrointestinal cancer. A systematic review and meta-analysis. Lancet, 364, 1219-28
- 5- M. Schürks, R. J. Glynn, P. M. Rist, C. Tzourio, T. Kurth, 2010. Effects of vitamin E on stroke subtypes: meta-analysis of randomised controlled trials, BMJ., 341. 5702
- 6- A. Scalbert, C. Manach, C. Morand, C. Remesy, 2005. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci., 45, 287–306.
- 7- A. Atta-ur-Rahman, M.I. Choudhary, 2001. Bioactive natural products as a potential source of new pharmacophores: A theory of memory. Pure. Appl. Chem., 73, 555–60.
- 8- I. Dokmeci, 2000. Fundamentals of Pharmacology. Istanbul, Turkey. Nobel Tip Kitabevi Press.
- 9- F. Stanley, M.D. Wainapel, M.P.H. Avital, M.D. Fast, 2003. Antioxidants and the Free Radical Theory of Degenerative Disease », Alternative Medicine and Rehabilitation, in: Hoffman, R.L. (ed) Nutritional therapy in Rehabilitation. Demos Medical Publishing, New York
- 10-D. Chen, K.G. Daniel, DJ. Kuhn, A. Kazi, M. Bhuiyan, L. Li, Z. Wang, S.B. Wan, W.H. Lam, T.H. Chan, Q.P. Dou, 2004 Green tea and tea polyphenols in cancer prevention. Front. Biosci., 1, 9, 2618-31.
- 11- M.J. Laughton, P.J Evans, M.A. Moroney, J.R. Hoult, B. Halliwell, 1991. Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability. Biochem. Pharmacol. 42, 9, 1673-81.
- 12-E.N. Frankel, J. Kanner, J.B. German, E. Parks, J.E. Kinsella,1993. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet, 341, 454-7.

Introduction générale

- J.M. Orgogozo, J.F. Dartigues, S. Lafont, L. Letenneur, D. Commenges, R. Salamon,
 S. Renaud, M.B. Breteler, 1997. Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev Neurol., 153, 3, 185-92.
- 14-M. Kozieradzka-Kiszkurnoa., B. J. Płachno, J. Bohdanowicz, 2011. Are unusual plasmodesmata in the embryo-suspensor restricted to species from the genus *Sedum* among Crassulaceae., Flora, 206, 684–690

Partie 1

Généralités et données bibliographiques

Aperçu bibliographique sur la famille des Crassulaceae

1. Généralités sur la famille des Crassulaceae

1. Présentation botanique et géographique de la famille des Crassulaceae

La famille des Crassulaceae comprend environ 33 genres et 1500 espèces, de répartition géographique mondiale, à l'exception de l'Australie et des îles du Pacifique. Ces genres sont : *Adromischus, Aeonium, Aichryson, Chiastophyllum, Cotyledon, Crassula, Diamorpha, Dudleya, Echeveria, Graptopetalum, Greenovia, Hylotelephium, Hypagophytum, Jovibarba , Kalanchoe, Lenophyllum, Monanthes, Orostachys, Pachyphytum, Perrierosedum, Pistorinia, Prometheum, Pseudosedum, Rhodiola, Rosularia, Sedum, Thompsonella, Tylecodon, Umbilicus, Phedimus, Villadia [1].*

Comme le nom l'indique *(Crassus* = épais) ce sont des plantes plus ou moins succulentes, caractérisées par un métabolisme photosynthétique particulier (Métabolisme C.A.M. pour Crassulacean Acid Metabolism).

Cette famille comporte des espèces très différentes les unes des autres : de la simple herbe, à la rosette en passant par l'arbuste. Chez les succulentes, les feuilles ne sont pas les seules à assurer le rôle de "réserve". Le tronc et les branches de certaines espèces assurent aussi cette fonction : *Crassula ovata, Sedum frutescens...* La famille est répartie en 6 sous-familles : *Crassuloideae, Kalanchoideae, Cotyledonoideae, Echeverioideae, Sedoideae* et *Sempervivoideae*. Cette répartition a été faite en fonction de la structure de la fleur [1].

Généralement, les plantes de cette famille sont xérophiles et souvent rupicoles, herbacées ou plus ou moins ligneuses, plus ou moins succulentes, parfois bulbeuses, vivaces, rarement annuelles ou bisannuelles avec des feuilles succulentes parfois avec tronc succulent ou caudex. Les feuilles sont opposées ou alternes, généralement entières, sans stipules, toujours plus ou moins charnues, souvent réunies en une rosette terminale. L'inflorescence habituellement est en corymbe ou en cymes, ou fleurs solitaires [1].

Les fleurs actinomorphes, habituellement hermaphrodites, cycliques, (3-)5(-n) mères. Calice ayant (3-)5(-30) sépales libres en 1 verticille. Corolle formée de (3-)5(-30) pétales en 1 verticille, généralement libres ou parfois soudés à la base. Androcée obdiplostémone ou haplostémone constitué de (3-)5(-30) étamines généralement libres ou parfois soudées à la base ; anthères plus ou moins basifixes, introrses, à déhiscence longitudinale. Gynécée formé de (3-)5(-30) carpelles libres ou plus ou moins soudés à la base ; ovaire supère ; nombreux ovules anatropes-épitropes en placentation submarginale ; style court ou allongé.

Le fruit : groupe de follicules. Graines minuscules, peu albuminées ou exalbuminées ; embryon droit.

Les Crassulaceae sont une famille de plantes cosmopolites plutôt adaptées aux régions sèches et chaudes. Cette famille connaît son maximum de développement dans les régions méditerranéennes (pourtour de la Méditerranée, mais aussi en Afrique du Sud, en Chine et en Corée, sur la côte ouest de l'Amérique du Nord, au Chili, en Nouvelle-Zélande et en Australie). Un certain nombre d'espèces se rencontrent dans les terrains rocailleux en montagne [2].

La culture des plantes appartenant à cette famille est très variable suivant les genres et les espèces, beaucoup de Crassulacées ont largement développé différents modes de reproduction végétative (bulbilles, stolons, boutures naturelles à partir de fragments de feuilles ou de tiges, etc.).

2. Intérêt pharmacologique, nutritionnel et commercial

Les Crassulaceae sont des plantes très recherchées pour l'établissement de jardins de rocailles ou pour les bordures. Certaines espèces ont des propriétés médicinales intéressantes comme c'est le cas des Nombrils-de-Vénus (*Umbilicus pendulinus*), plantes très communes des régions siliceuses où elles colonisent les rochers, les murs ou les talus.

Les plantes succulentes (dites aussi plantes grasses) sont reconnaissables à leurs feuilles, tiges ou racines charnues, dans lesquelles elles stockent l'eau et des éléments nutritifs appelés sucs. Ces sucs possèdent de nombreuses propriétés, et sont utilisés de diverses façons. Beaucoup d'autres plantes de la famille des Crassulaceae, sont employées depuis des siècles pour produire ou préparer des médicaments [3].

Par exemple, les feuilles de *Kalanchoe pinnata* peuvent être utilisées dans la médecine traditionnelle pour guérir le mal de tête, pétries ou bien employées fraîches par coupes ou abrasions. La décoction de feuilles peut en outre être employée pour le traitement de la toux, du rhume et de la fièvre. Les feuilles peuvent même trouver emploi pour préparer des bains relaxants et tonifiants. Finalement les feuilles triturées miscibles peuvent être utilisées pour le traitement de la mastite.

En dehors de ceux-ci utilisés en médecine traditionnelle, les propriétés pharmacologiques des *Kalanchoe* ont été récemment démontrées par des études scientifiques [4].

Par exemple, l'extrait chaud des feuilles de *K. pinnata* a montré des efficacités comme agent antifongique alors que l'extrait alcoolique (300 mg/kg) a montré des activités anti-

inflammatoire [5], antiulcer [6], antileishmanique [7], antimicrobienne [8].et hepatoprotectrice [9].

Comme l'orpin rouge (*Sedum purpureum*), une mauvaise herbe que certains considèrent comme une verdure de choix, la rhodiole est comestible. Les Inuits de l'Alaska et du Canada ont consommé, souvent en grande quantité, ses tiges et ses feuilles charnues comme légume vert. La plante possède une agréable saveur acidulée. La racine est également comestible [10].

Plusieurs espèces *Kalanchoe* ont été utilisées dans le traitement de : Toux, rhum, rhinite sinusite, otite, fièvre, céphalées, conjonctivite, épilepsie [11]. Elles sont utilisées aussi pour traiter la diarrhée et les vomissements [12].

La plante *Rhodiola rosea* L. est une plante d'altitude européenne, connue depuis fort longtemps et fait partie des pharmacopées russe et scandinave. Elle est utilisée traditionnellement pour lutter contre la fatigue, augmenter les performances et comme immunostimulant. Des études récentes indiquent que *Rhodiola rosea* L. est un adaptogène à effets beaucoup plus rapides que ceux du ginseng (*Panax ginseng* C.A. Meyer) [13].

3. Chimie des Crassulaceae

On rencontre dans la famille des *Crassulaceae* diverses familles de composés. Nous allons citer seulement les métabolites secondaires les plus distribués dans les différentes espèces de la famille qui sont : Les bufadienolides [14], les flavonoides [15], les triterpènoides [16], les stérols [17], et les acides gras [18], les composés cyanogeniques [19], les prothoanthocyanidines [20], les alcaloides [21] et les tanins [22].

4. Le Genre Sedum

4.1. Présentation

Le Sedum ou « Orpin » (de « or » et « peint ») est le genre le plus important de la famille des Crassulaceae avec 420 espèces de plantes succulentes que l'on retrouve à travers l'hémisphère nord. Son nom, *Sedum*, créé en 1735 à plusieurs origines possibles selon les auteurs : Il viendrait du latin « sedare » qui signifie calmer en allusion aux propriétés médicinales de certains *Sedum*. Ou alors de « sedo » qui signifie s'asseoir en référence à la manière dont certaines espèces s'accrochent aux rochers.

Les *Sedum* peuvent être des plantes de rocaille ou de petits arbustes. Ils stockent de l'eau dans leurs feuilles et donnent des fleurs en étoile à 5 branches (parfois 4 ou 6). Ils ont généralement 2 fois plus d'étamines que de pétales.

Le *Sedum* est une plante grasse vivace qui peut mesurer jusqu'à 60 cm de haut. Ce sont des plantes vivaces ou annuelles, à rameaux érigés ou couchés s'enracinant au contact du sol. Certaines espèces forment des rosettes. Quelques *Sedum* atteignent 1m de haut (*S. frutescens* et *S. oxypetalum*) mais la plupart mesurent 5-20 cm de haut.

Les tiges sont parfois épaissies et lignifiées à la base. Les racines sont généralement fibreuses et dans quelques cas tubéreuses. Les feuilles sont alternes, rarement opposées ou verticillées par 3 ou 4. Elles sont sessiles ou pétiolées, succulentes et cylindriques, semicylindriques ou planes parfois réunies en rosettes basales. Les tiges fertiles souvent érigées, sont terminales ou quelquefois axillaires. Les inflorescences en cymes ou corymbes comportent habituellement des bractées (1 à 2 par fleurs). Les fleurs sont hermaphrodites (4)5(-9)-mères. Elles sont sessiles ou pédicellées. Les sépales sont verts, sessiles ou libre et éperonnés. Ils sont souvent plus courts que les pétales. Les pétales sont soit jaunes, blanches, roses, pourpre ou rougeâtre. Elles sont libres ou légèrement connées. Les anthères sont globulaires à oblongues, jaune à rouge parfois blanchâtre ou rose. Les Etamines en nombre double de celui des pétales. Les carpelles sont habituellement sessiles et faiblement connées à la base, moins fréquemment libres [23].

Les fruits sont des follicules plus ou moins dressés ou en étoile, à paroi ligneuse ou parcheminée.

Les graines font environ 1mm. Elles sont ovoïdes à ellipsoïdales.

Les Sedum se maintiennent facilement en culture et sont peu exigeants.

Ce genre est présent à travers toutes les zones sub-tropicales et tempérées de l'hémisphère nord. Quelques espèces se rencontrent dans le Centre-Est Africain et en Amérique du Sud.

Les Sedum de chaque continent sont endémiques de leur continent respectif.

Ce sont des plantes pionnières, capables de pousser dans des milieux inhospitaliers (sans parler du manque d'eau). Certaines espèces ont été observées sur serpentine, d'autres installées à quelques mètres de la mer et subissant les embruns sans avoir l'air d'en souffrir. La pollinisation est entomophile. La dissémination des graines se fait par l'eau et le vent. Les *Sedum* sont capables de pousser dans une faible épaisseur de terre. Ils nécessitent peu d'entretien et ont des racines retenant bien le substrat, ils résistent à la sécheresse et sont

esthétiques en toutes saisons. 56 espèces sont inscrites sur les listes de l'IUCN (Union Internationale pour la Conservation de la Nature) [23].

En Algérie il y a 27 espèces de *Sedum* (Quezel Santa 1963) notre étude portera sur les espèces *Sedum caeruleum* et *Sedum pubescens*

4.2. La plante Sedum carealeum

Le genre *Sedum* appartient à la famille des crassulacées et est composé de plus de 400 espèces de plantes succulentes que l'on retrouve à travers l'hémisphère nord. Les sédums (ou orpins) peuvent être des plantes de rocaille ou de petits arbustes. Ils stockent de l'eau dans leurs feuilles et donnent des fleurs en étoile à 5 branches (parfois 4 ou 6). Ils ont généralement 2 fois plus d'étamines que de pétales.

4.2.a. Position systématique :

4.2.b. Synonymie du sedum caereleum

- Oreosedum caeruleum (L.) Grulich, 1984
- Sedum azureum Desf., 1798
- Sedum heptapetalum Poir., 1789

4.2.c. Description botanique :

Sedum caeruleum Vahl, plante annuelle de 5-15 cm., glabrescente, à racine grêle ; tige dressée ou ascendante, souvent rameuse dès la base ; feuilles éparses, oblongues en massue, très obtuses, glabres ; fleurs bleues, à pédicelles plus longs que la fleur, formant une panicule large, très rameuse, un peu pubescente-glanduleuse ; 6-7 sépales ; 6-7 pétales, lancéolés, 2-3 fois plus longs que le calice ; 10-15 étamines ; carpelles dressés, ovales, terminés par le style aussi long qu'eux. Floraison Avril-juin. Rochers de la Corse, où il est assez abondant. Sardaigne, Italie, Sicile ; Malte ; Tunisie et Algérie.

Aperçu bibliographique sur la famille des Crassulaceae

Figure 9. Photos de la plante sedum caeruleum. [Ref].

4.3. Sedum pubescens

4.3.a Position systématique

4.3.b. Description botanique

Figure 10. Photos de la plante Sedum pubescens [Ref].

5. Propriétés pharmacologiques du genre Sedum

Le *Sedum acre* L. a été utilisé dans la médecine traditionnelle européenne depuis très longtemps. La plante fraîche possède un effet antiscorbutique et anesthétique local, elle est utilisée contre l'irritation de la peau et la diphtérie [24]. Cette activité pharmacologique est associée à la présence des alcaloïdes.

Plusieurs espèces de *Sedum* ont été utilisées comme salade végétale [25] et condiment, mais le *Sedum acre* est utilisé uniquement comme condiment (peper-like) d'où il a pris son nom commun wall-paper.

L'espèce *Sedum sarmentosum* est une plante médicinale utilisée en Chine, Japon et Corée, elle est disponible dans le commerce comme émolliente, vulnéraire, astringente, régulateur gastrique et rénal, mais en trop grande quantité, elle provoque des maux d'estomac [26]

L'usage et les propriétés de quelques plantes du genre Sedum sont résumés dans le tableau 1.1

Plantes	Usages et propriétés	Références
S. dendroideum	Traitement gastrique (inflammation, ulcère) Anti-inflammatoire, antinociceptive, anti-oxydante	27
(S. praeatium)	Traitement des yeux, contraceptif.	28
S. sarmentosum	Hypatoprotectrice, antitumorale (réduit les cellules hepatoma). Traitement hepatocellulaire Carcinoma	29
	Anti-inflammatoire, anti-angiogenique, anti-nociceptive	30
S. telephium L.	 Tous types d'inflammation Ses feuilles sont anti-inflammatoires, analgésiques, keratolytique, effet régénérateur des cellules de la peau. Traitement de l'eczéma. 	31, 32
S. cressipes	Emmolliente, vulnéraire et résolvente	33
S. kamtchaticum	Anti-inflammatoire, anti-anxiété, la circulation du sang.	34
S. formosanum	Traitement de diabète	35

Tableau 1.1 Usages et propriétés de quelques espèces du genre Sedum

5.1. Travaux antérieurs sur le genre Sedum

D'après l'étude bibliographique que nous avons menée, les travaux phytochimiques effectués sur le genre *sedum* ont permis essentiellement l'isolement de flavonoides, alcaloides, acides phénoliques, lactones insaturés, triterpènes et de composés cyanogeniques, qui sont rassemblés dans des tableaux (2-6), suivis des structures respectives données dans les figures (1-5).

5.1.1. Les acides phénoliques

Les acides phénoliques appartiennent, avec les flavonoides et les tannins, à la famille des polyphénols, qui est thérapeutiquement intéressante.

Nous avons inventorié 15 acides phénoliques appartenant au genre *Sedum*, dont un seul composé glucosylé isolé de l'espèce *Sedum alfredi*. Les composés répertoriés sont dressés dans le tableau 1.2 suivi de leurs structures dans la figure 1.3.

Acide phénolique isolés [N° de structure]	Espèce	Référence
Acide caféique [1]	S. Takesimense	36
	S. populifolium	37
	S. reflexum	38
	S. acre	39
	S. maximum	39
	S. aizoon	40
	S. ewersii	40
	S. hybridum	40
	S. kamtchaticum	40
	S. purpureum	40
	S. telephium	40
Acide <i>p</i> -coumarique [2]	S. reflexum	38
	S. acre	39
	S. album	39
	S. maximum	39
	S. alfredi	41

Tableau 1.2. Distribution des Acides phénoliques dans le genre Sedum

Partie 1 Généralités et données bibliographiques

Chapitre 1

Acide ferulique [3]	S. Takesimense	36
	S. reflexum	38
	S. acre	39
	S. album	39
	S. maximum	39
	S. aizoon	40
	S. ewersii	40
	S. hybridum	40
	S. purpureum	40
	S. telephium	40
Acide sinapique [4]	S. reflexum	36
	S. acre	37
Acide syringique [5]	S. reflexum	36
	S. acre	37
	S. maximum	37
	S. sarmentosum	41
	S. aizoon	40
	S. ewersii	40
	S. hybridum	40
	S. kamtchaticum	40
	S. purpureum	40
	S. telephium	40
Acide protocatechuique [6]	S. reflexum	38
	S. acre	39
	S. album	39
	S. maximum	39
Acide vanillique [7]	S. reflexum	38
	S. acre	39
	S. album	39
	S. maximum	39
	S. aizoon	40
	S. ewersii	40

Partie 1 Généralités et données bibliographiques

Chapitre 1

	S. hybridum	40
	S. kamtchaticum	40
	S. purpureum	40
	S. telephium	40
Acide 3,5-dimethoxybenzoique-4-O-glucoside [8]	S. alfredi	42
Acide gallique [9]	S. Takesimense	36
	S. kautschaticum	43
	S. middendorffianum	43
	S. selskianum	43
	S. pallescens	42
	S. reflexum	38
	S. aizoon	44
	S. acre	40
	S. ewersii	40
	S. kamtchaticum	40
	S. purpureum	40
	S. telephium	40
	S. hybridum	39
Methylgallate [10]	S. Takesimense	36
	S. aizoon	44
Acide methylester protocatechuique [11]	S. acre	39
Acide gentisique [12]	S. reflexum	38
	S. acre	40
	S. aizoon	40
	S. ewersii	40
	S. hybridum	40
	S. purpureum	40
	S. telephium	40
Acide <i>p</i> -hydroxybenzoique [13]	S. reflexum	38
	S. acre	39
	S. album	39
	S. maximum	39

Partie 1 Généralités et données bibliographiques

01	· · .	
Cha	anitre	

Acideresorcylique [14]	S. reflexum	38
Acide salicylique [15]	S. reflexum	38
	S. acre	39

[5]- Acide syringique ($R_1 = R_2 = OCH_3$, $R_3 = R_4 = H$).

[11] - Methylester protocatchuique ($R_1 = R_3 = H, R_2 = OH$,

- [6]- Acide protocatchuique ($\ddot{R}_1 = R_3 = \ddot{R}_4 = H, \ddot{R}_2 = OH$).
- [7]- Acide vanillique ($R_1 = R_3 = R_4 = H, R_2 = OCH_3$).
- [8]-Acide 3,5-dimethoxybenzoique-4-O-glucoside
- $(R_1 = R_2 = OCH_3, R_3 = Glu, R_4 = H)$
- [9]- Acide gallique ($R_1 = R_2 = OH, R_3 = R_4 = H$). [10]- Methylgallate ($R_1 = R_2 = OH, R_3 = H, R_4 = CH_3$).
- [3]- Acide férulique $(R_1 = OCH_3, R_2 = H)$.
- [4]- Acide sinapique ($R_1 = R_2 = OCH_3$).

[2]- Acide p-coumarique ($R_1 = R_2 = H$).

[1]- Acide caféique (R_1 =OH, R_2 = H).

[12]- Acide gentisique $(R_1 = R_3 = OH, R_2 = H)$ **[13]**- Acide *p*-hydroxybenzoique $(R_1 = R_3 = H, R_2 = OH)$ **[14]**- Acide -resorcylique $(R_1 = R_2 = OH, R_3 = H)$ **[15]**- Acide salicylique $(R_1 = OH, R_2 = R_3 = H)$

 $R_4 = CH_3$).

Figure 1.3. Structures des acides phénoliques isolés du genre Sedum

5.1.2. Les flavonoïdes

Les flavonoïdes sont des dérivés du phénylpropane avec une composition de base C6-C3-C6. Le squelette original du groupe est une flavone, dans laquelle la liaison C3 a formé un noyau hétérocyclique pyranne. Dans la flavone le noyau hétérocyclique est totalement réduit. Il existe environ douze groupes connus de flavonoides qui ne différent les uns des autres que par l'état d'oxydation de ce noyau hétérocyclique. Les caractères qui permettent d'identifier les trois principaux groupes de flavonoïdes, les flavones, les flavonols et les anthocyanidines sont décrits dans la figure.1.4.

Les flavonoïdes sont des molécules responsables de la pigmentation des fleurs, des fruits et des graines. Ils jouent un rôle dans la protection contre les rayonnements ultraviolets

(UV), dans la défense des plantes, contre les micro-organismes pathogènes, dans la fertilité des plantes, dans les interactions plante-microbe. Ces molécules sont également douées de plusieurs propriétés biologiques : anti-oxydantes, anti-virales, anti-microbiennes, inhibitrices d'enzymes impliquées dans d'importantes fonctions cellulaires. Certaines possèdent des propriétés lipolytiques, protectrices de l'ADN, voire même anti-age.

Squelette de base des flavonoides

Flavones

Figure 1.4. Squelette de base des flavonoïdes

Le genre *Sedum* contient un grand nombre de flavonoïdes, qui sont répartis dans 7 groupes comme suit : 72 flavonols et 10 flavones dont la majorité sont glycosylés, 2 hydroflavones et 2 chalcones isolés d'une seule espèce le *Sedum sarmentosum*, 3 isoflavones (2 isolés de l'espèce *S. alfridi* et une de l'espèce *S. lineare*), 2 anthocyanidines qui sont cités dans 5 espèces et enfin 7 catéchines qui sont réparties dans 3 espèces (*S. stoloniferum, S. sediforme* et *S. litoreum*) (Tableau 1.3)

Flavonoïde isolé [N° de structure]	Espèce	Référence
Quercetine [16]	S. maximum	45
	S. acre	46
	S. populifolium	47
	S. purpureum	48
	S. hybridum	48
	S. ewersii	49
	S. telephium L.	50
	S. middendorffianum	47
	S. selskianum	47
	S. pallescens	47
	S. orchroleucum	51

Tableau 1.3. Distribution des Flavonoides dans le genre Sedum

	S. montanum	51
	S. sediforme	51
	S. album	52
	S. reflexum	38
	<i>S. aizoon</i> L	44
	S. takesimense	53
	S. montanum	54
	S. ruthenicum	55
	S. kautschaticum	47
	S. kamtchaticum	40
Quercetin-7- <i>O</i> - α-L-rhamnoside [17]	S. caucasium	56
	S. maximum	39
Quercetin-3- <i>O</i> - β-D-glucoside [18]	S. maximum	45
	S. acre	57
	S. hybridum	48
	S. reflexum	38
	S. stoloniferum	58
	S. sarmentosum	59
	S. aizoon	40
	S. ewersii	40
	S. purpureum	40
	S. telephium	40
Quercetin-3-α-L-O-rhamnosyl-7-O-β-D-	S. alfredi (S.	42
glucoside [19]	formosanum)	
(Rutine) Quercetin-3- <i>O</i> -α-D-rutinoside [20]	S. acre	46
	S. ruthenicum	55
	S. ewersii	49
	S. aizoon	40
	S. hybridum	40
	S. kamtchaticum	40
Quercetin-3- <i>O</i> -β-D-galactoside (Hyperoside)	S. populifolium	60
[21]	S. kautschaticum	60

C	hanitre	1
	naplue	1

Aperçu bibliographique sur la famille des Crassulaceae

Quercetin-3- <i>O</i> -β-D-glucosyl-7- <i>O</i> -α-D-	S. maximum	39
rhamnoside [22]	S. purpureum	48
	S. hybridum	48
	S. telephium L	50
Quercetin-3-a-D-O-neohesperidosyl-7-a-D-O-	S. telephium L	50
rhamnoside [23]	S. sarmentosum	61
Quercetin-3,7-di- <i>O</i> - β-D-glucoside [24]	S. acre	57
Quercetin-3,7-di- <i>O</i> - α-L-rhamnoside [25]	S. telephium L	50
	S. sarmentosum	61
Quercetin-3- <i>O</i> -α-L-rhamnoside [26]	S. maximum	39
	S. sediforme	62
	S. album	52
	S. reflexum	38
	S. ewersii	40
	S. aizoon	40
	S. hybridum	40
	S. kamtchaticum	40
	S. purpureum	40
	S. telephium	40
Quercetin-3,7-di- <i>O</i> -α-L-rhamnoglucoside [27]	S. hybridum	63
Quercetin-3-methoxy [28]	S. album	52
Quercetin-3-(2 ^{''} -galloyl)-α-L-rhamnoside [29]	S. aizoon L	44
Quercetin-3-(2"-galloyl)glucoside [30]	S. hybridum	40
	S. kamtchaticum	40
Quercetin-3- <i>O</i> -β-D-galactosido-(1-6)-O-β-D-	S. hybridum	40
xyloside [31]	S. ewersii	40
Quercetin-3- <i>O</i> -α-(6 ^{'''} -caffeoylglucosyl-β-1,2-		59
rhamnoside) [32]	S. sarmentosum	
Quercetin-3- <i>O</i> -α-(6 ^{'''} - <i>p</i> -coumaroylglucosyl-β-		59
1,2-rhamnoside) [33]	S. sarmentosum	
Quercetin-4'- <i>O</i> -β-D-glucoside [34]	S. album	52
Quercetin-3'- <i>O</i> -β-D-glucoside [35]	S. hybridum	63
Limocetrine (sedoflorigenin) [36]	S. acre	64
---	------------------	----
	S. sexangulare	65
	S. sarmentosum	66
	S. reflexum	38
Limocitrine-3- <i>O</i> -β-D-glucoside [37]	S. acre	64
	S. sexangulare	65
	S. sediforme	62
	S. reflexum	38
	S. alfredi (S.	42
	formosanum)	
	S. sarmentosum	66
Limocitrine-7- <i>O</i> -β-D-glucoside [38]	S. acre	57
Limocitrine-7- <i>O</i> -α-L-rhamnoside [39]	S. sexangulare	65
Limocitrine-3,7-di- <i>O</i> -β-D-glucoside [40]	S. acre	57
	S. slfredi (S.	41
	formosanum)	
	S. Sarmentosum	66
Limocitrine-3-O-(6"-O-p-coumaryl)glucoside	S. Alfredi (S.	41
[41]	formosanum)	
8-methoxyquercetine (Corniculatusine) [42]	S. orchroleucum	52
	S. montanum	52
	S. sediforme	52
	S. sexangulare	65
Corniculatusine-7- <i>O</i> -α-L-rhamnoside [43]	S. sexangulare	65
Corniculatusin-3,7- di- <i>O</i> -β-D-glucoside [44]	S. alfredi (S.	41
	formosanum)	
Gossypetine (8-hydroxyquercetine) [45]	S. populifolium	60
	S. album	52
	S. kautschaticum	61
	S. aizoon	40
	S. ewersii	40
	S. hybridum	67

Gossypetine-8-glucuronide [46]	S. album	52
Gossypetine-8- <i>O</i> -β-D-glucoside (Gossypine)	S. populifolium	60
[47]	S. kautschaticum	61
Gossypetine-8-O-xyloside [48]	S. takesimense	36
Gossypetine-7-O-xyloside [49]	S. ewersii	40
	S. hybridum	40
Kaempferol [50]	S. maximum	45
	S. acre	46
	S. populifolium	47
	S. purpureum	48
	S. hybridum	48
	S. ewersii	49
	<i>S. telephium</i> L	50
	S. middendorffianum	47
	S. selskianum	47
	S. pallescens	47
	S. ruthenicum	55
	S. kautschaticum	47
	S. aizoon	40
	S. kamtchaticum	40
	S. telephium	40
Kaempferol-7- <i>O</i> - β-D-glucoside [51]	S. purpureum	48
	S. sarmentosum	61
Kaempferol-7- <i>O</i> - α-L-rhamnoside [52]	S. maximum	39
	S. ewersii	49
	S. caucasium	56
	S. pallescens	68
Kaempferol-7-O-arabinoside [53]	S. populifolium	69
Kaempferol-3- <i>O</i> - α-L-rhamnoside [54]	S. sediforme	62
	S. stoloniferum	58
	S. maximum	39
	S. acre	40

|--|

Aperçu bibliographique sur la famille des Crassulaceae

	S. hybridum	40
	S. ewersii	40
	S. telephium	40
	S. purpureum	40
Kaempferol-3- <i>O</i> -β-D-glucoside (Astagalin) [55]	S. ruthenicum	55
Kaempferol-3-O-arabinoside (Astagalin) [56]	S. sarmentosum	59
Kaempferol-3,7-di- <i>O</i> -α-L-rhamnoside	S. maximum	39
(Kaempferitrine) [57]	<i>S. telephium</i> L	50
	S. pallescens	68
	S. dendroideum	70
	S. hybridum	71
Kaempferol-3,7-di- <i>O</i> -β-D-glucoside [58]	S. cressipes	72
Kaempferol-3- <i>O</i> -α-L-rhamnoside-7- <i>O</i> -β-D-	S. purpureum	48
glucoside [59]	S. hybridum	63
Kaempferol-3- <i>O</i> -β-D-glucosyl-7- <i>O</i> -α-L-	S. maximum	39
rhamnoside [60]	<i>S. telephium</i> L	50
	S. dendroideum	70
Kaempferol-3-O-α-L-rhamnosylglucoside-7-β-	C. day duai day wa	70
D-O-glucoside [61]	S. aenarolaeum	
Kaempferol-3- <i>O</i> -α-D-rhamnosylglucoside-7-α-	S. dendroideum	70
L-O-rhamnoside [62]	S. telephium	50
Kaempferol-3,7-di-O-α-L-rhamnosylglucoside	S. hubridam	71
[63]	S. nyoriaum	
Grosvenosine [64]	S. sarmentosum	61
Kaempferol-8-methoxy-3-O-α-L-	S. a ou que ou l'ano	73
rhamnosylglucoside-7- <i>O</i> - α-L-rhamnoside [65]	S. sexungulare	
Herbacetine-8-methoxy-3,7-di- <i>O</i> - β-D-glucoside	S. sarmantosum	62
[66]	5. surmentosum	
Kaempferol-8-hydroxy (Herbacetine) [67]	S. album	52
Kaempferol-8-methoxy (Sexangularitine) [68]	S. sexangulare	65
	S. acre	74
Rhodalidine [69]	S. takesimense	36

Sexangularitine-7-α-L-rhamnoside [70]	S. sexangulare	65
Kaempferol-4'- <i>O</i> - β-L-glucoside [71]	S. ewersii	49
Isorhamnetine-8-methoxy-3- <i>O</i> -β-D-glucoside	S. acre	41
Myricetine [73]	S. maximum	45
	S. sexangulare	65
	S. populifolium	47
	S. middendorffianum	47
	S. selskianum	47
	S. orchroleucum	51
	S. montanum	51
	S. sediforme	51
	S. reflexum	53
	S. aizoon L	44
	S. takesimense	36
	S. kautschaticum	47
Myricetine-3- <i>O</i> -α-L-rhamnoside (Myricitrine)	S. sediforme	62
[74]	S. reflexum	38
	S. montanum	54
	S. maximum	45
	S. aizoon L	43
	S. populifolium	60
	S. kautschaticum	60
Myricetine-3- <i>O</i> - β-D-glucoside (Isomyricitrine)	S. maximum	39
[75]	S. populifolium	60
	S. reflexum	38
	S. kautschaticum	60
Myricetine-3-O-galactoside [76]	S. populifolium	75
	S. kautschaticum	76
Myricetine-3- <i>O</i> -arabinoside [77]	S. reflexum	38
	S. montanum	54
Gallomyricitrine [78]	S. kamtschaticum	77

	S. middendorfianum	77
	S. sichoteuse	77
	S. selskianum	77
8-methoxymyricetine [79]	S. sexangulare	65
3'-methoxymyricetine (Laricitrine) [80]	S. cressipes	72
Myricetine-8-methoxy-3- <i>O</i> - β-D-glucoside [81]	S. sexangulare	65
Isorhamnetine [82]	S. maximum	45
	S. acre	78
	S. album	52
	S. ruthenicum	55
	S. Forsterianum	79
	S. Pruinatum	79
	S.Tenuifolium	79
Isorhamnetine-7- <i>O</i> - α-L-rhamnoside [83]	S. caucasium	56
Isorhamnetine-7- $O \beta$ -D-glucoside [84]	S. album	52
	S. sarmentosum	66
	S. acre (S. album)	80
Isorhamnetine-7-O-sophoroside [85]	S. album	52
Isorhamnetine-3- <i>O</i> - α-L-rhamnoside [86]	S. album	52
Isorhamnetine-3- <i>O</i> - β-D-glucoside [87]	S. maximum	45
	S. acre	78
Isorhamnetine-3,7-di- <i>O</i> - β-D-glucoside [88]	S. acre	81
	S. sarmentosum	66
	S. alfredi (S.	41
	formosanum)	
Isorhamnetine-3-α-L-O-rhamnosyl-7-O-β-D-		52
glucoside [89]	S. album	
Isorhamnetine-3-O-α-L-rhamnosyl-7-O-	~	52
sophoroside [90]	S. album	
Isorhamnetine-3-α-L-O-rhamnosyl-7-O-β-D-		82
diglucoside [91]	S. album	
Isorhamnetine-3-(2"-acetyl)glucoside [92]	S. acre	57

Cha	pitre	1

Isorhamnetine-3- <i>O</i> -β-D-glucoside-7- <i>O</i> -α-L-	ñ	61
rhamnoside [93]	S. sarmentosum	
Isorhamnetine-3- <i>O</i> -α-L-rhamnosylglucoside-7-	~	61
<i>O</i> - α-L-rhamnoside [94]	S. sarmentosum	
Isorhamnetine-3-O- β-D-glucoside	S. acre	81
Tricine [96]	S. sarmentosum	66
Tricine-7- <i>O</i> - β-D-glucoside [97]	S. sarmentosum	66
Tricetine-7- <i>O</i> - β-D-glucoside [98]	S. alfredi (S.	42
	formosanum)	
Chrysoeriole [99]	S. lineare	83
Chrysoeriole-7- <i>O</i> - β-D-glucoside [100]	S. alfredi (S.	42
Chrysoeriole-7- <i>O</i> - β-L-rhamnoside [101]	formosanum) S alfredi (S	84
	formosanum)	
Lutéoline [102]	S. sarmentosum	66
	S. takesimense	53
Lutéoline-7- <i>O</i> - β-D-glucoside [103]	S. alfredi (S.	42
	formosanum)	
	S. sarmentosum	66
	S. takesimense	35
Apigenine-7- <i>O</i> - β-D-glucoside [104]	S. sarmentosum	61
(+)-Taxifoline [105]	S. reflexum	85
(+)-dihydromyricetine [106]	S. reflexum	85
5-hydroxy-3',4'-dimethoxy-isoflavone-7- <i>O</i> -	S. alfredi (S.	42
neohesperidoside [107]	formosanum)	
5-hydroxy-3',4'-dimethoxy-isoflavone-7- <i>O</i> -β-D-	S. alfredi (S.	41
glucoside [108]	formosanum)	
3'-methoxyorobol-7- <i>O</i> -β-D-glucoside [109]	S. lineare	86
(-)-Epicatechin-3-O-gallate [110]	S. sediforme	63
	S. Stoloniferum	59
(-)-Epigallocatechin-3-O-gallate	S. sediforme	62
(Prodelphinidine) [111]	S. Stoloniferum	58
	S. litoreum	86

Chapitre 1

Aperçu bibliographique sur la famille des Crassulaceae

(-)-Epigallocatechin-3,3'-di-O-gallate [112]	S. Stoloniferum	58
(-)-Epigallocatechin-3,4'-di-O-gallate [113]	S. Stoloniferum	58
(2R,3R)-7,4'-dihydroxy-5,3',5'-trimethoxy	S sediforme	62
flavan-3-O-gallate [114]	5. seutjorme	
Epigallocatechine(4—8)-epicatechine-3-O-	S litoreum	86
gallate [115]	5. moreum	
Epigallocatechin-3-O-gallate-(4-8)-	S. Stoloniforum	58
epigallocatechin-3-O-gallate [116]	5. Stotonijer um	
Pratenseine [117]	S. lineare	83
Liquiritigenine [118]	S. sarmentosum	66
Liquiritine [119]	S. sarmentosum	66
Isoliquiritigenine [120]	S. sarmentosum	66
Isoliquiritine [121]	S. sarmentosum	66
Pelargonidine-3-O-β-glucoside [122]	S. ewersii	40
	S. hybridum	40
	S. purpureum	40
Peonidine-3-O-β-D-glucoside [123]	s. aizoon	40
	S. hybridum	40
	S. purpureum	40
	S. telephium	40

- [16] Quercetine $(R_1 = R_2 = H)$ [17] Quercetine 7-O-rhamnoside $(R_1 = H, R_2 = Rha)$ [18] Quercetine-3-O-glucoside $(R_1 = Ghu, R_2 = H)$ [19] Quercetine-3,7-O-rhamnoglucoside $(R_1 = Rha, R_2 = Ghu)$ [20] Rutine $(R_1 = Rutinoside, R_2 = H)$ [21] Hyperoside (Quercetine 3-O-galactoside) $(R_1 = Galactoside, R_2 = H)$ [22] Ou strating 2.7 O glucosthemposide $(R_1 = Ghu, R_2 = Rha)$
- [22] Quercetin 3,7-O-glucorhamnoside ($R_1 = Glu, R_2 = Rha$)
- [23] Quercetine 3-O-neohesperidoside-7-O-Rhamnoside ($R_1 = Rha-Glu, R_2 = Rha$)
- [24] Quercetine 3,7-di-O-glucoside ($R_1 = R_2 = Glu$)

- [25] Quercetine 3,7-O-di-rhamnoside $(R_1 = R_2 = Rha)$ [26] Quercetine-3-O-rhamnoside $(R_1 = Rha, R_2 = H)$ [27] Quercetine-3,7-O-di-rhamnosylglucoside $(R_1 = R_2 = Rha-Glu)$
- [28] Quercetine-3, "0" at Halmiosy gracostate $(R_1 = R_2)^{-1}$ Find $O(R_1)^{-1}$ [28] Quercetine-3-(2"-galloyl)rhamnoside $(R_1 = 2"$ -galloylrhamnoside, $R_2 = H$) [30] Quercetine-3-(2"-galloyl)glucoside $(R_1 = 2"$ -galloylglucoside, $R_2 = H$)
- [31] Quercetine-3-O-galactosido-(1-6)-O- β -D-xyloside (R₁ = Gala-Xyl, R₂ = H)

- $\begin{bmatrix} 1 & H \\ OH & O \end{bmatrix}$ [34] Quercetine-4'-O-glucoside (R₁ = R₂ = R₃ = R₅ = H, R₄ = Glu) [35] Quercetine-3'-O-glucoside (R₁ = R₂ = R₄ = R₅ = H, R₃ = Glu) [36] Limocitrine (R₁ = R₂ = R₄ = H, R₃ = CH₃, R₅ = OCH₃) [37] Limocitrine-3-O-glucoside (R₁ = Glu, R₂ = R₄ = H, R₃ = CH₃, R₅ = OCH₃) [38] Limocitrine-7-O-glucoside (R₁ = R₄ = H, R₂ = Glu, R₃ = CH₃, R₅ = OCH₃) [39] Limocitrine-3,7-di-O-glucoside (R₁ = R₄ = H, R₂ = Glu, R₃ = CH₃, R₅ = OCH₃) [40] Limocitrine-3,7-di-O-glucoside (R₁ = R₂ = Glu, R₃ = CH₃, R₄ = H, R₅ = OCH₃) [41] Limocitrine-3,0-(6"-O-p-coumaroyl)-glucoside (R₁ = (6"-O-p-coumaroyl)-glucoside, R₂ = R₄ = H, R₃ = CH₃, R₅ = OCH₃) [42] Corniculatusine (R₁ = R₂ = R₃ = H, R₄ = H, R₅ = OCH₃) [43] Corniculatusine-7-O-rhamnoside (R₁ = R₃ = R₄ = H, R₅ = OCH₃) [44] Corniculatusine-7-O-rhamnoside (R₁ = R₂ = Glu, R₃ = R₄ = H, R₅ = OCH₃) [45] Gossypetine (R₁ = R₂ = R₃ = R₄ = H, R₅ = OH) [46] Gossypetine (R₁ = R₂ = R₃ = R₄ = H, R₅ = O-Glu [47] Gossypine (R₁ = R₂ = R₃ = R₄ = H, R₅ = O-Glu) [48] Gossypetine-8-0-xyloside (R₁ = R₂ = R₃ = R₄ = H, R₅ = O-xyl) [49] Gossypetine-7-O-xyloside (R₁ = R₂ = R₃ = R₄ = H, R₅ = O-xyl)

[32] Quercetine-3-O- α -(6'"-caffeoylglucosyl- β -1,2rhamnoside (R = OH) [33] Quercetine-3-O- α -(6'"-*p*-coumaroylglucosyl- β -1,2rhamnoside (R = H)

- [73] Myricetin (R = H)
- [74] Myricetin-3-O-rhamnoside (myricitrin) (R = Rha)
- [75] Myricetin-3-O-glucoside (isomyricitrin) (R = Glu)
- [76] Myricetin-3-O-galactoside (R = Galactoside)
- [77] Myricetin-3-O-arabinoside (R = Arabinoside)
- [78] gallomyricitrin (R = (2"-O-galloyl)rhamnoside)

- [50] Kaempferol ($R_1 = R_2 = H$)
- [51] Kaempferol-7-O-glucoside ($R_1 = H, R_2 = Glu$)
- [52] Kaempferol-7-O-rhamnoside ($R_1 = H, R_2 = Rha$)
- [53] Kaempferol-7-O-arabinoside ($R_1 = H, R_2 = ara$)
- [54] Kaempferol-3-O-rhamnoside ($R_1 = Rha, R_2 = H$)
- [55] Kaempferol-3-O-glucoside ($R_1 = Glu, R_2 = H$) (astragalin)
- [56] Kaempferol-3-O-aribinoside ($R_1 = Ara, R_2 = H$)
- [57] Kaempferol-3,7-di-O-rhamnoside ($R_1 = R_2 = Rha$)
- [58] Kaempferol-3,7-di-O-glucoside (Paeonoside) ($R_1 = R_2 = Glu$)
- [59] Kaempferol-3-O-rhamnoside-7-O-glucoside ($R_1 = Rha, R_2 = Glu$)
- [60] Kaempferol-3-O-glucoside-7-O-rhamnoside ($R_1 = Glu, R_2 = Rha$)
- [61] Kaempferol-3-O-rhamnosyl(1-2)-glucoside-7-O-glucoside
- $(R_1 = Rha-Glu, R_2 = Glu)$
- [62] Kaempferol-3-O-rhamnosyl(1-2)-glucoside-7-O-rhamnoside
- $(R_1 = Rha-Glu, R_2 = Rha)$
- [63] Kaempferol- $\overline{3}$,7-di-O-rhamnosylglucoside (R₁ = R₂ = Rha-Glu)
- [64] Grosvenosine ($R_1 = Rha, R_2 = Rha$ -Glu)

[71] Kaempferol-4'-O-glucoside ($R_1 = R_3 = R_4 = H, R_2 = Glu$) [72] Isorhamnetine-8-methoxy-3-O-glucoside ($R_1 = Glu$, $R_2 = CH_3, R_3 = R_4 = OCH_3)$

[79] Myricetine-8-methoxy ($R_1 = R_2 = H, R_3 = OCH_3$) [80] Myricetine-3'-methoxy (Laricitrine) $(R_1 = R_3 = H)$, $R_2 = CH_3$

[81] Myricetine-8-methoxy-3-O-glucoside ($R_1 = Glu$, $R_2 = H, R_3 = OCH_3$)

[65] Kaempferol-8-methoxy-3-O-rhamnoglucoside-7-O-rhamnoside $(R_1 = Rha-Glu, R_2 = Rha, R_3 = OCH_3)$

- [66] Herbacetine-8-methoxy-3,7-di-O-glucoside ($R_1 = R_2 = Glu, R_3 = OCH_3$)
- [67] Kaempferol-8-hydroxy (Herbacetine) $(R_1 = R_2 = H, R_3 = OH)$
- [68] Kaempferol-8-methoxy (Sexangularetine) $(R_1 = R_2 = H, R_3 = OCH_3)$
- [69] Rhodalidine ($R_1 = Glu, R_2 = H, R_3 = O$ -xyl)
- [70] Sexangularetine-7-O-rhamnoside $(R_1 = H, R_2 = Rha, R_3 = OCH_3)$

- [82] Isorhamnetine ($R_1 = R_2 = H$)
- [83] Isorhamnetine-7-O-rhamnoside ($R_1 = H, R_2 = Rha$)
- [84] Isorhamnetine-7-O-glucoside ($R_1 = H, R_2 = Glu$)
- [85] Isorhamnetine-7-O-sophoroside ($R_1 = H, R_2 = Sophoroside$)
- [86] Isorhamnetine-3-O-rhamnoside ($R_1 = Rha, R_2 = H$)
- [87] Isorhamnetine-3-O-glucoside ($R_1 = Glu, R_2 = H$)
- [88] Isorhamnetine-3,7-di-O-glucoside ($R_1 = R_2 = Glu$)
- [89] Isorhamnetine-3-O-rhamnoside-7-O-glucoside ($R_1 = Rha, R_2 = Glu$)
- [90] Isorhamnetine-3-O-rhamnoside-7-O-sophoroside ($R_1 = Rha$, $R_2 = Sophoroside$)
- [91] Isorhamnetine-3-O-rhamnoside-7-O-di-glucoside ($R_1 = Rha, R_2 = Glu-Glu$)
- [92] Isorhamnetine-3-(2"-acetyl)glucoside ($R_1 = (2"-acetyl)glucoside$, $R_2 = H$)
- [93] Isorhamnetine-3-O-glucoside-7-O-rhamnoside ($R_1 = Glu, R_2 = Rha$)
- [94] Isorhamnetine-3-O-rhamnosylglucoside-7-O-rhamnoside ($R_1 = R$ ha-Glu, $R_2 = R$ ha)

[95] Isorhamnetine-3-O-glucoside-7-????? ($R_1 = Glu, R_2 =$

$$= \bigcup_{OH}^{HCCO_2H_2C} \bigcup_{OH}^{OH} \bigcup_{OH}^{OH} \bigcup_{OH}^{OH}$$

HOH₂C

[96]- Tricine ($R_1 = H, R_2 = OCH_3, R_3 = OCH_3$) [97]- Tricine-7-O-glucoside ($R_1 = Glu, R_2 = OCH_3, R_3 = OCH_3$) [98]- Tricetine-7-O-glucoside ($R_1 = Glu, R_2 = OH, R_3 = OH$) [99]- Chrysoeriol ($R_1 = R_3 = H, R_2 = OCH_3$,) [100]- Chrysoeriol-7-O-glucoside ($R_1 = Glu, R_2 = OCH_3, R_3 = H$) [101]- Chrysoeriol-7-O-rhamnoside ($R_1 = Rha, R_2 = OCH_3, R_3 = H$) [102]- Luteoline ($R_1 = H, R_2 = OH, R_3 = H$) [103]- Luteoline-7-O-glucoside ($R_1 = Glu, R_2 = OH, R_3 = H$)

[104]- Apigenine-7-O-glucoside ($R_1 = Glu, R_2 = R_3 = H$)

OH

28

[105]-(+)-Taxifolin (R = H)[106]- (+)-Dihydromyricetin (R = OH)

[110]- (-)-epicatechin-3-O-gallate ($R_1 = R_2 = R_3 = R_4 = H$) [111]- (-)-epigallocatechin-3-O-gallate ($R_1 = R_2 = R_4 = H, R_3 = OH$) [112]- (-)-epigallocatechin-3,3'-di-O-gallate ($R_1 = gallate, R_2 = R_4 = H, R_3 = OH$) [113]- (-)-epigallocatechin-3,4'-di-O-gallate ($R_1 = R_4 = H, R_2 = gallate, R_3 = OH$)

[114]- (2R, 3R)-7,4'-dihydroxy-5,3',5'-trimethoxyflavan-3-Ogallate ($R_1 = R_4 = CH_3$, $R_2 = H$, $R_3 = OCH_3$)

[107]- 5-hydroxy-3',4'-dimethoxyisoflavone-7-Oneohesperidoside (R_1 = Neohesperidoside, R_2 = CH₃) [108]- 5-hydroxy-3',4'-dimethoxyisoflavone-7-Oglucoside (R_1 = Glu, R_2 = CH₃) [109]- 3'-methoxyorobol-7-O- β -D-glucoside (R_1 = Glu, R_2 = H)

HO

Figure 1.5 Structures des flavonoïdes isolés du genre Sedum

[122]-Pelargonidine-3-O-glucoside ($R = OCH_3$)

[123]-Peonidine-3-O-glucoside (R = H)

5.2.2. Les coumarines

La coumarine est une substance naturelle organique aromatique hétérosidique oxygénée de formule brute $C_9H_6O_2$, connue dans la nomenclature internationale comme 1-benzopyrane-2-one ou 1,2-benzopyrone.

La coumarine est présente dans divers végétaux, elle dégage une agréable odeur, rappelant la vanilline et contribue à l'odeur de foin coupé. La coumarine est également présente dans la cannelle, principalement la canelle de Chine ou casse.

Les coumarines isolées du genre *Sedum* sont relativement peu nombreuses. Nous répertorions 7 coumarines réparties dans 14 espèces (tableau1.4, figure 1.6).

Coumarine isolée [N° de structure]	Espèce	Référence
Coumarine [124]	S. reflexum	38
	S. acre	39
	S. album	39
	S. maximum	39
	S. hybridum	40
	S. purpureum	40
	S. telephium	40
4,5-dihydroxycoumarine [125]	S. ewersii	40
	S. hybridum	40
Esculetine [126]	S. kamtchaticum	40
	S. reflexum	38
	S. acre	39
	S. album	39
	S. maximum	39
	S. selskianum	60
	S. kautshaticum	60
	S. caucasium	56
	S. populifolium	37
	S. hybridum	71
Umbelliferone [127]	S. reflexum	38

Tableau 1.4. Distribution des coumarines dans le genre Sedum

	S. ewersii	49
	S. populifolium	75
7-dihydroxycoumarine [128]	S. ewersii	40
	S. hybridum	40
	S. purpureum	40
	S. telephium	40
	S. acre	40
	S. aizoon	40
Scopoletine [129]	S. album	39
6,7-dioxycoumarine [130]	S. ewersii	49

[124]-Coumarine (R = H) [125]-4,5-dihydroxycoumarine (R = OH)

[126]-Esculetine ($R_1 = R_2 = OCH_3$) [127]-Umbelliferone ($R_1 = H, R_2 = OH$) [128]-7-hydroxycoumarine ($R_1 = OH, R_2 = H$) [129]-Scopoletine ($R_1 = OCH_3, R_2 = OH$) [130]-6,7-dioxycoumarine ($R_1 = O^-, R_2 = O^-$)

Figure 1.6. Structures des coumarines isolées du genre Sedum

5.2.3. Les terpenoides

Les terpènes sont des molécules dont le point commun est d'être formé par l'assemblage d'un nombre entier d'unités pentacarbonées ramifiées du 2-methylbutadiène. Selon le nombre de ces unités se forment plusieurs groupes de composés : les monoterpènes (2 unités), sesquiterpènes, diterpènes, triterpènes et stéroïdes et caroténoïdes.

Parmi ceux-ci, on rencontre principalement dans le genre *Sedum*, des triterpènes pentacycliques et des triterpènes stéroidiques. Les 19 composés répertoriés dans ce genre sont représentés dans le tableau 1.5 et la figure1.7

Terpenoide isolé [N° de structure]	Espèce	Référence
α-amyrine [131]	S. morganianum	87
β-amyrine [132]	S. morganianum	87
β-amyrin acétate [133]	S. morganianum	87
Acide oleanolique [134]	S. aizoon	88
Sarmentolin (18β–hydroxyperoxyolean-12-en-3-	S. sarmentosum	87
one) [135]		
δ-amyrone [136]	S. sarmentosum	89
3-epi-δ-amyrine [137]	S. sarmentosum	89
δ-amyrine [138]	S. sarmentosum	89
Taraxerylacetate [139]	S. forsterianum	90
	S. amplexicaule	90
	S. montanum	90
	S. erectum	90
	S. orientale	90
	S. sediforme	90
Taraxerylformate [140]	S. forsterianum	90
Taraxerone [141]	S. montanum	90
	S. erectum	90
	S. orientale	90
	S. ochroleucum	90
	S. pruinatum	90
Germanicylformate [142]	S. pruinatum	90
	S. montanum	90
	S. erectum	90
	S. sediforme	90
β-sitosterol [143]	S. aizoon	88
	S. aixoon	91
	S. sarmentosum	92
	S. lineare	86
	S. hybridum	70

Tableau 1.5. Distribution des terpenoides dans le genre Sedum

Daucosterol [144]	S. sarmentosum	92
Stigmasterol [145]	S. formosanum	83
Sarmentosterol (3,4,20R,24R)-4,14-	S. sarmentosum	92
dimethylergost-9(11)-en-3-ol) [146]		
Fern-8-en-3-ylformate [147]	S. forsterianum	90
	S. amplexicaule	90
Fer-8-en-3-ylacetate [148]	S. forsterianum	90
3,6stigmas-4-en-3,6-diol [149]	S. sarmentosum	92

[131] α -amyrine

[132] β -amyrine (R = H) [133] β -amyrine acetate (R = Ac)

[134]– Acide oléanolique

[135]– Sarmentoline

[136] γ -amyrone(R = O) [137]- 3-epi- γ -amyrine (R = η_{H}^{OH}) [138]- γ -amyrine (R = η_{H}^{H})

[139]– Taraxerylacetate (R = OAc) [140]– Taraxerylformate (R = OOCH) [141]– Taraxerone (R = O=)

Figure 1.7. Structures des terpenoides isolés du genre Sedum

5.2.4. Les alcaloïdes

La plupart des alcaloïdes de *Crassulaceae* ont été isolés du genre *Sedum*. De toutes les espèces étudiés, le *Sedum* a reçu une grande importance, 25 alcaloïdes à noyau piperidine ont été reportés dont les alcaloïdes majoritaires sont : la sedacrine, la sedamine la sedridine, la sedinine et la sedinone. Plusieurs travaux concernant la synthèse des alcaloïdes isolés du *Sedum* ont été effectuées ref.

Parmi les 42 alcaloïdes recensés dans le genre *Sedum*, 23 ont été isolés seulement de l'espèce *Sedum acre* (Tableau1.6, Figure 1.8).

Tableau 1.6. Distribution des alcaloïdes dans le genre Sedu	т
---	---

Alcaloïde isolé [N° de structure]	Espèce	Référence
Sedacrine [150]	S. acre	93
	S. lydium	94
Sedinone [151]	S. acre	93
	S. lydium	94
	S. oryzifolium	95
Sederine [152]	S. acre	93
Sedamine [153]	S. acre	96
	S. lydium	94
	S. maximun	97
	S. aizon	98
	S. purpureum	98
	S. hybridum	98
	S. oryzifolium	95
Norsedamine [154]	S. acre	99
(+)-4-hydroxysedamine [155]	S. acre	93
Allosedamine [156]	S. acre	100
	S. oryzifolium	95
Norallosedamine [157]	S. acre	99
	S. oryzifolium	95
(-)-3-hydroxyallosedamine [158]	S. acre	100
(-)-3-hydroxynorallosedamine [159]	S. acre	100
4-hydroxyallosedamine [160]	S. acre	93
(-)-5-hydroxysedamine [161]	S. acre	99
Sedridine [162]	S. acre	96
	S. maximun	97
	S. oryzifolium	95
	S. japonicum	95
	S. polytrichoides	95
N-methylsedridine [163]	S. sarmentosum	101
	S. japonicum	95

Chapitre 1

Aperçu bibliographique sur la famille des Crassulaceae

	S. polytrichoides	95
	S. oryzifolium	95
	S. lepidopodium	95
	S. morrisonensis	95
N-methylallosedridine [164]	S. sarmentosum	101
	S. polytrichoides	95
Sedinine [165]	S. acre	93
	S. aizoon	98
	S. purpureum	98
	S. hybridum	98
	S. maximun	97
8-episedinine [166]	S. acre	93
Diacetyledinine [167]	S. acre	102
Dihydrosedinine [168]	S. acre	93
Sediene [169]	S. acre	103
Sedienedione [170]	S. acre	103
Sedacryptine [171]	S. acre	93
2-episedacrine [172]	S. acre	93
2-episedinone [173]	S. acre	102
Lelobanidine [174]	S. acre	104
Lobelanidine [175]	S. acre	104
Lobelanidine glucoside [176]	S. acre	105
8-propyl-10-phenyl-lobeliolone [177]	S. acre	104
Pelletierine [178]	S. sarmentosum	95
	S. oryzifolium	95
	S. japonicum	95
	S. lepidopodium	95
	S. morrisonensis	95
	S. polytrichoides	95
	S. bulbiferum	95
N-methylpelletierine [179]	S. sarmentosum	106
	S. oryzifolium	95

01	÷.,	
Char	otre	1

	S. lepidopodium	95
	S. morrisonensis	95
	S. polytrichoides	95
Pyrrolallosedamine [180]	S. oryzifolium	95
Pyrrolsedamine [181]	S. oryzifolium	95
	S. polytrichoides	95
Hygroline [182]	S. oryzifolium	95
Norhygrine [183]	S. oryzifolium	95
	S. japonicum	95
	S. morrisonensis	95
	S. polytrichoides	95
Hygrine [184]	S. oryzifolium	95
Nicotine [185]	S. acre	107
	S. album	108
	S. carpaticum	108
	S. telephium	108
	S. oppositifolium	108
	S. pallidum	108
	S. populifolium	108
Methylisopelletierine [186]	S. aizoon	98
	S. purpureum	98
	S. hybridum	98
N-methylanabasine [187]	S. acre	109
1-phenyl-2(2-N-methylpyrrolidyl)ethanol [188]	S. oryzifolium	102
Hydroxysedinol [189]	S. acre	104
Hydroxylelobanidine [190]	S. acre	104
Hydroxysedinone [191]	S. acre	93

[153]- Sedamine (R = Me) [154]- Norsedamine (R = H)

[168]- Dihydrosedinine

[162]-Sedridine (R = H) [163]-N-methylsedridine (R = Me)

[171] - Sedacryptine

[174] Lelobanidine ($R_1 = H, R_2 = Et$) [175] Lobelanidine ($R_1 = H, R_2 = Ph$) [176] Lobelanidine glucoside ($R_1 = Glu, R_2 = Ph$)

[180] pyrrolallosedamine

н

[155]- (+)-4-hydroxysedamine

H

[160]- (+)-4-hydroxyallosedamine

Мe

OH

Me

Ph

.OH

Ph

[169]- Sediene

[164] - N-methylallosedridine

[156]- Allosedamine (R = Me) [157]- Norallosedamine (R = H)

[161]-(-)-5-hydroxysedamine

[170]- Sediendione

[165]- Sedinine ($R_1 = R_3 = OH, R_2 = H$) [166]- 8-episedinine ($R_1 = H, R_2 = R_3 = OH$) [167]- Diacetylsedinine ($R_1 = R_3 = OAc, R_2 = H$)

[172]-2-episedacrine

[177]-8-Propyl-10-phenyllobeliolone

H₃C

[181] pyrrolsedamine (R = Ph) [182] Hygroline (R = Me)

[183]- Norhygrine (R = H) [184]- Hygrine(R = Me)

Me

[173]-2-episedinone

[178]- Pelletierine (R = H) [179]- N-methylpelletierine (R = Me)

[185] - Nicotine

ΩН

Figure 1.8. Structures des alcaloïdes isolés du genre Sedum

5.2.5. Les mégastigmanes

Les mégastigmanes sont des composés qui possèdent 13 atomes de carbones sous forme de butène cyclohexène. Ils sont des composés de dégradation, produites par le cleavage des caroténoïdes (tetraterpènes). Ils contribuent à la saveur de certains fruits.

33 mégastigmanes ont été isolés de l'espèce chinoise *Sedum sarmentosum*, qui est utilisée dans la médecine traditionnelle dans le traitement de l'hépatite. Des études récentes montrent que les mégastigmanes isolés de cette espèce possèdent une activité hépatoprotectrice (Tableau1.7, Figure 1.9).

Tableau 1.7. Distribution des mégastigmanes dans le genre Sedum

Mégastigmane isolé [N° de structure]	Espèce	Référence
Sarmentol A [192]	S. Sarmentosum	110
Sedumoside A1 [193]	S. Sarmentosum	110
Sedumoside A2 [194]	S. Sarmentosum	110
Sedumoside A3 [195]	S. Sarmentosum	110
Sedumoside A4 [196]	S. Sarmentosum	111
Sedumoside A5 [197]	S. Sarmentosum	111
Sedumoside A6 [198]	S. Sarmentosum	111
Sedumoside E1 [199]	S. Sarmentosum	61

Sedumoside E2 [200]	S. Sarmentosum	61
Sedumoside E3 [201]	S. Sarmentosum	61
Myrsinionoside D [202]	S. Sarmentosum	111
Alangionoside J [203]	S. Sarmentosum	111
Platanionoside D [204]	S. Sarmentosum	111
(3S,5R,6S,9R)-Megastigman-3,9-diol [205]	S. Sarmentosum	61
Sedumoside B [206]	S. Sarmentosum	110
Sarmentol B [207]	S. Sarmentosum	111
Sedumoside C [208]	S. Sarmentosum	110
Sarmentol C [209]	S. Sarmentosum	111
Sedumoside D [210]	S. Sarmentosum	110
Sarmentol D [211]	S. Sarmentosum	111
Sedumoside G [212]	S. Sarmentosum	61
Sarmentol G [213]	S. Sarmentosum	61
Sedumoside H [214]	S. Sarmentosum	111
Sarmentol H [215]	S. Sarmentosum	111
Sedumoside F1 [216]	S. Sarmentosum	61
Sedumoside F2 [217]	S. Sarmentosum	61
Sarmentol F [218]	S. Sarmentosum	61
Sedumoside I [219]	S. Sarmentosum	111
Sarmentol I [220]	S. Sarmentosum	111
Acide sarmentoique [221]	S. Sarmentosum	110
Myrsinionoside A [222]	S. Sarmentosum	111
Alangionoside A [223]	S. Sarmentosum	111
Staphylionoside D [224]	S. Sarmentosum	111
3-Hydroxy-5,6-epoxy-β-ionol-9-O-β-D-glucoside	S. Sarmentosum	111
[225]		

[192] Sarmentol A ($R_1 = R_2 = R_3 = H$) [193] Sedumoside A₁ ($R_1 = Glc, R_2 = R_3 = H$) [194] Sedumoside A₂ ($R_1 = R_3 = H, R_3 = Glc$) [195] Sedumoside A₃ ($R_1 = R_2 = H, R_3 = Glc$) [196] Sedumoside A₄ ($R_1 = R_3 = H, R_3 = xyl$) [197] Sedumoside A₅ ($R_1 = R_2 = Glc, R_3 = H$) [198] Sedumoside A₆ ($R_1 = Glc, R_2 = xyl, R_3 = H$)

[199] Sedumoside $E_1 (R_1 = Glc-Rha, R_2 = H)$ [200] Sedumoside $E_2 (R_1 = H, R_2 = Glc-Rha)$ [201] Sedumoside $E_3 (R_1 = H, R_2 = Glc-Api)$ [202] Myrsinionoside D ($R_1 = H, R_2 = Glc$) [203] Alangionoside J ($R_1 = Glc, R_2 = H$) [204] Platanionoside D ($R_1 = R_2 = Glc$) [205] (3S,5R,6S,9R)-Megastigman-3,9-diol ($R_1 = R_2 = H$)

[206] Sedumoside B (R = Glc) [207] Sarmentol B (R = H)

[212] Sedumoside G (R = Glc-Rha) **[213]** Sarmentol G (R = H)

[219] Sedumoside I (R = Glc) [220] Sarmentol I (R = H)

[223] Alangionoside A

[208] Sedumoside C (R = Glc) [209] Sarmentol C (R = H)

[214] Sedumoside H (R = Glc) [215] Sarmentol H (R = H)

[221] Acide sarmentoique

[224] Staphylionoside D

[210] Sedumoside D (R = Glc) [211] Sarmentol D (R = H)

[216] Sedumoside F_1 (R = Glc) [217] Sedumoside F_2 (R = Glc) [218] Sarmentol F (R = H)

[222] Myrsinionoside A

[225] 3-Hydroxy-5,6-epoxy-β-ionol-9-O-β-D-glucoside

Figure 1.7. Structures des mégastigmanes isolés du genre Sedum

5.2.6. Autres composés

D'autres études phytochimiques ont été effectuées sur différentes espèces du genre *Sedum*. Ces études ont permis l'isolement d'autres composés, tels que les saccharides et les dérivés hydrocarboné aliphatiques (Tableau 1.8, Figure 1.8)

Autres composés isolés [N° de structure]	Espèce	Référence
Sarmentosine [226]	S. sarmentosum	117
	S. stenopetalum	113
	S. augustifolium	114
Sarmentosine epoxide (4-β-D-glacopyranosyloxy-	S. cepaea	115
2,3-epoxy-2-hydroxymethylbutyronitrile) [227]		
Hexacosanol [228]	S. formosanum	116
Octacosanol [229]	S. formosanum	116
Triacontanol [230]	S. formosanum	116
Tritriacontane [231]	S. lineare	86
Hexacosanylstearate [232]	S. formosanum	116
Octacosanylstearate [233]	S. formosanum	116
Triacontanylstearate [234]	S. formosanum	116

Tableau 8. Distribution d'autres composés dans le genre Sedum

 $\begin{array}{c} CH_3-(CH_2)_{16}-COO-(CH_2)_{25}-CH_3 \\ \mbox{[233] Hexacosanylstearate} \\ \end{array} \begin{array}{c} CH_3-(CH_2)_{16}-COO-(CH_2)_{27}-CH_3 \\ \mbox{[234] Octacosanylstearate} \\ \mbox{[235] Triacosanylstearate} \\ \end{array} \begin{array}{c} CH_3-(CH_2)_{16}-COO-(CH_2)_{29}-CH_3 \\ \mbox{[235] Triacosanylstearate} \\ \mbox{[235] Triacosanylstearate} \\ \end{array}$

Figure 1.8. Structures des autres composés isolés du genre Sedum

Aperçu bibliographique sur la famille des Crassulaceae

Chapitre 1

Référence :

- A. Takhtajan, 1980. Outline of the classification of flowering plants (Magnoliophyta). Bot. Rev., 46, 225-359.
- T.H. Hart, 1997. Crassulaceae, pp. 20-22, in: Oldfield, S. (eds). Cactus and succulent plants status survey and conservation action plan. IUCN/SSC Cactus and Succulent Specialist Group: Gland.
- G. J. Niemann, J. M. J. Visser-Simons, H. t'Hart, 1976. Flavonoids of some species of Sedum. Planta Med., 30, 384-387.
- 4. U. Supratman, T. Fujita, K. Akiyama, H. Hayashi, 2001. Insecticidal compounds from *Kalanchoe daigremontiana*, *tubiflora*. Phytochemistry, 58, 311-314.
- 5. S. Pal, A. K. Nag, 1990. Anti-inflammatory of *Bryophyllum pinnatum* leaf extract. Fitoterapia, 61, 527.
- 6. S. Pal, A.K. Nag Chaudhuri, 1991. The anti-ulceractivity of *Bryophylum pinnatum* leaf extract in experimental animal. J. Ethnopharmacol., 33, 97–102.
- M. F. Muzitano, L. W. Tinoco, C. Guette, C. R. Kaiser, B. Rossi-Bergmann, S. S. Costa, 2006. The antileishmanial activity assessment of unusual flavonoids from *Kalanchoe pinnata*. Phytochemistry, 67, 2071-2077.
- 8. D. A. Akinpelu, 2000. Antimicrobial activity of *Bryophyllum pinnatum* leaves. Fitoterapia, 71, 193-194.
- J. Asiedu Gyekye Isaac, Daniel A. Antwi, Tete Donkor, Some Effects of the Medicinal Plant *Kalanchoe Pinnata*, Discovery and innovation: 14,102-106
- R. De Sanctis, R. De Bellis, C, Scesa, U, Mancini, L. Cucchiarini, M. Dachà, 2004 *In vitro* protective effect of *Rhodiola rosea* extract against hypochlorous acid-induced oxidative damage in human erythrocytes, Bio. Factors., 20, 3,147–159.
- 11. S. S. Sjamsu Hidayat, J. R. Hutapea, 1991. Indonesian Medicinal Plants (I): Research and Development Agency. Jakarta: Ministry of Health, 220–221.
- K. R. Kirtikar, B. D. Basu, 1975. Indian Medicinal Plants, 2nd ed.; M/s Periodical Experts: Delhi; Vol. II. 999.
- A. A. Spasov, V. B. Mandrikov, I. A. Mironova, 2000. The effect of the preparation rhodosin on the psychophysiological and physical adaptation of students to an academic load. Eksp. Klin. Farmakol., 63, 76–78.

- P. C. Kuo, T. H. Kuo, C. R. Su, M. J. Liou, T. S. Wu, 2008. Cytotoxic principles and α-pyrone ring-opening derivatives of bufadienolides from *Kalanchoe hybrida*. Tetrahedron, 64, 3392-3396.
- 15. S. S. Costa, A. Jossang, B. Boda, 1996. 4"-Acetylsagittatin A, a kaempferol triglycoside from *Kalanchoe streptantha*. J. Nat. Prod., 59, 327-329
- E. Wollenweber, M. Doerr, K. Siems, R. Faure, I. Bombarda, E. M. Gaydou, 1999. Triterpenoids in lipophilic leaf and stem coatings Biochemical Systematics and Ecology, 27,103—105
- 17. A. M. He, M. S. Wang, H. Y. Hao, D. C. Zhang, 1997. Sterols from Sedum sarmentosum. J. China Pharm. Univ., 28, 271-274.
- A. P. Almeida, S. A. G. Da Silva, M. L. M. Souza, L. M. T. R. Lima, B. Rossi-Bergmann, V. L. Goncalves de Moraes, S. S. Costa, 2000. Isolation and chemical analysis of a fatty acid fraction of *Kalanchoe pinnata* with a potent lymphocyte suppressive activity. Planta Med., 66, 134-137.
- 19. R. Hegnauer, 1964. Chemotaxonomie Der Pflanzen, Birkhäuser verlag, Basel., 3, 583.
- 20. M. Jay, Quelques problemes taxinomiques et phylogenetiques des Saxifragacees vus a Ia lumiere de Ia biochimie flavonique. 1970, Bull. Mus. Nat. Hist. Nat., 42, 754-775.
- J. F. Stevens, H. T'Hart, H. Hendriks, T. M. Malingré, 1992. Alkaloids of some European and Macaronesian Sedoideae and Sempervivoideae (Crassulaceae). Phytochemistry, 31, 3917-3924.
- J. F. Stevens, H. T'Hart, R. C. H.J. Van Ham, E. T. Elema, M. V. X. Van Den Ent, M. Wildeboer, J. H. Zwaving, 1995. Distribution of alkaloids and tannins in the Crassulaceae. Biochem. Syst. & Ecol., 23, 157-165.
- 23. H. t'Hart, 1982. The white-flowered *Sedum* species, 1. Principle s of a phylogenetic classification of the Sedoideae (Crassulaceae) and the position of the white-flowered Sedum species. Proc. Kon. Ned. Akad. Wet. Ser., C 85, 663-675.
- 24. A. Nordal, 1976. A Pharmacognostical Study of *Sedum acre L.*, Johan Grundt Tanum Forlag, 280.
- 25. G. Usher, 1974. A Dictionary of Plants Used by Man. 619 Seiten. Constable and Company Ltd, London
- H. J. Jung, H.J. Kang, Y.S. Song, E.H. Park, Y.M. Kim, C.J. Lim, 2008. Antiinflammatory, anti-angiogenic and anti-nociceptive activities of *Sedum* sarmentosum extract. J. Ethnopharmacol. 116, 138-143.

- M. E. M. Camargo, M. B. Romero, D. R. Zamora, P. C. Carillo, M. E. V. Maldonado, 2002. Study of the anti-inflammatory effect of *Sedum praealtum* (Siempreviva) in the rat: Dose-dependent response. Proceedi. West. Pharmacol. Soc., 45, 129-130.
- R. S. Torres, H. M. Rosales, D. R. Zamora, M. E. C. Mussot, C. M. Rojas, 2003. Spermicidal activity of the crude ethanol extract of *Sedum praealtum* in mice. J. Ethnopharmacol., 85, 15-17.
- T. H. Kang, H. O. Pae, J. C. Yoo, N. Y. Kim, Y. C. Kim, G. I. Ko, H. T. Chung, 2000. Antiproliferative effects of alkaloids from *Sedum sarmentosum* on murine and human hepatoma cell lines. J. Ethnopharmacol., 70, 177-182.
- H. J. Jung, H. J. Kang, Y. S. Song, E. H. Park, Y. M. Kim, C. J. Lim, 2008. Antiinflammatory, anti-angiogenic and anti-nociceptive activities of *Sedum sarmentosum* extract. J. Ethnopharmacol., 116, 138-143.
- A. Sendl, N. Mulinacci, F. F. Vincieri, H. Wagner, 1993. Anti-inflammatory and immunologically active polysaccharides of *Sedum telephium*. Phytochemistry, 34, 5, 1357-1362.
- 32. H. Wagner, H. Flachsbarth, G. Vogel, 1981. A new antiflogistic principle from *Sabal serrulata*. Planta Med., 41, 244-251.
- R. N. Chopra, S. L. Nayer, I. C. Chopra, 1956. Glossary of Indian Medicinal Plants, C.
 S. I. R. New Delhi, 225.
- 34. D. W. Kim, K. H. Son, H. W. Chang, K. Bae, S. S. Kang, H. P. Kim, 2004. Antiinflammatory activity of *Sedum kamtschaticum*. J. Ethnopharmacol., 90, 409-414.
- W. S. Kan, 1968. Manual of Vegetable Drugs in Taiwan. Chinese medicine publishing Inc., Taipei 3, 30.
- P.T. Thuong, H. J. Kang, M. K. Na, W. Y. Jin, U. J. Youn, Y. H. Seong, K.S. Song,
 B.S. Min, K. Bae, 2007, Anti-oxidant constituents from *Sedum takesimense*.
 Phytochemistry., 68,2432–2438
- 37. L. A. Demidenko, E. A. Krasnov. 1978. Phenolic compounds of *Sedum populifolium*.C. N. C., 6, 805
- M. Wolbis, 1989. Polyphenolic compounds in Sedum species. III: Sedum reflexum. Acta Pol Pharm., 46, 500.
- M. Wolbis, 1987. Polyphenolic compounds in certain species of *Sedum I. Coumarins* and phenolic acids in *Sedum acre, Sedum album* and *Sedum maximum*. Acta Pol. Pharm., 44, 563-6.

- D. Y. Korul'kin, 2001. Chemical composition of certain *Sedum* species of Kazakhstan. Chem. Nat. compds., 37, 3, 219-223.
- 41. Y. D. Men, 1986. Studies on the constituents of *Sedum alfredii*. Taiwan. Yaoxue. Zazhi., 38, 52-66.
- 42. C. J. Chou, Y. D. Men, 1986. Studies on the constituents of *Sedum alfredi* (II). Taiwan Yao Hsueh Tsa Chih., 38, 214-25.
- G. P. Shnyakina, N. B. Murzina, 1974. Phenol compounds of some *Sedum* species of the Soviet Far East and effects of their leaf extracts on the lipid metabolism of rats. Rastit. Resur., 10, 358-62.
- 44. M. Wolbis, M. Olszewska 1996. Polyphenolic compounds from *Sedum aizon* L. Acta Pol. Pharm., 53, 225-227.
- 45. P.A. Gnedkov, V. L. Litvinenko, N. S. Frusa, 1981. Flavonol aglycons and monoglycosides of *Sedum maximum*. Khim. Prir. Soedin., 4, 521-2.
- 46. E. Mylius, 1872. Chemische Untersuchung des Mauerpfeffers *Sedum acre L*. Arch. Pharm., 201, 97-110.
- G. P. Shnyakina, N. B. Murzina, 1974. Phenol compounds of some *Sedum* species of the Soviet Far East and effects of their leaf extracts on the lipid metabolism of rats. Rastit. Resur., 10, 358-62.
- E. A. Krasnov, A. V. Polokhii, T. A. Revina, Yu. P. Surov, T. G. Khoruzhaya, 1975.
 Valuable medicinal species of the Crassulaceae family in southern Siberia and their experimental introduction. Mater. Mezhvuz. Nauchn. Konf., 97-100.
- 49. E. A. Krasnov, T. V. Kondareva, 1976. flavonoïdes et oksikumarina *Sedum ewersii* Khim. Prir. Soedin., 3, 389-90.
- N. Mulinacci, F. F. Vincieri, A. Baldi, M. Bambagiotti-Alberti, A. Sendl, H. Wagner, 1995. Flavonol glycosides from *Sedum telephium subspecies maximum* leaves. Phytochemistry, 38, 531-3.
- G. J. Niemann, J. M. J. Visser-Simons, H. t'Hart, 1976. Flavonoids of some species of Sedum. Planta Med., 30, 384-387.
- 52. M. Wolbis, 1989. Flavonol glycosides from *Sedum album*. Phytochemistry, 28, 2187-9.
- 53. M. Miyazawa, M. Hisama, 2003. Antimutagenic activity of flavonoids from *Chrysanthemum morifolium*. Biosci. Biotechnol. Biochem., 67, 2091-2099.

- 54. J. F. Stevens, E. T. Elema, H. Hart, 1994. Myricetin 3-O-arabinofuranoside from *Sedum montanum* ssp. orientale. Biochem. Syst. & Ecol., 22, 861-862.
- 55. L. A. Gumenyuk, I. V. Pokotilo, M. N. Dikhanov, 1976. Phenol compounds in some species of the genera Sempervivum and *Sedum*. 1976. Farm. Zh. Kiev., 31, 75-77.
- 56. V.G. Zaitsev, N. S. Fursa, L. E. Belyaeva, 1983. Hydroxycoumarins and flavonol-7monorhamnosides from *Sedum caucasicum*. Khim. Prir. Soedin., 4, 527-528.
- M. Wolbis, M. Krolikowska, 1988. Flavonol glycosides from *Sedum acre* Pol. Phytochemistry, 27, 3941-3943.
- 58. F. Petereit, M. K. Sakar, A. Nahrstedt, 1998. Flavan-di-O-gallates and further polyphenols from. *Sedum stoloniferum*. Die Pharmazie, 53,280-281.
- 59. H. OH, D. G. Kang, J. W. Kwon, T. O. Kwon, S. Y. Lee, D. B. Lee, H. S. Lee, 2004. solation of angiotensin converting enzyme (ACE) inhibitory flavonoids from *Sedum sarmentosum*. Biol. Pharm. Bull., 27, 2035-2037.
- 60. G. P. Shnyakina, G. G. Zapesochnaya, 1975. Flavonoids of some species of *Sedum* Khim. Prir. Soedin., 11, 92-93.
- T. Morikawa, Y. Zhang, S. Nakamura, H. Mutsuda, O. Muraoka, M. Yoshikawa, 2007. Bioactive constituents from Chinese natural medicines. XXII. Absolute structures of new megastigmane glycosides, sedumosides E1, E2, E3, F1, F2, and G, from *Sedum sarmentosum* (Crassulaceae). Chem. Pharm. Bull., 55, 435-441.
- M. K. Sakar, F. Peteret, A. Nahrstedt, 1993. Two phloroglucinol glucosides, flavan gallates and flavonol glycosides from *Sedum sediforme* flowers. Phytochemistry, 33, 171-174.
- 63. E. A. Krasnov, L. V. Petrova, V. V. Zaitsev, 1973. in: Materals of the Third Regional Scientific Conf. of the D. I. Mendeleev All-Union Chemical Society. Tomsk, p 60.
- 64. K. E. Malterud, A. Nordal 1991. Structure elucidation of sedoflorigenin a flavonoid from *sedum acre* Norway. Acta. Pharmaceutica Nordica., 3, 99-100.
- 65. M. Wolbis, M. Kawalec 1990. Investigation of phenolic compounds in *Sedum sexangulare*. Acta Pol Pharm., 47, 81-82.
- A. He, M. Wang 1997. Flavonoids from stringy stonecrop (Sedum sarmentosum) Peop. Rep. China Zhongcaoyao., 28, 517-522.
- 67. J. F. Stevens, H. Hart, E. T. Elema, A. Bolck, 1996. Flavonoid variation in eurasian *Sedum* and *Sempervivum*. Phytochemistry., 41, 2, 503.

- 68. G. P. Shnyakina, G. G. Zapesochnaya, 1973. Flavonoids of *Sedum pallescsns*. Khim. Prir. Soedin., 9, 557.
- L. A. Demidenko, E. A. Krasnov, 1978. Phenolic compounds of *Sedum populifolium*. Khim. Prir. Soedin., 805.
- G. D. De Melo, D. C. Malvar, F. A. Vanderlinde, P. A. Pires, W. S. Cotes, P. G. Filho
 M. F. Muzitano, C. R. Kaiser, S. S. Costa, 2005. Phytochemical and pharmacological study of *Sedum dendroideum* leaf juice. J. Ethnopharmacol., 102, 217-220.
- D. Yu. Korul'kin, 2001, Chemical composition of certain Sedum species of Kazakhstan C. N. C., 3, 37
- 72. K. S. Khetwal, K. Manral, D. L. Verma 1988. Flavonoids from the Roots of *Sedum cressipes*. India Planta. Med., 54, 89-90.
- H. Mnajed, J. Raynaud, H. Combier 1972. New natural heteroside of 8methoxykaempferol extracted from *sexangulare* (Crassulaceae). Acad. Sci., Ser. D, 274, 445-448.
- H. Combier, K. Markham, H. Audier, P. Lebreton, T. Mabry 1968. Chemotaxonomic research on vascular plants. 3,4',5,7-tetrahydroxy-8-methoxyflavone extracted from *Sedum* acre var sexangulare, Fr. C. R. Acad. Sci. Ser. D, 266, 2495-2497.
- L. A. Demidenko, E. A. Krasnov, 1978. Phenolic compounds of *Sedum popufolium*. Khim. Prir. Soedin., 805
- G. G. Zapesochnaya, G. P. Shnyakina, 1978. O-acylated flavonoid glycosides from Sedum kamtschaticum. Khim. Prir. Soedin., 806-807.
- 77. G. P. Shnyakina, 1979. Qualitative composition of phenolic compounds of far eastern species of *Sedum*. Ratit. Resur., 15, 280-282.
- M. Krolikowska, 1966. Investigation of the flavonoid constituents of the *Sedum acre* herb. Pol. Roczniki Chem., 40, 717-719.
- G. J. Niemann, J. M. J. Visser-Simons, H. t'Hart, 1976. Flavonoids of some species of Sedum. Planta Med., 30, 384-387.
- M. Wolbis, 1993. The izoramnetin acylic 3,7-diglucosid from *Sedum album*. Acta Pol Pharm., 50, 149-152.
- M. Krolikowska, 1972. New flavonoid compounds from the herb Sedum acre (Crassulaceae). Pol. Rocz. Chem., 46, 969-971.
- M. Wolbis, 1987. The glycosides of flavonoids of *Sedum album*. Acta Pol Pharm., 44, 383-4.

- S. Li, C. Zuo, 1991. Chemical constituents of linear stonecrop (Sedum *lineare*). Peop. Rep. China Zhongcaoyao., 22, 438-40.
- 84. C. Chou, C. Wang, L. Lin, 1976. Chrysoeriol 7-o-rhamnoside from *Sedum* formosanum. Phytochemistry, 15, 1420
- M. Wolbis, 1993. Dihydroflavonols from *Sedum reflexum*. Acta Pol Pharm., 50, 315-16.
- 86. M. K. Sakar, F. Petereit, A. Nahrstedt, 1997. Flavan-3-O-gallate and a prodelphinidin from *Sedum litoreum*. Turk. Scientia Pharmaceutica, 65, 33-37.
- 87. E. Wollenweber, M. Doerr, K. Siems, R. Faure, I. Bombarda, E. M. Gaydou, 1999.
 Triterpenoids in lipophilic leaf and stem coatings. Biochem. Syst & Ecol., 27, 103-105.
- E. A. Krasnov, L.V. Petrova, 1970. Arbutin in some *Sedum* plants. Khim. Prir. Soedin., 6, 476.
- A. He, H. Hao, M. Wang, D. Zhang, K. Lee, 1998. Hepatoprotective triterpenes from Sedum sarmentosum. Phytochemistry, 49, 2607-2610.
- 90. J. F. Stevens, H. t'Hart, A. J. A. Pouw, A. Bolck, J. H. Zwaving, 1994. Epicuticular waxes of *Sedum* series Rupestria. Phytochemistry, 36, 341-348.
- L. Wei-lin, J. Yun, L. Qiu-Yan, 2008. Study of chemical constituents on *Sedum aixoon* L, J.Xinxiang Med coll., 25, 558-561.
- A. He, H. Hao, M. Wang, D. Zhang, 1997. Sterols from Sedum sarmentosum. Zhongguo Yaoke Daxue Xuebao, 28, 271-274.
- B. Colau, C. Hootele, 1983. *Sedum* alkaloids. V. Sedacrine, the major alkaloid of *Sedum acre* and related bases. Can. J. Chem., 61, 470-2.
- 94. J. Diak, S. Kohlmunzer, 1981. Search for alkaloids in the genus *Sedum* L., Herba Hung, 20, 7-13.
- H. Kim, H. T'Hart, J. F. Stevens, 1996. Alkaloids of some Asian Sedum species. Phytochemistry, 41, 5, 1319-1324.
- As. Z. Gulubov, Il. Z. Bozhkova, 1972. Alkaloid composition of *Sedum acre I*. Mat. Fiz. Khim. Biol., 10,101-4.
- 97. S. Logar, N. Mesicek, M. Perpar, E. Seles, 1974. Alkaloids in the orpine (*sedum maximum*). Farm. Vestn., 25, 21-25.
- E. A. Krasnov, L. V. Petrova, E. F. Bekker, 1977. Alkaloids of *Sedum* species. Khim. Prir. Soedin., 4, 585.

- 99. C. Hootelé, F. Halin, S. Thomas, 1985. *Sedum* alkaloids: VIII. solution conformation of sedamine and related bases. Tetrahedron, 41, 23, 5563-5568.
- 100. W. Ibebeke-Bomangwa, C. Hootelé, 1987. *Sedum* alkaloids. X. Structure and synthesis of new 3- and 5-hydroxypiperidine alkaloids. Tetrahedron, 43, 5, 935-945.
- H. C. Beyerman, B. S. Bordes, L. Maat, F. M. Warnaar, 1972. Synthesis, optical rotatory dispersion and absolute configuration of (+)-N-methylallosedridine [(+)-(2R)-2-{(2S)-2-hydroxypropyl}-1-methylpiperidine] from *sedum sarmentosum* bunge and its isomers. Neth. Recl. Trav. Chim., 91, 1441-1446.
- B. Colau, C. Hootelé, 1984. Sedum alkaloids-VI: Resolution enhanced proton NMR and 13C NMR spectroscopic studies on the solution conformation of *Sedum acre* alkaloids. Tetrahedron, 40, 11, 2171-2175.
- M. Maksimovic, M. Sober, B. Nikolin, 1990. Gas chromatography/mass spectrometry in the elucidation of the structure of piperidine alkaloids. Rapid Communications in Mass Spectrometry, 4, 503-504.
- 104. L. P. S. Francis, G. W. Francis, 1977. Sedum alkaloids. Planta Med., 32, 268-274.
- C. Piccinni-Leopardi, B. Tinant, J. P. Declercq, M. V. Meerssche, C. Hootele, 1987. Sedum alkaloids. IX Isolation from *Sedum acre* and X-ray structure determination of lobelanidine glycoside. Bull. Soc. Chim. Belg., 96, 97-100.
- L. Marion, M. Chaput, 1949. A new occurrence of di-methylisopelletierine. Can. J. Res., 27, 215.
- As. Z. Gulubov, II. Z. Bozhkova, 1972. Alkaloid composition of *Sedum acre* II. Mat. Fiz. Khim. Biol., 10,105-6.
- S. Gill, W. Raszeja, G. Szynkiewicz, 1979. Occurrence of nicotine in some species of the genus *Sedum*. Farm. Pol., 35, 151-153.
- R. Van der Wal, J. H. Kooy, J. L. Van Eijk, 1981. Phytochemical Investigation of Sedum acre L. Planta Med., 43, 97-99.
- M. Yoshikawa, T. Morikawa, Y. Zhang, S. Nakamura, O. Muraoka, H. Matsuda, 2007. Megastigmanes and Their Glucosides from the Whole Plant of *Sedum sarmentosum*. J. Nat. Products., 70, 575-583.
- K. Ninomiya, T. Morikawa, Y. Zhang, S. Nakamura, H. Matsuda, O. Muraoka, M. Yoshikawa, 2007. Bioactive constituents from Chinese natural medicines. XXIII. Absolute structures of new megastigmane glycosides, Sedumosides A4, A5, A6, H,

and I, and hepatoprotective megastigmanes from *Sedum sarmentosum*. Chem. Pharm. Bull., 55, 1185-1191.

- S. D. Fang, X. Q. Yan, C. F. Li, Z. Y. Fan, X. Y. Xu, J. S. Xu, 1979. Separation and structure of the active principles of *Sedum sarmentosum* Bunge. K'o Hsueh Tung Pao, 24, 431-132.
- 113. R. Nishida, M. Rothschild, 1995. A cyanoglucoside stored by a *Sadum*-feeding A pollo butterfly, *Parnassus phoebus*. Experientia, 51, 167-269.
- J. F. Li, X. L. Huang, C. Q. Ye, 1981. Determination of sarmentosime content in Sedum sarmentosum Bunge and its related species during different growing seasons. Yao. Hsueh. Tung Pao, 16, 12-13.
- 115. A. Nahrstedt, A. Walther, V. Wray, 1982. Sarmentosin epoxide, a new cyanogenic compound from *Sedum cepaea*. Phytochemistry, 21, 107-110.
- C. B. Wang, L. C. Lin, C. J. Chou, 1976. Phytochemical study on *Sedum formosanum* Hay. Hua Hsueh, 1, 16-18.

Aperçu sur la spectrométrie de masse et ses couplages

1. Introduction

Apparue au début du XXe siècle, la spectrométrie de masse a apporté des éléments clés pour la compréhension du noyau atomique. Elle est issue de la découverte, par Eugen Goldstein en 1886, des rayons canaux dus aux ions positifs et de leur analyse par un champ magnétique, par Wilhelm Wien en 1898. Le spectromètre de masse, initialement conçu par le Britannique Joseph John Thomson, En 1912, il obtient des spectres de masses de plusieurs composés gazeux : N₂, O₂, CO, CO₂, etc. Il met en évidence les ions négatifs et les ions multichargés. L'année suivante, il découvre les isotopes A = 20 et A = 22 du néon [1-2].

C'est une technique d'analyse physicochimique permettant de détecter, d'identifier et de quantifier des molécules d'intérêt, par mesure de leur masse. Son principe réside dans la séparation en phase gazeuse de molécules chargées (ions) en fonction de leur rapport masse/charge (m/z). De plus la spectrométrie de masse permet de caractériser la structure chimique des molécules en les fragmentant [3]

2. La spectrométrie de masse

2.1 Définition

La spectrométrie de masse est une technique analytique très puissante et très sensible permettant d'analyser des composés organiques solides, liquides ou gazeux. Elle permet de déterminer la masse moléculaire, de corréler le spectre d'un composé avec sa structure, d'expliquer des mécanismes de ruptures de liaisons, elle joue aujourd'hui un rôle important dans les études de pollution de l'environnement et de dopage grâce à sa sensibilité, sa sélectivité et sa possibilité de faire des analyses quantitatives rapides [1].

2.2. Composition

Un spectromètre de masse est constitué de :

- 1- Système d'introduction de l'échantillon
- 2- Source d'ions ou chambre d'ionisation
- 3- Analyseur qui sépare les ions en fonction de leur masse et de leur charge
- 4- Détecteur qui détecte les ions sortant de l'analyseur

3. HPLC couplée à la masse (LC/MS)

3.1 Définition

La chromatographie en phase liquide couplée à la spectrométrie de masse est une méthode d'analyse qui combine les performances de la chromatographie en phase liquide et de la spectrométrie de masse afin d'identifier et/ou de quantifier précisément de nombreuses substances.

La LC-MS utilise un système de CLHP, mais au moment où les phases mobiles du liquide quittent la colonne, l'échantillon est vaporisé sous forme de micro-gouttelettes. Celles-ci s'évaporent rapidement et libèrent des molécules ionisées de l'analyte qui sont ensuite séparées dans la spectrométrie de masse.

3.2. Composition

Une unité LC-MS est composée de deux blocs principaux : un chromatographe en phase liquide et un spectromètre de masse.

3.3. Performances

Intérêt du couplage LC-/MS

- Séparation d'un mélange afin d'obtenir une identification de la plupart des constituants
- Avoir la sensibilité la plus élevée possible
- Etre universel, c'est-à-dire détecter toutes les substances éluées
- Fournir le plus de données structurales possibles
- Etre sélectif (identification d'un constituant ciblé)
- Permettre des analyses quantitatives Permettre des analyses quantitatives

4. Spectrométrie de masse tandem (LC/MS/MS)

4.1 Définition

La spectrométrie de masse tandem (MS/MS) et son utilisation dans la chimie organique est apparue dans les années 60 [4]. Le développement d'instruments variés éventuellement couplés à la chromatographie a conduit dans les années 70 et 80 à une multiplication des

domaines d'applications de la spectrométrie de masse tandem, en particulier dans les sciences du vivant [5,6].

Le tandem MS/MS se différencie de la MS par une fragmentation des ions pour permettre une meilleure identification. Les ions séparés lors d'un simple MS sont sélectionnés dans un collecteur et sont fragmentés. Les fragments sont analysés dans un deuxième analyseur (fragments MS). L'identification obtenue est plus fine et plus exacte. La spectrométrie de masse permet une analyse qualitative et quantitative [4-6].

4.2. Composition

Il est composé sous sa forme

- 1- Simple MS : d'un ionisateur, d'un analyseur et d'un détecteur
- 2- **Tandem MS/MS** : d'un collecteur d'ions et d'un deuxième analyseur en plus de la partie simple MS.

.Un spectromètre de masse est composé principalement de : un ionisateur, un détecteur et un analyseur de masse.

4.2.1. L'ionisateur : Sert à produire des ions positifs ou négatifs. Les principales sources ioniques dépendent de l'échantillon à analyser

4.2.2. L'analyseur de masse : sert à séparer les ions collectés soit sous l'action d'un champ électrique, soit sous l'action d'un champ magnétique. Il peut être couplé avec presque tous les ionisateurs. Les analyseurs de masse se différencient par leur résolution et leur domaine de masse d'analyse.

4.2.3. Le détecteur : sert à mesurer le nombre d'électrons et à amplifier le signal pour atteindre une bonne sensibilité. Le plus utilisé est un multiplicateur d'électrons. Ensuite le signal est enregistré et un spectre de masse est produit.

Figure 2.1. Détection des acides gras par LC/MS/MS

4.3. Performances

L'analyse par spectrométrie de masse de type triple quadripôle (MS/MS) est la méthode de prédilection pour une quantification précise et une confirmation de traces d'analytes dans des matrices complexes. Détection des drogues et des métabolites dans des échantillons biologiques, polluants présents dans l'environnement, pesticides contenus dans les aliments... les analystes du monde entier font face au défi de la détection d'un plus grand nombre d'analytes cibles avec une plus grande sensibilité et dans un nombre d'échantillons considérablement plus important.

Les performances d'un spectromètre de masse MS et MS/MS sont déterminées par :

- a- Sa résolution : son pouvoir à séparer des ions de masses voisines
- b- Son exactitude : son pouvoir à mesurer la masse exacte d'un ion
- c- Sa sensibilité : son pouvoir à mesurer les petites quantités
- d- Son domaine de masse : son échelle de mesure de masse

5. Les applications de la spectrométrie de masse

Les domaines d'application de la spectrométrie de masse au laboratoire médical en mode simple ou en mode tandem sont multiples. Les analyses peuvent être destinées à:

- La recherche biomédicale :
- Recherche de biomarqueurs et identification de protéines
- La chimie clinique :
- Dosage de l'homocystéine plasmatique totale
- Dépistage néonatal de maladies métaboliques (ex. cycle urée)
- Analyse quantitative des stéroïdes
- La toxicologie :
- Dosage des drogues et alcools Suivi thérapeutique des médicaments (immunosuppresseurs, antirétroviraux, antidépresseurs)
- Recherche des intoxications médicamenteuses
- Pureté des produits pharmaceutiques et étude de leurs métabolites

Cette méthode s'applique dans beaucoup d'autres domaines non médicaux comme l'analyse écotoxicologique, l'agroalimentaire, les parfums ou l'alimentation.

5.1. Analyse des polyphénols par les techniques SM avec différents couplages

Les polyphénols constituent une famille de molécules organiques largement présente dans le règne végétal. Ils sont caractérisés, par la présence de plusieurs groupements phénoliques associés en structures plus ou moins complexes généralement de haut poids moléculaire.

Les polyphénols prennent une importance croissante, notamment grâce à leurs effets bénéfiques sur la santé [7]. En effet, leur rôle d'antioxydants naturels suscite de plus en plus d'intérêt pour la prévention et le traitement du cancer [8], des maladies inflammatoires [9], cardiovasculaires [10] et neurodégénératives [11].

Les polyphénols naturels regroupent un vaste ensemble de substances chimiques comprenant au moins un noyau aromatique, portant un ou plusieurs groupes hydroxyles, en plus d'autres substituants. Ils peuvent aller de molécules simples, comme les acides phénoliques (acide gallique), à des composés hautement polymérisés, de plus de 30 000 Dalton, comme les tanins (acide tannique).

Les polyphénols sont communément subdivisés en phénols simples, acides-phénols (dérivés de l'acide benzoïque ou cinnamique) et coumarines, en naphtoquinones, en stilbénoïdes (deux

cycles C6 liés par 2C), en flavonoïdes, isoflavonoïdes et anthocyanes et en formes polymérisées : lignanes, lignines, tanins condensés. Ces squelettes carbonés de bases sont issus du métabolisme secondaire des plantes, élaborés par la voie du shikimate [12].

En se basant sur la structure carbonée de base, on peut dégager les principales classes de composés phénoliques suivantes (Tableau 2.1, Figure 2.2)

Squelette carboné	Classe	Exemple	Formule
C6	Phénols simples	hydroquinone	но{
C6-C1	Acides hydroxybenzoïques	acide parahydroxybenzoïque	но-
C6-C3	Acides hydroxycinnamiques	acide p-coumarique	но-О-Оон
	Coumarines	Ombelliférone	HOLOO
C6-C4	Naphtoquinones	Juglon	OH O
C6-C2-C6	Stilbénoïdes	trans-resvératrol	HO CON OH

Tableau 2.1. Classification des polyphénols

C6-C3-C6	Flavonoïdes	Kaempférol	HO- CHOHOH
	Isoflavonoïdes	Daidzéine	HO
	anthocyanes	Dalphiniol	3HC.0
(C6-C3) ₂	Lignanes	Entérodiol	ROCH OH OH
(C6-C3) _n	Lignines		
(C6-C3- C6) _n	Tanins condensés	Procyanidol	

Aperçu sur la spectrométrie de masse et ses couplages

Figure 2.2. Classification des polyphénols

5.2. Utilisation des techniques de spectrométrie couplée dans l'analyse des flavonoïdesOptimisation de 11 flavonoïdes naturels et 5 flavonoïdes synthétiques

D'après l'étude faite par Nicolas Fabre et Isabelle Rustan du Laboratoire de Pharmacognosie, Université de Louvain, Bruxelles, Belgique [13] et dans le but de criblage phytochimique des flavonoïdes chez les plantes, avec l'utilisation d'une HPLC couplée à la spectrométrie de l'électro-pulvérisation est développé pour la séparation et la détection des 11 flavonoïdes qui se produisent fréquemment les aglycones (1-4, 7, 9-10, et 11-14, Figure 2.1) dans le mode d'ions négatifs afin de vérifier leur comportement par la spectrométrie de masse.

L'analyse des 11 flavonoïdes aglycones naturelles par LC-MS a été gérée par la spectrométrie de masse pour proposer un schéma plausible de la fragmentation pour chaque composé étudié. L'analyse des composés synthétiques complémentaires (5, 6, 8 et 15) affiché dans Figure 1 a été utile au soutien plausible de la fragmentation.

Les tableaux 1, 2 et 3 affichage les fragments les plus caractéristiques observées pour chaque composé obtenu par MS² à partir des 2 M [H] 2 ions.

Tableau 2.2. Structures des différents flavonoïdes aglycones étudiés

Nom	[M-H] ⁻	R ₁	R ₂	R ₃	R_4
Flavone					
1- Lutéoline	285	OH	OH	OH	OH
2- Apigénine	269	OH	OH	Н	OH
3- Genkwanine	283	Н	OCH ₃	Н	OH
4- Chrysine	253	OH	OH	Н	Н
5- 7-OH flavone	237	Н	OH	Н	Н
6- Flavone	221	Н	Η	Н	Н
Flavonol					
7- Quercétine	301	OH	OH	OH	OH
8- Fistine	285	Н	OH	OH	OH
9- Kaempférol	285	OH	OH	Н	OH
10- Galangine	269	OH	OH	Н	Н
11- Kaempféride	299	OH	OH	Н	OCH ₃
Flavanone					
12- Eriodictyol	287	OH	OH	OH	OH
13- Naringénine	271	OH	OH	Н	OH
14- Isosakurametine	285	OH	OH	Н	OCH ₃
15- Flavanone	223	Н	Н	Н	Η

5.2.1. Fragmentation des flavones

Le comportement de fragmentation établi pour la lutéoline peut être appliqué à d'autres composés. En général, toutes les flavones étudiées ici (sauf la genkwanine, 3, qui ne perd pas un radical CH) présentent des pertes neutres de CO et CO2 (Tableau 2.3)

Figure 2.3. Nomenclature adoptée pour le retrocyclisation et différents clivages observés dans cette étude (adaptée de [14, 15].

m/z	1	2	3	4	5	6
[M-H] ⁻	285	269 (60)	283 (5)	253 (5)	237 (100)	221
[M-H-CH ₃] ⁻	$(100)^{a}$	-	268	-	-	(100)
$[M-H-H_2O]^-$	-	-	(100)	-	-	-
[M-H-CO] ⁻	267 (1)	241 (1)	-	225 (1)	209 (6)	-
$[\mathbf{M}-\mathbf{H}-\mathbf{C}_{2}\mathbf{H}_{2}\mathbf{O}]^{-}$	257 (3)	227 (3)	-	-	-	193
[M-H-CO ₂] ⁻	243 (28)	225	-	209 (75)	193 (5)	-
$[M-H-C_3O_2]^-$	241 (65)	(100)	-	-	-	-
[M-H-CO ₂ -CO] ⁻	217 (23)	201 (40)	-	181 (2)	165 (1)	-
[M-H-C ₂ H ₂ O-	213 (3)	-	-	-	-	-
$CO_2]^-$	199 (23)	183 (4)	-	165 (1)	-	-
[M-H-2CO ₂] ⁻	197 (1)	181 (2)	-	143 (1)	-	-
[M-H-C ₃ O ₂ -	175 (35)	159(1)	-	-	-	-
$C_2H_2O]^-$	151 (4)	151 (10)	151 (1)	-	-	-
^{1,3} A ⁻	-	149 (36)	-	-	_	-
$^{1,4}B^{-}+2H$	-	107(1)	-	-	-	-
$^{1,3}A^{-}-CO^{2}$	133 (1)	117(1)	-			-
^{1,3} B ⁻						

Tableau 2.3. Fragment ESI-MS/MS des flavones 1-6

5.2.2. Fragmentation des flavonols

Les fragments présentés dans le tableau 2 représentent l'ion pseudo moléculaire des flavonols aglycone qui montre le même type de pertes neutres que ceux décrit pour les aglycones du flavones (Tableau 2.4)

m/z	7	8	9	10	11 ^b
				/	
[M-H] ⁻	301 (1) ^a	285 (36)	285 (100)	269 (100)	-
[M-H-CH ₃] ⁻	-	-	-	-	284 (47)
[M-H-CO] ⁻	273 (11)	257 (22)	257 (3)	241 (3)	256 (3)
$[\mathbf{M}-\mathbf{H}-\mathbf{C}_{2}\mathbf{H}_{2}\mathbf{O}]^{-}$	-	-	243 (2)	227 (11)	-
$[M-H-CO_2]^-$	257 (5)	241 (15)	241 (1)	225 (3)	240 (5)
[M-H-2CO] ⁻	-	229 (3)	229 (3)	213 (10)	228 (10)
[M-H- CO ₂ -CO] ⁻	229 (1)	213 (3)	213 (3)	197 (12)	212 (1)
$[\mathbf{M}-\mathbf{H}-\mathbf{C}_{2}\mathbf{H}_{2}\mathbf{O}-\mathbf{C}\mathbf{O}_{2}]^{-}$	-	-	199 (1)	183 (1)	-
[M-H-cycle B] ⁻	193 (1)	177 (1)	-	-	-
^{1,2} A ⁻	179 (100)	163 (100)	-	-	-
^{1,2} A ⁻ -CO (7,8); ^{1,2} A ⁻	151 (67)	135 (54)	151 (1)	-	151 (100)
(9,11)	-	-	-	-	132 (1)
^{1,3} B ⁻	121 (1)	121 (4)	-	-	-
^{1,3} B ⁻	107 (1)	91 (2)	-	-	107 (4)
^{1,3} A ⁻ CO-CO ₂					

Tableau 2.4. Fragment ESI-MS/MS des flavonols 7-11

5.2.3 Fragmentation des flavanones

Les différents ions produits fournis par les quatre ions pseudomoléculaire des aglycones de flavanones étudiées ici sont affichés dans le tableau 2.5

m/z	12	13	14	15
[M-H] ⁻	$287(0)^{a}$	271 (0)	285 (2)	223 (70)
[M-H-CH ₃] ⁻	-		270 (75)	. ,
[M-H-CO] ⁻	-	-	257 (1)	195 (100)
$[M-H-C_2H_2O]^-$	-	-	243 (100)	-
$[M-H-CO_2]^-$	-	227 (1)	241 (18)	-
$[M-H-C_2H_2O-CH_3]^{-1}$			228 (1)	
[M-H-CO ₂ -CH ₃] ⁻			226 (8)	
$[\mathbf{M}-\mathbf{H}-\mathbf{C}_{3}\mathbf{O}_{2}]^{-}$	-	-	217 (8)	-
$[\mathbf{M}-\mathbf{H}-\mathbf{C}_{2}\mathbf{H}_{2}\mathbf{O}-\mathbf{C}\mathbf{O}_{2}]^{-1}$	-	-	199 (2)	-
[M-H-cycle B] ⁻	-	177 (18)	-	-
$[\mathbf{M}-\mathbf{H}-\mathbf{C}_{3}\mathbf{O}_{2}-\mathbf{C}_{2}\mathbf{H}_{2}\mathbf{O}]^{-}$	-	-	175 (6)	-
^{1,3} A ⁻	151 (100)	151 (100)	151 (12)	-
$-CH_3^{0,4}B^{-1}$	-	-	164 (88)	-
-CH ₃ ^{0,4} B ⁻ -CO] ⁻	-	-	136 (3)	-
^{1,3} B ⁻	135 (3)	119 (3)	-	-
^{1,4} A ⁻	125 (1)	-	125 (1)	-
^{1,3} A ⁻ CO ₂	107 (1)	107 (3)	107 (1)	-

Tableau 2.5. Fragment ESI-MS/MS des flavonones 12-15

6. Conclusion

La LC/MS/MS mesure le m/z du composé ainsi que ses intermédiaires (sous-produits) cela fournit une précision supplémentaire et une plus grande sensibilité qui peut nous donner plus d'informations structurelles sur notre produit.

L'avantage de LC/MS/MS par rapport à LC/MS reste dans l'exemple, si deux composés de même poids moléculaire qui vont produire le même ion moléculaire, peuvent être identifiés et quantifiés sur la base des différences entre les ions formés après la fragmentation.

Cette étude portant sur différents flavonoïdes aglycones en utilisant la spectrométrie de masse en mode d'ions négatifs a révélé de nouvelles voies de fragmentation.

Les fragments nous donnent des informations structurelles qui peuvent être très intéressant dans le criblage phytochimique. Dans l'analyse phytochimique d'extrait brut de plantes, le mode d'ions négatifs devrait être plus sélectif et plus sensible que le mode d'ions positifs.

Référence :

- 1. E. Hofmann, J. Charrette, V. Stroobant, 1999. Spectrométrie de Masse : cours et exercices corrigés, Dunod. 2ème édition.
- 2. E. Constantin, P. Traldi, D. Favretto, A. Schnell, 1996. Spectrométrie de Masse : Principes et Applications. Technique et Documentation Lavoisier. 2ème édition.
- J.T. Watson, O.D. Sparkman, 2007. Introduction of Mass Spectrometry: Instrumentation, Applications and Strategies for Data Interpretation. (4th Eds), John Wiley & Sons Ltd, West Sussex, England.
- K.R. Jennings, 1968. Collision-induced decompositions of aromatic molecular ions, I. J. Mass. Spectrom of Ion Phys., 227-235.
- W. M. A. Niessen, 2000. MS-MS and MSⁿ, dans Encyclopedia of Spectroscopy and Spectrometry (Lindon J. C., Tranter G. E., Holmes J. L. Eds.) Academic Press, 1404-1410.
- C. Dass, 2007. Fundamentals of Contemporary Mass Spectrometry, John Wiley & Sons Publishers, Wiley. Inter. science.
- Stanley et al., 2003 Antioxidants and the Free Radical Theory of Degenerative Disease , Alternative Medicine and Rehabilitation, in: Hoffman, R.L. (ed) Nutritional in Rehabilitation. Demos Medical Publishing, New york
- D. Chen, K.G. Daniel, DJ. Kuhn, A. Kazi, M. Bhuiyan, L. Li, Z. Wang, S.B. Wan, W.H. Lam, T.H. Chan, Q.P. Dou, 2004. Green tea and tea polyphenols in cancer prevention. Front Biosci., 1, 9, 2618-31.
- M.J. Laughton, P.J. Evans, M.A. Moroney, J.R. Hoult, B. Halliwell. 1991. Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability. Biochem. pharmacol., 42, 9, 1673-81.
- E.N. Frankel, J. Kanner, J.B. German, E. Parks, J.E. Kinsella. 1993. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet, 341, 454-7.
- J.M. Orgogozo, J.F. Dartigues, S. Lafont, L. Letenneur, D. Commenges, R. Salamon, S. Renaud, M.B. Breteler, 1997. wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev. Neurol., 153,185-92.
- P. M. Dewick, 1995. The Biosynthesis of Shikimate Metabolites, Nat. Prod Rep., 12, 579-607

- N. Fabre, I. Rustan, E. Hoffmann, J. Q. Leclercq, 2001. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc., Mass Spectrom., 12, 707–715
- Y. L. Ma, Q. M. Li, H. Van den Heuvel, M. Clayes, 1997, Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid. Commun. Mass Spectrom., 12, 1357–1364.
- D. T. Li, J. F. Sheen, G.R. Her, 2000. Structural analysis of chromophore-labeled disaccharides by capillary electrophoresis tandem mass spectrometry using ion trap mass spectrometry. J. Am. Soc. Mass Spectrom., 11, 292–300.

Généralités sur les activités antioxydante, anticholinestérase, antiinflammatoire, cytotoxique et antibactérienne

1. Activité anti-oxydante

1.1 Introduction

Ces dernières années, l'intérêt porté aux antioxydants naturels, en relation avec leurs propriétés thérapeutiques, a augmenté considérablement. Des recherches scientifiques dans diverses spécialités ont été développées pour l'extraction, l'identification et la quantification de ces composés à partir de plusieurs substances naturelles à savoir, les plantes médicinales et les produits agroalimentaires [1-3].

1.2 Mise en évidence de l'activité anti-radicalaire

Les radicaux libres sont produits dans notre organisme sous l'action de facteurs déclenchant externes (UV, radiations ionisantes, métaux de transition, fumées de combustion, poussières d'amiante et de silice, antiseptiques, médicaments, pesticides, solvants,...), mais également dans le cadre de phénomènes biologiques importants, comme la respiration cellulaire. Certaines cellules immunitaires (leucocytes, macrophages) utilisent quant à elles les radicaux libres pour la destruction de microorganismes infectieux dans leurs lysosomes. Parmi les radicaux libres auxquels notre organisme est exposé, on retrouve les espèces réactives de l'oxygène tels que les radicaux superoxyde (O_2^{-}) , hydroxyle (OH^{-}) et peroxyles (RO^{\cdot}), le peroxyde d'hydrogène (H₂O₂) et l'oxygène singulet (1O). La production permanente de ces molécules réactives dans notre corps est généralement contrôlée par l'action de systèmes enzymatiques (superoxyde dismutase, glutathion peroxydase, catalase,...) ou d'antioxydants (vitamine E, ß-carotène, ...). Lorsque cet équilibre précaire est rompu en faveur des radicaux libres, il se produit un « stress oxydatif », qui va entraîner la peroxydation des lipides et l'attaque des bases azotées et des acides aminés. Par les dommages ainsi causés à nos cellules, ces différents mécanismes semblent jouer un rôle prépondérant dans les phénomènes du vieillissement et engendrer des pathologies tels que des cancers et des troubles neurodégénératifs, comme les maladies d'Alzheimer ou de Parkinson. L'apport exogène d'antioxydants (alimentation, médicaments,...) pourrait donc ralentir, voire prévenir, ces désordres physiologiques [4].

De nombreuses méthodes ont été mises au point pour déterminer l'activité antioxydante d'aliments, d'extraits ou de composés individuels. Ces tests peuvent se diviser en deux catégories: les tests mesurant le transfert d'électrons ou d'hydrogène vers un radical coloré

stable facile à détecter (DPPH, TEAC) et ce faisant intervenir une compétition (ORAC, décoloration de β -carotène et de crocine) entre l'antioxydant et une cible à protéger (pigments, lipides). D'après une étude récente [5], 19 méthodes sont utilisées actuellement pour l'estimation *in vitro* du pouvoir antioxydant d'un échantillon et la méthode au DPPH représente le test le plus souvent adopté (Figure 3.1). Il est important de sélectionner et d'employer des méthodes fiables et rapides dans le but d'évaluer cette activité. A cet effet, le test choisi dans ce travail est la réduction du radical DPPH[•] par les polyphénols en modèle simple de l'environnement gastrique.

Figure 3.1. Fréquence d'utilisation des méthodes d'évaluation in vitro de l'activité antioxydante [5]

Les antioxydants les plus connus sont le β -carotène (provitamine A), l'acide ascorbique (vitamine C), le tocophérol (vitamine E) ainsi que les composés phénoliques (Figure 3.2).

Figure 3.2. Principaux composés naturels (ou synthétisés) possédant des propriétés antioxydantes

Plusieurs méthodes sont utilisées pour évaluer, *in vitro* et *in vivo*, l'activité antioxydante par piégeage de radicaux différents, comme les peroxydes ROO[•] par les méthodes ORAC (Oxygen Radical Absorbance Capacity) et TRAP (Total Radical-Trapping Antioxidant Parameter) [6]; les ions ferriques par la méthode FRAP (Ferric ion Reducing Antioxidant Parameter) [7]; ou les radicaux ABTS• (sel d'ammonium de l'acide 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonique) [8], ainsi que la méthode utilisant le radical libre DPPH• (diphényl-picrylhydrazyle) [9].

Compte tenu de la complexité des processus d'oxydation et la nature diversifiée des antioxydants, avec des composants à la fois hydrophiles et hydrophobes, il n'y a pas une méthode universelle par laquelle l'activité antioxydante peut être mesurée quantitativement d'une façon bien précise. Le plus souvent il faut combiner les réponses de tests différents et complémentaires pour avoir une indication sur la capacité antioxydante de l'échantillon à tester [10-12].

1.3. Méthode du DPPH

De point de vue méthodologique, le test au radical libre DPPH• est recommandé pour des composés contenant, SH⁻, NH⁻ et OH⁻ [13]. Il s'effectue à température ambiante, les groupes permettant d'éliminer tout risque de dégradation thermique des molécules thermolabiles. Le test est largement utilisé au niveau de l'évolution des extraits hydrophiles en provenance de thé vert, des jus de fruits et de raisins, pépins et pulpes, très riches en composés phénoliques [14-25].

1.4. Réaction entre le radical libre DPPH' et l'antioxydant

Le DPPH (2,2-diphényl-1-picryhydrazyl) est un radical stable de couleur violette en solution. Lorsqu'il est réduit en présence d'une substance réductrice (par un mécanisme combinant le transfert d'un atome d'hydrogène et le transfert d'électrons), la couleur de la solution devient jaune. Plus la substance est antioxydante et plus la coloration violette initiale va disparaitre. On apprécie ce changement de couleur grâce à un enregistrement à la longueur 540 nm (à l'aide d'un spectrophotomètre (Figure 3.3).

Figure 3.3. Transformation du radical DPPH[•] en DPPHH

Le piégeage des radicaux libres par des antioxydants est tributaire de deux types de mécanismes: (i) la libération de l'atome d'hydrogène du groupement hydroxyle (cinétique rapide de certains acides et dérivés phénoliques); (ii) la libération d'un électron (cinétique lente des dérivés glycosylés et des anthocyanes) [26-27]

Dans le cas des composés phénoliques (Φ -OH), le mécanisme principal d'action est le piégeage des radicaux libres par le transfert de l'atome H sur le DPPH• alors transformé en une molécule stable DPPHH [28-29].

$$DPPH\bullet+\Phi OH \rightarrow DPPHH + \Phi O\bullet$$

Plusieurs voies réactionnelles sont alors possibles qui forment des structures plus au moins stables :

 $\Phi O \bullet + \Phi O \bullet \to \Phi O \bullet O \Phi$ $DPPH \bullet + \Phi O \bullet \to \Phi O \bullet DPPH$

 $\Phi O \bullet (\text{semi-quinone})^{-H \bullet} \rightarrow \Phi = O (\text{quinone})$

La capacité anti-radicalaire (capacité à fixer des radicaux libres, donc à arrêter la propagation de la réaction en chaîne) ne peut être mesurée directement, mais par contrôle de l'effet de la réactivité. Plusieurs facteurs influent sur le potentiel antioxydant et la cinétique de réduction, notamment les conditions de la réaction (temps, rapport Antioxydant/DPPH•, type de solvants, pH) et le profil phénolique en particulier [30].

1.5. Piégeage de l'ABTS (2,2'-azinobis-[3-ethylbenzothiazoline-6-sulfonic acid])

Dans la méthode TEAC (Trolox equivalent antioxidant capacity), l'activité antioxydante totale d'une molécule est déduite de sa capacité à inhiber le radical ABTS•+, obtenu à partir de l'ABTS (sel d'ammonium de l'acide 2,2'-azinobis-(3-éthylbenzothiazoline-6-sulfonique)) comparativement à un antioxydant de référence : le Trolox (acide 6-hydroxy-2,5,7,8-tétraméthylchroman-2-carboxylique), dont la structure moléculaire cyclique est similaire à celle de la vitamine E. L'obtention du radical cation résulte du contact de l'ABTS avec une enzyme de peroxydation (peroxydase metmyoglobine [31] ou horseradish peroxidase) [32] en présence de H₂O₂ ou d'un oxydant (dioxyde de manganèse [33-34] ou persulfate de potassium [35]. Le radical ABTS⁺⁺, en contact avec un donneur de H^{*} conduit à l'ABTS⁺⁺ et à la décoloration à 734 nm de la solution [36].

D'autres auteurs utilisent l'acide 2,2'-azinobis-(3-éthylbenzothiazoline-6-sulfonique), ou ABTS, à la place de son sel d'ammonium et analysent l'inhibition du radical ABTS, produit par un initiateur de radicaux thermolabiles,

l'ABAP (2,2'-azobis-(2-amidinopropane) HCl) [37]. La cinétique de réaction de l'antioxydant étudié doit être examinée préalablement pour déterminer la fin de réaction. La capacité antioxydante en équivalent Trolox (TEAC) correspond à la concentration (mmole/l ou mg/l) de Trolox® ayant la même activité qu'une même concentration unitaire de substance à tester, jus de fruit par exemple [31] (Figure 3.4).

Figure 3.4. Formation et piégeage du radical ABTS⁺⁺ par un antioxydant donneur de H[•]

1.6. Test de la capacité antioxydante par réduction du cuivre (CUPRAC)

La méthode CUPRAC (cupric ion Reducing Antioxidant Capacity) est basée sur le suivie de la diminution de l'absorbance accrue du complexe Néocuproéne (NC), cuivre $(Cu^{+2})Nc_2-Cu^{+2}$. En effet, en présence d'un agent antioxydant, le complexe cuivre-neocuproéne est réduit et cette réaction est quantifié spectrophotometriquement a une longueur d'onde de 450 nm [38]. Le principe de ce test se base sur la conversion des hydroxyles phénoliques en quinones à travers la réduction du complexe Cu^{+2} -Nc, produisant ainsi un complexe chromogène de Cu^{+2} -Nc qui absorbe à 450 nm (Figure 3.5)

Figure 3.5. Réduction du complexe chromogène de Cu⁺²-Nc

1.7. Chélation des ions métalliques

Les polyphénols contribuent à l'inhibition de la formation des radicaux libres par la chélation de métaux de transition tels que le fer (Fe²⁺) et le cuivre (Cu⁺), qui sont essentiels pour de nombreuses fonctions physiologiques. Ils entrent notamment dans la composition des hémoprotéines et de cofacteurs d'enzymes du système de défense antioxydant (Fe pour la catalase et Cu pour la superoxyde dismutase). Cependant, ils peuvent aussi être responsables de la production du radical OH[•] par la réduction de H₂O₂ lors de la réaction de Fenton [39-40].

$$H_2O_2 + Fe^{2+}(Cu^+)$$
 $\rightarrow OH + OH + Fe^{3+}(Cu^{2+})$

En outre, l'autoxydation des ions Fe^{2+} et Cu^+ est une source de O^{2-} et de H₂O₂. Ainsi, complexer les ions du fer et du cuivre sous une forme qui bloque leur activité redox est un

mécanisme d'action antioxydante. Les polyphénols abondants dans l'alimentation, notamment les flavonoïdes, séquestrent ces ions métalliques au niveau de différents sites (Figure 3.6).

Figure 3.6. Sites d'ions métalliques par les flavonoïdes

1.8. Test de blanchissement du β-carotène

Cette méthode est basée sur la perte de la couleur jaune du β -carotène et donc de la consommation de celui-ci, due à la réaction avec les radicaux qui sont formés par l'oxydation de l'acide linoléique en émulsion [41]. Le blanchissement du β -carotène, ralenti en présence d'antioxydants, est mesuré par un suivi spectrophotométrique à 470 nm. L'absorbance est ainsi lue au temps 0 puis au bout de deux heures. Cette méthode est sensible, ceci étant dû à la forte absorption du β -carotène mais est plus lente que celle du DPPH. Récemment, la méthode a été améliorée grâce à l'utilisation de microplaques à 96 puits. Cette méthode est largement utilisée dans l'évaluation de l'activité anti-oxydante de différents types d'échantillons tels que les composés seuls, les extraits de plantes, de graines, de fruits, de légumes.

2. Evaluation de l'activité anti-cholinestérase

L'acétylcholinestérase (AChE) est l'enzyme responsable de la métabolisation de l'acétylcholine, neurotransmetteur du système cholinergique qui est impliqué notamment dans les fonctions cognitives. L'inhibition de cette enzyme va engendrer une diminution du turnover de l'acétylcholine et donc augmenter les effets cholinergiques. Les inhibiteurs de l'acétylcholinestérase sont utilisés pour diminuer les symptômes de la maladie d'Alzheimer. Dans la Maladie d'Alzheimer (MA), les cellules nerveuses se détériorent progressivement, surtout celles produisant de l'acétylcholine, substance importante pour la mémoire. On a montré qu'il existe une baisse de la concentration d'acétylcholine dans le cerveau de patients

atteints de MA. Les anticholinestérasiques diminuent l'activité de l'acétylcholinestérase, enzyme détruisant l'acétylcholine. Leur action favorise donc l'élévation de la concentration d'acétylcholine dans le cerveau.

L'activité Acetylcholinesterase et butyrylcholinesterase est déterminée par la méthode d'Ellman [42].

Figure 3.7. Mécanisme chimiques de la méthode d'Ellman's

3. Etude de la toxicité aiguë par voie orale

3.1. Notion de toxicité

Les effets toxiques d'une substance varient considérablement selon sa nature, l'organe cible et son mécanisme d'action. Ces effets constituent la résultante d'interactions biochimiques entre la substance toxique et/ou ses métabolites et les structures de l'organisme. Une meilleure connaissance de ces caractéristiques permet d'améliorer l'évaluation des risques potentiels pour la santé et facilite le développement de mesures rationnelles dans la prévention et le traitement [43].

3.2. Toxicité par administration unique : Toxicité aiguë

Elle se manifeste rapidement, voire immédiatement, après une prise unique ou à court terme après plusieurs prises rapprochées. C'est l'étude qualitative et quantitative des phénomènes toxiques qu'il est possible de rencontrer après administration unique de la ou des substances actives contenues dans le médicament. Cette étude décrit les symptômes observés, y compris les phénomènes locaux et fournit pour autant que cela est possible, l'indication de la DL avec ses limites de confiance (95%). L'étude sur l'animal de laboratoire doit être effectuée sur un nombre égal d'animaux mâles et femelles. La durée de l'observation des animaux est précisée par l'expérimentateur. En général, elle n'est pas inférieure à une semaine [44]. L'étude de la toxicité aiguë permet d'exprimer la dose qui tue 50% des animaux d'expérience (DL50) ainsi que la dose maximale sans effet toxique (DME) c'est à dire la dose la plus élevée pour laquelle aucun effet toxique n'est relevé par rapport au lot témoin [43].

3.3. Toxicité par administration réitérée : toxicité sub-aiguë et chronique

Ces épreuves ont pour objet de mettre en évidence les altérations fonctionnelles et/ou pathologiques consécutives aux administrations répétées de la substance active examinée et d'établir les conditions d'apparition de ces altérations en fonction de la posologie. Les expérimentations se font sur deux espèces de mammifères dont une non-rongeur. Une des deux épreuves durera 2 à 4 semaines, l'autre 3 à 6 mois. Le choix de la ou des voies d'administration doit tenir compte de la voie pour l'emploi thérapeutique et des possibilités de résorption. Le mode et le rythme des administrations ne sont pas codifiés strictement mais doivent être clairement indiqués ainsi que la durée des essais. Il est utile de choisir la dose la plus élevée de façon à faire apparaître des effets nocifs, les doses inférieures permettent alors de situer la marge de tolérance du nouveau produit chez l'animal. L'appréciation des effets toxiques est faite sur la base de l'examen du comportement, de la croissance, de la formule sanguine et des épreuves fonctionnelles particulièrement celles qui se rapportent aux organes extérieurs ainsi que la base des comptes rendus nécropsiques, accompagnés des examens histologiques qui s'y rattachent [44].

4. Evaluation de l'activité anti-inflammatoire

4.1. Introduction

L'inflammation est une réaction de défense de l'organisme à diverses agressions qui peuvent être d'origine physique, chimique, biologique (réponse immunitaire) ou infectieuse. Le traitement actuel de l'inflammation fait appel aux anti-inflammatoires stéroïdiens (glucocorticoïdes) et non stéroïdiens comme l'aspirine. Ces molécules bien qu'étant efficaces présentent le plus souvent des effets indésirables qui peuvent gêner leur utilisa-tion au long cours [45].

Dans l'évaluation de l'activité anti-inflammatoire on recherche les effets sur les premières phases de l'inflammation primaire et les effets sur l'inflammation secondaire.

Sur l'inflammation primaire, on recherche les effets anti-érythémateux, anti-œdémateux et les effets de réduction du granulome. On étudie l'inflammation primaire et secondaire sur l'arthrite à l'adjuvant de Freund (un adjuvant immunologique) [46].

4.2. Méthodes d'évaluation de l'activité anti-inflammatoire

On distingue cinq méthodes d'évaluation de l'activité AINS (anti-inflammatoire non stéroïdiens) :

4.2.1. Erythème aux rayons ultraviolets chez le cobaye

Affection cutanée caractérisée par une éruption de taches rosées, on observe l'intensité de la coloration rouge de la peau épilée du dos de cobaye soumise aux rayons ultraviolets, en absence et en présence d'anti-inflammatoires [47].

Les anti-inflammatoires se classent dans l'ordre d'activité décroissante : indométacine, acide méfénamique, phénylbutazone, amidopyrine, salicylate de sodium.

4.2.2. Perméabilité capillaire chez le lapin

Sur la peau épilée du lapin albinos, on applique de l'essence de térébenthine ou de l'huile de croton. On met en évidence une exsudation plasmatique par l'injection intraveineuse de bleu de Tryptan ou de bleu Evans qui se lient aux protéines plasmatiques. L'étendue de la tâche cutanée est proportionnelle à la perméabilité capillaire [47].

L'étendue de la diffusion du bleu dans la substance fondamentale du derme est réduite en présence d'anti-inflammatoires.

Partie 1 : Généralités et données bibliographiques

<u>Chapitre 3</u> <u>Généralités sur les activités antioxydante, anticholinestérase, anti-inflammatoire, cytotoxique et antibactérienne</u>

4.2.3. L'œdème de patte du rat selon Winter

L'exsudation est évaluée par le gonflement de la patte postérieure du rat après injection intraarticulaire d'un agent phlogogène : la carragénine est la plus utilisée. On évalue l'œdème par pléthysmographie. Ce test explore la deuxième phase de l'inflammation. Sont actifs dans l'ordre d'activité décroissante : l'indométacine, l'acide flufénamique, l'acide méfénamique, la phénylbutazone, l'acide acétylsalicylique [48,50].

Ce test permet de mettre en évidence les effets anti-inflammatoires mais ne permet pas de classer les AINS pour leur intérêt clinique car la puissance des effets chez le rat ne préjuge pas de l'intérêt clinique d'un AINS et ne permet pas de classer les AINS entre eux.

4.2.4. L'inflammation locale de l'oreille

L'inflammation de l'oreille de rat, provoquée par l'application locale d'huile de croton peut être réduite par l'application locale de substances anti-inflammatoires [49].

4.2.5. Modèles testant une action pharmacologique de l'AINS

Ex : modèle de cage tissulaire avec inhibition de la synthèse de la PGE2 (prostaglandine) : Une balle de golf (creuse de practice) est placée chirurgicalement sous la peau de cheval ; après quelques jours, un transsudat s'accumule dans la cavité ; en injectant dans la balle un agent phlogogène comme la carragènine, on déclenche une inflammation et la formation d'un exsudat inflammatoire contenant des prostaglandines ; les AINS peuvent être testés pour leur capacité à bloquer cette synthèse de prostaglandines [51].

4.2.6. Modèles testant une réponse clinique de l'AINS

Ex : Arthrite à l'adjuvant de Freund :

L'injection intra-articulaire dans la patte postérieure du rat d'adjuvant de Freund (suspension de bacilles tuberculeux tués) détermine une réaction démateuse qui se développe immédiatement (inflammation primaire). En deux ou trois semaines, apparaissent à distance, sur la patte postérieure controlatérale, sur les pattes antérieures, à la queue, aux oreilles une

réaction inflammatoire avec gonflement, rougeur, chaleur et douleur (inflammation secondaire). Les anti-inflammatoires administrés pendant cet essai empêchent les deux réactions primaire et secondaire [47].

5. Evaluation de l'activité antibactérienne

5.1. Définitions

5.1.1. Les bactéries

Les bactéries sont des organismes vivants qui ne sont constitués que d'une seule cellule : on dit qu'ils sont unicellulaires. Dotés d'une membrane cellulaire et d'un matériel génétique (ADN), les bactéries sont capables d'assumer les fonctions élémentaires propres au vivant : se reproduire, transmettre l'information génétique, mais aussi tirer matière et énergie de l'environnement. Elles possèdent une certaine autonomie et un métabolisme propre [52]

Il existe cependant des espèces pathogènes à l'origine de nombreuses maladies infectieuses comme la peste, la tuberculose, le choléra, la syphilis, etc... Les plus dangereuses sont celles qui causent des infections respiratoires : la tuberculose tue par exemple plus de 2 millions de personnes par an

Les bactéries nocives peuvent être combattues par les antibiotiques. Ce sont souvent des molécules synthétiques qui vont détruire ou bloquer la croissance des bactéries. Ils agissent de manière spécifique sur celles-ci, en bloquant la synthèse de la paroi de la cellule ou en inhibant leur métabolisme. L'avantage de ce traitement est qu'il est suffisamment sélectif pour ne viser que les bactéries : il n'aura donc aucun impact (sauf exception) sur les cellules du patient traité [53].

5.2. Les différentes méthodes d'évaluation de l'activité antibactérienne

5.2.1. Méthode de dilution en milieu liquide

En milieu liquide, la croissance bactérienne se visualise par un trouble ou un culot bactérien. On réalise une gamme d'antibiotique de concentrations décroissantes par dilutions successives

5.2.2. Méthode de dilution en milieu gélosé

Les dilutions d'antibiotique sont incorporées dans une gélose de Mueller-Hinton coulée en boîte de Pétri. Chaque boîte contient une concentration d'antibiotique différente. La surface de la gélose est ensemencée par des stries de suspension de bactéries. Une dizaine de souches peuvent être testées sur une boîte. La CMI correspond à la plus petite concentration en antibiotique qui inhibe la croissance bactérienne (aucune colonie sur la strie) [54].

5.2.3. Méthode E-test

Une bandelette est imprégnée de quantités croissantes d'antibiotique. Elle est placée sur une gélose pour antibiogramme ensemencée classiquement. l'antibiotique diffuse en formant un gradient de concentration : la zone d'inhibition a la forme d'une ellipse et la lecture est alors directe sur la bandelette là où celle-ci rencontre la zone d'inhibition. Au point d'intersection entre la zone d'inhibition et la bandelette, la concentration en antibiotique correspond à la CMI de la souche étudiée.

5.2.4. Effet bactéricide

L'effet bactéricide consiste en la destruction d'une partie de la population d'une souche bactérienne Pour tester le pouvoir bactéricide d'un antibiotique sur la souche isolée il faut déterminer la concentration minimale bactéricide (CMB) (cette concentration est toujours supérieure à la CMI).

5.3. Détermination de la CMI

La CMI permet d'apprécier in vitro la sensibilité d'une souche vis-à-vis d'un antibiotique mais elle ne reflète pas la réalité thérapeutique. Déterminer la CMI, consiste à déterminer la concentration en antibiotique inhibant la croissance bactérienne. La CMI d'un germe donné peut être mesurée par différents procédés de laboratoire [55]

Références :

- C. Sanchez-Moreno, 2002. Review: methods used to evaluate the free radical scavenging activity in foods and biological systems. Food. Sci & Technol. Int., 8, 121-137.
- 2. F. Marc, A. Davin, L. Deglène-Benbrahim, C. Ferrand, 2004. Méthodes d'évaluation du potentiel antioxydant dans les aliments. Erudit, M/S, Med. Sci., *20*, 458-463.
- 3. D. Huang, B. Ou, R. L. Prior, 2005. The chemistry behind antioxidant capacity assays. J. Agric & Food Chem., 53, 1841-1856.
- M. Cuendet, 1999. Recherche de nouveaux composés capteurs de radicaux libres et antioxydants à partir d'une plante d'Indonésie : *Fagraeablumei* (Loganiaceae) et de trois plantes d'altitude : *Bartsiaalpina* (Scrophlariaceae), *Loiseleuria procumbens* (Ericaceae) et *Campanula barbata* (Campanulaceae). Thèse de doctorat, Faculté des Sciences de l'Université de Lausanne, pp. 2-8
- 5. Md. N. Alam, N. J. Bristi, Md. Rafiquzzaman, 2013. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J., 21, 143-152.
- J.M. Ricardo da Silva, N. Darmon, Y. Fernandez, S. Mitjavila, 1991. Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds. J. Agric. & Food Chem., 39, 549-1552.
- 7. I. F. Benzie, J. Strain, 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry., 239, 70-76.
- R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice- Evans, 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol & Med., 26, 1231-1237.
- P. Sharma Om, T.K. Bhat, 2009. DPPH antioxidant assay revisited. Food chem., 113 (4), 1202.
- J. Tabart, C. Kevers, J. Pincemail, J. Defraigne, J. Dommes, 2009. Comparative antioxidant capacities of phenolic compounds meausured by various tests. Food Chem., 113, 1226-1233
- S. C. Degaulejac, N. Provost, N. Vivas, 1999. Comparative study of polyphenol scavenging activities assessed by different methods, J. Agric. & Food Chem., 47, 425-431.

- L. Hua, W. Xiaoyu, L. Peihong, L. Yong, W. Hua, 2008. Comparative Study of Antioxidant Activity of Grape (*Vitis vinifera*) Seed Powder Assessed by Different Methods. J. Food & Drug Anal., 16 (6), 67-73.
- N. Salah, N. J. Miller, G. Paganga, L. Tijburg, G.P. Bolwell, C. A. Rice-Evans, 1995. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem & Biophys., 339-346.
- 14. Y. Z. Cai, M. Sun, J. Xing, Q. Luo, H. Corke, 2006. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci., 78, 2872-2888.
- L. I. Mensor, F. S. Menezes, G. G. Leitao, A. S. Reis, T. dos Santos, C. S. Coube, S. G. Leitao, 2001. Screening of Brazillian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res., 15, 127-130.
- F. Nanjo, K. Goto, R. Seto, M. Suzuki, M. Sakai, Y. Hara, 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic. Biol. Med., 21, 895-902
- 17. B. S. Maataoui, A. Hmyene, S. Hilati, 2006. Avtivites anti-radicalaires d'extraits de jus de fruits du figuier de Barbarie (*Opuntia ficus indica*). Libanese Sci. J., 7, 3-7.
- M. Sendra Jose, E. Sentandreu, L. Navarro Jose, 2006. Reduction kinetics of the free stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH•) for determination of the antiradical activity of *Citrus* juices. Eur. Food Res. & Technol., 223, 615-624.
- J.K. Cherif, I. M'Rabet, M. El Habiri, R. Abidi, 2006. Albrecht-Gary Anne-Marie. Mesure de l'activité antiradicalaire du jus et des peaux d'oranges tunisiennes par le radical DPPH. Fruits, 61, 99-104.
- 20. G. Angelov, L. Boyadzhiev, S. Georgieva, Antioxydant properties of some Bulgarian wines. Journal of International Scientific Publication: Materials, Methods and Technologies, V.3
- D. P. Makris, G. Boskou, N. K. Andrikopoulos, 2007. Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures. Bioress. Technol., 98, 2963-2967.
- P. Iacopini, M. Baldi, P. Storchi, L. Sebastiani, 2008. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J. Food Compos. & Anal., 21, 589-598.

- B. Bozan, G. Tosun, D. Ozcan. 2008. Study on polyphenol content in the seeds of red grape (*Vitis vinifera* L) varieties cultivated in Turkey and their antioxydant activity. Food Chem., 209, 426-430.
- 24. Y. Yilmaz, R. T. Toledo, 2004. Major flavonoids in grape seeds: antioxidant capacity of catechin, epicatechin and gallic acid. J. Agric & Food Chem., 52, 255-260.
- 25. E. F. Hatzidimitriou, N. Nenadis, M. Z. Tsimidou, 2007. Changes in the catechin and epicatechin content of grape seeds on storage under different water activity (aw) conditions. Food Chem., 105, 1504-1511
- 26. D. Huang, B. Ou, R. L. Prior, 2005. The chemistry behind antioxidant capacity assays. J. Agric & Food Chem., 53, 1841-1856.
- 27. F. Nanjo, K. Goto, R. Seto, M. Suzuki, M. Sakai, Y. Hara, 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic. Biol. Med., 21, 895-902
- 28. P. Molyneux, 2004. The use of stable free radical diphenylpicrilhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin. J. Sci. Technol., 26, 211-219.
- 29. C. Sanchez-Moreno, A. Larrauri Jose, F. Saura-Calixto 1998. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food & Agric., 76, 270-276.
- 30. P. Molyneux, 2004. The use of stable free radical diphenylpicrilhydrazyl (DPPH) for estimating antioxidant activity. Song klanakarin J. Sci. Technol., 26, 211-219.
- 31. N. J. Miller, C. A. Rice-Evans, 1997. The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and black currant drink. Food Chem., 60, 331-337.
- 32. M. B. Arnao, A. Cano, M. Acosta, 2001. The hydrophilic and lipophilic contribution tototal antioxidant activity. Food Chem., 73, 239-244.
- O. Benavente-Garcia, J. Castillo, J. Lorente, 2000. Antioxidant activity of phenolics extracted from *Olea europaea* L. leaves. Food Chem., 68, 457-462.
- 34. N. J. Miller, J. Sampson, L. P. Candeias, 1996. Antioxidant activities of carotenesand xanthophylles. FEBS Lett., 384, 242.
- 35. R. Re, N. Pellegrini, A. Proteggente, 1999. Antioxidant activity applying animproved ABTS radical cation decolorization assay. Free Radic. Biol. Med, 26, 1231-1237.
- 36. E. J. Lien, S. Ren, H. H. Bui, R. Wang, 1999. Quantitative structure-activity relationshipanalysis of phenolic antioxidants. Free Radic. Biol. Med., 26, 285-294.

- 37. R. Van Den Berg, G. R. Haenen, H. Van Den Berg, 2000. The predictive value of the antioxidant capacity of structurally related flavonoids using the trolox equivalent antioxidant capacity (TEAC) assay. Food Chem, 70, 391-395.
- 38. R. Apak, K. Guclu, M. Ozyurek, S.E. Karademir. 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, Using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J. Agric. Food. Chem., 52, 7970–7981
- 39. P. G. Pietta, 2000. Flavonoids as antioxidants. J. Nat. Prod., 63, 1035-1042.
- 40. K. E. Heim, A. R. Tagliaferro, D. J. Bobilya, 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutrit. Biochem., 13, 572-584.
- 41. J. G. Marco, 1968. A rapid method for evaluation of antioxidants. J. Amer. Oil's. Chem., 45, 594-598.
- 42. G. L. Ellman, K. D. Courtney, V. Andres, R. M. Featherston, 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7, 88-95.
- 43. A. Traoré, M. Bonini, S.D. Dano , E.E. Creppy, 1999. Syneristic effects of some metals contaminating mussels on the cytotoxicity of the marine toxin okadaic acid, Arch. Toxicol, 73, 289-295.
- 44. Y. Ruckebusch, 1981. Physiologie, pharmacologie, thérapeutique animales, 2eme Edit. Maloine S.A. Paris.
- 45. JM., Gaziano, CM. Gibson, 2006. Potential for drug-drug interactions in patients taking analgesics for mild-to-moderate pain and low-dose aspirin for cardioprotection. Am. J .Cardiol., 97, 23-9.
- 46. LEQUESNE M. Méthodes d'étude des anti-inflammatoires non-stéroïdiens dans la coxarthrose et la gonarthrose. 1983. 38, pp. 683-688.
- Cohen Y. 1997. Les anti-inflammatoires dans Abrégé de pharmacologie. Ed. Masson, Paris, 465.
- 48. C.A. Winter, E.A. Risley, G.W. Nuss. 1963. Carragenine-induced edema in ind-paw of rat as an assay for anti-inflammatory drug. J. Pharmacol. Exp. Therap., 141, 369-373.
- 49. K. D. Rainsford. 1984. Aspirin and the salicylates, p. 281. London: Butterworths & Co.

- 50. T. Yvan. 1997. Pharmacologie 8ème Edit. Masson. Paris-Milan-Barcelone., 388 P.
- 51. A.J. Higgins, 1987. Development of equine models of inflammation. Vet. Rec. 120,22, 517-522
- 52. C. Nauciel, J.L. Vildé, 2005. Bactériologie médicale, 2^{ème} Ed. Masson. Paris. pp: 5-10
- J.L. Elghozi, D. Duval, 1992. Pharmacologie 2^{ème} Ed : Médecine Flammarion. Paris. P 289.
- 54. F. Caron, 2012. Antimicrobial susceptibility testing: A four facets tool for the clinician. Journal des Anti-infectieux, 14, 168-174.
- 55. J. Allegrini, S.M. Buochberg, A. Billot, 1973. Emulsions d'huiles essentielles, fabrication et application en microbiologie. Travaux de la Société de Pharmacie de Montpellier, 33, 73-86.

Partie 2

Matériel et méthodes
Matériel végétal, animal et extractionsséparations

1. Matériel végétal

1.1. Sedum caeruleum

La plante a été récoltée au début du mois de Mai 2010 aux environs de la ville de Jijel dans l'est algérien. Après séchage dans un endroit sec et à l'abri des rayons solaires, les parties aériennes ont été coupées en petits morceaux et pesées (1,5 Kg).

1.2. Sedum pubescens

La plante a été récoltée en début de juin 2011 à de Djbel El Ouahch dans la ville de Constantine. Après séchage dans un endroit sec et à l'abri des rayons solaires, les parties aériennes ont été coupées en petits morceaux et pesées (370 g).

2. Macération et extraction

2.1 Sedum caeruleum

Le matériel végétal de masse 1.5 Kg a subi une macération dans un mélange hydro-alcoolique (MeOH/H₂O ; 80 :20 ; V/V) 3×24 heures. Un résidu est récupéré après évaporateurà sec à une température de 40 ⁰C maximum. L'extrait brut obtenu est dilué avec de l'eau distillée puis laissé au repos pour décantation, cette dernière permet le dépôt de la chlorophylle. Après, on filtre pour obtenir une solution aqueuse qui subit des extractions liquide-liquide par des solvants de polarité croissante : l'éther de pétrole, le chloroforme, l'acétate d'éthyle et et le *n*-butanol successivement. Les quatre fractions organiques récupérées sont concentrées et pesés conduisant à 2.96 g pour la fraction éther de pétrole, 6.87 g pour la fraction chloroformique, 9.64 g pour la fraction acétate d'éthyle et 52.32 g pour la fraction butanolique (Figure 1.1).

3. Séparation chromatographique des fractions de Sedum caeruleum

Les quatre fractions ont subi des tests préliminaires sur plaque CCM afin de déterminer le bon système de séparation sur colonne.

3.1 Séparation et purification des composants de la fraction chloroformique

De multiples tests chromatographiques avec plusieurs systèmes de solvants polaires, apolaires et moyennement polaires ont mené au système de séparation ($CH_2Cl_2/MeOH$) (9 : 1) sur gel de silice

3.2 Elimination de la chlorophylle

La chlorophylle a été éliminée par l'utilisation du charbon actif avec le système de filtration sous vide et qui a fait réduire la masse de la phase à 4.50 g

4. Séparation sur colonne

La fraction chloroformique de masse 4.50 g a été dissoute dans le méthanol et mélangée avec du gel de silice et évaporée à sec, en donnant une poudre solide qui est déposée sur une colonne de gel de silice préparée dans le chloroforme.

La séparation sur colonne a été éluée en mode de gradient avec le système (CH₂Cl₂/MeOH) (9 : 1) jusqu'à l'épuisement de l'extrait. Le suivi a été effectué par CCM sur gel de silice et les plaques CCM sont visualisées sous lumière UV (254-365 nm)

La colonne a permis l'obtention de 140 pots de 50 ml, qui tous ont été contrôlés sur des plaques CCM. L'examen des CCM sous UV a permis le regroupement des fractions par les systèmes ($CH_2Cl_2/MeOH$) (9 : 1 / 8 : 2) (Tableau 1.1)

Fraction	Nom de la fraction	Observations
1-4	F4	Mélange en faible quantité
5-6	F6	Mélange en faible quantité
7-10	F10	Mélange en faible quantité
11-15	F15	Mélange en faible quantité
16-19	F19	Probable terpène majoritaire en mélange
20-30	F30	Mélange de produits
31-39	F39	Mélange de produits
40-49	F49	Mélange de produits
51-58	F58	Probable flavonoïde majoritaire en mélange
50-69	F69	Probable flavonoïde majoritaire en mélange
70-71	F71	Mélange séparable
72-74	F74	Probable terpène majoritaire en mélange
75	F75	Probable terpène majoritaire en mélange
76-77	F77	Mélange de terpènes séparables
78-80	F80	Mélange de terpènes séparables
81-91	F91	Mélange séparable
92-106	F106	Mélange séparable
107-109	F109	Mélange de produits
110-112	F112	Mélange de produits
113-116	F116	Mélange de produits
117-119	F119	Mélange de produits
120-122	F122	Mélange de produits
123-126	F126	Mélange de produits
127-129	F129	Mélange de produits
130-135	F135	Mélange de produits
136-140	F140	Mélange de produits

Tableau 1.1. Résultats de séparation par chromatographie sur colonne de gel de silice de la fraction chloroformique

4.1. Etude des fractions de la colonne

Parmi les fractions obtenues, on a choisi la séparation des fractions (F_4 , F_{15} , F_{19} , F_{69} , F_{74} , F_{77} , F_{91} , F_{106}). Ce choix est établi par rapport à leurs poids et richesse en métabolites secondaires, la séparation a été faite sur des petites colonnes et plaques de couche mince.

4.2. Séparation sur colonne et couche mince

Fraction F₄

La fraction F_4 a subi une séparation sur colonne de gel de silice avec le système CH_2Cl_2 -MeOH (9 :1), les résultats obtenus sont dressés dans le tableau 1.2

Tableau 1.2 : Résultats de séparation de la fraction F₄

Sous fraction	Remarques	
F ₄₋₁	Mélange de produits	
F ₄₋₂	Mélange de produits	
F ₄₋₃	Produit pur donnant une tache noir violet à 365 nm (lampe de Wood)	

Fraction F₁₅

De faible masse, la fraction F_{15} a subi une séparation sur colonne de gel de silice avec le système CH₂Cl₂-MeOH (9 :1), les résultats sont résumés dans le tableau 1.3

Tableau 1.3 : Résultats de séparation de la fraction F₁₅

Sous fraction	Remarques
F ₁₅₋₁	Mélange de produits
F ₁₅₋₂	Mélange de produits
F ₁₅₋₃	Mélange de produits
F ₁₅₋₄	Mélange de produits

Fraction F₁₉

La fraction F_{19} de masse m=800 mg a été soumise à une séparation sur colonne de gel de silice avec le système CH₂Cl₂-MeOH (9 :1), mais la séparation des produits purs a été difficile à cause de la grande quantité de la chlorophylle présente dans cette fraction, les résultats sont dréssés dans le tableau 1.4

Tableau 1.4 : Résultats de séparation de la fraction F₁₉

Sous fraction	Remarques	
F ₁₆	Produit pur mono tache donnant une coloration rose avec le révélateur	
	acide	
F ₁₉	Produit pur mono tache donnant une coloration rose avec le révélateur	
	acide	

Fraction F₆₉

Une séparation sur colonne de gel de silice avec le système CH_2Cl_2 -MeOH (9:1) de la fraction F_{69} a mené au résultat du tableau 1.5

Tableau 1.5 : Résultats de séparation de la fraction F₆₉

Sous fraction	Remarques		
F ₆₀₋₁	Mélange de produits avec la chlorophylle		
F ₆₀₋₂	Produit majoritaire mono tache donnant une coloration noir violet à 365 nm (lampe de Wood)		
F ₆₀₋₃	Produit majoritaire mono tache donnant une coloration noir violet à 365 nm (lampe de Wood)		
F ₆₀₋₄	Mélange de produits		

Fraction F₇₄

La fraction F_{74} de masse importante a été soumise à une séparation sur colonne de gel de silice avec le système CH₂Cl₂-MeOH (9 :1), les résultats sont présentés dans le tableau 1.6

Sous fraction	Remarques	
F ₇₂₋₁	Mélange de produits avec la chlorophylle	
F ₇₂₋₂	Produit mono tache donnant une coloration rose violet avec le révélateur	
	acide	
F ₇₂₋₃	Mélange de produits	

Tableau 1.6 : Résultats de séparation de la fraction F74

Fraction F77

La fraction F_{77} de masse importante a été soumise à une séparation sur colonne de gel de silice avec le système CH₂Cl₂-MeOH (9 :1), les résultats obtenus sont résumés dans le tableau 1.7

Tableau 1.7 : Résultats de séparation de la fraction F77

Sous fraction	Remarques	
F ₇₅₋₁	Produit mono tache donnant une coloration violet avec le révélateur acide	
F ₇₆₋₂	Mélange de produits	
F ₇₇₋₃	Mélange de produits	

Fraction F₉₁

Avec une masse de 190 mg, la fraction F_{91} a subi une séparation sur une colonne de gel de silice avec le système CH₂Cl₂-MeOH (9 :1), les résultats sont présentés dans le tableau 1.8

Tableau 1.8 : Résultats de séparation de la fraction F₉₁

Sous fraction	Remarques		
F ₉₁₋₁	Mélange de produits		
F ₉₁₋₂	Mélange de produits		

Fraction F₁₀₆

De masse de 580 mg, la fraction F_{91} a subi une séparation sur une colonne de gel de silice avec le système CH₂Cl₂-MeOH (9 :1), les résultats sont dressés dans le tableau 1.9

Sous fraction	Remarques		
F ₁₀₆₋₁	Mélange de produits		
F ₁₀₆₋₂	Produit pur avec une faible quantité		
F ₁₀₆₋₃	Produit pur avec une faible quantité		
F ₁₀₆₋₄	Mélange de produits		

Tableau 1.9 : Résultats de séparation de la fraction F₁₀₆

En conclusion la fraction chloroformique de *S. caeruleum* a permis de séparer 07 produits purs

5. Séparation et purification des composants de la fraction acétate d'éthyle

Le résultat de plusieurs tests sur couche mince nous a conduit à utiliser comme système d'élution CH_2Cl_2 -MeOH (9 :1)

5.1. Séparation sur colonne

Une masse de 9.64 g de la fraction acétate d'éthyle combinée avec la fraction butanolique a été déposée sur une colonne de gel de silice, sa phase stationnaire préparée dans le système dichlorométhane/méthanol et l'élution est réalisée par un gradient de polarité croissante. Le suivi de la progression de cette colonne a été effectué sur plaques CCM, visualisées sous lumière UV (254 et 365 mm), puis révélées avec de l'acide sulfurique et l'anysaldéhyde, ce qui a permis le regroupement de 196 pots et les résultats sont présentés dans le tableau 1.8

Tableau 2. Résultats de séparation par chromatographie sur colonne de gel de silice de la fraction acétate d'éthyle

Fractions	Nom de la fraction	Observations
1-6	AC4	Mélange en faible quantité
7-9	AC 6	Mélange en faible quantité
10-13	AC 10	Mélange en faible quantité
14-17	AC 15	Mélange en faible quantité
18-21	AC 19	Probable terpène majoritaire en mélange
26-29	AC 30	Mélange de produits

30-33	AC 39	Mélange de produits
34-37	AC 49	Mélange de produits
38-41	AC 58	Probable flavonoïde majoritaire en mélange
42-44	AC 69	Probable flavonoïde majoritaire en mélange
45-48	AC 71	Mélange séparable
49-52	AC 74	Probable terpène majoritaire en mélange
53-56	AC 75	Probable terpène majoritaire en mélange
67-70	AC 77	Probable mélange de terpène séparable
71-90	AC 80	Probable mélange de terpène séparable
91-102	AC 91	Mélange séparable
103-132	AC 106	Mélange séparable
133-153	AC 109	Mélange de produits
154-162	AC 112	Mélange de produits
163-172	AC 116	Mélange de produits
173-185	AC 119	Mélange de produits
186-188	AC 122	Mélange de produits
193-196	AC 126	Mélange de produits

5.2. Etude des fractions de la colonne

Parmi les fractions collectées, on a choisi, pour séparation, les fractions par rapport à leurs poids et richesse, la séparation a été faite sur plaques de couche mince et sur des petites colonnes

6. Séparation sur colonne et couche mince

Fraction AC₁₀

La fraction AC_{10} (600 mg) a subi une séparation sur colonne de gel de silice avec le système CH_2Cl_2 -MeOH (9,5 :0,5), les résultats sont dressés dans le tableau 2.1

Sous fraction	Remarques
AC _{10 (1-5)}	Mélange de produits
AC _{10 (6-8)}	Mélange de produits

Ensuite les deux sous fractions ont été purifiées sur séphadex (LH20) avec du méthanol, comme le montre le tableau 2.2

Tableau 2.2 : Résultats de séparation de la fraction AC₁₀

Sous fraction	Remarques
AC ₁₀₋₁	Produit pur noir violet
AC ₁₀₋₂	Produit pur noir violet

Fraction AC₁₂

La fraction AC_{12} (700 mg) a subi une séparation sur colonne de gel de silice avec le système isocratique AcOEt-MeOH (15 :1), les résultats sont présentés dans le tableau 2.3

Tableau 2.3 : Résultats de séparation de la fraction AC₁₂

Sous fraction	Remarques
AC ₁₂₋₍₂₋₇₎	Mélange de produits
AC ₁₂₋₍₈₋₁₂₎	Mélange de produits
AC ₁₂₋₍₁₈₋₂₁₎	Mélange de produits
AC ₁₂₋₍₂₂₋₂₃₎	Mélange de produits

Ensuite, les sous fractions de la fraction AC_{12} ont été séparées avec une autre colonne sur gel de silice avec le système isocratique AcOEt-MeOH (15 :1), pour donner les résultats du tableau 2.4

Tableau 2.4 : Résultats	de séparation	de la fraction AC ₁₂
-------------------------	---------------	---------------------------------

Sous fraction	Remarques
AC ₁₂₋₁	Produit pur
AC ₁₂₋₂	Produit pur
AC ₁₂₋₃	Produit pur
AC ₁₂₋₄	Produit pur

Fraction AC₁₄

La fraction AC_{14} (540 mg) a subi une séparation sur colonne gel de silice avec le système isocratique AcOEt-MeOH (15 :1), pour donner les résultats du tableau 2.5

tableau 2.5

Tableau 2.5 : Résultats de séparation de la fraction AC14

Sous fraction	Remarques
AC ₁₄₋₁	Produit pur
AC ₁₄₋₂	Produit pur
AC ₁₄₋₃	Produit pur

Fraction AC₁₅

La fraction AC_{15} (700 mg) a subi une séparation sur colonne de gel de silice avec le système isocratique AcOEt-MeOH-H₂O (10 :1 :1), les résultats sont présentés dans le tableau 2.6

Tableau 2.6 : Résultats de séparation de la fraction AC₁₅

Sous fraction	Remarques
AC ₁₅₋₁	Produit pur
AC ₁₅₋₂	Mélange de produits
AC ₁₅₋₃	Mélange de produits

Fraction AC₁₂₂

La fraction AC_{122} (790 mg) a subi une séparation sur colonne sur séphadex (LH20) avec du méthanol, les résultats sont dressés dans le tableau 2.7

Tableau 2.7 : Résultats de séparation de la fraction AC₁₂₂

Sous fraction	Remarques
AC ₁₂₂₋₁	Produit pur majoritaire
AC ₁₂₂₋₂	Mélange de produits
AC ₁₂₂₋₃	Mélange de produits

En conclusion, l'extrait Acétate d'éthyle de *S. caeruleum* a permis de séparer 09 produits purs

2.2. Sedum pubescens

De masse 370 g, les parties aériennes séchées et broyées de *Sedum pubescens* ont subi une macération dans un mélange hydro-alcoolique (MeOH/H₂O; 80:20; V/V) 3×24 heures. L'extrait brut récupéré après évaporation sous pression réduite est dilué avec de l'eau distillée puis laissé au repos pour décantation. Après, le tout est filtré pour obtenir une solution aqueuse qui a subi une extraction par des solvants de polarité croissante :l'hexane, le chloroforme, l'acétate d'éthyle et le *n*-butanol successivement. Les quatre phases organiques récupérées sont concentrées et pesées, on obtient : 10 g pour la fraction hexane, 7.11 g pour la fraction chloroformique, 4.37 g pour la fraction acétate d'éthyle et 14 g pour la fraction butanolique.

Analyse LC-ESI-MS/MS

1. Analyse LC/MS/MS de la fraction butanolique de S. caeruleum

1.1. HPLC-DAD-MS

L'analyse HPLC a été effectuée en utilisant l'instrument Agilent série 1200 avec une résolution rapide LC système (Agilent Technologies, Palo Alto, CA, USA), équipé d'un dégazeur à vide, un échantillonneur automatique, une pompe binaire et une DAD. La colonne utilisée pour la séparation chromatographique est une Zorbax Eclipse Plus C18 (1,8 μ m, 150 mm x 4,6 mm) (Agilent Technologies, Palo Alto, CA, USA). Dans la séparation des composés de la fraction butanolique de *Sedum caeruleum*, le taux du flux utilisé était de 0,80 mL. min⁻¹ et l'analyse a été effectuée à température ambiante [1].

Les phases mobiles utilisées sont l'eau mélangée avec de l'acide formique à 0,1% (éluant A) et de l'acétonitrile (éluant B). Le gradient linéaire appliqué est de : 0 min, 5% de B; 45 min, 100% de B; 55 min, 5% de B et enfin un cycle de conditionnement de 5 min avec les mêmes conditions pour l'analyse suivante. Le volume d'injection dans le système HPLC est de 10 µL. Les composés séparés ont été suivis avec le détecteur DAD, les spectres ont été enregistrés entre 190 et 450 nm. En outre, l'HPLC a été couplée avec un microTOFTM (Bruker Daltonik, Brême, Allemagne), un spectromètre de masse TOF orthogonal accéléré (oaTOFMS), en utilisant une interface ESI (modèle G1607A d'Agilent Technologies, Palo Alto, CA, USA) qui fonctionnent dans les deux modes d'ionisation. Cette interface est utilisée afin d'obtenir un spray stable et des résultats reproductibles. Les valeurs optimales des paramètres de la source ESI-TOF sont: la tension capillaire, \pm 4,5 kV ; la température de séchage de gaz, 190, flux de séchage gaz, 9 L min⁻¹; pression de nébulisation de gaz, 2 bars et plaque d'extrémité de décalage, ± 0.5 kV. D'autre part, les valeurs optimales de transfert sont: sortie capillaire, ± 150 V; skimmer 1, ± 50 V; hexapôle 1, ± 23 V, hexapôle RF, 100 Vcc et le skimmer 2, \pm 20 V. La détection des composés a été effectué à une gamme de masse de 50 à 1000 m/z [1].

Les données de masse précises pour les ions moléculaires ont été traitées à l'aide du logiciel d'analyse de données Agilent MassHunter Workstation, qui a fourni une liste de formules élémentaires possibles en utilisant la formule moléculaire Editor TM Générer. Elle utilise un algorithme de CHNO offrant des fonctionnalités standard comme la bande minimum/maximale d'intervalle élémentaire, configuration électronique n et de l'anneau-plus de doubles liaisons équivalentes, ainsi que la comparaison théorique sophistiquée avec le

modèle isotopique mesurée (Sigma-Value), pour plus de précision dans la formule moléculaire suggérée. Le seuil de précision largement accepté pour la confirmation des compositions élémentaires a été établi à 5 ppm pour la plupart des composés. Il est important d'ajouter que, même avec une très grande précision de masse <1 ppm, de nombreuses formules chimique peuvent être obtenues, en fonction des régions de masse considérée, ainsi une grande précision de la masse <1 ppm n'est pas en soi-même suffisante pour exclure les formules candidates suffisantes avec des compositions élémentaires complexes. L'utilisation de modèles de teneur isotopique en une seule contrainte supplémentaire élimine plus de 95% de fausses candidates. Ce filtre orthogonal permet de réduire plusieurs milliers de formules candidates à un petit nombre de formules moléculaires [1].

2. Méthode utilisée HPLC-DAD-MS/MS

2.1. Calibration et courbe d'étalonnage

Le calibrage externe du spectromètre de masse a était effectué en utilisant une seringue (74900-00-05) Cole Palmer pompe (Vernon Hills, Illinois, USA), directement connectée à l'interface, équipé d'une seringue Hamilton (Reno, Nevada, Etats-Unis) contenant des groupes de solutions d'ester de formiate de sodium (hydroxyde de sodium à 5 mM et de l'eau : 2propanol 1: 1 (v / v) avec 0,2% d'acide formique). La solution d'étalonnage a été injectée au début de l'analyse et tous les spectres ont été étalonnés avant l'identification pour l'obtention des valeurs de masse précises grâce à la compensation du changement de la température dans l'analyseur de masse. Pour la détermination quantitative, quatre mélanges de standards ont étés utilisés pour le calibrage de la spectrométrie de masse par l'utilisation de composés de référence authentique avec comme phase mobile le méthanol: eau (80:20) (Tableau 2.1)

Analyse LC-ESI-MS/MS

Tableau 2 .1. Calibration LC/MS/MS en présence des standards

Mélange standards		méthode: tare	k0.8, colum				
Mé	lange standards-1	Concentration en (ppm, mg/L)	Volume ajouté (mL)	Concentration dans le Vial (ppm) (méthanol: eau, 80:20)	formule	m/z monoisotopique	TR ^a (mn)
1	Acide vanillique	10000	1	20	C_8H_8O4	167,0350	9,2
2	Acide gallique	500	10	10	$C_7H_6O_5$	169,0142	4,193
3	(+)-catechine	1000	10	20	$C_{15}H_{14}O_{6}$	289,0718	8,378
4	(-)-epicatechine	1000	10	20	$C_{15}H_{14}O_{6}$	289,0718	9,0723
5	Procyanidine A2	1000	10	20	$C_{30}H_{24}O_{12}$	575,1195	12,497
6	Quercétine 3-O-glucoside	100	10	2	$C_{21}H_{20}O_{12}$	463,0882	12,197
7	Kaempférol 3-O-glucoside	1000	10	20	$C_{21}H_{20}O_{11}$	447,0933	13,259
8	Kaempférol 3-O-rutinoside	1000	10	20	$C_{27}H_{30}O_{15}$	593,1512	12,621
9	Kaempférol	1000	10	20	$C_{15}H_{10}O_{6}$	285,0405	19,515
10	Kaempféride	600	10	12	$C_{16}H_{12}O_{6}$	299,0561	24,876
Mélange standards-2							
1	Acide chlorogenique	1000	10	20	$C_{16}H_{18}O_9$	353,0878	8,285
2	Acide caféique	500	10	10	$C_9H_8O_4$	179,0350	9,504
3	Acide <i>p</i> -coumarique	1000	10	20	$C_9H_8O_3$	163,0401	11,603
4	Acide benzoïque	1000	10	20	$C_7H_6O_2$	121,0295	
5	Acide 2,5-	1000	10	20	$C_7H_6O_4$	153,0193	8,595
(Dihydroxybenzoique	1000	10	20	CILO	127 0244	0 <i>1</i> 71
0	Acide <i>p</i> -hydroxybenzoique	1000	10	20	$C_7H_6O_3$	137,0244	8,471
7	Quercetine- 3-O-rutinoside	500	10	10	$C_{27}H_{30}O_{16}$	609,1461	11,//
8	Quercetine -3-O-rhamnoside	1000	10	20	$C_{21}H_{20}O_{11}$	447,0933	13,449
9	Quercetine	1000	10	20	$C_{15}H_{10}O_7$	301,0354	17,185
10	Myricétine	1000	10	20	$C_{15}H_{10}O_8$	317,0303	14,648

Chapitre 2

Partie 2 : Matériels et méthodes

		· • .		0
C	na	p11	tre	- 2

Analyse LC-ESI-MS/MS

Mé	lange standards-3						
1	Acide syringique	1000	10	20	$C_9H_{10}O_5$	197,0455	9,718
2	Acide ferulique	1000	10	20	$C_{10}H_{10}O_4$	193,0506	12,429
3	Acide <i>m</i> -coumarique	1000	10	20	$C_9H_8O_3$	163,0401	12,973
4	Acide sinapicque	1000	10	20	$C_{11}H_{12}O_5$	223,0612	12,367
5	Quercetine 3-O-galactoside	500	10	10	$C_{21}H_{20}O_{12}$	463,0882	12,182
6	Acide 2,4 dihydroxybenzoique	1000	10	20	$C_7H_6O_4$	153,0193	9,78
7	Naringenine	1000	10	20	$C_{15}H_{12}O_5$	271,0612	19,152
8	Luteoline 7-O-glucoside	333	10	6,66	$C_{21}H_{20}O_{11}$	447,0933	12,305
9	Luteoline	500	10	10	$C_{15}H_{10}O_{6}$	285,0405	17,118
10	Genisteine	1000	10	20	$C_{15}H_{10}O_5$	269,0455	19,214
Mélange standards-4							
1	Acide Ellagique	inconnu	10	inconnu	$C_{14}H_6O_8$	300,9990	12,284
2	Acide 3,4 dihydroxybenzoique	1000	10	20	$C_7H_6O_4$	153,0193	6,555
3	7-hydroxycoumarine	1000	10	20	$C_9H_6O_3$	161,0244	12,284
4	Apigenine	500	10	10	$C_{15}H_{10}O_5$	269,0455	19,136
5	Tryptophane	800	10	16	$C_{11}H_{12}N_2O_2$	203,0826	6,493
6	Tyrosine	500	10	10	$C_9H_{11}NO_3$	180,0666	2,702
7	Phenylalanine	500	10	10	$C_9H_{11}NO_2$	164,0717	4,426

Methode:
5% B to 100%B, 45 min
A, l'eau avec 0.1% acide formique
B, acetonitrile

^a Temps de rétention

Référence:

1- I.B. Linares, D. Arráez-Román, M. Herrero, E. Ibánez, A. Segura-Carretero A. Fernández-Gutiérrez. 2011. Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in *Rosmarinus officinalis* by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry. J. Chromat., 1218, 7682–7690

Activités antioxydante, anticholinestérase, antiinflammatoire, cytotoxique et antibactérienne

1. Dosages des polyphénols

La teneur en polyphénols totaux est déterminée par le test de Folin-Ciocalteu [1,2]. Une courbe d'étalonnage est établie avec l'acide gallique et les résultats sont exprimés en équivalence d'acide gallique. Ces tests ayant comme principe le phénomène d'oxydo-réduction ne sont pas spécifiques à une classe de polyphénols et souffrent d'interférences avec les amino-acides de type tyrosine et d'autres composés non phénoliques tels que l'acide ascorbique [3].

Nous avons dosé les polyphénols totaux des extraits suivants :

ECSC: Extrait chloroformique de Sedum caeruleum

ASC: Extrait acétate d'éthyle de Sedum caeruleum

EBSC: Extrait n-butanol de Sedum caeruleum

ECSP: Extrait chloroformique de Sedum pubescens

EBSP: Extrait n-butanol de Sedum pubescens

1.1.Mode opératoire

Le contenu en polyphénols totaux des extraits : EBSC, EASC, ECSC, EBSP et ECSP est estimé par la méthode de Folin-Ciocalteu décrite par Singleton et Rossi 1999 qui en milieu alcalin se réduit en oxyde de tungstène et de molybdène donnant une couleur bleue en présence de polyphénols. Le réactif FCR, constitué par un mélange d'acide phosphotungstique ($H_3PW_{12}O_{40}$) et d'acide phosphomolybdique ($H_3PMo_{12}O_{40}$), est réduit, lors de l'oxydation des phénols, en mélange d'oxydes de tungstène (W_8O_{23}) et de molybdène (Mo_8O_{23}). La coloration bleue produite est proportionnelle à la teneur en phénols totaux et possède une absorption maximum aux environs de 750 -765 nm.

A un volume de 125 μ l de solution d'extrait, 1 mg dans 1 ml d'eau distillée, on ajoute 500 μ l d'eau distillée puis à 125 μ l du réactif de Folin-Ciolcalteu. Après 3 min, 1250 μ l de carbonate de sodium (20 g/L) sont additionnés. Le mélange est laissé à l'obscurité pendant 90 minutes à température ambiante, puis la lecture est faite à 760 nm. L'acide gallique (50-500 μ g/ml) est le standard utilisé pour établir la courbe d'étalonnage à partir de laquelle la concentration des polyphénols totaux des extraits est calculée. Le résultat est exprimé en μ g d'équivalents d'acide gallique par milligramme d'extrait (μ g EAG/mg d'extrait)

2. Activité antioxydante

L'étude de l'activité antioxydante des différents extraits des deux plantes *Sedum caeruleum* et *S. pubescens* est testée selon six méthodes: piégeage du radical libre DPPH, Piégeage de l'ABTS, méthode CUPRAC, Chélation des ions métalliques, piégeage de l'anion superoxyde, blanchissement du β -carotène.

2.1. Activité antiradicalaire au DPPH

L'activité du DPPH a été mesurée selon le protocole décrit par Blois [4], le principe de cette méthode est la réduction du DPPH (2,2-diphenyl-1-picrylhydrazyl) de couleur violette en 2,2 diphenyl-1-picrylhydrazine de couleur jaune. Le DPPH absorbe à 517 nm, mais lors de la réduction par un antioxydant, son absorption diminue. Brièvement, une solution de 0,4 mM de DPPH préparée dans le méthanol et 160 μ l de cette solution ont été ajoutés à 40 μ l d'échantillon dilué dans des solutions de méthanol à des concentrations différentes. Trente minutes plus tard, l'absorbance a été mesurée à 517 nm. Le BHT et l' α -tocophérol ont été utilisés comme normes anti-oxydantes, pour la comparaison de l'activité avec les extraits utilisés. La faible valeur d'absorbance de la réaction du mélange indique une activité de piégeage des radicaux libres supérieure. La capacité à piéger le radical DPPH a été calculée selon l'équation suivante

Inhibition (%) =
$$\frac{A_{Blanc} - A_{Extrait}}{A_{Blanc}} \times 100$$

A_{Blanc} est l'absorbance de la réaction ne contenant que les réactifs.A_{Extrait} est l'absorbance de la réaction contenant les réactifs et l'extrait.

2.2. Test de la capacité antioxydante par réduction du cuivre (CUPRAC)

La réduction du cuivre a été déterminée par la méthode CUPRAC décrite par Apak et al. [5]. Une solution est préparée avec le mélange des volumes de : 50 μ l Cu (II) (10 mM), 50 μ l neocuprine (7,5 mM), et 60 μ l de solution tampon NH₄Ac (1 M, pH = 7,0). Différentes concentrations d'extrait ont été ajoutées au mélange initial afin de rendre le volume final de 200 μ l. Les microplaques de 96 puits ont été mises à l'abri de la lumière, et après 1 h, l'absorbance est mesurée à 450 nm. La capacité de réduction des extraits a été comparée à celles de l' α -tocophérol et du BHT. Les résultats ont été calculés à titre de A_{0.5} (μ g / ml) correspondant à la concentration indiquant 0,50 d'absorbance.

2.3. Activité de la chélation des ions métalliques

L'activité de chélation des ions métalliques des extraits par lion ferreux Fe^{+2} a été mesurée selon la méthode décrite par Decker et al. [6]. Les extraits de diférentes concentrations et de volume de 40 µl ont été ajoutés à une solution de : 40 µl FeCl₂ (0.2 mM) et 40 µl d'éthanol. La réaction a été amorcée par l'addition de 80 µl de ferène (0.5 mM). Le mélange a été agité vigoureusement et laissé au repos à une température ambiante pendant 10 min. Après que le mélange a atteint l'équilibre, l'absorbance a été déterminée à 562 nm, les résultats ont été donnés en pourcentage d'inhibition et l'activité a été calculée en utilisant l'équation suivante:

Inhibition (%) =
$$\frac{A_{Controle} - A_{Extrait}}{A_{Controle}} \times 100$$

2.4. Activité de blanchissement du β-carotène

L'activité de blanchissement du β -carotène des extraits des deux plante a été évaluée en utilisant le système de modèle de l'acide β -carotène-linoléique [7]. Une masse de 0,5 mg de β -carotène dissoute dans 1 ml de chloroforme puis ajouté a un volume de 25µl d'acide linoléique et de 200 mg de Tween 40, en donnant un mélange émulsifiant. Après évaporation du chloroforme sous vide, 100 ml d'eau distillée saturée en oxygène, ont été ajoutés avec agitation vigoureuse. L'absorbance de la solution du β -carotène doit être comprise entre 0.8 et 0.9 nm. Un volume de 160µl de cette solution préparée, a été ajouté à un volume de 40µl d'extrait pour les différentes concentrations. L'absorbance a été mesurée à 470 nm en utilisant un lecteur de microplaque. Le BHA et l' α -tocophérol ont été utilisés comme standards.

2.5. Activité du piégeage de l'ABTS

L'analyse spectrophotométrique de l'activité de piégeage de l'ABTS⁺⁺ a été déterminée selon le procédé de Re et al [8], avec de légères modifications. L'ABTS⁺⁺ a été produit par la réaction entre 7 mM de l'ABTS dans l'eau et 2,45 mM de persulfate de potassium est stockée dans l'obscurité à température ambiante pendant 12 h. L'oxydation de l'ABTS commence immédiatement mais l'absorption n'est pas maximale et se stabilise après 6 heures de temps. Le radical cation est stable sous cette forme depuis plus de 2 jours dans le stockage dans l'obscurité à la température ambiante. Avant utilisation, l'ABTS a été dilué pour obtenir une absorbance de 0,708 \pm 0,025 à 734 nm avec de l'éthanol. Ensuite, 160µl de la solution de L'ABTS⁺⁺ ont été ajoutés à 40µl de la solution d'extrait dissout dans l'éthanol à différentes concentrations. Après 10 min, l'absorbance a été mesurée à 734 nm en utilisant un lecteur de microplaques à 96 puits.

Les pourcentages d'inhibition ont été calculés pour chaque concentration par rapport à une absorbance à blanc de l'éthanol. La capacité de piégeage des L'ABTS⁺⁺ a été calculée en utilisant l'équation suivante:

ABTS inhibition (%) =
$$\frac{A_{Controle} - A_{Extrait}}{A_{Controle}} \times 100$$

3. Activité anti-cholinestérase

Les activités acétylcholinestérase (AChE) et butyrylcholinestérase (BChE) ont été mesurées avec une modification légère de la méthode spectrophotométrique décrite par Ellman, [9]. AChE de l'anguille électrique et BChE du sérum de cheval ont été utilisés, tandis que l'iodure d'acétylthiocholine et le chlorure de butyrylthiocholine ont été employés comme substrats. Le DTNB [5,5-dithio-bis (2-nitrobenzoïque)] a été utilisé pour la mesure de l'activité de la cholinestérase. L'éthanol a été utilisé comme solvant pour dissoudre les composés d'essai 0 et les contrôles. Brièvement, 150 µl de tampon phosphate de sodium (100Mm, pH 8,0), 10 µl d'une solution d'échantillon dissoute dans de l'éthanol à différentes concentrations et un volume de 20 µl l'AChE ($5,32 \times 10^{-3}$ U) ou BChE ($6,85 \times 10^{-3}$ U) ont été mélangés et incubés pendant 15 min à 25⁰ C puis 10 µl de DTNB (0,5 mM) ont été ajoutés. Ensuite, la réaction a été initiée par l'addition de 20 µl l'iodure d'acétylthiocholine (0,71 mM) ou le chlorure de butyrylthiocholine (0,2 mM). Les hydrolyses de ces substrats ont été suivies par

spectrophotométrie par la formation d'une couleur jaune d'anion 5-thio-2-nitrobenzoate de méthyle, selon le résultat de la réaction de DTNB avec thiocholine, libéré par l'hydrolyse enzymatique de l'iodure d'acétylthiocholine ou le chlorure de butyrylthiocholine, respectivement, à une longueur d'onde de 412 nm, en utilisant un lecteur de microplaques à 96 puits (SpectraMax PC340, Molecular Devices, États-Unis). Les mesures et les calculs ont été évalués en utilisant le logiciel PRO Softmax v5.2. Le pourcentage d'inhibition de l'AChE ou BChE a été déterminé par comparaison des vitesses de réaction d'échantillons par rapport à l'échantillon témoin (éthanol dans du tampon phosphate, pH 8) en utilisant la formule (E - S) / E x100, où E est l'activité de l'enzyme sans échantillon d'essai, et S, est l'activité de l'enzyme avec l'échantillon de test. Les expériences ont été réalisées en triple. La galantamine a été utilisé comme composé de référence.

Inhibition (%) =
$$\frac{A_{Controle} - A_{Extrait}}{A_{Controle}} \times 100$$

3.1. Animaux

Des souris albinos suisses des deux sexes, pesant 25-40 g et des rats albinos (180-200 g) ont été utilisés et recueillis auprès de la faculté de Pharmacie Centrale, Constantine, Algérie. Les animaux ont été logés dans des cages en polypropylène standards pour l'acclimatation, au moins une semaine avant de commencer les expériences, et gardés sous température ambiante (20-25[°]C) dans un environnement illuminé: de 12 :12h sombre / lumière cycle. Les animaux ont été nourris avec des granulés alimentaires standards achetés à la Société LA RATION, Bouzaréah, Alger et alimenté avec de l'eau du robinet. Les études chez l'animal ont été menées après l'obtention de l'autorisation du Comité d'éthique institutionnel et les expériences ont été réalisées dans le strict respect selon des principes d'éthique fourni par le Comité aux fins de contrôle et de surveillance des expériences sur les animaux (CPCSEA), département de pharmacie université Mentouri de Constantine.

3.2. Essai de toxicité aiguë

L'essai de toxicité aiguë des extraits ECSC, EASC a été réalisée pour évaluer toute toxicité possible en utilisant la méthode Lorke et al. [10]. Une dose de 2000 mg/kg de l'extrait a été utilisée sur cinq souris femelles en bonne santé et chez des rats mâles Albinos. Une dose de 2000 mg / kg a été donnée à un seul rat, et ce rat a été observé pour la mortalité et les signes cliniques de la première heure, puis pendant 3 h et enfin périodiquement jusqu'à 48 h. Quatre

Partie 2 : Matériels et méthodes

<u>Chapitre 3</u> Activités antioxydante, anticholinestérase, anti-inflammatoire, cytotoxique et antibactérienne animaux supplémentaires ont reçu la même dose 2000 mg/kg, séquentiellement à 48 heures d'intervalle. Tous les animaux de laboratoire ont été maintenus sous observation pendant 14 jours, et le nombre de rats qui sont morts dans la période d'étude a été noté. La DL50 doit être supérieure à 2000 mg/kg, si trois ou plusieurs rats ont survécu.

4. Activité anti-inflammatoire in vivo

L'activité anti-inflammatoire a été réalisée par l'introduction du xylène dans l'oreille droite de la souris, un œdème a été formé dans cette oreille, ce dernier a été traité par le standard et les extraits ECSC et EASC, suivant la méthode décrite par Tang et al. [11].

Huit groupes de cinq souris ont subi chacune une introduction d'une goutte de soin du xylène (0,03 ml) aux surfaces antérieure et postérieure de l'oreille droite provoquant un œdème, L'oreille gauche est restée non traitée et considérée comme contrôle. Après, chacun des huit groupes a été traité différemment par le médicament standard, l'ibuprofène (100 mg / kg), avec trois doses différentes de CESC et EASC (50, 100 et 200 mg / kg).

Une heure après l'application du xylene, les animaux ont été sacrifiés et leurs oreilles pesées et la différence de poids de l'oreille droite traitée et gauche non traitées a été calculée et utilisée comme mesure de l'œdème. Le niveau d'inhibition de l'oedème a été calculé en utilisant la formule suivante:

(%) d'inhibition = 100 x [1 - Et / Ec]

Où Et et Ec représentent l'œdème moyen du groupe traité et le groupe témoin, respectivement.

5. Activité antibactérienne

L'activité antibactérienne de l'extrait chloroformique de *Sedum caeruleum* a été examinée contre une gamme de micro-organismes par la méthode de diffusion sur disque:

Escherichia coli ATCC 25922, Escherichia coli, (SH) Staphylococcus aureus ATCC 43300, Staphylococcus aureus (SH) Pseudomonas aeruginosa ATCC 27853, Pseudomonas aeruginosa (SH) Klebsiella pneumoniae (SH) Enterobacter aerogenes (SH)

Les souches de référence ont été obtenues à partir de l'institut de Pasteur (Alger) et les autres souches hospitalières (SH) ont été cliniquement isolées de malades du laboratoire de bactériologie, hôpital Benbadis, de Constantine, selon la méthode conventionnelle [12].

Chaque bactérie a été ensemencée sur le milieu de culture Mueller-Hinton, puis de trois à cinq colonies isolées ont été prélevées et introduites dans une bouteille contenant le bouillon nutritif stérile. Le dénombrement des germes en vue de définir les concentrations bactériennes a été effectué par la technique de dilution.

5.1. Test d'inhibition

Des concentrations par millilitre ont été imprégnées sur des disques et ajoutées au bouillon de dilution. Les cultures sont ensuite incubées à 37 °C pendant 18 à 24 heures. Les diamètres d'inhibition sont alors mesurés autour des puits.

5.2. Détermination de la concentration minimale inhibitrice (CMI)

La CMI, de façon générale, est la plus faible concentration d'antimicrobienne capable d'inhiber toute croissance visible après un temps d'incubation de 18 à 24 heures. Une solution contenant des concentrations connues des fractions à tester est diluée dans un volume connu de gélose de MH en surfusion ; après solidification, une suspension bactérienne est déposée à la surface du milieu gélifié [13].

6. Hydrolyse acide

Le composé glycosylé a été chauffé à reflux en présence de 5% de H_2SO_4 (5 ml) dans de l'eau pendant 1 h. Après la solution a été diluée avec de l'eau et extraite par de l'acétate d'éthyle, ensuite la phase organique a été chromatographiée sur couche mince (CCM) en utilisant des standards authentiques. Chaque solution aqueuse a été ajustée à pH 7 avec du NaHCO₃ et filtrée. Le filtrat et les sucres concentrés ont été développés sur une chromatographie sur couche mince de gel de silice, en utilisant un mélange acétone: H_2O (90:10, v / v).

7. Analyses statistiques

Les résultats des tests effectués sont exprimés en moyenne \pm SD d'analyses en trois essais. Les valeurs de CI₅₀ (Concentration d'inhibition à 50%) sont calculées par la méthode de régression linéaire à partir de la courbe [% inhibition = f (concentrations)]. les comparaisons multiples et la détermination des taux de signification sont faites par "Student's t-test " et le test ANOVA univarié. Les différences sont considérées statistiquement significatives au seuil de 0,05.

Reference :

- V.L., Singleton, R. Orthofer, R.M. Lamuela-Raventos, 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Met. Enzym., 299, 152-178
- 2- A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N. Vidal, 2006. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem., 97, 654-660
- L. Dykes, L.W. Rooney, 2006. Sorghum and millet phenols and antioxidants, Rev. J. Cereal. Sci., 44, 236–251
- 4- M.S. Blois, 1958. Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199-1200.
- 5- R. Apak, K. Guclu, M. Ozyurek, S. E. Karademir, 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J. Agric. Food. Chem., 52, 7970–7981.
- 6- E.A. Decker, B. Welch, 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agr. Food Chem., 38, 674–677.
- 7- H. M. Miller, 1971. A simplified method for the evaluation of antioxidants. J. Oil Chem. Soc., 45, 91.
- 8- R., Re, N., Pellegrini, A., Proteggente, A., Pannala, M., Yang, C., Rice-Evans, 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Bio. Med., 26, 1231–1237.
- 9- G.L., Ellman, K.D., Courtney, V., Andres, , R.M., Featherston, 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7, 88–95.
- D.A. Lorke, 1983, new Approach to Practical Acute Toxicity Testing. Arch Toxicol., 54, 275-287.
- 11-XC. Tang, ZG. Lin, W. Cai, N. Chen, L. Shen, 1984. Anti-inflammatory effect of 3acetylaconitine. Acta. Pharm. Sinica., 5, 85-89.
- 12-NCCLS (National Committee for Clinical Laboratory Standards), 1997. Performance standards for antimicrobial disk susceptibility tests. Approved standard M2-A6. Wayne, PA: National Committee for Clinical Laboratory Standards

- Chapitre 3 Activités antioxydante, anticholinestérase, anti-inflammatoire, cytotoxique et antibactérienne
 - 13-CLSI, 2006. Quality Control Minimal Inhibitory Concentration (MIC) Limits for Broth Dilution and MIC Interpretative Breakpoints (M27S2).Wayne, PA: Clinical and Laboratory Standards Institute.

Partie 3

Résultats et discussion

Identification structurale des composés isolés de *Sedum caeruleum* L'étude phytochimique des deux fractions chloroformique d'une part et acétate d'éthyle combinée avec la fraction butanolique de *Sedum caeruleum* d'autre part nous a permis de séparer six composés purs qui ont été identifiés grâce aux méthodes spectroscopiques (UV, RMN) comme suit :

1. Le produit F60

La fluorescence noire violette sous lumière de Wood peut orienter vers un squelette flavone ou d'un flavonol substitué en 3.

L'étude de la série spectrale UV en présence de plusieurs réactifs [1] montre :

- Le maximum d'absorption de la bande I à 335 nm dans le spectre enregistré dans le méthanol indique qu'il s'agit probablement d'un flavonoïde de type flavone
- L'addition de NaOH provoque un déplacement bathochrome de la bande I (Δλ=+57 nm) indiquant la présence d'un OH libre en position 4['], l'apparition d'une nouvelle bande à 324 nm est révélatrice de la présence d'un OH libre en position 7.
- L'addition de NaOAc provoque un déplacement bathochrome de la bande II ($\Delta\lambda$ =+8 nm) confirment la présence d'un OH libre en position 7.
- Le déplacement bathocrome de la bande I ($\Delta\lambda$ =+57 nm) enregistré dans le milieu AlCl₃ + HCl suggère la présence d'un OH libre en position 5.
- L'absence du déplacement hypsochrome de la bande I en comparant les spectres dans AlCl₃ +HCl et AlCl₃, indique la probable absence d'un système ortho-dihydroxylé sur le cycle B
- L'ensemble des données de la série spectrale UV est reporté dans le tableau 1.1

Réactifs	Bande I λ_{max} (nm)	Autres bandes λ_{max} (nm)	Bande II λ_{max} (nm)	Commentaire		
МеОН	335	/	268	flavone		
+ NaOH	392	324	274	OH libre en 4' OH libre en 7		
+AlCl ₃	382	348 300	274	OH libre en 5 Pas de ortho di-OH		
+AlCl ₃ /HCl	380	334 300	274	sur le cycle B		
+NaOAc	380	306	276	OH libre en 7		
+NaOAc/H ₃ BO ₃	338	//	269	/		
Spectre stable dans NaOH après 5mn						

Tableau 1.1.	Données de	la série spectrales	UV du produit F60
--------------	------------	---------------------	-------------------

L'examen du spectre RMN ¹H enregistré dans DMSO- d_6 à 400 MHz (Figure 1.1 et Figure 1.2) montre :

- Deux doublets d'intégration 1H chacun, le premier à δ = 6,56 ppm et le second à δ = 6,27 ppm avec une constante de couplage de J=2,1Hz attribuables à H-8 et H-6 respectivement.
- Un singulet à $\delta = 6,66$ ppm attribuable à H-3, ce qui confirme la structure d'une flavone.
- Le doublet qui apparait à $\delta = 7,04$ ppm avec la constante de couplage J=9,0 Hz est attribuable aux protons H-3' et H-5'. Le doublet qui apparait à $\delta = 7,96$ ppm avec la constante de couplage J=9,0 Hz est attribuable au aux protons H-2' et H-6'

L'ensemble de ces données est reporté dans le tableau 1.2

Déplacement chimique (ppm)	Intégration	Multiplicité (J Hz)	Attribution
7,96	2Н	d (9)	H-2 ['] ; H-6'
7,04	2H	d (9)	H-3' ; H-5'
6,66	1H	S	Н-3
6,56	1H	d (2,1)	H-8
6,27	1H	d (2,1)	Н-6

Tableau 1.2. Données de la RMN ¹H du produit F60 (DMSO-d₆ à 400 MHz)

Ces données nous permettent de proposer la structure suivante

D'après la littérature on retrouve rarement l'apigénine dans le genre *Sedum*, la plupart des flavonoïdes identifiés dans le genre sont de type flavonol [2], seulement on le retrouve dans l'espèce *Sedum. pulchellum* [3].

2. Le produit AC14

La fluorescence noire violette sous lumière de Wood peut orienter vers un squelette d'une flavone ou d'un flavonol substitué en 3.

Les données de la série spectrale UV montrent :

Le maximum d'absorption de la bande I à 334 nm indique qu'il s'agit probablement d'un flavonoïde de type flavone.

L'addition de NaOH provoque un déplacement bathochrome de la bande I ($\Delta\lambda$ = +38 nm) avec augmentation de l'intensité lumineuse indique la présence d'un OH libre en 4', l'absence d'une nouvelle bande entre 320-330 nm écarte la présence d'un OH libre en 7

L'addition de NaOAc ne provoque pas un déplacement bathochrome de la bande II par rapport au spectre enregistré dans le MeOH qui confirme l'absence d'un OH libre en 7.

Le déplacement bathochrome de la bande I enregistré dans le milieu (AlCl₃ + HCl) comparativement à celui enregistré dans le méthanol ($\Delta\lambda$ = +51 nm) révèle la présence d'un OH libre en 5.

L'absence de déplacement hypsochrome de la bande I en comparant le spectre enregistré dans

AlCl₃ + HCl par rapport au spectre enregistré dans AlCl₃ laisse prévoir l'absence de système ortho dihydroxylé sur le cycle B.

L'ensemble des données de la série spectrale est reporté dans le tableau 1.3

Réactifs	Bande I λ_{max} (nm)	Autres bandes λ_{max} (nm)	Bande II λ _{max} (nm)	Commentaire
МеОН	334	/	270	Flavone
+ NaOH	372	-	270	OH libre en 4' OH substitué en 7
+AlCl ₃	386	299-347	275	OH libre en 5 Pas de ortho di-OH
+AlCl ₃ /HCl	385	298-340	276	sur le cycle B
+NaOAc	336	/	270	OR en 7
+NaOAc/H ₃ BO ₃	337	//	269	/
Spectre stable dans NaOH après 5mn				

Tableau 1.3	: Données o	de la série	spectrale UV	du produit AC10
-------------	-------------	-------------	--------------	-----------------

L'examen du spectre de RMN du proton enregistré dans CD₃OD à 400 MHz (Figure 1.3 et Figure 1.4) montre :

- Un singulet à δ = 6,66 ppm attribuable à H-3, ce qui confirme la structure d'une flavone.

- Deux doublets d'intégration 1H chacun, le premier à $\delta = 6,50$ ppm et le second à $\delta = 6,83$ ppm (J= 2,0 Hz) attribuables respectivement à H-6 et H-8, confirmant l'hydroxylation des positions 5 et 7.

- Deux doublets d'intégration 2H chacun à δ = 7.9 et δ = 6.9 ppm, (J=9,2 Hz), (J=8,8 Hz) attribuables respectivement à H-2', H-6' et H-3', H-5' indiquant ainsi la substitution du noyau B en position 4'.

Des signaux entre 3.40 – 4.00 ppm indiquent la présence d'un sucre, leurs déplacements
 chimiques sont très similaires à ceux d'un glucose [4]

- un proton anomérique sous forme de doublet à 5.06 ppm, J=7.5 Hz pourrait être celui d'un glucose

Déplacement chimique (ppm)	Intégration	Multiplicité (J Hz)	Attribution
7,90	2Н	d (9,2)	H-2 ['] ; H-6'
6,90	2H	d (8,8)	H-3 ['] ; H-5'
6,66	1H	S	Н-3
6,83	1H	d (2,0)	H-8
6,50	1H	d (2,0)	Н-6
5,06	1H	d (7,5)	H-1"
3,94	1H	dd (12,0 ;2,0)	H-6″
3,72	1H	dd (12,0 ;2,0)	H-6 ^{''}
3,57	1H	m	H-5 ["]
3,50	1H	m	Н-3"
3,49	1H	m	H-2"
3,41	1H	t (9,6 Hz)	H-4"

Tableau 1.4. Données de la RMN ¹H du produit AC10 (CD₃OD, 400 MHz)

L'analyse HPLC (Figure 1.6) du produit AC14 a donné la même valeur du temps de rétention par rapport au standard commercial Apigénine-7-O-glucoside à $T_R = 21,36$ mn

Ces données nous permettent de proposer la structure suivante

Selon la littérature on retrouve l'Apigénine-7-O-glucoside dans l'espèce Sedum sarmentosum [4]

Figure 1.3. Spectre RMN ¹H du produit AC14 (CD₃OD, 400 MHz)

Figure 1.5. Spectre RMN ¹H étalé 2 du produit AC14 (CD₃OD, 400 MHz)

Figure 1.6. Identification par HPLC du produit AC14

3. Le produit AC122

La fluorescence noire violette sous lumière de Wood peut orienter vers un squelette d'une flavone ou d'un flavonol substitué en 3.

Les données de la série spectrale UV montrent :

Le maximum d'absorption de la bande I à 335 nm indique qu'il s'agit probablement d'un flavonoide de type flavone.

L'addition de NaOH provoque un déplacement bathochrome de la bande I ($\Delta\lambda$ = +38 nm) avec augmentation de l'intensité lumineuse indique la présence d'un OH libre en 4', l'absence d'une nouvelle bande entre 320-330 nm écarte la présence d'un OH libre en 7

L'addition de NaOAc ne provoque pas un déplacement bathochrome de la bande II par rapport au spectre enregistré dans le MeOH qui confirme l'absence d'un OH libre en 7.

Le déplacement bathochrome de la bande I enregistré dans le milieu (AlCl₃ + HCl) comparativement à celui enregistré dans le méthanol ($\Delta\lambda$ = +46 nm) révèle la présence d'un OH libre en 5.

L'absence du déplacement hypsochrome de la bande I en comparant le spectre AlCl₃ + HCl par rapport au spectre de l'AlCl₃ laisse prévoir l'absence de système ortho dihydroxylé sur le cycle B.

L'ensemble des données de la série spectrale UV est reporté dans le tableau 1.5

Identification structurale des composés isolés de Sedum caeruleum

Réactifs	Bande I λ_{max} (nm)	Autres bandes λ _{max} (nm)	Bande II λ_{max} (nm)	Commentaire
МеОН	335	/	270	flavone
+ NaOH	368	/	270	OH libre en 4' OH substitué en 7
+AlCl ₃	385	301-350	275	OH libre en 5 Pas de ortho di-OH
+AlCl ₃ /HCl	381	300-342	275	sur le cycle B
+NaOAc	337	/	270	OR en 7
+NaOAc/H ₃ BO ₃	338	//	270	/
	Spectre sta	ble avec du NaOI	H après 5mn	

L'examen du spectre RMN enregistré dans CD₃OD à 400 MHz (Figure 1.7 et Figure 1.8) montre :

- Un singulet à δ = 6,64 ppm attribuable à H-3, ce qui confirme la structure d'une flavone.

- Deux doublets d'intégration 1H chacun, le premier à $\delta = 6,46$ ppm et le second à $\delta = 6,78$ ppm (J= 2,0 Hz) attribuables respectivement à H-6 et H-8 et confirmant l'hydroxylation des positions 5 et 7.

- Deux doublets d'intégration 2H chacun à $\delta = 8$ ppm, (J=8,8 Hz) et $\delta = 6,92$ ppm, (J=8,8 Hz) attribuables respectivement à H-2', H-6' et H-3', H-5' indiquant ainsi la substitution du noyau B en position 4'.

- Des signaux apparaissant entre 3,36 – 4,10 ppm indiquent la présence de sucres.

Le spectre COSY (Figure 1.9) permet d'observer d'une part des taches de corrélation correspondante à une même unité glucide de 7 protons. En effet, le proton anomérique à 5,15 ppm montre une corrélation à un proton (lié à C-2'') à 3,66 ppm. Celui-ci montre une corrélation à un proton sur C-3["] à 3,64 ppm. Ce dernier est corrélé au proton H-4["] qui apparait sous forme

d'un triplet (J=9,2 Hz). Le proton H-4["] montre à son tour une corrélation avec le proton H-5["] résonant à 3,55 ppm. Finalement, ce dernier est corrélé aux deux protons H-6["] respectivement à 3,93 et 3,71 ppm. Les constantes de couplage de tous les signaux attribués à ces protons sont supérieures à 7 Hz (Tableau 1.7), indiquant une orientation axiale de ces hydrogènes et par conséquent la structure du sucre est celle d'un glucose. Le spectre COSY permet de corréler d'autre part le 2^{ème} proton anomérique, à 5,46 ppm sous forme d'un doublet (J=1,6 Hz), au proton H-2^{""} à 3,96 ppm. Ce dernier n'est corrélé à aucun autre proton, indiquant que le carbone C-3 est quaternaire.

D'après le spectre HSQC (Figure 1.10) les valeurs des signaux à 75,6 et 66,1 ppm correspondent à deux méthylènes oxygénés indiquant respectivement que le 1^{er} est endocyclique et le 2^{éme} est exocyclique. L'ensemble des données des spectres de COSY (Figure 1.9) et HSQC (Figure 1.10) du deuxième sucre nous oriente vers une unité glucidique du type apiose.

La valeur deblindée du déplacement chimique du carbone C-2" du glucose à 78,5 ppm suggère que l'apiose est lié en position 2 du glucose et que le glucose est lié au carbone 7 d'après les données de l'UV, par conséquent la structure proposée est celle de l'apiine. Toutes les données spectrales sont regroupées dans les tableaux 1.6 et 1.7

Dér chim	placement ique (ppm)	Intégration	Multiplicité (J Hz)	Attribution
	7,88	2Н	d (8,8)	H-2 ['] ; H-6'
	6,92	2H	d (8,8)	H-3' ; H-5'
	6,64	1H	S	Н-3
	6,78	1H	d (2,0)	H-8
	6,46	1H	d (2,0)	Н-6
Glucose	5,15	1H	d (7,6)	H-1 ["]
	3,66	1H	t (8,8)	H-2"
	3,64	1H	t (9,2)	H-3"
	3,41 3,55	1H 1H	t (9,2) m	H-4" H-5"
	3,93	1H	d (10,0)	Н-б"а
	3,71	1H	dd (11,6 ;5,6)	H-6 ["] b
Apiose	5,46	1H	d (1,6)	H-1 ^{""}
	3,96	1H	bs	Н-2 ^{""}
	-	-	-	-
	4,05	1H	d (9,6)	H-4 ^{""} a
	3,82	1H	d (9,6)	H-4 ^{""} b
	3,56	1H	m	H-5 ^{""}

Tableau 1.6. Données de la RMN ¹H du produit AC122

δ (ppm)	Attribution	δ (ppm)	Attribution
104,0	C-3	78,3	C-5"
99,0	C-6	61,8	C-6"
85,5	C-8	110,5	C-1 ^{""}
129,0	C-2 [°]	77,4	C-2 ^{""}
116,0	C-3 [°]	75,6	C-4 ^{""}
116,0	C-5 [°]	66,1	C-5 ^{***}
129,0	C-6		
100,2	C-1"		
78,5	C-2"		
78,5	C-3"		
71,2	C-4"		

Tableau 1.7. Données RMN ¹³C (100 MHz, CD₃OD) du produit AC122

L'analyse LCMSMS (Figure 1.11, Figure 1.12), montre un pic qui apparait à un temps de rétention de 13,061 avec m/z = 565 et les fragments : 271,05 (13,92%), 383,13 (6,15%), 133,10 (3,99%) sont identiques à ceux de l'Apigénine-7-O-apioglucoside (Apiine) majoritaire dans l'extrait butanolique

Ces données nous permettent de proposer la structure suivante

135

Figure 1. 10. Spectre HSQC ¹H-¹H du produit AC122 (CD₃OD, 100 MHz)

Figure 1.11. Chromatogramme LC/MS/MS du produit AC122

Figure 1.12. Spectrométrie de masse LC/MS/MS du produit AC122

4. Le produit F19

Sous forme de poudre blanche, le composé F19 se dissous dans le chloroforme et cristallise dans le méthanol et donne une couleur rose avec le révélateur anisaldehyde sulfurique

L'examen du spectre RMN ¹H enregistré dans le DMSO-d₆ à 400 MHz (Figure 1.13 ; Figure 1.14) nous permet de distinguer :

- La présence de cinq singulets et deux doublets entre 0,70 et 1.10 ppm. L'un est net avec une constante de couplage de 6,4 Hz, l'autre est masqué par d'autres signaux. ils correspondent à sept méthyles.
- Un doublet de doublet d'intégration 1H à 3,06 ppm (J=10,9 ; 5,1 Hz) attribuable à H-3
- Un proton oléfinique résonant sous forme d'un triplet (t, 3,5 Hz) à 5,12 ppm attribuable à H-12 d'un triterpène pentacyclique.

Le spectre Dept 135 (Figure 1.15 ; Figure 1.16) enregistré dans le DMSO-d₆ à 100 MHz permet de distinguer :

- Deux signaux à 127 et 140,2 ppm correspondants aux deux carbones éthyléniques de la double liaison Δ 12,13.
- Un signal à 180,9 ppm attribué au carbonyle de la fonction acide libre en C-28
- Un carbone résonant à 76,6 ppm correspondant à C-3
- Les signaux restants apparaissent entre 16 et 57 ppm attribuables au CH₃, CH₂, CH et C quaternaires

L'analyse COSY (Figure 1.17 ; Figure 1.18) permet de déterminer les déplacements chimiques de la plupart des protons non analysables directement par le spectre RMN ¹H, qui à leur tour permettent d'attribuer les déplacements chimiques des carbones qui les portent, à l'aide du spectre HSQC (Figure 1.19 ; 20).

Finalement le spectre HMBC (Figure 1.21 ; 22) permet l'attribution des méthyles et autres carbones de la génine grâce à des corrélations longues distances entre protons et carbones.

L'ensemble des données spectroscopiques sont regroupées dans le tableau 1.8

N ⁰ du carbone	δ _C (ppm)	$\delta_{\rm H}$ (m, J Hz)
1	40,3	1,60 m ; 0,89 m
2	28,6	1,56 m
3	76,6	3,06 dd (10,9 ;5,1)
4	40,3	-
5	57,0	0,70 m
6	19,9	1,49 m ; 1,35 m
7	34,7	1,49 m ; 1,35 m
8	41,2	-
9	49,5	1,49 m
10	38,5	-
11	24,8	1,88 m
12	127,0	5,12 t (3,5)
13	140,2	-
14	43,7	-
15	29,6	1,85 m ; 1,01 m
16	25,8	1,97 td (13,4 ; 3,60) ; 1,60 m
17	49,5	-
18	54,6	2,14 d (11,2)
19	40,8	1,35 m
20	40,7	0,94 m
21	32,2	1,44 m ; 1,30 m

Tableau 1.8. Déplacements chimiques en RMN 1 H (400MHz) et RMN 13 C (100 MHz) du produit F19 dans le DMSO-d₆

Partie 3 : Résultats et discussion

Chapitre 1

22	38,4	1,60 m
23	29,6	0,92 s
24	17,2	0,71 s
25	16,7	0,90 s
26	18,6	0,78 s
27	24,7	1,06 s
28	180,9	-
29	18,4	0,83 d (6,4)
30	22,4	0,91 m

Ces données sont en accord avec la structure de l'acide ursolique

igure1.
13.
Spectre
RMN
$^{1}\mathrm{H}$
du
produit]
19
(DMSO-de
, 40
N 0
ZHI

			-1419 -142
			131 129 127 127 128 121 123 121 123 123 123 123 123
			50.90 50.89 50.85 50.85 50.81 50.79 50.78 50.78 50.75 0.74
			-0.65 -0.64 -0.63 -0.61 -0.60 -0.57 -0.54
H-27		H-23	-0.36
H-30 H-26 H-25	H -24		0.22 0.20 0.19 0.18 0.14 0.12 0.08 0.05 0.01 -0.02 -0.01
	H-30 H-27 H-26 H-26	E124	$\begin{array}{c c} \mathbf{H.23} \\ \mathbf{H.23} \\ \mathbf{H.24} \\ \mathbf{H.30} \\ \mathbf{H.27} \\ \mathbf{H.25} \\ \mathbf{H.25} \\ \mathbf{H.25} \\ \end{array}$

Figure1. 14. Spectre RMN ¹H étalé du produit F19 (DMSO-d₆, 400 MHz)

Partie 3 : Résultats et discussion

Figure 1.17. Spectre COSY étalé du produit F19 (DMSO-d₆, 400 MHz)

Figure 1.19. Spectre HSQC du produit F19 (DMSO-d₆, 400 MHz)

5. Le produit F75

Le spectre de RMN ¹H (Figure 1.23 à 26) permet d'observer d'une part des signaux entre 0 et 2,4 ppm, indiquant la présence de protons de groupements méthyles méthylènes et methynes saturés, d'autre part les signaux de la région de 2,9 à 5,4 ppm qui peuvent être attribués à des protons portés par des carbones insaturés ou des carbones oxygénés qui orientent vers la présence d'un sucre. La partie osidique a été aisément déterminée à l'aide du spectre COSY (Figure 1.29). Le sucre a été élucidé comme étant le glucose par les pics croisés de tous les protons de l'unité glucose et dont le proton anomérique résonne à 4,22 ppm sous forme d'un doublet avec J=7,8 Hz.

La génine est représentée sur le spectre RMN ¹H par des signaux caractéristiques d'un stérol où on observe:

- deux singulets à 0,65 et 0,95 ppm attribués respectivement aux deux méthyles H-18 et H 19
- trois doublets à 0,90 ; 0,85 et 0,81 ppm attribués respectivement aux trois méthyles H-21,
 H-26 et H-27
- un triplet à 0,82 ppm attribué au méthyle H-29
- un doublet à 5,33 ppm avec une petite constante de couplage de 4,6 Hz attribué à H-6
- un multiplet à 3,46 ppm attribué à H-3

La tache de corrélation entre le carbone anomérique du glucose résonant à 100,4 ppm et le proton H-3du stérol résonant à 3,46 ppm dans le spectre HMBC (Figure 1.30) indique le point de jonction du glucose au stérol. Les signaux restants ont été assignés par l'utilisation combinée des spectres COSY (Figure 1.29) HSQC (Figure 1.27 et 28) et HMBC (Figure 1.30). Les données spectroscopiques ont été regroupées dans le tableau 1.9

N ⁰ du carbone	δ _C (ppm)	$\delta_{\rm H}$ (m, J Hz)
1	36,4	1,78 m ; 0,96 m
2	28,8	1,80 m ; 1,46 m
3	79,5	3,46 m
4	38,0	2,36 dd (13,3 ; 3,2) ; 2,12 t (12,2)
5	139,6	-
6	121,0	5,33 d (4,6)
7	31,2	1,92 m ; 1,49 m
8	31,0	1,37 m
9	49,2	0,89 m
10	35,9	-
11	20,2	1,38 m
12	38,7	1,96 m ; 1,10 m
13	41,4	-
14	55,8	0,96 m
15	23,4	1,52 m ; 1,13 m
16	27,4	1,75 m ; 1,21 m
17	55,1	1,08 m
18	11,1	0,65 s
19	18,6	0,95 s
20	35,2	1,31
21	18,0	0,90 d (6,4)

Tableau 1.9. Déplacements chimiques en RMN 1 H (400 MHz) et RMN 13 C du composé F75 enregistré dans le DMSO-d₆

Partie 3 : Résultats et discussion

```
Chapitre 1
```

22	33,0	1,29 m ; 0,99
23	25,1	1,12 m
24	44,9	0,90 m
25	28,2	1,60 m
26	19,1	0,85 d (9,6)
27	18,2	0,81 d (7,1)
28	22,2	1,20 m
29	11,2	0,82 t (7,2)
1	100,4	4,22 d (7,8)
2	72,3	2,89 t (8,5)
3	76,3	3,12 t (8,1)
4	70,1	3,01 t (8,5)
5	76,9	3,06 m
6	61,6	3,64 d (10,2) ;3,41 dd (11,7 ; 6)

Ces données nous permettent de proposer pour le composé F75 la structure suivante :

Ce produit a été identifié dans l'espèce Sedum sarmentosum [5]

Partie 3 : Résultats et discussion

Partie 3 : Résultats et discussion

6. Le produit F72

Sous forme de poudre blanche, le composé F72 se dissous dans le méthanol et donne une couleur violette foncé avec le révélateur anisaldehyde sulfurique.

Les spectres RMN ¹H (Figure 1.31 ;32 ;33) montrent des similitudes aux niveaux des signaux caractéristiques de la partie stérol du composé F-75 alors que les signaux caractérisant le sucre sont différents de ceux du produit 75 .

L'examen du spectre RMN du proton (Figure 1.14, 15 et 16) montre :

- Un singulet d'intégration 1H, à 5,25 ppm attribuable à H-6
- Un doublet de multiplet d'intégration 1H, à 4,27 ppm avec une constante de couplage J=5,6 Hz attribuable à H-3
- Un singulet d'intégration 3H, à 0,55 ppm attribuable à H-18
- Un singulet d'intégration 3H, à 0,87 ppm attribuable à H-19
- Un doublé d'intégration 3H, à 0,80 ppm avec les constantes de couplages J=7 Hz attribuable à H-21
- Un doublet d'intégration 3H, à 0,78 ppm, attribuable à H-26
- Un doublet d'intégration 3H, à 0,67 ppm avec constante de couplage J=6,4 à H-27
- Un triplet d'intégration 3H, à 0,71 ppm, attribuable à H-29
- un multiplet d'intégration 1H à 3,65 ppm attribuable à H-3

Les spectres RMN ¹³C (Figure 3.34 à 36) confirme la structure de la partie stérol par les signaux caractéristique suivant : la double liaison C(5)=C(6) à δ (C) 142,3 et 123,6 ppm, l'oxyméthine C(3) à δ (C) 80,3, les carbones méthyniques C(9), C(14) et C(17) résonnent respectivement à 51,8 ; 58,4 ; 57,7. La différence est au niveau de la présence des signaux confirmant que le composé est un oside; car on observe les signaux du carbone anomérique δ (C) à 103,0 ppm de l'oxyméthylène C(6') à 64,2 ppm et les oxymethines C(4'), C(2'), C(5'), C(3') sortant à δ (C) 72,7 ; 75,5 ; 78,8 ; 77,7 respectivement. Et toutes ces valeurs nous permettent de suggérer que ce composé est un glucoside stéroïdique.

Après hydrolyse acide, le sucre libéré a été identifié au galactose en présence de sucres témoins, ceci nous permet de proposer la structure suivante du produit F72

Les résultats du spectre RMN ¹³C, déplacements chimiques et l'attribution des signaux sont résumés dans le tableau 1.10

Attribution	δ (ppm)	Attribution	δ (ppm)
C-1	39,0	C-18	13,7
C-2	31,5	C-19	21,2
C-3	80,3	C-20	37,8
C-4	40,6	C-21	20,5
C-5	142,31	C-22	35,6
C-6	123,6	C-23	27,6
C-7	33,7	C-24	47,5
C-8	33,6	C-25	30,8
C-9	51,8	C-26	21,7
C-10	38,4	C-27	20,9
C-11	22,7	C-28	24,7
C-12	-	C-29	13,8
C-13	44,0	C-1'	103,0
C-14	58,4	C-2'	75,5
C-15	26,0	C-3'	77,7
C-16	29,9	C-4'	72,7
C-17	57,7	C-5'	78,8
		C-6'	64,2

Tableau 1.10. Données RMN¹³C (100 MHz, DMSO-d₆) du produit F72

Ces données sont en accord avec la structure du β -Sitosterol-3-O- β -D-galactoside

Ce produit a été séparé pour la première fois dans le genre Sedum.

Figure 1.35. Spectre Dept 135 du produit F72 (DMSO-d₆, 100 MHz)

Figure 1.36. Spectre Dept 135 du produit F72 (DMSO-d₆, 100 MHz)

References:

- 1. Mabry TJ, Markham KR, Thomas MB. 1970. The Systematic Identification of Flavonoids. Berlin, Heidelberg, New York: Springer-Verlag.
- 2. J.F. Stevens, H.'t Hart, E. T. Elema, A. Bolck, 1996. Flavonoid variation in Eurasian Sedum and sempervivum, Phytochemistry, Vol. 41, No. 2, pp. 503-512.
- P.J. Calie, 1981 Brittonia, Systematic Studies in Sedum section Ternata (crassulaceae) 33(4), pp. 498-507
- T. Morikawa, Y. Zhang, S. Nakamura, H. Mutsuda, O. Muraoka, M. Yoshikawa, 2007. Bioactive constituents from Chinese natural medicines. XXII. Absolute structures of new megastigmane glycosides, sedumosides E1, E2, E3, F1, F2, and G, from Sedum sarmentosum (Crassulaceae). Chem. Pharm. Bull., 55, 435-441.
- A. He, H. Hao, M. Wang, D. Zhang, 1997. Sterols from *Sedum sarmentosum*. Zhongguo Yaoke Daxue Xuebao, 28, 271-274.

1. Résultats d'analyses LC/MS/MS et interprétation

Après l'extraction des composés par le système de solvant MeOH/H2O (80/20), on a préparé une solution de 20000 ppm, qui ensuite, a été injecté à l'instrument LC-ESI-MS/MS. Les figures 2.1 et 2.2 montrent le chromatogramme de cette injection.

2. Modes d'ionisation positive et négative

2.1. Ionisation positive

Les chromatogrammes d'ionisations positive et négative montrent une richesse en composés majoritaires

Figure 2.1. Chromatogramme de l'ionisation positive de l'extrait butanolique de *S. caeruleum*

2.2. Ionisation négative

La plupart des produits majoritaires sont concentrés entre 6-20 minutes du temps de rétention avec un nombre moins élevée par rapport à l'ionisation positive.

Figure 2.2. Chromatogramme de l'ionisation négative de l'extrait butanolique de *S. caeruleum*

3. Identification des polyphénols contenus dans l'EBSC

L'analyse des résultats par le logiciel Qualitative Analysis B.06.00 de Agilent Mass Hunter Workstation des deux ionisations en comparaison avec les données de la littérature nous a permis d'identifier 23 polyphénols.

3.1. Identification du produit 1

Le pic qui apparait à un temps de rétention de 3.252 mn avec m/z = 331.0678 et les fragments : 271.0460 (8 %), 211.0249 (26 %), 169.0144 (100 %), 151.0037 (47 %), 125.0246 (55 %), a été identifié à la β -glucogalline (isomère 1) (Figure 2.3 et Figure 2.4)

Figure 2.3. Chromatogramme du produit 1

Figure 2.4. Spectre de masse du produit 1

3.2.Identification du produit 2

Le pic qui apparait à un temps de rétention de 3.50 avec m/z = 331.0673 et les fragments : 271.0460 (8 %), 211.0249 (26 %), 169.0144 (100 %), 151.0037 (47 %), 125.0246 (55 %), a été identifié à la β -glucogalline (isomère 2) (Figure 2.5 et Figure 2.6)

Figure 2.6. Spectre de masse du produit 2

3.3. Identification du produit 3

Le pic qui apparait à un temps de rétention de 3.748 avec m/z = 331.0671 et les fragments : 271.0455 (28 %), 211.0244 (100 %), 169.0136 (81 %), 125.0240 (49 %), a été identifié à la β-glucogalline (isomère 3) (Figure 2.7 et Figure 2.8)

Figure 2.8. Spectre de masse du produit 3

3.4. Identification du produit 4

Le pic qui apparait à un temps de rétention de 4.306 avec m/z = 169.0154 et les fragments : 125.0240 (76 %), 79.0190 (100 %), a été identifié à l'acide gallique (Figure 2.9 et Figure 2.10)

Figure 2.10. Spectre de masse du produit 4

3.5. Identification du produit 5

Le pic qui apparait à un temps de rétention de 5.422 avec m/z = 331.0677 et les fragments : 169.0145 (100 %), 125.0249 (60 %), a été identifié à la β -glucogalline (isomère 4) (Figure 2.11 et Figure 2.12)

Figure 2.12. Spectre de masse du produit 5

3.6. Identification du produit 6

Le pic qui apparait à un temps de rétention de 6.909 avec m/z = 325.0933 et les fragments : 163.04 (21 %), 119.05 (100 %), a été identifié à l'acide *p*-glucocoumarique (isomère 1) (Figure 2.13 et Figure 2.14)

Figure 2.14. Spectre de masse du produit 6

3.7. Identification du produit 7

Le pic qui apparait à un temps de rétention de 7.157 mn avec m/z = 359.0992, et les fragments : 197,04 (71,78 %), 153,05 (31,44%), a été identifié à l'ester glucosyringique (Figure 2.15 et Figure 2.16)

Figure 2.16. Spectre de masse du produit 7

Analyse LC/MS/MS de l'extrait butanolique de Sedum caeruleum

3.8. Identification du produit 8

Le pic qui apparait à un temps de rétention de 7.839 avec m/z = 483.0799 et les fragments : 483.0788 (19 %), 313.0571 (33 %), 271.0468 (100 %), 211.0256 (27 %), 169.0149 (90 %), a été identifié au digalloyl-D-glucoside (isomère 1) (Figure 2.17 et Figure 2.18)

Figure 2.18. Spectre de masse du produit 8

3.9. Identification du produit 9

Le pic qui apparait à un temps de rétention de 8.087 avec m/z = 341.0879 et les fragments : 179.0348 (94 %), 135.0451 (100 %), a été identifié à l'acide O-glucocaféique (Figure 2.19 et Figure 2.20)

Figure 2.20. Spectre de masse du produit 9

3.10. Identification du produit 10

Le pic qui apparait à un temps de rétention de 8.273 avec m/z = 483.0783 et les fragments : 483.0773 (32 %), 313.0564 (95 %), 271.0457 (26 %), 169.0143 (100 %), a été identifié au digalloyl-D-glucoside (isomère 2) (Figure 2.21 et Figure 2.22)

Figure 2.22. Spectre de masse du produit 10

3.11. Identification du produit 11

Le pic qui apparait à un temps de rétention de 8.582 avec m/z = 325.0931 et les fragments : 163.04 (21 %), 119.05 (100 %), a été identifié à l'acide *p*-glucocoumarique (isomère 2) (Figure 2.23 et Figure 2.24)

Figure 2.23. Chromatogramme du produit 11

Figure 2.24. Spectre de masse du produit 11

3.12. Identification du produit 12

Le pic qui apparait à un temps de rétention de 9.016 avec m/z = 739.0822 et les fragments : 243.9997 (10 %), 242.9969 (100 %), 163.04 (22 %), a été identifié au kaempferol 3-O- β -neohesperidosyl-7-O- α -rhamnoside (Figure 2.25 et Figure 2.26)

Figure 2.25. Chromatogramme du produit 12

Figure 2.26. Spectre de masse du produit 12

3.13. Identification du produit 13

Le pic qui apparait à un temps de rétention de 9.450 avec m/z = 593.1519 et les fragments : 593.1517 (100 %), 503.1195 (16 %), 473.1093 (55 %), 383.0772 (29 %), 353.0668 (46 %), a été identifié à l'apigénine-6,8-di-C-glucoside (vicénine-2) (Figure 2.27 et Figure 2.28)

Figure 2.28. Spectre de masse du produit 13

3.14. Identification du produit 14

Le pic qui apparait à un temps de rétention de 10.396 avec m/z = 611.160 et les fragments : 449.1068 (1 %), 287.0549 (100 %), a été identifié au Kaempferol-3-O- β -sophoroside (Figure 2.29 et Figure 2.30)

Figure 2.30. Spectre de masse du produit 14

3.15. Identification du produit 15

Le pic qui apparait à un temps de rétention de 10.814 avec m/z = 463.0889 et les fragments : 301.0352 (100 %), a été identifié à la quercétine 3-O-glucoside (Figure 2.31 et Figure 2.32)

Figure 2.32. Spectre de masse du produit 15

3.16. Identification du produit 16

Le pic qui apparait à un temps de rétention de 12.301 avec m/z = 447.0938 et les fragments : 285.0406 (100 %), a été identifié à la luteoline-7-O-glucoside (Figure 2.33 et Figure 2.34)

Figure 2.34. Spectre de masse du produit 16

3.17. Identification du produit 17

Le pic qui apparait à un temps de rétention de 12.813 avec m/z = 579.1710 et les fragments : 433.1118 (1 %), 271.0597 (100 %), a été identifié à l'apigénine 7-O-neohesperidoside (rhoifoline) (Figure 2.35 et Figure 2.36)

Figure 2.36. Spectre de masse du produit 17
3.18. Identification du produit 18

Le pic qui apparait à un temps de rétention de 13.045 avec m/z = 563.1413 et les fragments : 269.0457 (100 %), a été identifié à l'apiine (Figure 2.37 et Figure 2.38)

Figure 2.38. Spectre de masse du produit 18

3.19. Identification du produit 19

Le pic qui apparait à un temps de rétention de 13.123 avec m/z = 579.1711 et les fragments : 271.06 (100 %), a été identifié à l'apigénine 7-O-rutinoside (isorhoifoline) (Figure 2.39 et Figure 2.40)

Figure 2.39. Chromatogramme du produit 19

Figure 2.40. Spectre de masse du produit 19

3.20. Identification du produit 20

Le pic qui apparait à un temps de rétention de 13.309 avec m/z = 595.1662 et les fragments : 301.0703 (100 %), a été identifié au diosmétine apiosylglucoside (isomère 1) (Figure 2.41 et Figure 2.42)

Figure 2.42. Spectre de masse du produit 20

3.21. Identification du produit 21

Le pic qui apparait à un temps de rétention de 13.557 avec m/z = 595.1662 et les fragments : 301.0706 (100 %), a été identifié au diosmétine apiosylglucoside (isomère 2) (Figure 2.43 et Figure 2.44)

Figure 2.44. Spectre de masse du produit 21

3.22. Identification du produit 22

Le pic qui apparait à un temps de rétention de 16.098 avec m/z = 607.1661 et les fragments : 271.0599 (100 %), a été identifié à l'acetylapiine (Figure 2.45 et Figure 2.46)

Figure 2.46. Spectre de masse du produit 22

3.23. Identification du produit 23

Le pic qui apparait à un temps de rétention de 19.181 avec m/z = 269.0455 et les fragments : 269.0354 (57 %), 151.0031 (29 %), a été identifié à l'apigénine (Figure 2.47 et Figure 2.48)

Figure 2.48. Spectre de masse du produit 23

Ces résultats sont présentés dans le tableau 2.1

4. Discussion

Chapitre 2

L'identification des composés phénoliques contenus dans l'EBSC a été effectuée en comparant les temps de rétentions et des masses à ceux des standards authentiques. Pour les composés restants pour lesquels aucune norme n'était disponible, l'identification a été basée sur des mesures de masse précises [M - H] des ions pseudo-moléculaire d'ions et de fragment de CID.

Plusieurs dérivés de l'apigénine ont été détectés dans l'EBSC. Tous ces flavonoides étaient identifiés comme glycosides contenant un ou plusieurs fragments de sucre.

Des flavonoides C-glycosylés et flavonoides O-glycosylés ont été détectés. Ces deux groupes de flavonoides sont facilement distingués sur la base du modèle de fragmentation de MSⁿ. La liaison carbone-carbone de flavonoides C-glycosylés resiste à la rupture. Cependant, les fragments du sucre sont facilement perdus par pertes neutres dans les flavonoides O-glycosylés

Un total de 23 polyphénols distribués dans 3 catégories principales ont été identifiés dans la présente étude.

- 1. Trois dérivés d'acide hydroxycinnamique
- 2. Huit dérivés d'acide hydroxybenzoïque
- 3. Douze flavonoïdes

Analyse LC/MS/MS de l'extrait butanolique de Sedum caeruleum

Tableau 2.1. composés de l'er	xtrait butanolique ide	entifiés par LCMSMS
-------------------------------	------------------------	---------------------

Numéro	Composés	Temps		m/z	m/z			Fragments majoritaires (intensité)	Références
du pik		de rétention	Formule	expériment	calculé	mode	erreur	m/z	
		(min)	moleculaire	al		d'ionizati			
						on			
1	β-glucogalline isomère 1	3.252	$C_{13}H_{16}O_{10}$	331.0678	331.0670	Ν	neg 2.13	271.0460 (8 %), 211.0249 (26 %), 169.0144 (100 %), 151.0037 (47 %), 125.0246 (55 %)	1
2	β-glucogalline isomère 2	3.50	$C_{13}H_{16}O_{10}$	331.0673	331.0670	Ν	neg 0.58	271.0460 (8 %), 211.0249 (26 %), 169.0144 (100 %), 151.0037 (47 %), 125.0246 (55 %)	1
3	β-glucogalline isomère 3	3.748	$C_{13}H_{16}O_{10}$	331.0671	331.0670	Ν	neg 0.05	271.0455 (28 %), 211.0244 (100 %), 169.0136 (81 %), 125.0240 (49 %)	1
4	Acide gallique	4.306	$C_7H_6O_5$	169.0154	169.0142	Ν	neg 6.85	125.0240 (76 %), 79.0190 (100 %)	1
5	β-glucogalline isomère 4	5.422	$C_{13}H_{16}O_{10}$	331.0677	331.0670	Ν	neg 2.03	169.0145 (100 %), 125.0249 (60 %)	1
6	Acide <i>p</i> -glucocoumarique isomère 1	6.909	$C_{15}H_{18}O_8$	325.0933	325.0928	Ν	neg 1.24	163.04 (21 %), 119.05 (100 %)	2
7	Ester glucosyringique	7.157	$C_{15}H_{20}O_{10}$	359.0992	359.0932	Ν	neg 0.30	197,04 (71,78 %), 153,05 (31,44%),	11
8	Digalloyl-D-glucoside isomère 1	7.839	$C_{20}H_{20}O_{14}$	483.0799	483.0780	Ν	neg 3.48	483.0788 (19 %), 313.0571 (33 %), 271.0468 (100 %), 211.0256 (27 %), 169.0149 (90 %)	1
9	Acide O-glucocaféique	8.087	$C_{15}H_{18}O_9$	341.0879	341.0878	Ν	neg 0.25	179.0348 (94 %), 135.0451 (100 %)	3
10	Digalloyl-D-glucoside isomère 2	8.273	$C_{20}H_{20}O_{14}$	483.0783	483.0780	Ν	neg 0.49	483.0773 (32 %), 313.0564 (95 %), 271.0457 (26 %), 169.0143 (100 %)	1
11	Acide <i>p</i> -glucocoumarique isomère 2	8.582	$C_{15}H_{18}O_8$	325.0931	325.0928	Ν	neg 0.56	163.04 (21 %), 119.05 (100 %)	2
12	Kaempferol 3-O- β- neohesperidosyl-7-O-α- rhamnoside	9.016	$C_{26}H_{28}O_{25}$	739.0822	739.0846	Ν	neg 4.06	243.9997 (10 %), 242.9969 (100 %), 163.04 (22 %)	4
13	Apigénine-6,8-di-C- glucoside (vicénine-2)	9.450	$C_{27}H_{30}O_{15}$	593.1519	593.1511	Ν	neg 1.19	593.1517 (100 %), 503.1195 (16 %), 473.1093 (55 %), 383.0772 (29 %), 353.0668 (46 %),	5
14	Kaempferol-3-O-β- sophoroside	10.396	$C_{27}H_{30}O_{16}$	611.160	611.160	Р	neg 0.46	449.1068 (1 %), 287.0549 (100 %)	6
15	Quercétine 3-O-glucoside	10.814	$C_{21}H_{20}O_{12}$	463.0889	463.0882	N	neg 1.63	301.0352 (100 %)	7
16	Luteolin-7-O-glucoside	12.301	$C_{21}H_{20}O_{11}$	447.0938	447.0932	Ν	neg 1.18	285.0406 (100 %)	8
17	Apigénine 7-O- neohesperidoside	12.813	$C_{27}H_{30}O_{14}$	579.1710	579.1708	Р	neg 0.07	433.1118 (1 %), 271.0597 (100 %)	7

Chapitre	2	Analys	e LC/MS/MS c	le l'extrait but	anolique de	<u>Sedum c</u>	<u>aeruleum</u>		
	(rhoifoline)								
18	Apiine	13.045	$C_{26}H_{28}O_{14}$	563.1413	563.1406	В	2.64	269.0457 (100 %)	8
19	Apigénine 7-O-rutinoside (isorhoifoline)	13.123	$C_{27}H_{30}O_{14}$	579.1711	579.1708	Р	neg 0.35	271.06 (100 %)	7
20	diosmétine apiosylglucoside isomère 1	13.309	$C_{27}H_{30}O_{15}$	595.1662	595.1657	Р	neg 0.38	301.0703 (100 %)	9
21	diosmétine apiosylglucoside isomère 2	13.557	$C_{27}H_{30}O_{15}$	595.1650	595.1657	Р	neg 1.14	301.0706(100 %)	9
22	Acetylapiine	16.098	$C_{28}H_{30}O_{15}$	607.1661	607.1657	Р	neg 0.57	271.0599 (100 %)	9
23	Apigénine	19.181	$C_{15}H_{10}O_5$	269.0455	269.0455	Ν	0.18	269.0354 (57 %), 151.0031 (29 %)	10

N : mode d'ionisation négatif

P : mode d'ionisation positif

neg : négligeable

Références :

- 1. Y. Zhao, X. Li, X. Zeng, S. Huang, S. Hou, X. Lai, 2014. Characterization of phenolic constituents in *Lithocarpus polystachyus* Anal. Methods., 6, 1359-1363
- A. Vallverdú-Queralt, J. Regueiro, M. Martínez-Huélamo, J. F. Rinaldi Alvarenga, L. N. Leal, R. M. Lamuela-Raventos, 2014. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem., 154, 299-307.
- N. Mulinacci, F. F. Vincieri, A. Baldi, A. Romani, 1995. Mass Spectrometric Methodologies in Plant Analysis : the Case of Flavonols in *Sedum telephium L.* Juice., 9, 963-967.
- J. Han, M. Ye, X. Qiao, M. Xu, B. R. Wang, D. A. Guo, 2008. Characterization of phenolic compounds in the Chinese herbal drug *Artemisia annua* by liquid chromatography coupled to electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal., 47, 516-525.
- S. Yang, M. V. Arasu, J. Chun, Y. Jang, Y. Lee, I. H. Kim, K. Lee, K. S. Hong, S. Kim, 2015. Identification and determination of phenolic compounds in rapeseed meals (*Brassica napus L*), Journal of Agricultural Chemistry and Environment, 4, 14-23.
- M. B. Hossain, D. K. Rai, N. P. Brunton, A. B. Martin-Diana, A. C. Barry-Ryan, 2010. Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J. Agric. Food Chem., 58, 10576-10581.
- Y.L. Ma, I. Vedernikova, H. V. D. Heuvel, M. Claeys, 2000. Internal Glucose Residue Loss in Protonated O-Diglycosyl Flavonoids upon Low-Energy Collision-Induced Dissociation, J. Am. Soc. Mass Spectrom, 11, 136–144
- I. M. Abu-Reidah, D. Arraez-Roman, A. Segura-Carretero, A. Fernandez-Gutierrez, 2013. Extensive characterisation of bioactive phenolic constituents from globe artichoke (*Cynara scolymus L.*) by HPLC-DAD-ESI-QTOF-MS. Food Chem., 141, 2269-2277.
- D. L. Luthria, S. Mukhopadhyay, A. L. Kwansa, 2006 A systematic approach for extraction of phenolic compounds using parsley (*Petroselinum crispum*) flakes as a model substrate J. Sci. Food Agri., 86,1350–1358
- V. G. Kontogianni, G. Tomic, I. Nikolic, A. A. Nerantzaki, S. Stosic-Grujicic, I. Stojanovic, I. P. Gerothanassis, N. Sayyad, A. G. Tzakos, 2013. Phytochemical profile

of *Rosmarinus officinalis* and *Salvia officinalis* extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem, 136,120–129

 I.M. Abu-Reidah, M. S. Ali-Shtayeh, R. M. Jamous, D. Arráez-Román, A. Segura-Carretero, 2015. HPLC–DAD–ESI-MS/MS screening of bioactive components from *Rhus coriaria* L. (Sumac) fruits. Food Chem, 166, 179–191

Résultats des activités antioxydante, anticholinestérase, antiinflammatoire, cytotoxique et antibactérienne

1. Dosage des polyphénols totaux

1.1. Les extraits de Sedum caeruleum et Sedum pubescens

Le tableau 3.1 montre que l'extrait butanolique (EBSC) est plus riche en polyphénols que les extraits acétate d'éthyle (EASC) et chloroformique (ECSC) de *Sedum caeruleum*, ce dernier est plus pauvre en polyphénols.

L'extrait butanolique de *Sedum pubescens* (EBSP) a montré une meilleure richesse en polyphénols par rapport à l'extrait chloroformique (ECSP) (Tableau 3.1)

Tableau 3.1. Polyphénols totaux de Sedum caeruleum et Sedum pubescens.

Extraits		Total phénolique
		(µg EAG/mg d'extrait)
EBSC	Extrait butanolique de S. caeruleum	116,74±11,78
ECSC	Extrait chloroformique de S. caeruleum	5,27±0,06
EBSP	Extrait butanolique de S. pubescens	158,70±15,94
ECSP	Extrait chloroformique de S. pubescens	$0,56\pm0,00$

Si on compare ces valeurs du total phénolique à une étude faite sur trois types de thé (blanc, vert et noir) [1], on constate que l'EBSP a le même total en polyphénols que le thé noir et la moitié par rapport au thé vert. Par contre, l'EBSC présente la moitié de contenu phénolique que le thé blanc.

- a- Thé blanc : $245.3\pm1.41 \ \mu g EAG / mg d'extrait$)
- b- Thé vert : $313.3\pm1.41 \ \mu g EAG / mg d'extrait$)
- c- Thé noir : 161.8±0.73 µg EAG / mg d'extrait)

2. Activité antioxydante

Cinq méthodes ont été utilisées pour évaluer l'activité antioxydante des extraits chloroformique (ECSC), acétate d'éthyle (EASC) et n-butanolique (EBSC) de *Sedum caeruleum* ainsi que les extraits hexane (EHSP), chloroformique (ECSP) et n-butanolique (EBSP) de *Sedum pubescens*

2.1. Activité antiradicalaire au DPPH des extraits de S. caeruleum et S. pubescens

Les résultats de l'activité antiradicalaire au DPPH sont représentés par les pourcentages d'inhibition pour chaque concentration ainsi que les valeurs de la concentration d'inhibition de 50% (Tableau 3.2, Figure 3.1)

L'EBSC a présenté une meilleure activité antiradicalaire ($CI_{50}= 28,35\pm1,22 \ \mu g.mL^{-1}$), en comparaison avec le standard BHA ($CI_{50}=45,37\pm0,47 \ \mu g.mL^{-1}$). Cette activité est due à sa richesse en molécules polaires à savoir les flavonoïdes glycosylés qui ont été isolés et à d'autres polyphénols. Par contre, l'extrait et EASC a montré une activité antiradicalaire faible par rapport aux valeurs des standards BHA et α -tocopherol. (Tableau 3.2, Figure 3.1) L'EBSP a montré une activité inhibitrice du DPPH ($CI_{50}=97.34\pm5,45 \ \mu g.mL^{-1}$) deux fois moins faible que celle du BHA ($CI_{50}=45,37\mu g.mL^{-1}$) (Tableau 3.2, Figure 3.1).

	Inhibition (%)								
Concentration µg/mL	25	50	100	200	400	800			
EBSC	29,32±0.25	52,61±0.08	61,25±0.04	78,45±0.43	-	-	28.35±1.22		
EBSP	15,64±2,19	48,31±4,28	61,20±0,33	70,81±0,25	71,96±0,06	71,89±0,15	97.34±5.45		
BHA	NT	NT	59,0 ± 0.0	$79,3 \pm 0.5$	$90,8 \pm 0.2$	94,1 ± 0.1	45.37±0.47		
α-tocopherol	NT	NT	84,1 ± 0.0	95,9±0.0	96,1 ± 0.9	96,7 ± 0.1	7.31±0.17		

I ableau 3.2 Inhibition du radical DPPH par les extraits de S. <i>caeruleum</i> et S. <i>pubesce</i>

NT: non testé

Figure 3.1. Activité antiradicalaire (DPPH) des extraits de S. caeruleum et S. pubescens

L'extrait butanolique *S. caeruleum* a montré une meilleure activité antiradicalaire par rapport à l'extrait butanolique de *S. pubescens*, bien que le contenu en polyphénols de ce dernier soit un peu supérieur

Cette bonne activité antioxydante de l'EBSC peut être expliqué par la nature des composés phénoliques qui sont des acides phénoliques tel que l'acide gallique et ses dérivés, l'acide coumarique ; les flavonoïdes comme la luteoline et la quercétine glycosylé

2.2. Utilisation de l'HPLC dans le contrôle de l'activité d'inhibition du DPPH

2.2.1 L'extrait butanolique de Sedum pubescens

Cette technique consiste à injecter une quantité de l'extrait avec un mélange de DPPH et enregistrer des chromatogrammes à différentes longueurs d'ondes, afin de savoir si l'extrait a une activité antiradicalaire.

En comparant les chromatogrammes des extraits avec les chromatogrammes des mélanges d'extraits + le DPPH et les chromatogrammes du DPPH seul dans les trois longueurs d'onde 254, 270 et 290 nm, on trouve que les pics de l'EBSP se soustraient dans le mélange avec le DPPH, cela indique que les composants de cet extrait ont une activité antiradicalaire (Figure 3.2)

 Chapitre 3
 Résultats des activités antioxydante, anticholinestérase, anti-inflammatoire, cytotoxique et antibactérienne

Chromatogramme de l'EBSP + DPPH à 270 nm

<u>Chapitre 3</u> <u>Résultats des activités antioxydante, anticholinestérase, anti-inflammatoire, cytotoxique et</u> <u>antibactérienne</u>

Figure 3.2. Chromatogrammes d'utilisation de l'HPLC pour l'évaluation de l'activité antiradicalaire DPPH

2.3. Activité du métal chélate

2.3.1 Les extraits de Sedum caeruleum

Le calcul de la capacité des extraits à la chélation des métaux a été évalué par rapport aux valeurs de la concentration d'inhibition du standard EDTA (Tableau 3.2, Figure 3.3).

Le tableau 3.2 montre les effets de la chélation des ions ferreux sur les extraits, par rapport à l'EDTA, en tant que standard. L'activité de chélation du métal augmente avec l'augmentation de la concentration des extraits. L'EBSC ($CI_{50}=40,83 \pm 2,24 \ \mu g.mL^{-1}$) a montré la plus forte activité de chélation du métal par rapport au extraits ECSC ($CI_{50}=132,23\pm2,31 \ \mu g.mL^{-1}$) et EASC ($CI_{50}=161,43\pm2,34 \ \mu g.mL^{-1}$).

Cette activité, plus forte de l'EBSC par rapport au extraits ECSC et EASC, est due à sa richesse en polyphénols.

Toutefois, les valeurs d'inhibition des extraits augmentent avec l'accroissement de la concentration, et les extraits testés ont montré une faible activité de chélation métallique par rapport au standard (EDTA).

			Inhibition %	CI	50 (μg.mL ⁻¹)	
Concentration µg/mL	25	50	100	200	400	
ECSC	18,84±0,72	36,78±0,31	47,10±0,29	59,32±0,58	64,68±0,88	132,23±2,31
EBSC	21,52±0,30	59,25±0,18	61,88±0,32	72,45±0,48	74,82±0,18	40,83±2,24
EDTA	NT	NT	92,5±1.4	94,7±0.6	95,2±0.1	3.47±0.35
NT [·] non testé						

Tableau 3.2. Activité des extraits de Sedum caeruleum sur les ions chélates

La bonne chélation de l'EBSC est expliqué par la présence de flavonoïdes (particulièrement entre le OH porté par C-5 et le carbonyle C-4) et les systèmes ortho-dihydroxy de la luteoline , la quercetine glycosylé et l'acide gallique et ses dérivés.

2.4. Test de la capacité antioxydante par réduction du cuivre (CUPRAC)

2.4.1 Les extraits de Sedum caeruleum

L'ECSC a montré une meilleure activité inhibitrice du CUPRAC ($A_{0.50} = 9.40 \pm 1.10 \ \mu g.mL^{-1}$) que celle des standards BHA ($A_{0.50}=24.40\pm0.0\ \mu g.mL^{-1}$) et α -tocopherol ($A_{0.50}=89.40\pm0.0$ $\mu g.mL^{-1}$), tandis que l'EBSC a manifesté une activité ($A_{0.50}=23.52\pm0.44 \ \mu g.mL^{-1}$) presque égale à celle du standard BHA. (Tableau 3.5, Figure 3.6).

Tableau 3.3. Inhibition du CUPRAC par les extraits de Sedum caeruleum

	Absorbance								
Concentration µg/mL	25	50	100	200	400	800			
ECSC	$0,86 \pm 0,02$	1,41 ±0,04	2,16 ±0,02	$3,05 \pm 0,05$	$4,00 \pm 0,00$	4,00 ±0,00	9.40±1.10		
EBSC	0,55±0,00	0,90±0,01	1,47±0,04	2,51±0,02	3,01±0,03	3,67±0,02	23.52±0.44		
BHA	NT	NT	3,50±0.0	3,70±0.0	3,80±0.0	3,90±0.0	24.40±0.0		
a-tocopherol	NT	NT	1,90±0.0	2,20±0.1	2,90±0.1	3,20±0.0	89.40±0.0		

NT: non testé

 $A_{0.50}$: la concentration à l'absorbance 0,5

Figure 3.4. Test de la capacité antioxydante par réduction du cuivre (CUPRAC) par les extraits de *Sedum caeruleum*

2.4.2 Les extraits de Sedum pubescens

L'EBSP a manifesté une forte activité inhibitrice du CUPRAC ($A_{0.50} = 8.51 \pm 0.52 \ \mu g.mL^{-1}$) qui est meilleure que celle des deux standards utilisés. L'ECSP a montré une activité ($A_{0.50} = 25.65 \pm 0.46 \ \mu g.mL^{-1}$) presque égale au standard BHA et une meilleure activité que celle de l' α -tocopherol

L'EHSP a manifesté une meilleure activité $(A_{0.50}: 34,32\pm0,43 \ \mu g.mL^{-1})$ que celle du standard α -tocopherol et elle est légèrement inférieure à celle du standard BHA (Tableau 3.4, Figure 3.5)

		$A_{0.5}$	A _{0.50} (μg.mL ⁻¹)				
Concentration µg/mL	25	50	100	200	400	800	
EHSP	0,38±0,05	0,67±0,02	1,10±0,04	1,45±0,05	2,27±0,04	3,11±0,06	34,32±0,43
ECSP	0,48±0,01	0,79±0,02	1,15±0,04	ND	ND	ND	25.65±0.46
EBSP	1,05±0,07	1,68±0,12	2,62±0,08	1,16±0,08	1,99±0,09	2,79±0,14	8.51±0.52
BHA	NT	NT	3.50±0.0	3.70±0.0	3.80±0.0	3.90±0.0	24.40±0.0
α-tocopherol	NT	NT	1.90±0.0	2.20±0.1	2.90±0.1	3.20±0.0	89.40±0.0

Tableau 3.4. Inhibition du CUPRAC par les extraits de Sedum pubescens

NT: non testé

 $A_{0.50}$: la concentration à l'absorbance 0,5

Figure 3.5. Test de la capacité antioxydante par réduction du cuivre (CUPRAC) par les extraits de *Sedum pubescens*

Les extraits butanoliques de *S. caeruleum* et *S. pubescens* ont montré une meilleures capacité antioxydante par réduction du cuivre que celles des standards BHA et α-tocophérol

2.5. Activité de blanchissement du β-carotène

2.5.1 Les extraits de Sedum caeruleum

Tous les extraits testés ont montré une meilleure activité de blanchissement du β -carotène, plus particulièrement l'EBSC qui a montré la meilleure activité (CI₅₀=6,81±2.21µg.mL⁻¹), par rapport au standard le BHA (CI₅₀=1,34±0.04 µg.mL⁻¹) et l' α -tocophérol (CI₅₀=2,10±0.08 µg.mL⁻¹) (Tableau 3.5, Figure 3.6).

Tableau 3.5. Activité de blanchissement du β-carotène par les extraits de Sedum caeruleum

		IC ₅₀ (µg.mL ⁻¹)					
Concentration µg/mL	25	50	100	200	400	800	
ECSC	58,85±6,46	74,92±2,65	83,69±2,55	90,06±1,55	92,32±1,19	96,03±0,93	8,85±1,40
EBSC	59,83±1,28	73,84±1,36	83,93±1,49	94,28±0,11	95,70±0,76	96,95±0,19	6,81±2.21
BHA	NT	NT	90,70±0,0	91,90±0,1	92,90±0.1	93,90±0,0	1,34±0.04
α-tocopherol	NT	NT	87,80±0,1	90,10±0,0	91,10±0,0	93,10±0,1	2,10±0,08

NT: non testé

2.5.2 Les extraits de Sedum pubescens

Les extraits de *Sedum pubescens* ont montré une faible activité de blanchissement du β carotène, en comparaison avec les standards BHA et l' α -tocophérol.

Les extraits EBSP et ECSP ont manifesté une meilleure activité ($CI_{50}=22,08\pm4,32\mu g.mL^{-1}$), ($CI_{50}=22.16\pm0,73\mu g.mL^{-1}$) respectivement (Tableau 3.6, Figure 3.7)

		Inhil	CI	₅₀ (μg.mL ⁻¹)		
Concentration µg/mL	25	50	100	200	400	
ECSP	56,66±1,49	71,26±1,28	79,26±2,53	85,62±1,26	87,39±0,67	22.16±0,73
EBSP	50,28±1,38	62,60±1,54	77,65±2,83	86,29±11,59	76,55±0,67	22,08±4,32
BHA	NT	NT	90,70±0,0	91,90±0,1	92,90±0,1	1,34±0,04
a-tocopherol	NT	NT	87,80±0,1	90,10±0.0	91,10±0,0	2,10±0,08

Tableau 3.6. Activité de blanchissement du β-carotène par les extraits de Sedum pubescens

NT: non testé

Figure 3.7. Activité de blanchissement du β-carotène par les extraits de Sedum pubescens

La plante Sedum caeruleum a montré une forte activité du β-carotène par rapport à *Sedum pubescens*

2.6. Activité ABTS

2.6.1 Les extraits de Sedum pubescens

L'extrait ECSP a montré une activité inhibitrice du radical ABTS⁺, cinq fois plus faible que celle des deux standards le BHA et l' α -tocophérol (Tableau 3.7, Figure 3.8) et 5 fois supérieure à celle de l'EHSP.

		CI	50 (μg.mL ⁻¹)			
Concentration µg/mL	25	50	100	200	400	
EHSP	40,96±16,69	45,89±1,07	48,48±1,44	71,61±0,63	79,46±4,73	106,43±4.50
ECSP	62,18±10,07	81,12±2,93	87,92±1,98	88,21±0,83	89,48±0,07	19,53±4.50
BHA	NT	NT	$94,1 \pm 0.0$	97,9 ± 0.0	$98,1 \pm 0.9$	4,10±0,06
α-tocopherol	NT	NT	95,1 ± 0.0	$97,9 \pm 0.0$	98,1 ± 0.9	4,31±0,10

Tableau 3.7. Activité antiradicalaire (ABTS) des extraits de Sedum pubescens

NT: non testé

Figure 3.8. Activité antiradicalaire (ABTS) des extraits de Sedum pubescens

Résultats des activités antioxydante, anticholinestérase, anti-inflammatoire, cytotoxique et Chapitre 3 antibactérienne

A l'issue de ces résultats, il apparait que les extraits butanoliques de S. caeruleum (EBSC) et S. pubescens (EBSP) ont montré une meilleure activité antiradicalaire DPPH, blanchissement du β -carotène et de capacité antioxydante par réduction du cuivre (CUPRAC) :

 $CI_{50}(EBSC) = 28.35 \pm 1.22 \ \mu g.mL^{-1}$ (DPPH) CI_{50} (EBSP) = 97.34±5.45 µg.mL⁻¹ (DPPH) $A_{0.50}$ (EBSC) = 23.52±0.44 µg.mL⁻¹ (CUPRAC) $A_{0.50}$ (EBSP) = 8.51±0.52 µg.mL⁻¹ (CUPRAC) $CI_{50}(EBSC) = 6.81 \pm 2.21 \ \mu g.mL^{-1} \ (\beta-carotène)$ CI_{50} (EBSP) = 22,08±4,32 µg.mL⁻¹ (β-carotène)

3. Activité anti-cholinestérase

3.1 Acétylcholinestérase :

3.1.1 Les extraits de Sedum caeruleum

L'ECSC ($CI_{50}=180.79\pm0.47 \ \mu g.mL-1$) et l'EBSC ($CI_{50}=184,59\pm2,04 \ \mu g.mL^{-1}$) ont montré une faible activité contre l'AChE par rapport au standard galantamine ($CI_{50}=5.0\pm0.1\mu g.mL^{-1}$). Cependant, l'EASC était inactif pour les différentes concentrations (Tableau 3.8, Figure 3.9).

	Inhibition %				(CI ₅₀ (µg.mL ⁻¹)
Concentration µg/mL	12,5	25	50	100	200	
ECSC	5,29±0,11	14,61±0,07	21,76±0,26	32,49±0,35	53,99±0,27	180,79±0,47
EASC	NA	NA	NA	NA	NA	NA
EBSC	11,27±0,08	19,32±0,48	25,23±0,19	34,84±0,52	52,53±0,40	184,59±2,04
Galantamine	NT	75,99±0.45	78,08±1.08	78,76±0.52	80,41±0.98	5.0±0.1
NT: non testé						

Fableau 3.8.	Inhibition of	de l'acétyle	cholinestérase	par les	extraits d	le Sedum	caeruleum
		2		1			

NT: non teste

NA: pas d'absorbance

Figure 3.9. Inhibition de l'acétylcholinestérase par les extraits de Sedum caeruleum

3.2. Butyrylcholinestérase

3.2.1 Les extraits de Sedum caeruleum

L'EBSC ($CI_{50}=36,89\pm0,15 \ \mu g.mL^{-1}$) a présenté une activité inhibitrice contre la BChE, plus élevée que celle du standard galantamine ($CI_{50}=50.8\pm0.9 \ \mu g.mL^{-1}$). Par contre l'ECSC ($CI_{50}=84,32\pm0,46\mu g.mL^{-1}$) a montré une activité modérée contre la BChE. Cependant l'EASC ($174,04\pm1,42\mu g.mL^{-1}$) a faiblement inhibé l'activité de la BChE (Tableau 3.9, Figure 3.10)

L'activité élevée de l'EBSC contre la BChE, peut être due à la présence plus importante des polyphénols. L'activité modérée de l'ECSC est peut-être due à la présence de l'acide ursolique, qui a été trouvé comme produit majoritaire et qui a été montré comme inhibiteur de la BChE [2]

 Chapitre 3
 Résultats des activités antioxydante, anticholinestérase, anti-inflammatoire, cytotoxique et antibactérienne

		Inhibition %				CI ₅₀ (µg.mL ⁻¹)	
Concentration µg/mL	6,25	12,5	25	50	100	200	
ECSC	NA	NA	14,50±0,40	36,40±0,21	58,40±0,26	87,69±0,22	84,32±0,46
EASC	NA	NA	8,78±0,55	23,27±0,34	36,13±0,22	54,89±0,47	174,04±1,42
EBSC	NA	NA	42,92±0,11	58,17±0,14	82,22±1,03	93,93±0,77	36,89±0,15
Galantamine	NT	NT	40.6±2.9	48.7±0.9	65.0±0.4	75.5±1.1	50,8±0.9

Tableau 3.9. Inhibition de la butyrylcholinestérase par les extraits de Sedum caeruleum

NT : non testé

Figure 3.10. Inhibition de la butyrylcholinestérase par les extraits de Sedum caeruleum

4. Activité Cytotoxique

4.1. Les extraits de Sedum caeruleum

Les extraits de *Sedum caeruleum*, à une dose de 2000 mg/kg, n'ont causé ni les signes évidents de la toxicité ni de la mortalité. Chacun des cinq rats ont survécu jusqu'à la fin de la période d'observation. Les extraits ECSC et EASC n'ont montré aucune toxicité. La dose minimum létale des extraits de la plante est supérieure à 2000 mg/kg, on peut donc considérer que *S. caeruleum* présente un éventail de sûreté pour l'usage humain.

5. Activité anti-inflammatoire in-vivo

5.1. Les extraits de Sedum caeruleum

L'ECSC a montré une inhibition (34.13%), légèrement supérieure à celle du standard l'ibuprofène (33.52%), à la dose de 50 mg/kg, cependant l'EASC a conduit à une inhibition un peu plus élevée (39.64%) à la dose de 100 mg/kg, par rapport au standard.

Les meilleurs pourcentages d'inhibition (58,26 % et 41,94 %) ont été obtenus avec une dose de 200mg/kg des extraits ECSC et EASC, respectivement (Tableau 3.10).

L'activité anti-inflammatoire (test œdème de l'oreille) par introduction du xylène est connue pour provoquer une vasodilatation sévère et changements œdémateux de la peau comme des signes d'inflammation aiguë [3]. L'épaisseur accrue des tissus de l'oreille est causée par ces changements histopathologiques. Dans la présente étude, l'ECSC a montré une activité inhibitrice élevée, presque la même causée par l'ibuprofène à la dose standard de 50 mg / kg. Cette capacité d'inhibition des extraits de plantes peut être considérée comme la preuve de l'efficacité anti-inflammatoire par la réduction de la vasodilatation et l'amélioration de l'état œdémateux. Cette activité peut être expliquée par la présence d'acide ursolique, qui est un puissant agent anti-inflammatoire, utilisé dans des pommades pour les traitements de brûlures [4-9]. Selon les résultats de la présente étude, on peut conclure que l'ECSC de *Sedum caeruleum* a un effet anti-inflammatoire significatif qui supporte l'utilisation traditionnelle de cette plante pour le traitement des maladies apparentées.

Groupe de test	Dose (mg/Kg)		Augmentation	Inhibition
	Xylene (mL)	Additif (mg/Kg)	du	(%)
			poids (mg)	
Contrôle NaCl	0.03	10	0.06 ± 0.027	00
Contrôle Blanc	0.03	ibuprofène 0.03	0.04 ± 0.007	33.52
Test 1	0.03	ECSC : 50	0.04 ± 0.004	34.13
Test 2	0.03	ECSC : 100	0.034 ± 0.005	44.22
Test 3	0.03	ECSC : 200	0.02 ± 0.001	58.26
Test 4	0.03	EASC: 50	0.04 ± 0.006	26.74
Test 5	0.03	EASC : 100	0.03 ± 0.005	39.64
Test 6	0.03	EASC : 200	0.063 ± 0.005	41.94

Tableau 3.10. Activité anti-inflammatoire in vivo de Sedum caeruleum

6. Activité antibactérienne

6.1 Les extraits de Sedum caeruleum

Le tableau 3.13 montre l'activité antibactérienne (zones d'inhibition et CMI) de l'ECSC de à la concentration 128 µg/mL, contre six bactéries de microbe pathogène de gram (-) : *Escherichia coli* ATCC 25922, *Escherichia coli* (HS), *Pseudomonas aeruginosa* ATCC 27853, *Pseudomonas aeruginosa* (HS), *Klebsiella pneumoniae* (HS), *Klebsiella pneumoniae* ATCC 700603, et contre trois bactéries de microbe pathogène de gram (+) : *Staphylococcus aureus* ATCC 43300, *Staphylococcus aureus* (HS), et *Streptococcus enterococcus* (HS)

L'ECSC a inhibé modérément la croissance de toutes les souches bactériennes avec des diamètres de zone d'inhibition de 12-13 millimètres, et une CMI de $80 \mu g/mL$.

ECSC ^a						
Microorganisme	Zone d'inhibition	CMI				
	(mm)	(μg/mL)				
Escherichia coli ATCC 25922	12	80				
<i>Escherichia coli</i> (SH) ^b	12	80				
Pseudomonas aeruginosa ATCC	13	80				
Pseudomonas aeruginosa (SH)	12	80				
Staphylococcus aureus ATCC 43300	13	80				
Staphylococcus aureus (SH)	12	80				
Klebsiella pneumoniae(SH)	11	80				
Klebsiella pneumoniae(ATCC)	13	80				
Streptococcus enterococcus(SH)	12	80				

Tableau 3.11. Résultats de l'activité antibactérienne de l'ECSC.

^a: 128 μg/mL

^b: Souche hospitalière

Références :

- H.H. Ürak, H. Yagar, S.S. Isbilir, A.S. Demirci, T. Gumusc, 2013. Antioxidant and antimicrobial activities of white, green, and black tea extracts, Acta Alimentaria., 42, 3. 379-389
- U Kolak, I. Hacibekıroğlu, M. Öztürk, F. Özgökçe, G. Topçu, A. Ulubelen, 2009. Antioxidant and anticholinesterase constituents of *Salvia poculata*. Turk. J. Chem., 33, 813-823.
- D.A. Lorke, 1983. New Approach to Practical Acute Toxicity Testing. Arch. Toxicol., 54, 275-287.
- T. Kosuge, M. Yokota, K. Sugiyama, T. Mure, H. Yamazawa, T. Yamamoto, 1985 Studies on bioactive substancies in crude drugs used for arthritic diseases in traditional chinese medicine, III. Isolation and identification of anti-inflammatory and analgesic principles from the whole herb of *Pyrola rotundifolia* L. Chem. Pharm. Bull., 33, 5355-5357.
- 5. M.C. Recio, R. Giner, M. Terencio, M. Sanz, J.L. Ríos, 1991. Anti-inflammatory activity of *Helichrysum stoechas*. Planta. Med., 57, 56-57.
- 6. M.C. Recio, R. Giner, S. Máñez, J.L. Ríos, 1995. Structural requirements for the antiinflammatory activity of natural triterpenoids. Planta Med., 61, 182.
- 7. S. Manez, M.C. Recio, R. Giner, J.L. Ríos, 1997. Effect of selected triterpenoids on chronic dermal inflammation. Eur. J. Pharmacol., 334, 103-105.
- M. Hirota, T. Mori, M. Yoshida, R. Iriye, 1990. Suppression of tumor promoterinduced inflammation of mouse ear by ursolic acid and 4,4-dimethylcholestane derivatives. Agric. Biol. Chem., 54, 1073-1075.
- N. Banno, T. Akihisa, H. Tokuda, K. Yasukawa, H. Higashihara, M. Ukiya, K. Watanabe, Y. Kimura, J. Hasegawa, H. Nishino, 2004. Triterpene acids from the leaves of *Perilla frutescens* and their anti-inflammatory and antitumor-promoting effects. Biosci. Biotechnol. Biochem., 68, 85-90.

Abstract

The present works concern two plants of *Sedum* genus (Crassulaceae): S. *caeruleum* and *S. pubescens*. The extraction and chromatographic separations (CC, TLC) of the chloroform, ethylacetate, and *n*-butanol extracts of *S. caeruleum* permitted the isolation of 6 products which were identified by the use of spectroscopic methods (UV, NMR 1D and 2D), as :

- 1- Ursolic acid
- 2- Daucosterol (β-sitosterol-3-*O*-β-*D*-glucopyranoside)
- 3- β -sitosterol-3-*O*- β -*D*-galactopyranoside
- 4- Apigenin
- 5- Apigetrin
- 6- Apiin

The LC-ESI-MS/MS of the *n*-butanol fraction of *S. caeruleum* permitted the identification of 23 compounds from which 11 phenolic acids and 12 flavonoid glycosides.

The results of the biological activities of *S. caeruleum* and *S. pubescens* were as follows:

- The *n*-butanol fractions of *S. caeruleum* and *S. pubescens* showed the best antiradical activity with the DPPH test.
- The chloroform fraction of *S. caeruleum* and the *n*-butanol fraction of *S. pubescens* showed the best activity with the CUPRAC test.
- The *n*-butanol fraction of *S. caeruleum* showed the best activity with the ion chelate test.
- The *n*-butanol fraction of *S*. *caeruleum* and the *n*-butanol fraction of *S*. *pubescens* exhibited the best activity with the β -carotene test.
- The *n*-butanol fraction of *S. caeruleum* inhibited the activity of the butyrylcholinesterase.
- The chloroform fraction de *S. caeruleum* showed an excellent anti-inflammatory activity which was higher that the standard's (ibuprofen)
- The chloroform fraction de *S. caeruleum* inhibited mildly the growth of the tested bacterial strains.

Key words: S. caeruleum, S. pubescens, antioxidant, anti-cholinesterase, anti-inflammatory, antibacterial

Résumé

Les présents travaux concernent deux plantes du genre *Sedum (Crassulaceae). S. caeruleum* et *S. pubescens.* L'extraction et les séparations chromatographiques (CC, CCM) des fractions chloroformique, acétate d'éthyle et *n*-butanol de *S. caeruleum* ont permis d'isoler 6 produits qui ont été identifiés grâce aux méthodes spectroscopiques (UV, RMN 1D et 2D) :

- 1- Acide ursolique
- 2- Daucosterol (β-sitosterol-3-*O*-β-*D*-glucopyranoside)
- 3- β-sitosterol-3-*O*-β-*D*-galactopyranoside
- 4- Apigénine
- 5- Apigétrine
- 6- Apiine

L'analyse LC-ESI-MS/MS de la fraction butanolique de *Sedum caeruleum* nous a permis d'identifier 23 composés dont 11 acides phénoliques et 12 flavonoïdes glycosides

Les résultats d'étude des activités biologiques de S. caeruleum et S. pubescens sont comme suit :

- Les fractions *n*-butanol des espèces *S. caeruleum* et *S. pubescens* ont montré la meilleure activité antiradicalaire avec le test du DPPH.
- Les fractions chloroformique de *S. caeruleum* et butanolique de *S. pubescens* ont manifesté la meilleure activité avec le test CUPRAC.
- La fraction butanolique de *S. caeruleum* a montré la meilleure activité avec le test du métal chélate.
- Les fractions butanolique de S. caeruleum et butanolique de S. pubescens ont manifesté la meilleure activité avec le test du β-carotène.
- La fraction butanolique de S. caeruleum a inhibé l'activité de la butyrylcholinesterase.
- La fraction chloroformique de *S. caeruleum* a montré une excellente activité antiinflammatoire supérieure à celle du standard (l'ibuprofène).
- La fraction chloroformique de *S. caeruleum* a moyennement inhibé la croissance des souches bactériennes testées.

Mots clés : *S. caeruleum*, *S. pubescens*, antioxydante, anti-cholinestérase, anti-inflammatoire, antibactérienne

ملخص

هذ األع ال ل تُجشر دخص شور أذر أن مجض . (Crassulaceae

S. pubescens e S. caeruleum

ملئين الإتخالص ولاعزل لك وملوغولي للعمود والعطقة للرتيقة لمتوجل صالك كلورف ورم خالت الإيثيل وليوتران للي تداري الإيثيل وليوتران لفيت

ي ان رحصم عمَّ 6يزلئنا خقذ ظن رعز ف عمَّت ح كم وانيج ي ُطكان رانٍ:

- 1- Acide ursolique
- 2- Daucosterol (β-sitosterol-3-*O*-β-*D*-glucopyranoside)
- 3- β-sitosterol-3-O-β-D-galactopyranoside
- 4- Apigénine
- 5- Apigétrine
- 6- Apiine

ف ل عزف عمَّ 2 بي زك ةي ما 11 حَضف مَن و 13 الله يَ يَ ذَكَ عُمَّى سَذَ مَ ي يَ ظرخ مصابَ في ذَكَ ل يُعُوم . S. ت الطح في ح LC/MS/MS الطح في ح aeruleum

ىنى دان ظرخەصاتى دا مەن بى بى دان جا كەن بى دەن جا بى دەن بى دەن بى دەن بى دەن بى ب

إخثار DPPH

تَ إِنَّ ظَر خ مصران كَعرَفوى رين مج ض S. caeruleum وانتى ذا كرن مج ض pubescens بي عان ح ف ارجاع يعق ذان حاص

تَ إِنَّطْرِ خِصَاتَ عَدْ مَن مِنتُوح S. caeruleum أَحَظْ عَانُ حِضَ الْلَكَظَة ج فَ إِخْ اللَّ عَقد أَ

ىنىڭ دانَظرخەصان ىينەج ُظْ S. caeruleum و S. pubescens أحظفٍ عان حض األ كظر عار عن الكظر ف إخ ار β-carotène

ىتىطىغلر خەصان قىداىلىنى caeruleum بى عان حضد الإش مەن فى الكون butyrylcholinesterase

اً عطَّي ظِ خِصانِكَهىرِفِى رِيرِيْثُوح caeruleum بَحَ*عَانُح عِيَّىلِ جِض الِلزِ مِتَّاخ وانرِ كَا َ دأحظ مِي ِ انَّزجع (ibuprofène)* وانَّظر خِصانِكَهى رِفرى روزيْثُوح S. caeruleum أدي إنَّ شَّتُ طَعِيرى ططن كُى ان اللا خان لُكو زُرَح انَّظر عَّح

كُلَّ يفواحُح:

فعانج يضايجن لأكسد جي ضلح االن ر واب يضاد جن شكو أز ا , Sedum caeruleum, S. pubescens