REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MENTOURI - CONSTANTINE FACULTE DES SCIENCES DE L'INGENIEUR DEPARTEMENT DE GENIE CLIMATIQUE

MEMOIRE PRESENTE POUR L'OBTENTION DU DIPLÔME DE MAGISTER EN GENIE CLIMATIQUE

THEME

Rendement d'un distillateur solaire à film capillaire à plusieurs étages, effet de certains paramètres thermo physiques sur le rendement

PAR Rahmani Rym

Directeur de la thèse Kaabi A.

SOUTENU LE : ../.. /2007

Dédicace

Je dédie ce modeste travail :

- * À mes très chers parents (Que Dieu Les Garde Pour Mous).
- * À mes sœurs : Samia, Sabira, Nedjma, Radia, Nouna
- ✤ À mes frères : Adel, Imed, Iskander et beau-frère Ismaîl
- ✤ À mon petit cœur Midou
- * À mon oncle R.Rachid, merci bien pour ton aide.
- À mes tantes et oncles et leurs familles (Rahmani –
 Chedikha Boudhane Benhmida Zeniou).
- * À mes cousins et cousines
- À mes Amies : Ismahene, Lylia, Radia, Batoul, Hind,
 Darine, Nada, Lynda, Sabah.....
- À mes amies de Génie Civil : Wided, Ghofrane, Soumia,
 Soria, Nedjoua, Sabi.
- À mes collègues, B.Sonia, C.Nadia, M.Abdou, S.Oualid,
 B.Zahir, T.Sofiene, B.Morad, L.A.Ghani, D.Rachid
- ✤ À toute la famille Rahmani

Remerciements

Je remercie le bon Dieu qui m'a aidé à terminer ce travail.

Je tiens à exprimer ma profonde reconnaissance à monsieur Abdenacer Kaabi, Professeur à l'Université Mentouri, qui ma permis et aider, sous sa direction, à réaliser ce travail ainsi que pour ses précieux conseils tout le long de la recherche.

Je tiens à exprimer ma profonde gratitude à Mr.A.Belhamri, Professeur à l'Université Mentouri, pour avoir accepter de présider le jury

Mes vifs remerciements s'adressent également à :

- Mr.Y.Khetib, Maître de conférence à l'Université Mentouri.
- Mr.M.S.Rouabah, Maître de conférence à l'Université Mentouri.

D'avoir accepté de me faire l'honneur de juger ce travail et participer au jury de thèse.

Je remercie vivement :

Mr .H.Boutbeila, Mr.M.S.Rouabah, Mr.M.Soltani, Mon oncle R.Rchid, Mr.D.Abada, Chercheurs et travailleurs du CDER (Bouzaréah), pour leurs aides et leurs soutien durant la réalisation de ce mémoire ;

Tout mes remerciements et mon estime à toute personne ayant contribuer de prés ou de loin à l'élaboration de ce modeste projet.

Nomenclature

Symbole	Désignation	Unité	
A _i	Surface du corps d'indice i	m²	
a	Diffusivité thermique du corps d'indice i	m²/s	
Cpi	Chaleur massique à pression constante du corps d'indice i		
ei	Épaisseur du corps d'indice i		
g	Accélération de la pesanteur	m/s ²	
h ^c .	Coefficient d'échange thermique par convection entre les	W/m² °C	
n n n - j	surfaces matérielles indicées i et j	w/m.c	
hr .	Coefficient d'échange thermique par rayonnement entre les	W/m2 °C	
n_{i-j}	surfaces matérielles indicées i et j	w/m².°C	
h ^{ev} .	Coefficient d'échange thermique par évaporation entre les	W/m2 °C	
n_{l-j}	surfaces matérielles indicées i et j	w/m⁻. C	
h ^{cd} .	Coefficient d'échange thermique par conduction entre les	W/m² °C	
<i>n_l-j</i>	surfaces matérielles indicées i et j	W/m · C	
Ig	I _g Rayonnement global incident		
L _v	Chaleur latente de vaporisation	kj/kg	
M _i	Masse du corps d'indice i	kg/s	
n ⁱ	Pression de la vapeur d'eau à la température de la paroi	Da	
P v	d'indice i	1 a	
p_v^w	Pression de la vapeur d'eau à la température de la saumure	Pa	
Pi	Puissance solaire absorbée par le corps d'indice i	W/m²	
Q_{i-j}^c	Flux de chaleur échangé par convection entre les surfaces	W/	
	matérielles indicées i et j		
Q_{i-j}^r	Flux de chaleur échangé par rayonnement entre les	W/	
	surfaces matérielles indicées i et j	۷V	

$Q_{i-j}^{ev} Flux \text{ de chaleur échangé par évaporation entre les surfacmatérielles indicées i et j}$		W
Q^{cd}_{i-j}	Flux de chaleur échangé par conduction entre les surfaces matérielles indicées i et j	W
Q_{v-a}	Flux de chaleur échangé entre la vitre et l'extérieur	W
Q_{ev-a}	Flux de chaleur échangé entre la vitre et l'évaporateur	W
Q_{cd-a}	Flux de chaleur échangé entre le condenseur et l'extérieur	W
T _i	Température du corps d'indice i	°C
v	La vitesse du vent	m/s

Indices	Désignation	Lettres grecques	Désignation	Unité
a	Air ambiant	α	Coefficient d'absorption	
с	Ciel	3	Emissivité	
cd	Condenseur	η	Efficacité %	
e	Externe			
	Eau			
ea	d'alimentation			
ev	Évaporateur			
i	Interne			
V	Vitre			
W	Eau (water)			
1	1 ^{er} Etage			
2	2 ^{ème} Etage			
3	3 ^{ème} Etage			
4	4 ^{ème} Etage			

Sommaire

Introduction	
Chapitre I : Dessalement des eaux salines	
I.1. Introduction	
I.2. Caractéristiques de l'eau	
I.3. Procédés de dessalement	4
I.3.1. Procédés membranaires	5
I.3.2. Distillation solaire	
a) Première apparition d'un distillation Solaire	12
b) Différents types de distillateurs solaires	
Distillateurs statiques	13
• Distillateurs à ruissellement	
Distillateur solaire à film capillaire	
Chapitre II : Gisement Solaire	10
II.1. La sphère céleste	17
II.2. Les coordonnées célestes	
II.2.1. Les coordonnées géographiques	
II.2.2. Les coordonnées horaires	
II.2.3. Les coordonnées horizontales	
II.3. Les temps solaires	20
II.3.1. Le temps solaire vrai (T.S.V)	
II.3.2. Le temps solaire moyen (T.S.M)	
II.3.3. Le temps universel (T.U)	21
II.3.4. Le temps légal (T.L)	
II.4. Direction des rayons solaires	
II.5. La constante solaire	
II.6. Estimation du flux solaire reçu sur la vitre du distillateur	

II.6.1. Calcul du flux solaire direct reçu sur la vitre	24
II.6.2. Calcul du flux diffus reçu sur la vitre	
II.6.3. Calcul des puissances absorbées par les différents composants du	
distillateur	25
Chapitre III : Etude théorique	
III.1. Principe de fonctionnement du distillation solaire à film capillaire	
III.2 Différents paramètres de fonctionnement du distillateur à film	
capillaire	
III.2.1. Paramètres externes	
III.1.2. Paramètres internes	31
III.3. Bilan thermique d'un distillateur solaire	31
III.4. Mise en équation des échanges thermiques	
III.4.1. Bilan thermique en régime permanent	
III.3.2. Bilan thermique en régime transitoire	37
III.5. Expression des différents coefficients d'échange thermique	40
III.5.1. Echange par conduction	40
III.5.2. Echange par convection	40
III.5.3. Echange par rayonnement	
III.5.4. Echange pendant le changement de phase	45
III.6. Caractéristiques de fonctionnement du distillateur solaire	46
a) Le rendement	
b) L'efficacité	
c) La performance	46
III.7. Traitement informatique	
a) Principe de simulation	47
b) Programme principal	47
c) Organigramme général	49

Chapitre IV : Résultats et discussion

IV. 1 Introduction	
IV. 2 Distillateur à film capillaire à un seul étage	54
IV.2.1. Variation des puissances solaires absorbées	
IV.2.2. Variation des températures	56
IV.2.3. Variation de la production, de l'efficacité et du facteur de	
performance	
IV.2.4. Variation de la Chaleur latente de Vaporisation	
IV.2.5. Variation de la masse volumique de la saumure	63
IV.2.5. Variation de la viscosité dynamique de la saumure	64
IV.2.5. Variation de la conductivité thermique de la saumure	
IV. 3 Distillateur à Film capillaire à plusieurs étages	
IV.3.1. Variation des puissances solaires absorbées	
IV.3.2. Variation des températures des différents composants du	
distillateur	
IV.3.3. Variation de la production, de l'efficacité et du facteur de	
performance	
IV .3.4. Variation de la Chaleur Latente de Vaporisation, de la masse	74
volumique et de la viscosité dynamique de la saumure	
IV.3.5. Variation de la conductivité thermique de la saumure	
IV.4. Comparaison entre les distillateurs à un seule étage et les	78
distillateurs à plusieurs étages	
IV.4.1. Comparaison de la Production	
IV.4.2. Comparaison de l'Efficacité et du facteur de performance	
IV.4.3. Comparaison de la chaleur latente de vaporisation	
IV.5. Effet de certains paramètres thermo physique sur le rendement	
IV.5.1. Effet de la masse volumique de la saumure sur l'efficacité	84

IV.5.2 Effet de chaleur spécifique de la saumure sur l'efficacité	85
IV.5.3 Effet de la température et la conductivité thermique de la saumure	88
sur l'efficacité	
IV.6. Validation des résultats	92
Conclusion et recommandations	94
Bibliographie	95
Annexes	
Annexe A : Nombres Adimensionnels	
Annexe B : Propriétés thermophysiques de l'eau et du mélange Air-	
vapeur d'eau	
Annexe C : Discrétisation des équations de transfert thermique	
Annexe D : Résolution des systèmes d'équations linéaires par les	

méthodes itératives

Introduction

Introduction :

L'eau est une substance essentielle à la survie et au développement de l'humanité. Mais que va devenir cette fragile ressource ?

Au plan mondial, la question de l'approvisionnement en eau devient chaque jour plus préoccupante. Le constat unanimement partagé est simple : déjà précaire dans certaines régions du globe, la situation ne pourra qu'empirer dans les années à venir. Le formidable essor démographique que va en effet connaître notre planète dans les vingt-cinq prochaines années va nécessairement s'accompagner d'une explosion de la consommation en eau et d'une dégradation de sa qualité. Cela risque de mettre gravement en péril l'approvisionnement en eau douce d'une grande partie de l'humanité et par voie de conséquence d'aggraver les conflits entre pays voisins ayant des ressources communes.

A cet effet et pour mieux préserver l'avenir en matière de dégagement et de mobilisation des ressources en eau, il est plus judicieux de repenser la planification des ressources en eau conventionnelles dans le cadre d'une vision globale qui intègre également l'utilisation des ressources en eau non conventionnelles notamment le dessalement de l'eau de mer et des eaux saumâtres.

Néanmoins, le dessalement nécessite de l'énergie dont le coût intervient pour une grande partie dans celui de l'eau. Il paraît à priori intéressant d'envisager l'utilisation de l'énergie solaire (distillation solaire) dans le processus de dessalement de l'eau de mer ou des eaux saumâtres, non plus comme un vecteur écologique, mais comme une réelle alternative aux ressources énergétiques.

Cependant, un distillateur solaire simple présente l'inconvénient d'une faible production ; donc l'apparition d'un nouveau distillateur à film capillaire s'avère essentiel, afin de surmonter cet inconvénient et de garder les mêmes avantages à savoir : une conception rustique, une réalisation et une maintenance facile et un coût très faible.

Ce distillateur à film capillaire est conçu pour favoriser d'avantage les transferts de chaleur et de matière durant la double opération évaporation condensation.

L'objectif de notre travail est d'étudier un distillateur à film capillaire à plusieurs étages et de voir l'influence de certains paramètres thermo physiques sur son rendement.

A cet effet, un système d'équation régissant le fonctionnement du distillateur et les différents coefficients d'échange thermique est établi, une simulation mathématique nous a permis d'obtenir des résultats représentés graphiquement, suivi par une analyse et une discussion, des résultats en plus d'une conclusion générale et des recommandations.

Le présent travail comporte quatre chapitre et une partie annexe.

- Le premier chapitre présente une étude bibliographique concernant les différentes méthodes de dessalement, suivi par un bref historique sur la distillation solaire ainsi que sur les différents types de distillateurs utilisés.

- Le deuxième chapitre est consacré au gisement solaire où on a exposé notamment la méthode de détermination du flux solaire incident au distillateur ainsi que les différentes puissances absorbées par la couverture, par la nappe d'eau et par le bac absorbant.

- Le troisième chapitre présente les différentes équations gouvernant le fonctionnement du système, les expressions des différents coefficients intervenant dans ce système d'équations avec une étude de simulation.

- Le quatrième chapitre présente les différents résultats obtenus avec leur interprétation.

Enfin, la partie annexe comprend notamment, les différents nombres dimensionnels, les propriétés thermo physiques de l'eau et du mélange air-vapeur, la discrétisation des équations de transfert thermique, la méthode de résolution numérique utilisée et les tableaux des résultats obtenus.

CHAPITRE I Dessalement des eaux salines

CHAPITRE I : DESSALEMENT DES EAUX SALINES

I.1. Introduction :

Les eaux douces de la planète, c'est à dire celles dont la salinité est inférieure à 3 grammes par litre, ne représentent que 3% en volume de toute l'eau de l'hydrosphère et encore toute cette eau n'est-elle pas disponible, la majeure partie étant gelée aux pôles. Le volume des eaux douces directement utilisables est finalement d'environ 9 millions de kilomètres cubes, dont la plus grande part consiste en eaux souterraines.

Les pays au sud du bassin méditerranéen font partie de ces régions du monde, où les ressources en eau potable sont extrêmement limitées. Une grande partie des réserves d'eau est constituée d'eau saumâtre. Les précipitations sont très variables aussi bien dans l'espace que dans le temps. La sécheresse peut durer des mois; elle est parfois suivie de pluies torrentielles qui emportent tout sur leur passage, comme ce qui s'est passé en octobre 2001 à Alger, où un millier de personnes a été ensevelies par un torrent[1,2].

I.2. Caractéristiques de l'eau :

La distinction entre les types d'eau repose sur la concentration globale en sels ; d'après l'OMS (Organisation Mondiale de la Santé) une eau est considérée comme potable si sa salinité totale est comprise entre 100 et 1000 mg/l, soit 0.1 et 1g/l. L'objectif de la salinité de l'eau produite pour la consommation se situe en général autour de 400 mg/l.

Pour une utilisation industrielle en revanche, une eau de salinité de 20 à 50 g/l peut être acceptée [3].

Même s'il n'y a pas de classification stricte et normalisée, on parle usuellement d'eau saumâtre, qui proviennent habituellement des nappes d'eau souterraines, pour une salinité comprise entre 1g/l et 10 g/l. On en trouve en particulier en Afrique du Nord, au Moyen-Orient et aux Etats-Unis **[4,5]**. Les différentes teneurs en ions (Mg, Ca, F,....) peuvent être très variées selon l'origine de l'eau. La qualité de sel à éliminer est donc elle aussi variable selon leur toxicité éventuelle.

L'eau de mer a une salinité moyenne de 35g/l (Océan Atlantique, Mer du Nord...), avec de fortes variations régionales dans certains cas : 39g/l en Méditerranée, 42g/l dans le Golfe Persique[4], et jusqu'à 270g/l en mer morte [5,6], (tableau I.1)

Mers	Salinité en (mg/L)
Mer Baltique	7 000
Mer Caspienne	13 500
Mer Noire	13 000
Mer Adriatique	25 000
Océan Pacifique	33 000
Océan Indien	33 800
Océan Atlantique	36 000
Mer Méditerranée	39 400
Golf Arabique	43 000
Mer Rouge	43 000
Mer Morte	270 000

Tableau I.1 : Degré de salinité de l'eau

I.3. Procédés de dessalement :

Il y a actuellement, pour l'ensemble de la planète, suffisamment d'eau pour satisfaire à toutes les utilisations. Toutefois, cette eau n'est pas répartie selon les besoins de chaque région ; ainsi certaines régions sont affectées de pénuries chroniques (désert), alors que d'autres affichent des surplus. Les eaux sont réparties sur le globe de la façon présentée au tableau ci dessous :

Provenance de l'eau	Quantité (%)
Eau douce de lacs	0.009
Eau de rivières	0.0001
Eau souterraine (près de la surface)	0.005
Eau souterraine (en profondeur)	0.61
Eau dans les glaciers et les calottes glaciaires	2.15
Eau salée de lacs ou de mers intérieures	0.008
Eau dans l'atmosphère	0.0001
Eau des océans	97.2

Tableau I.2 : Répartition des eaux sur le globe

On constate que 99.3% de l'eau sur la Terre est soit trop salée (océans), soit située dans des régions inaccessibles (calottes glaciaires). De plus, le reste de l'eau est réparti inégalement sur le globe. Les eaux douces de la planète, c'est à dire celles dont la salinité est inférieure à 3g/l, ne représentent que 3%. Il faut donc, dans certaines régions, envisager de réutiliser les eaux d'égout, de traiter les eaux saumâtres ou de traiter les eaux de mer. **[4,5]**

En fait, dessaler l'eau de mer de manière à la rendre consommable, c'est possible. On dispose même aujourd'hui de nombreux systèmes dont beaucoup ont atteint le stade industriel. Les trois procédés les plus couramment utilisés sont la distillation et l'osmose inverse ainsi que l'électrodialyse.

I.3.1. Procédés membranaires :

a) Electrodialyse à membrane sélective :

L'électrodialyse est une méthode électrochimique repose sur la mise au point et l'utilisation de membranes imperméables à l'eau et sélectives pour les ions , le sel est séparé de l'eau par transfert d'ions suivant un principe des plus simples. Les sels dissouts sont ionisés, c'est-àdire constitués par des atomes qui, au lieu d'être neutre, sont porteuses d'une charge positive ou négative. Par exemple, le sel de cuisine (NaCl), lorsqu'il est dissout, donne dans l'eau des ions positifs de sodium (Na⁺) et des ions négatifs de chlore (Cl⁻).

Lorsqu'on applique un courant continu à deux électrodes plongées dans une solution d'eau salée, le courant traverse le liquide. Les cations (ions positifs) sont attirés alors par la cathode (électrode négative) alors que les anions, de charge négative se déplacent vers l'anode (ou électrode positive). Tel est d'ailleurs le principe de l'électrodialyse **[6,7]**.

Dans l'électrodialyse, des membranes filtrantes imperméables pour les cations ou pour les anions, sont interposés alternativement entre les électrodes. La membrane qui laisse passer les

cations a la propriété d'arrêter les anions ; celle qui est imperméable aux anions oppose une barrière infranchissable aux cations. Dans certains compartiments de la cuve, on peut donc collecter les ions retenus par chacune de ces deux membranes. Ainsi, des cellules où l'eau contient une concentration de sel alternent avec d'autres où l'eau a été dessalée. Lorsque l'eau est insuffisamment dés ionisé (dessalée), elle est extraite de ces cellules. (figure I.1).

Figure I.1 : Schéma De Principe d'une électrodialyse .

En fait, l'électrodialyse a été surtout envisagée jusqu'ici pour le dessalement d'eaux saumâtres, dont la salinité n'excède pas 1%, le procédé n'étant pas rentable pour des teneurs en sels supérieurs, les membranes étant en effet très sensibles, la moindre impureté en solution ou en suspension peut les endommager. Pour prolonger la vie des membranes, il peut être nécessaire d'effectuer un pré traitement, parfois coûteux. L'électrodialyse n'est pas non plus pratiquée pour traiter les eaux à moins de 0.04% de sels. Malgré ces limitations, plusieurs petites usines de dessalement par électrodialyse sont exploitées dans le monde sur des bases commerciales.

b) Osmose inverse :

L'osmose inverse est un procédé prometteur qu'on peut utiliser pour dessaler les eaux de mer ou les eaux saumâtres. Elle consiste à placer de l'eau salée et de l'eau douce, séparée par une membrane semi-perméable. Normalement l'eau pure (la moins concentrée) migre vers la solution concentrée appelée saumure (figure I.2.A et I.2.B). Mais si on exerce une pression sur l'eau salée, le processus est inversé, elle est alors appelée osmose inverse (figure III.2).

Ainsi, la solution la plus concentrée passe vers le milieu de la solution diluée par l'action d'une pression exercée qui est de son côté supérieure à la pression osmotique. Cette membrane filtre tous les éléments indésirables que peut contenir l'eau.

Après l'osmose inverse, on obtient une eau très pure possédant des mesures bio- électroniques parfaites pour la santé comme les eaux de sources les plus naturelles **[4,5]**.

Ce procédé, peu gourmand en énergie, équipe aujourd'hui toutes les usines de traitement des eaux saumâtres.

Après l'osmose inverse, on obtient une eau très pure possédant des mesures bioélectroniques parfaites pour la santé comme les eaux provenant des sources les plus naturelles **[8]**.

Néanmoins, il nécessite un pré- traitement poussé et coûteux afin d'éliminer le sable et les colloïdes en suspension dans l'eau susceptibles de "boucher" la membrane.

Figure I.2 : Principe de l'osmose inverse

c) Procédés avec changement d'état (ou de distillation)

La distillation est un procédé qui comporte une vaporisation, une condensation et une récupération de la chaleur libérée par la condensation. On procède à la vaporisation en fournissant de l'énergie sous forme de chaleur (procédés thermiques) ou sous forme de travail mécanique (procédés par thermo compression).

Dans les distillateurs modernes, la température de travail oscille entre 5 à 125°C. La salinité de l'eau douce obtenue par ce travail est toujours nettement inférieure à 100 mg/L. On doit donc reminéraliser cette eau lorsqu'elle est destinée à la consommation. Tous les procédés de distillation suivent ce principe qui comporte 3 phases : production de vapeur, transfert à un condensateur et condensation. Cependant les techniques utilisées ainsi que les mécanismes de récupération d'énergie sont variés.

c1) Procédé par détentes successives ou "Multi Stage Flash" (MSF)

Comme son nom l'indique, ce procédé s'appuie sur une évaporation quasi instantanée (flash) d'une partie de l'eau salée chauffée à haute température (80°C à 120°C) sous une pression, $P_0 \approx 2bars$, lors d'une détente à l'entrée de la chambre de distillation qui est à la pression P_1 . La vapeur est condensée au niveau d'un échangeur où elle rétrocède sa chaleur latente de vaporisation à l'eau salée « source froide » qui se réchauffe. La saumure déjà peu concentrée, s'écoule sous l'effet de la pression vers la chambre de distillation de la cellule suivante, où une nouvelle vaporisation s'effectue à la pression $P_2 < P_1$. Et ainsi de suite jusqu'à la pression 'Pn'' de 0.05 bar, vers 30°C. C'est le principe des détentes successives ; il peut avoir ainsi jusqu'à 50 cellules [9]. Vu la température élevée dans les premières cellules, il est nécessaire d'effectuer un prétraitement important pour limiter l'entartrage. Afin de diminuer le volume d'eau salée à prétraiter, on recycle la saumure au maximum au lieu de l'évacuer. La consommation d'énergie thermique est de 50 à 70 000 kcal/m3 [4], à laquelle se rajoute l'électricité pour la récirculation de l'ordre de 5 kWh/m³.

L'intérêt principal de cette technologie apparue dans les années 50, qui est relativement facile à maîtriser, réside dans le fait qu'il est possible de construire des unités fiables de très grande taille. C'est donc elle qui est utilisée pour les grands complexes de dessalement, surtout dans les pays producteurs de pétrole, et elle sont assurer plus de 60% de la capacité mondiale installée à ce jour sur l'eau de mer malgré son énorme consommation énergétique (figure III.3).

Figure 1.3 : Distillation par détente successives

c₂) Distillation à multi – effets (ME):

Avec ce procédé, l'idée est de récupérer au maximum l'énergie de la vapeur d'eau produite pour évaporer de l'eau salée, en effectuant des transferts de chaleur successifs appelés « effets » à des températures de moins en moins élevées. Dans ce cas et à l'opposé du MSF, l'eau reçoit l'essentiel de son énergie au moment où elle s'évapore, c'est à dire au contact de l'échangeur dans lequel la vapeur d'eau produite par l'effet précédent se condense. Cependant, plus l'écart de température est faible, plus la surface d'échange assurant le transfert d'énergie doit être grande. L'investissement est donc un peu plus important. On peut alors comprimer la vapeur pour faciliter le transfert en énergie (principe de la compression mécanique) en utilisant cette fois-ci un thermo compresseur (ou éjecteur à vapeur). Comme le procédé MSF, le ME n'utilise quasiment que de l'énergie thermique, s'y ajoute seulement 1 à 3 kWh/m³ d'énergie électrique (pas de récirculation de la saumure) **[10]** Le procédé ME, économique en énergie, a en outre l'avantage d'une relative souplesse de fonctionnement avec un débit de saumure plus faible, un rendement correct, et une sécurité accrue du point de vue salinité de l'eau. En revanche les capacités unitaires en fonctionnement varient de 20 m³/j à 20000 m³/j, ce qui est plus faible qu'en MSF **[11]** (figure I.4).

Figue I.4 : Distillation à multi effets

c₃) Compression de la vapeur

Ce procédé fonctionne exactement sur le principe d'une pompe à chaleur, où c'est un compresseur qui fournit l'énergie. La vapeur produite est comprimée adiabatiquement ce qui accroît sa température de saturation. Lors de sa condensation, elle peut donc transmettre sa chaleur de vaporisation à l'eau salée avec un bon gradient thermique, ce qui permet un bon rendement. Le compresseur assure une faible pression dans la cellule permettant de fonctionner à une température réduite d'environ 60°C et d'éviter ainsi l'entartrage.

C'est un procédé de distillation peu consommateur d'énergie dans l'absolu, puisqu'il fonctionne avec seulement 4.5 kwh/m³ mais qui utilise exclusivement de l'électricité [12]. Les capacités unitaires traitées qui dépendent directement de la capacité du compresseur sont en augmentation : elles s'étendent aujourd'hui, de 15 à plus de 3800 m³/j [9] (figure I.4).

1.3.2 Distillation solaire :

Les populations rurales isolées pourrait bientôt avoir accès à l'eau potable, grâce à des micro – usines de dessalement, d'eaux de mer ou saumâtres, alimentées par énergie renouvelable. Cette technologie n'est toutefois pas encore applicable aux grandes unités. Les énergies renouvelables sont intermittentes. Le solaire est dépendant des saisons, du cycle jour- nuit et d'un facteur peu prédictible, les nuages. Ces aléas, compensés par des batteries, sont envisageables dans un petit village qui n'a pas d'alternative, mais pas dans une grosse usine qui a une obligation de production. Plusieurs types de distillateurs solaires ont été réalisés, les plus répandus sont ceux du type à effet de serre ; ils présentent l'avantage d'être simple, facile à réaliser, de conception rustique, et peu coûteux. Mais ils présentent le gros inconvénient d'une production très faible d'eau potable (de l'ordre de 2,5 à 3 litres par m² par jour)[13,14].

a) Première apparition d'un distillateur solaire :

La distillation solaire est une technologie d'une très grande histoire, où des installateurs ont été construits 2000 ans avant. L'utilisation des distillateurs solaires a commencée dans le 16^{eme} siècle. Le premier distillateur a été construit pour fournir de l'eau aux régions industrielles au Chili.

En 1870, un ingénieur anglais *WILSON* dirigeant une exploitation minière à Las Salinas au Chili, eut à résoudre un problème d'abreuvement de 4000 mules qui transportaient en convois les minerais de nitrate. Ne disposant que d'eau ayant une salinité égale à 140 g/l soit 4 fois environ supérieur à celle de l'eau de mer, il décida de construire un distillateur solaire en bois de 4460 m² qui devait fournir 20 m³/jour d'eau douce environ. Il faut reconnaître que les conditions étaient particulièrement favorables si l'on tient compte de la latitude du lieu, de son altitude (1400 mètres) et de la pureté de l'atmosphère. Cette installation resta en exploitation jusqu'en 1908 soit plus de 40 ans, un record de dimension et de durée a été ainsi établi dés le départ.

Un regain d'intérêt pour la distillation solaire eut lieu vers 1925 sous l'impulsion du gouvernement français qui ouvrit un concours ; ce qui conduisit à un effort d'invention en France et en Afrique du Nord. En 1929 une installation due à *GINESTOUS* groupant 30 appareils de 1 m² a été exploitée à *BEN GARDANE* en Tunisie[**5**,**15**].

Pendant la deuxième guerre mondiale, des appareils repliables ont été réalisés pour les canots de sauvetages. Il s'agissait d'appareils circulaires en plastique, à fond conique lesté, la partie supérieure étant semi sphérique et qui flottaient une fois gonflés. Ces appareils ont été fabriqués en grandes quantités.

Depuis 1954, les expériences se sont multipliées en particulier sous les auspices de **l'Office** of Saline Water (OSW) du Département de l'intérieur des Etats Unis et ont abouti à la construction de grandes installations à couverture de verre et de plastique à *DAYTONA BEACH*, en Floride. Ces installations ont été exploitées pendant plusieurs années et les résultats obtenus on été publiés. [5]

b) Différent types de distillateurs solaires :

On distingue deux types de distillateurs solaires à effet de serre, dont la condensation n'est pas séparée de l'évaporation : distillateurs statique et distillateurs à ruissellement.

1) Distillateurs statiques :

Ce sont des distillateurs dont la nappe d'eau à distiller est immobile. Les principales géométries rencontrées sont représentées ci-dessous, ils peuvent être soit à simple soit à double vitrage :

Figure I.6 : Distillateurs dits "hôt box"

Les distillateurs (a) et (b) ont la même surface d'évaporation et des surfaces de condensation différentes. L'avantage du distillateur (b), est d'exposer un capteur au soleil et un autre à l'ombre pour accélérer la condensation.

Figure I.7: Distillateurs à cascades (ou à marche)

Les distillateurs (c) et (d) ont les mêmes surfaces d'évaporation et de condensation que celles des distillateurs (a) et (b), la seule différence est la distance entre les surfaces de condensation et d'évaporation. Quant au distillateur (e), il diffère de (c), par sa surface d'évaporation qui est importante.

2) Distillateurs à ruissellement :

Ce sont des distillateurs dont l'eau à distiller est en mouvement. Les différentes géométries rencontrées sont représentées ci-dessous :

Figure I.8 : Distillateur équi - courant

Figure I.9: Distillateur à contre courant

Les distillateurs à ruissellement présentent, d'une manière générale, une faible inertie thermique et beaucoup d'inconvénients tels que :

- Un réglage difficile du débit
- Une perte de chaleur sensible emportée par l'excédent d'eau non évaporée
- Une utilisation importante d'eau à distiller.

Il existe aussi des distillateurs courants croisés, des distillateurs à mèche (simple ou à double vitrage), des distillateur auto alimentés.

Pour ces distillateurs, en plus des inconvénients cités, le matériau poreux utilisé se détériore progressivement.

3) Distillateur Solaire à Film Capillaire :

Le distillateur solaire à film capillaire a été conçu par R. et C Ouahes et P. Le Goff. Il se compose comme suit :

D'une très mince couche de textile à mailles fines, imbibée d'eau qui se maintient d'elle même au contact de la plaque jouant le rôle d'évaporateur. Les forces de tension inter faciale, nettement supérieures à celles de la pesanteur, jouent un rôle très important dans la formation du film capillaire, de faible inertie thermique, en empêchant toute formation de bulles d'air.

Ce distillateur est composé des éléments suivants : le capteur – évaporateur, le condenseur et l'alimentation. La première cellule capte le rayonnement solaire qui passe à travers la couverture. La vapeur se condense sur la paroi opposée et la chaleur dégagé par cette condensation permet l'évaporation du film qui ruisselle sur l'autre face de cette même paroi [16].

Figure I.10 : Distillateur à film capillaire avec un seul étage

CHAPITRE II Gisement solaire

CHAPITRE II : GISEMENT SOLAIRE

II.1. La sphère céleste

La sphère céleste est une sphère imaginaire d'un diamètre immense, avec la terre au centre. On considère que tous les objets visibles dans le ciel se trouvent sur la surface de la sphère céleste. On peut résumer les différentes caractéristiques sur la sphère elle même comme c'est indiqué sur la figure (figure II.1).

Figure II.1 : La sphère céleste

La direction des objets peut être quantifiée de façon précise à l'aide d'un système de coordonnées célestes.

II.2. Les coordonnées célestes

II.2.1. Les coordonnées géographiques

Ce sont les coordonnées angulaires qui permettent le repérage d'un point sur la terre (figure II.2).

-La longitude L, est comptée positivement vers l'est et négativement vers l'ouest, à partir du méridien Greenwich.

-La latitude Φ , permet de repérer la distance angulaire d'un point quelconque à l'équateur. Elle varie de 0° à 90° dans l'hémisphère nord et de 0° à -90° dans l'hémisphère sud.

Figure II.2 : Les coordonnées géographiques

II.2.2. Les coordonnées horaires

-La déclinaison δ , c'est l'angle fait par le plan de l'équateur avec celui de l'écliptique. Elle varie au cours de l'année de +23°27' à -23°27' et détermine l'inégalité des durées des jours. Elle s'obtient à partir de la formule suivante :

$$\delta = 23.45 \sin \left[\frac{284 + N}{365} x_{360} \right] \text{ [degré]}$$
 (II.1)

Où :

N : le numéro du jour dans l'année compté à partir du 1^{er} Janvier.

-L'angle horaire ω : il est déterminé par la rotation régulière de la terre autour de son axe. Il est compté positivement dans le sens rétrograde de 0° à 360° (Figure II.3).

Figure II.3: Les coordonnées horaires

II.2.3. Les coordonnées horizontales

Le repérage du soleil se fait par l'intermédiaire de deux angles :

- L'azimut a, ou l'angle que fait la projection de la direction du soleil sur le plan horizontal avec la direction sud. Il est compté de 0° à 360° d'ouest en est, ou de 0° à 180° à partir du sud vers l'ouest.

La hauteur h, ou l'angle que fait la direction du soleil avec sa projection. Il est compté de 0° à 90° vers le zénith et de 0° à -90° vers le nadir.

On appelle quelquefois distance zénithale le complément de l'angle h :

 $z + h = 90^{\circ}$ (figure II.4).

Figure II.4: Les coordonnées horizontales

L'équation de passage des coordonnées horizontales en coordonnées horaires est la suivante :

$$\sin (a) \times \cos (h) = \cos (\delta) \times \sin (\omega)$$

$$\cos (a) \times \cos (h) = \cos (\delta) \times \cos (\omega) \times \sin (\Phi) - \cos (\Phi) \times \sin (\delta)$$

$$\sin (h) = \cos (\Phi) \times \cos (\delta) \times \cos (\omega) + \sin (\Phi) \times \sin (\delta)$$

II.3. Les temps solaires

II.3.1. Le temps solaire vrai (T.S.V)

Le temps solaire vrai, en un instant et un lieu donné, est l'angle horaire du soleil ω . Il est donné sous la forme suivante :

$$TSV = 12 + \omega/15$$
 (II.2)

 ω en degré.

Si $\omega = 0$, TSV=12^h.00 Si $\omega < 0$, la matinée. Si $\omega > 0$, l'après-midi.

II.3.2. Le temps solaire moyen (T.S.M)

Il est donné par la relation :

$$TSV - TSM = Et$$
(II.3)

Avec :

Et, l'équation du temps, qui corrige le T.S.V par rapport au T.S.M.

$$Et = 9.87 \sin (2N') - 7.53 \cos (N') - 1.5 \sin (N') \text{ [min] (II.4)}$$

 $N' = (N - 81) \times 360/365$

Où : N est le numéro du jour dans l'année.

II.3.3. Le temps universel (T.U)

C'est le temps moyen du méridien de Greenwich (méridien origine) :

$$TU = TSM - L/15$$
 (II.5)

Où : L : est la longitude.

L > 0, pour les villes situées à l'Est de Greenwich ;

L < 0, pour les villes situées à l'Ouest de Greenwich ;

TU = TSM, pour le méridien de Greenwich.

II.3.4. Le temps légal (TL)

C'est le temps officiel d'un état, il est donné par :

$$TL = TU + \Delta H \tag{II.6}$$

Où :

 ΔH : le décalage horaire entre le méridien de Greenwich et l'état considéré.

 $\Delta H = 1$ heure pour l'Algérie.

II.4. Direction des rayons solaires

On considère un plan quelconque caractérisé par deux angles :

 α : l'angle entre le méridien local et la normale au plan.

 $\alpha = 0$, le plan est orienté vers le Sud ;

 $\alpha = \pi$, le plan est orienté vers le Nord ;

 α = - π /2 , le plan est orienté vers l'Est ;

 $\alpha = \pi / 2$, le plan est orienté vers l'Ouest.

 γ = l'angle entre le plan horizontal et le plan considéré.

 $\gamma = 0$, le plan est horizontal ;

 $\gamma=\pi\,/2$, le plan est vertical.

Soit :

 \overline{N} : le vecteur unitaire porté par la direction des rayons solaires ;

 \overline{n} : le vecteur unitaire porté par la normale à la surface ;

i : l'angle d'incidence (n, N) (figure II.5)

 $\overrightarrow{N \times n} = ||\overrightarrow{n}|| \times ||\overrightarrow{N}|| \times \cos(i) = \cos(i)$ $\overrightarrow{N \times n} = \sin(a) \times \cos(h) \times \sin(\alpha) \times \cos(\gamma) + \cos(a) \times \cos(h) \times \cos(\alpha) \times \cos(\gamma) + \sin(h)$ $\times \sin(\gamma) = \cos(i)$ Donc: $\cos(i) = \cos(h) \times \cos(\gamma) \times \cos(a - \alpha) + \sin(h) \times \sin(\gamma)$

Formule de "cos (i)" en coordonnées horaires

 $\cos (i) = \cos (\delta) \times \sin (\omega) \times \sin (\alpha) \times \cos (\gamma) + (\sin (\Phi) \times \cos (\omega) \times \cos (\delta) - \cos (\Phi) \times \sin (\delta)) \times \cos (\alpha) \times \cos (\gamma) + (\cos (\Phi) \times \cos (\omega) \times \cos (\delta) + \sin (\Phi) \times \sin (\delta)) \times \sin (\gamma).$

Cas particuliers

Surfaces horizontales : γ = π /2 cos (i) = cos (Φ) × cos (ω) × cos (δ) + sin (Φ) × sin (δ)
Surfaces verticales: γ = 0 -Surfaces verticales orientées vers le Sud: α = 0 cos (i) = sin (Φ) × cos (ω) × cos (δ) - cos (Φ) × sin (δ)
-Surfaces verticales orientées vers le Nord: α = π cos (i) = cos (Φ) × sin (δ) - sin (Φ) × cos (ω) × cos (δ)
-Surfaces verticales orientées vers l'Est : α = - π/2

 $\cos(i) = -\cos(\delta) \times \sin(\omega)$

-Surfaces verticales orientées vers l'Ouest: $\alpha = + \pi/2$

 $\cos(i) = \cos(\delta) \times \sin(\omega)$

Surface orientée vers le Sud et inclinée d'un angle β par rapport à l'horizontale :
 cos (i) = cos (δ) × cos (ω) × cos (Φ - β) + sin (δ)× sin (Φ - β)

II.5. La constante solaire

Le flux solaire moyen sur un plan perpendiculaire à la direction des rayons, placé en dehors de l'atmosphère terrestre, est appelé constante solaire Ic.

La valeur moyenne actuellement retenue est :

$$I_0 = 1367 \text{ W/m}^2$$

Cette valeur est la moyenne sur l'année du flux extra terrestre. En effet, la trajectoire de la terre autour du soleil étant elliptique, il s'en suit une variation saisonnière de \pm 1.6 % de la distance terre-soleil et donc une variation de ce flux. La relation suivante donne la valeur corrigée de la constante solaire :

$$I_{C} = I_{0} \times [1 + 0.0034 \times \cos (30 \times (m - 1) + n)]$$
(II.7)

Où:

$$I_0 = 1367 \text{ W/m}^2$$
;

m : est le numéro du mois dans l'année ;

n : est le numéro du jour dans le mois.

II.6. Estimation du flux solaire reçu sur la vitre du distillateur

Le rayonnement solaire subit un certain nombre d'altérations et d'atténuations aléatoires en traversant l'atmosphère : réflexion sur les couches atmosphériques, absorption moléculaire, diffusion moléculaire et par les aérosols.

Au niveau du sol et à cause de la diffusion, une partie du rayonnement est diffuse, l'autre partie est directe. On écrit alors que le rayonnement global (I_G) est la somme du rayonnement direct (I_D) et du rayonnement diffus (I_d) ;

$$I_G = I_D + I_d \tag{II.8}$$

II.6.1. Calcul du flux solaire direct reçu sur la vitre

Il est donné par la relation suivante :

$$I_D = I_C \times a \times \exp[-b / \sin(h)] \times \cos(i)$$
(II.9)

avec:

$$I_{C} = I_{0} \times [1 + 0.0034 \times \cos (30 \times (m - 1) + n)]$$
(II.10)

a et b étant les coefficients de trouble du ciel dont les valeurs sont confinées dans le tableau cidessous :

	Ciel dégagé	Conditions	Zones
	et très pur	normales	industrielles
a	0.87	0.88	0.91
b	0.17	0.26	0.43

Tableau II.1 : Valeurs "a" et de "b"

II.6.2. Calcul du flux diffus reçu sur la vitre

Le flux diffus reçu par la vitre provient du flux diffus émis par la voûte céleste (ϕ_1) et de celui qui est émis par le sol (ϕ_2).

Donc :

$$\mathbf{I}_{d} = \boldsymbol{\varphi}_{1} + \boldsymbol{\varphi}_{2} \tag{II.11}$$
ϕ_1 et ϕ_2 sont donnés par les relations suivantes :

$$\phi_{1} = \phi_{0} \times (1 + \cos(\beta)) / 2 \qquad (II.12)$$

$$\phi_{2} = \rho \times (I_{0} \times \sin(h) + \phi_{0}) \times (1 - \cos(\beta)) / 2 \qquad (II.13)$$

avec:

$$\phi_0 = I_C \times \sin(h) \times [0.271 - 0.2939 \times exp(-b/sin(h))] \quad (II.14)$$

 ρ : l'albédo du sol où les valeurs de ce coefficient sont données ci-dessous , suivant la nature du sol :

Nature	Neige	Neige	Sol	Sol	forêt	Etendue
du sol	fraîche	ancienne	rocheux	cultivé		d'eau
Valeur de p	0.8-0.9	0.5-0.7	0.15-0.25	0.07-0.14	0.06-0.20	0.05

Tableau II.2 : Valeurs de l'albédo du sol "p"

II.6.3. Calcul des puissances absorbées par les différents composants du distillateurII.6.3.1. Puissance absorbée par la vitre

Pour un distillateur simple à effet de serre

$$P_{G} = I_{D} \times \alpha_{GD} + I_{d} \times \alpha_{Gd} \qquad (II.15)$$

Où:

 $\alpha_{G,D}$ et $\alpha_{G,d}$ sont les coefficients d'absorption pour respectivement le rayonnement direct et le rayonnement diffus.

$$\alpha_{\rm GD} = 1 - R_{\rm D} - T_{\rm D} \qquad (II.16)$$

où:

T_D: le coefficient de transmission global du rayonnement direct, il est calculé par:

$$T_D = T_r \times T_a \tag{II.17}$$

T_r: le coefficient de transmission dû à la réflexion

$$T_{r} = (1 - R_{D}) / (1 + R_{D})$$
(II.18)

T_a: le coefficient de transmission dû à l'absorption

$$\Gamma_{a} = \exp\left[-k_{G} \times e_{G} / \cos\left(\theta\right)\right]$$
(II.19)

Où :

 k_G : coefficient d'extinction du verre [m⁻¹];

e G: épaisseur de la vitre [m].

R_D: caractérise la réflectivité de la vitre, il est donné par :

$$R_{D} = (R_{N} + R_{P}) / 2$$
 (II.20)

Avec :

$$R_{N} = \frac{\sin^{2}(\theta - i)}{\sin^{2}(\theta + i)} \quad \text{(II.21)} \quad \text{et} \quad R_{P} = \frac{tg^{2}(\theta - i)}{tg^{2}(\theta + i)} \quad \text{(II.22)}$$

où:

 θ : angle de réfraction du rayon au niveau de la vitre.

i et θ sont reliés par la relation de Snell-Descartes suivante :

$$n_1 \times \sin(i) = n_2 \times \sin(\theta)$$
 (II.23)

Où :

n₁: indice de réfraction absolue du milieu traversé par le rayon incident ;

n₂: indice de réfraction absolue du milieu traversé par le rayon réfracté.

Le coefficient d'absorption pour le rayonnement diffus se calcule comme étant celui du rayonnement direct avec un angle d'incidence $i = 60^{\circ}$.

$$\alpha_{Gd} = 1 - R_d - T_d \qquad (II.24)$$

II.6.3.2. Puissance absorbée par la nappe d'eau

$$P_{W} = I_{D} \times \alpha_{WD} + I_{d} \times \alpha_{Wd} \qquad (II.25)$$

 $\alpha_{W D}$ et $\alpha_{W d}$: sont respectivement les coefficients d'absorption de la saumure pour le rayonnement direct et le rayonnement diffus.

$$\alpha_{WD} = T_D \times [\alpha_W + T_{RW} \times \alpha_b]$$
(II.26)

avec:

 α_{W} : Coefficient d'absorption de la saumure (constant);

T_{RW}: Coefficient de transmission de la saumure;

 $T_{RW} = \alpha_W - R_W$

R_W: Coefficient de réflexion de la saumure, il se calcule par la relation:

$$R_{N} = \left[\frac{\sin^{2}(\theta - i)}{\sin^{2}(\theta + i)} + \frac{tg^{2}(\theta - i)}{tg^{2}(\theta + i)}\right]$$
(II.27)

où :

 $\boldsymbol{\theta}$: angle de réfraction, calculé selon la relation:

$$\theta = \arcsin\left[\left(\frac{n_1}{n_2}\right)\sin(i)\right]$$
 (II.28)

où :

n₁: indice de réfraction de l'air;

 n_2 : indice de réfraction de la saumure.

 α b: coefficient d'absorption du bac absorbant.

Le coefficient d'absorption pour le rayonnement diffus α_{Wd} varie par rapport à α_{WD} ; cette variation est due à T_d.

II.6.3.3. Puissance absorbée par le bac absorbant :

Si α_{b} est le coefficient d'absorption du bac absorbant, on déduit la puissance P_b:

$$P_b = \alpha_b \frac{I_D \times T_D + I_d \times T_d}{1 - (1 - \alpha_b) \times R_d}$$
(II.29)

II.6.3.4. Distillateur à film capillaire :

a) Puissance absorbée par la vitre :

$$P_G = [I_D \times \alpha_{GD} + I_d \times \alpha_{Gd}] \times [I + T_D \times T_{ev}]$$
(II.30)

T_D: le coefficient de transmission global du rayonnement direct

Tev : le coefficient de transmission de l'évaporateur

b) Puissance absorbée par l'évaporateur (absorbeur) :

Si α_{ev} et T_{ev} , sont respectivement, le coefficient d'absorption et de transmission de l'évaporateur, on déduit alors la puissance P_{ev} :

$$P_{ev} = [I_D \times \alpha_{GD} + I_d \times \alpha_{GD}] \times [\alpha_{ev} + T_D]$$
(II.31)

CHAPITRE III Etude théorique

CHAPITRE III : ETUDE THEORIQUE

III.1. Principe de Fonctionnement du Distillateur Solaire à Film Capillaire :

L'appareil, dans sa version à un seul étage, est une cellule parallélépipédique formée par deux plaques métalliques (1m x 1m) disposées verticalement face à face. L'eau saumâtre, à distiller, s'écoule lentement, par gravité, sur un côté de la plaque métallique. Sa bonne mouillabilité est assurée par un tissu (gaz hydrophile) qui adhère par capillarité sur la totalité de la surface de ruissellement. L'autre côté de la même plaque est peint en noir et est exposé au rayonnement solaire : c'est la plaque évaporante.

La vapeur d'eau produite quitte le tissu (gaz hydrophile) et va se condenser au contact de l'autre plaque qui se trouve juste en face : c'est la plaque condensante.

L'eau, ainsi distillée, est recueillie au pied de cette même plaque condensante grâce à un collecteur. Le résidu est recueilli, aussi, au pied de la plaque évaporante par un autre collecteur.

La (figure III.1) montre le schéma de principe de fonctionnement d'un seul étage d'évaporation condensation.

Ce distillateur offre, aussi, la possibilité d'associer, en série, plusieurs étages parallélépipédiques. On peut ainsi disposer d'un distillateur de deux à six étages, géométriquement identiques. Il constitue une série thermique, c'est à dire, la chaleur dégagée, par la condensation de la vapeur sur une face de la paroi, sert à l'évaporation d'un autre film d'eau saumâtre ruisselant sur l'autre face de la même paroi, ainsi, la paroi condensante du premier étage est une paroi évaporante du deuxième étage et paroi condensante du deuxième étage est une paroi évaporante du troisième étage ...etc.

Le rayonnement solaire, dans le cas d'un appareil à six étages, par exemple, est utilisé six fois de suite, ce qui traduit bien la nomination : Distillateur à multiple effets (figure III.2).

L'appareil produit 15 litre par m² et par jour d'eau distillée, sous les mêmes conditions un distillateur simple produit entre 2.5 à 3 litre par m² par jour. La capacité de production d'un distillateur solaire à film capillaire à plusieurs étages représente 4 à 7 fois celle d'un distillateur simple[**14**, **17**].

Figure III.1: Schéma de principe du processus évaporation-condensation à seul étage.

Figure III.2 : Schéma de principe d'un Distillateur à six étages.

III.2. Différents Paramètres de Fonctionnement du Distillateur à Film Capillaire :

Les différents paramètres agissant sur le fonctionnement du distillateur solaire à film capillaire peuvent se classer en deux catégories : externes et internes.

III.2.1. Paramètres Externes :

a) Intensité du Rayonnement Solaire

C'est le facteur essentiel dans cette étude. C'est une énergie rayonnante de courte longueur d'onde (0.17 à $4 \mu m$).

Le maximum d'intensité est obtenu pour la longueur d'onde 0.47 μ m dans le spectre visible. L'intensité globale du rayonnement solaire arrivent aux confins de l'atmosphère sur une surface perpendiculaire est constante est égale à 1.35KW/m². Cependant, l'énergie arrivant au voisinage de la surface terrestre est affaiblie par l'absorption d'une partie du rayonnement par l'atmosphère.

Le coefficient de transmission est assez constant en cours d'année et se situe entre 0.7 et 0.9. Il est d'autant meilleur que l'épaisseur solaire disponible théoriquement à la surface de la terre se situe entre 0.95 et 1.22 KW/m²[**18**].

b) La Vitesse du Vent :

L'effet convectif sur la face de la vitre joue un rôle important sur le fonctionnement du système. Un anémomètre placé au voisinage de la vitre permet de préciser cet aspect du problème. Or d'après Duffie et Beckman [19], la vitesse du vent est liée au coefficient de transfert convectif entre la couverture et l'extérieur par l'expression :

$H_{c1a} = a + b.V^n$

Cette expression est souvent utilisée pour des modélisations de capteurs Elle est relative à des plaques horizontales ou inclinées.

c) Température Ambiante de l'air :

La valeur de cette température intervient pour la détermination des échanges thermiques entre la partie interne et le milieu extérieur.

d) Paramètres Météorologiques :

L'humidité de l'air, la pluviométrie et l'intermittence des nuages doivent êtres prises en considération dans la mesure où ces deux facteurs modifient le bilan thermique du distillateur.

e) Paramètres Géographiques :

Tels que la longitude et la hauteur du soleil.

f) Nature de l'eau à traiter ,choix du pré traitement, taux de conversion et rapport de performance, ainsi que la nature et la situation socio- économique du site : choix des matériaux, degré d'automatisation du système, infrastructure, main d'œuvre **[9,18]**.

III.2.2. Paramètres Internes :

Il s'agit de l'influence des facteurs suivants sur l'efficacité du système :

- Isolation des faces latérales du distillateur ;
- Epaisseur du film d'eau à évaporer ;
- Propriétés physiques des parois internes.
- L'emplacement du distillateur, où il doit être placé de façon à éviter les obstacles
 « effet de masque », qui empêche le rayonnement solaire d'atteindre la surface de captation.
- L'orientation, elle dépend du fonctionnement du distillateur pendant la journée, où on distingue :
 - Fonctionnement pendant la matinée \rightarrow orientation Est ;
 - Fonctionnement pendant l'après-midi → orientation ouest ;
 - Fonctionnement durant toute la journée \rightarrow orientation Sud.
- L'inclinaison ; elle dépend du fonctionnement du distillateur pendant l'année :
 - Fonctionnement estival $\rightarrow \beta = \Phi 10^{\circ}$;
 - Fonctionnement hivernal $\rightarrow \beta = \Phi + 20^{\circ}$;
 - Fonctionnement annuel $\rightarrow \beta = \Phi + 10^{\circ}$.
- Des paramètres optiques (l'émissivité, l'absorptivité, la réflectivité et la transmissivité) de la surface absorbante et de la couverture.
- Des paramètres thermo physique du : mélange air vapeur, surface absorbante et de la saumure ; tel la conductivité thermique, la chaleur spécifique, la viscosité cinématique, la viscosité cinématique et le coefficient de dilatation thermique du mélange.
- les résultats ont montré qu'il y a une dépendance entre la production de l'eau pure, de la température et la concentration du sel dans l'eau saline. Ces effets ont une grande signification à des températures élevées et à des concentrations faibles du sel. La production peut atteindre les 100% [18,20].

III.3. Bilan Thermique d'un Distillateur Solaire :

Avant d'établir le bilan énergétique global d'un distillateur solaire, il faut déterminer, en premier lieu, les principaux transferts de chaleur à l'intérieur et à l'extérieur :

Figure III.1: Bilan énergétique d'un Distillateur solaire à film capillaire avec un seul étage

Figure III.2: Bilan énergétique d'un Distillateur solaire à film capillaire à plusieurs étages

a) Distillateur à un seule étage (figure III.1)

- Un rayonnement solaire, frappant la surface de la vitre sera absorbé par la vitre, et la surface absorbante (absorbeur- évaporateur).
- La vitre cède au milieu ambiant, les flux de chaleur " Q_{v-a}^r " par rayonnement et " Q_{v-a}^c " par convection.
- Par convection, la vitre reçoit de l'évaporateur un flux de chaleur " Q_{ev-v}^{c} ".
- L'évaporateur échange avec le condenseur les flux de chaleur " Q_{ev-cd}^r " par rayonnement et " Q_{ev-cd}^c " par convection.

- Le condenseur cède au milieu ambiant, les flux de chaleur " Q_{cd-a}^r " par rayonnement et " Q_{cd-a}^c " par convection.

Sur la figure (III.1) sont portées les notions utilisées.

b) Distillateur à plusieurs étages (figure III.2)

Le bilan énergétique du distillateur solaire à plusieurs étages est identique à celui du distillateur à un seule étage, la seule addition sera le transfert de chaleur par conduction entre les différentes plaques de séparation des étages (condenseur- évaporateur) ;

- Par conduction, le condenseur de l'étage (n) cède un flux thermique '' $Q_{cd(n)-ev(n+1)}^{cd}$ '' à l'évaporateur de l'étage (n+1).

III.4. Mise en équation des échanges thermiques :

Le problème physique consiste à déterminer, l'effet de certains paramètres thermophysique sur le rendement d'un Distillateur à film capillaire à plusieurs étages, l'évolution en fonction du temps des différentes températures, de la quantité d'eau distillée et du rendement. Dans le but de rendre le modèle accessible, nous devons prendre en considération les hypothèses simplificatrices suivantes :

- La voûte céleste est considérée comme un corps noir ;
- Réduction des pertes de vapeur et des pertes thermiques par conduction ;
- Les parois latérales sont supposées bien isolées thermiquement ;
- Les propriétés physiques des parois de séparation des différents étages sont considérées constantes, et ont des températures uniformes sur les deux côtés ;
- Les sels dissous n'ont aucune influence sur les quantités de chaleur échangées par la saumure ;
- Les pertes thermiques dues à l'extraction du distillat sont négligées ;
- L'inertie thermique de la couverture est faible ;
- La température de chaque plaque est supposée uniforme, ainsi que celle de la couverture vitrée ;
- La paroi de condensation est non mouillable ;
- L'eau à évaporer, le concentrât et le distillat sont des films très capillaires et leurs température sont égales à la température de la paroi métallique au contacte des films ;
- Les plaques sont équidistantes ;

- Les propriétés physiques des plaques et de la vitre sont considérées indépendantes de la température et sont prises égales à des valeurs moyennes.
- La condensation se fait uniquement sur la couverture (il n'y a pas de condensation sur les parois latérales) ;

III.4.1. Bilan thermique en régime permanent :

1. Le distillateur à Film Capillaire à un Seule Etage :

Pour le distillateur à plusieurs étages on a choisi établir un modèle à quatre étages ;

-Au niveau de la vitre

$$Q_{ev-v}^{c} + Q_{ev-v}^{r} + P_g \times A_v = Q_{v-a}^{c} + Q_{v-a}^{r}$$
(III.1)

où :

$$Q \stackrel{c}{e_{v}} = h \stackrel{c}{e_{v}} = v \times (T e_{v} - T v) \land A w \qquad [w]$$

$$Q_{ev-v}^{r} = h_{ev-v}^{r} \times (T_{ev} - T_{v}) \times A_{w} \qquad [w]$$

$$Q_{v-a} = h_{v-a} \times \left(T_v - T_c\right) A_v \qquad [w]$$

$$Q_{\delta-a} = h_{\delta-a} \times (T_{\nu} - T_{a}) \times A_{\nu} \qquad [w]$$

- Au niveau de l'absorbeur – évaporateur :

$$P_{ev} \times A_{ev} + Q_{ev-v}^{r} = Q_{ev-v}^{c} + Q_{ev-cd}^{c} + Q_{ev-v}^{r} + Q_{ev-cd}^{r} + Q_{ev-cd}^{ev} + Q_{ea}$$
(III.2)

-Au niveau du condenseur :

$$Q_{cd-a}^{c} + Q_{cd-a}^{r} = Q_{ev-cd}^{c} + Q_{ev-cd}^{r} + Q_{ev-cd}^{ev}$$
(III.3)

2. Le distillateur à Film Capillaire à Plusieurs Etages :

-Au niveau de la vitre

$$Q_{evl-v}^{c} + Q_{evl-v}^{r} + P_g \times A_v = Q_{v-a}^{c} + Q_{v-a}^{r}$$
(III.4)

où :

$$Q_{ev 1-v}^{c} = h_{ev 1-v}^{c} \times (T_{ev 1} - T_{v}) \land A_{w} \qquad [w]$$

$$Q_{evl-v}^{r} = h_{evl-v}^{r} \times (T_{evl} - T_{v}) \times A_{w} \qquad [w]$$

$$Q_{v-a} = h_{v-a} \times \left(T_v - T_c\right) \times A_v \qquad [w]$$

$$Q \mathfrak{S}_{-a} = h \mathfrak{S}_{-a} \times (T_v - T_a) \times A_v \qquad [w]$$

- Au niveau du premier étage:

• Absorbeur - évaporateur1 :

$$P_{ev} \times A_{ev} + Q_{ea} = Q_{ev1-g}^{r} + Q_{ev1-g}^{c} + Q_{ev1-cd1}^{c} + Q_{ev1-cd1}^{r} + Q_{ev1-cd1}^{ev}$$
(III.5)

• Condenseur1

$$Q_{ev2-cdl}^{cd} = Q_{ev1-cd1}^{c} + Q_{ev1-cdl}^{r} + Q_{ev1-cdl}^{ev}$$
(III.6)

- Au niveau du deuxième étage:

• l' évaporateur2 :

$$Q_{ev2-cd1}^{cd} + Q_{ea} = Q_{ev2-cd2}^{c} + Q_{ev2-cd2}^{r} + Q_{ev2-cd2}^{ev}$$
(III.7)

• Condenseur2 :

$$Q_{ev3-cd2}^{cd} = Q_{ev2-cd2}^{c} + Q_{ev2-cd2}^{r} + Q_{ev2-cd2}^{ev}$$
(III.8)

- Au niveau du troisième étage:
 - l'évaporateur3

$$Q_{ev3-cd2}^{cd} + Q_{ea} = Q_{ev3-cd3}^{c} + Q_{ev3-cd3}^{r} + Q_{ev3-cd3}^{ev}$$
(III.9)

• condenseur3

$$Q_{ev4-cd3}^{cd} = Q_{ev3-cd3}^{c} + Q_{ev3-cd3}^{r} + Q_{ev3-cd3}^{ev}$$
(III.10)

- Au niveau du quatrième étage:

• l'évaporateur4

$$Q_{ev4-cd3}^{cd} + Q_{ea} = Q_{ev4-cd4}^{c} + Q_{ev4-cd4}^{r} + Q_{ev4-cd4}^{ev}$$
(III.11)

• condenseur4

$$Q_{cd4-a}^{c} + Q_{cd4-a}^{r} = Q_{ev4-cd4}^{c} + Q_{ev4-cd4}^{r} + Q_{ev4-cd4}^{ev}$$
(III.12)

où :

$$Q_{ev}^{cd}(n) - cd(n-1) = h_{ev}^{cd}(n) - cd(n-1) \left(T_{ev}(n) - T_{cd(n-1)} \right)$$
$$Q_{ev}^{ev}(n) - cd(n) = h_{ev}^{ev}(n) - cd(n) \left(T_{ev}(n) - T_{cd(n)} \right)$$

III.4.2. Bilan thermique en régime transitoire :

Par analogie entre les grandeurs thermiques et les grandeurs électriques (tableau III.1), on peut appliquer les lois d'OHM et de KIRSHOFF considérons une section quelconque du système à l'instant t, soit i l'un des milieux représentés dans cette section, M_i sa masse en [kg], cp_i sa chaleur spécifique en [j/kg.°C] et T_i sa température en [°C]. Le bilan au nœud i donne :

$$M_i \times cp_i \times \frac{dT_i}{dt} = \sum_{i=1}^n Q_{ij} + P_i$$
(III.13)

avec :

P_i : terme de source ou de puits.

 $M_i \times cp_i \times \frac{dT_i}{dt} = 0$ dans les cas suivants :

-Un distillateur à inertie thermique négligeable (faible masse de ses éléments, ou faible chaleur spécifique);

-Pour un régime permanent.

Grandeur thermique	Grandeur électrique		
Température	Potentiel électrique		
Flux thermique	Courant électrique		
Résistance thermique	Résistance électrique		
Capacité thermique	Capacité électrique		

Tableau III.1 : Analogie entre les grandeurs thermiques et les grandeurs électriques

Donc, les équations de transferts de ce modèle :

a) Le Distillateur à Film Capillaire à un seule étage :

- au niveau de la couverture vitrée :

$$M_{v} \cdot C_{v} \begin{pmatrix} dT_{v} \\ dt \end{pmatrix} = P_{g} + h_{\varepsilon_{v-v}} \cdot (T_{ev} - T_{v}) + \varepsilon_{ev-v} \cdot \sigma \left(T_{ev}^{4} - T_{v}^{4} \right) -h_{\varepsilon_{-a}} \cdot (T_{v} - T_{a}) - \varepsilon_{v} \cdot \sigma \left(T_{v}^{4} - T_{a}^{4} \right)$$
(III.14)

- au niveau de l'absorbeur évaporateur :

$$M \quad ev \cdot C \quad ev \left(\begin{array}{ccc} d & T & ev \\ dt \end{array} \right) = -D \quad L_{v1} - h_{ev}^{c} - cd \quad (T ev - T_{cd}) - h_{ev}^{c} - v \left(T_{ev} - T_{v} \right) \\ \varepsilon & ev - cd \quad \sigma \quad (T ev^{4} - T_{cd}^{4}) + M \quad ea \quad C \quad ea \quad (T ev - T_{ea}) \\ - \varepsilon & ev - v \cdot \sigma \quad (T ev^{4} - T_{v}^{4}) - h_{ev}^{ev} - cd \quad (T ev - T_{cd}) \end{array}$$

$$(III.15)$$

- au niveau du condenseur :

$$M_{cd} \cdot C_{cd} \begin{pmatrix} dT_{cd} \\ dt \end{pmatrix} = D \cdot L_{v2} + h_{ev-cd} \cdot (T_{ev} - T_{cd}) + \varepsilon_{ev-cd} \cdot \sigma (T_{ed}^{4} - T_{c}^{4}) - h_{cd-a}^{c} (T_{cd} - T_{a}) - \varepsilon_{cd} \cdot \sigma (T_{cd}^{4} - T_{a}^{4})$$

$$(III.16)$$

b) Le distillateur à Film Capillaire à plusieurs étages :

- au niveau de la couverture vitrée :

$$M_{\nu} \cdot C_{\nu} \begin{pmatrix} d T_{\nu} \\ dt \end{pmatrix} = P_{g} + h_{evl - \nu} \cdot (T_{evl} - T_{\nu}) + \varepsilon_{evl - \nu} \cdot \sigma (T_{evl} - T_{\nu}^{4}) - h_{\delta \cdot a} \cdot (T_{\nu} - T_{a}) - \varepsilon_{\nu} \cdot \sigma (T_{\nu^{4}} - T_{a^{4}})$$
(III.17)

- Au niveau du premier étage:

• Absorbeur - évaporateur1 :

$$M_{ev 1} C_{ev 1} \begin{pmatrix} dT_{ev 1} \\ dt \end{pmatrix} = -D_{v1} L_{v1} - h_{ev 1-cd-1} \cdot (T_{ev 1} - T_{cd-1}) - h_{ev 1-v} (T_{ev 1} - T_{v})$$

$$\varepsilon_{ev 1-cd-1} \sigma (T_{ev 1} - T_{cd-1}) + M_{ea} \cdot C_{ea} \cdot (T_{ev 1} - T_{ea})$$

$$-\varepsilon_{ev 1-v} \cdot \sigma \cdot (T_{ev 1} - T_{v^{4}}) - h_{ev 1-cd-1} (T_{ev 1} - T_{cd-1})$$
(III.18)

• Condenseur1 :

$$M_{cd 1} \cdot C_{cd 1} \begin{pmatrix} dT_{cd 1} \\ dt \end{pmatrix} = D_{cd 1} \cdot L_{v1} + h_{ev 1-cd 1} \cdot (T_{ev 1} - T_{cd 1}) + \varepsilon_{ev 1-cd 1} \cdot \sigma \cdot (T_{ev 1} - T_{cd 1}) \\ - h_{ev 2-cd 1} \cdot (T_{ev 1} - T_{cd 1})$$
(III.19)

- Au niveau du deuxième étage:
- l' évaporateur2 :

$$M_{ev 2} \cdot C_{ev 2} \begin{pmatrix} dT_{ev 2} \\ dt \end{pmatrix} = -D_{v2} \cdot L_{v2} - h_{ev 2-cd 2} \cdot (T_{ev 2} - T_{cd 2}) - \varepsilon_{ev 2-cd 2} \cdot \sigma_{v2} \cdot (T_{ev 2} - T_{cd 2}) + M_{ev 2-cd 2} \cdot \sigma_{v2} \cdot (T_{ev 2} - T_{cd 2}) + M_{ev 2-cd 1} \cdot (T_{ev 2} - T_{cd 1}) - h_{ev 2-cd 2} \cdot (T_{ev 2} - T_{cd 2}) + (III.20)$$

• Condenseur2 :

$$M_{cd 2} \cdot C_{cd 2} \begin{pmatrix} dT_{cd 2} \\ dt \end{pmatrix} = D_{cd 2} \cdot L_{v2} + h_{ev 2-cd 2} \cdot (T_{ev 2} - T_{cd 2}) + \varepsilon_{ev 2-cd 2} \cdot \sigma \cdot (T_{ev 2} - T_{cd 2}) \\ - h_{ev 3-cd 2} \cdot (T_{ev 3} - T_{cd 2}) + h_{ev 2-cd 2} \cdot (T_{ev 2} - T_{cd 2})$$
(III.21)

- Au niveau du troisième étage:

• l'évaporateur3

$$M_{ev 3} \cdot C_{ev 3} \begin{pmatrix} dT_{ev 3} \\ dt \end{pmatrix} = -D_{v 3} \cdot L_{v 3} - h_{ev 3-cd 3} \cdot (T_{ev 3} - T_{cd 3}) - \varepsilon_{ev 3-cd 3} \cdot \sigma_{cd 3} \cdot (T_{ev 3} - T_{cd 3}) + M_{ea 3} \cdot C_{ea} (T_{ev 3} - T_{ea}) + h_{ev 3-cd 2} \cdot (T_{ev 3} - T_{cd 2}) - h_{ev 3-cd 3} \cdot (T_{ev 3} - T_{cd 3})$$

$$(III.22)$$

• condenseur3

$$M_{cd 3} \cdot C_{cd 3} \begin{pmatrix} dT_{cd 3} \\ dt \end{pmatrix} = D_{cd 3} \cdot L_{v3} + h_{ev 3-cd 3} \cdot (T_{ev 3} - T_{cd 3}) + \varepsilon_{ev 3-cd 3} \cdot \sigma \cdot (T_{ev 3} - T_{cd 3}) \\ - h_{ev 4-cd 3} \cdot (T_{ev 4} - T_{cd 3}) + h_{ev 3-cd 3} \cdot (T_{ev 3} - T_{cd 3})$$
(III.23)

- Au niveau du quatrième étage:

• l'évaporateur4

$$M_{ev 4} \cdot C_{ev 4} \begin{pmatrix} dT_{ev 4} \\ dt \end{pmatrix} = -D_{v 4} - h_{ev 4-cd 4} \cdot (T_{ev 4} - T_{cd 4}) - \varepsilon_{ev 4-cd 4} \cdot \sigma (T_{ev 4} - T_{cd 4}) + M_{ea cd 4} \cdot \sigma (T_{ev 4} - T_{cd 4}) + M_{ev 4-cd 3} \cdot (T_{ev 4} - T_{cd 3}) + M_{ev 4-cd 4} \cdot (T_{ev 4} - T_{cd 3}) + h_{ev 4-cd 4} \cdot (T_{ev 4} - T_{cd 4})$$
(III.24)

• condenseur4

$$M_{cd 4} \cdot C_{cd 4} \begin{pmatrix} dT_{cd 4} \\ dt \end{pmatrix} = D_{.L_{v4}} + h_{ev 4-cd 4}^{c} \cdot (T_{ev 4} - T_{cd 4}) + \varepsilon_{ev 4-cd 4} \cdot \sigma_{.} (T_{ev 4} - T_{cd 4}) \\ - h_{cd 4-a}^{c} (T_{cd 4} - T_{a}) + h_{ev 4-cd 4}^{ev} (T_{ev 4} - T_{cd 4}) \\ - \varepsilon_{cd 4} \cdot \sigma_{.} (T_{cd 4}^{4} - T_{a}^{4})$$
(III.25)

III.5. Expression des différents coefficients d'échange thermique :

III.5.1. Echange par conduction :

Le transfert de chaleur par conduction à travers les différentes parois est exprimé par le coefficient :

$$h_{ev}^{cd} - cd = \frac{\lambda_{p}}{e_{p}}$$
(III.26)

où :

 λ_p : conductivité thermique de la paroi. [w/m²°C]

 e_p : épaisseur de la paroi. [m]

III.5.2. Echange par convection :

a) Echange convectif entre la vitre et l'évaporateur:

L'étude de la convection libre est très complexe **[18]**,l'analyse bibliographiques dans ce domaine ne permet pas de donner des lois physiques établies de façon définitive.

Le coefficient d'échange thermique est donné par :

$$h_{\mathcal{E}_{v}-v} = \frac{Nu \times \lambda_{r}}{L}$$
(III.27)

Les études se ramènent généralement à la détermination des corrélations telles que :

$$Nu = f(Ra) = A.(Gr.Pr)^n$$

la valeur du nombre de Nusselt peur être obtenue par l'utilisation de l'expression donnée par Holland et al (1976) l'air est le fluide qui sépare la plaque et la vitre **[21]**.

$$Nu = 1.14 \left[1 - \frac{1708}{Ra \cdot \cos \beta} \right]^{+} \left(1 - \frac{\sin \left(1 \cdot 8 \beta \right)^{1.6} \cdot 1708}{Ra \cdot \cos \beta} \right) + \left[\left\{ \frac{Ra \cdot \cos \beta}{5830} \right\}^{\frac{1}{3}} - 1 \right]^{+}$$
(III.28)

le signe (+)indique que seule les valeurs positives sont prises en compte, et valeurs négatives sont prises égales à zéro.

Avec :

 β : angle d'inclinaison par apport à l'horizontale. $0^{\circ} \le \beta \le 75^{\circ}$

Ra: Nombre de Rayleigh.

$$Ra = Gr.\Pr = \frac{g.\beta .\Delta T.L^3}{v.a}$$
(III.29)

pour :

$$Nu = \left[1, 0.288 \left(\frac{\sin \beta . Ra}{A}\right)^{\frac{1}{4}}, 0.039 . (\sin \beta . Ra)^{\frac{1}{3}}\right]_{\max}$$
(III.30)

l'indice (max) indique que pour une valeur donnée du nombre de Rayleigh la valeur maximale des trois quantités séparées par la virgule doit être prise.

 $75^{\circ} < \beta \le 90^{\circ}$

D'où :

A : le rapport ente la longueur de la paroi et la distance entre la vitre et l'évaporateur.

D'autres corrélations ont été données pour le calcul du nombre de Nusselt :

Buchberg et al (1976) a donné les trois corrélations qui suit, pour la détermination du coefficient d'échange thermique entre la vitre et l'évaporateur pour une surface inclinée: [21].

$$Nu = 1 + 1.44 \left[1 - \frac{1708}{Ra.\cos\beta} \right] \qquad pour. 1708 < Ra.\cos\beta < 5900$$
(III.31)

$$Nu = 0.229 (Ra.\cos\beta)^{0.252} \quad pour: 5900 < Ra.\cos\beta < 9.23 \times 10^4$$
(III.32)

$$Nu = 0.157 (Ra.\cos\beta)^{0.285} \qquad pour: 9.23 \times 10^4 < Ra.\cos\beta < 10^6$$
(III.33)

Jannot [22] à donnée l'expression suivante :

$$Nu = 1 + 1.44 \left(1 - \frac{1708}{Gr.\text{Pr.cos}\beta} \right) \left[1 - \frac{1708 \left(\sin(1.8\beta)^{1.6} \right)}{Gr.\text{Pr.cos}\beta} \right] + \left[\left(\frac{Gr.\text{Pr.cos}\beta}{5830} \right)^{\frac{1}{3}} - 1 \right] \text{Si} : 0 < \beta < \beta^{*}$$
(III.34)

$$Nu = (\sin\beta)^{\frac{1}{3}} Nu(90^{\circ}) \qquad Si: \beta^* < \beta < 90^{\circ} \qquad (III.35)$$

$$Nu = 1 + [Nu(90^{\circ}) - 1] \sin \beta$$
 $Si: 90^{\circ} < \beta < 180^{\circ}$ (III.36)

avec : $\beta^* = \tan^{-1}(4800 \text{ .Pr})$

selon les études faites par H.Inaba et M.Jakob [23,24], concernant le transfert thermique par convection libre entre deux plaques, il a été prouvé que la relation Nu=f(Ra) s'exprimait

sous la forme $Nu=C(Ra.cos\beta)$, et les corrélation proposés sont celles qui sont les mieux adaptés au distillateur à film capillaire :

- Inaba [23]:
- a) 0°<β<60°
- région post conductive :

$$25.10^3 \le Ra.\cos\beta \le 6.10^3$$

$$Nu = 1 + 1.21 \left[1 - \frac{2500}{Ra.\cos\beta} \right] \tag{III.37}$$

- région à flux laminaire :

$$6.10^3 < Ra.\cos\beta \le 4.10^5$$

 $Nu = 0.199 (Ra.\cos\beta)^{0.258}$ (III.38)

- régime à flux turbulent :

$$4.10^5 < Ra.\cos\beta$$

 $Nu = 0.0785 (Ra.\cos\beta)^{0.33}$ (III.39)

b) $60^{\circ} < \beta < 120^{\circ}$ et $5.10^{3} \le Ra.\cos\beta \le 1, 2.10^{6}$ et $5 \le L/e \le 83$

$$Nu = 0.21 \left(\frac{L}{e}\right)^{-0.21} .(Ra .\cos \beta)^{0.25}$$
(III.40)

où :

L: la langueur des plaques. [m]

- *e*: la distance entre les deux plaques. [m]
- Jakob [24] a obtenu les corrélations :
- plans horizontaux, flux ascendant :
 - $Nu=1 \qquad \text{pour } Gr < 10^3 \qquad (III.41)$

$$Nu = 0,195.Gr^{\frac{1}{4}}$$
 pour $10^4 \le Gr \le 10^5$ (III.42)

$$Nu=0,068.Gr^{\frac{1}{3}}$$
 pour $Gr>10^5$ (III.43)

- plans verticaux :

$$Nu=0,18.Gr^{\frac{1}{4}}.(\underline{e}_{L})^{\frac{1}{9}}$$
 pour 2.10⁴ < Gr < 2.10⁵ (III.44)

$$Nu = 0,065.Gr^{\frac{1}{3}} \left(\frac{e}{L}\right)^{\frac{1}{9}}$$
 pour $2.10^5 < Gr < 10^7$ (III.45)

- Churichill [25] a obtenu l'expression suivante, en posant $a = \cos\beta$, $b = \sin\beta$, $c = \sin 1.8\beta$
- pour $0 \le \beta \le 80^\circ$

$$Nu = \left(\left\{ \left[\left[1 + 1, 1446 \dots \left(\frac{1 - 1708}{a \cdot Ra} \right) \right] \left[1 - \frac{\left(1708 \dots c \right)^{1.6}}{a \cdot Ra} \right] \right\}^3 + \frac{a \cdot Ra}{1420} \right)^{\frac{1}{3}}$$
(III.46)

- pour $80^{\circ} \le \beta \le 90^{\circ}$, il suggère :

$$Nu = \left[\left(Nu_{80}^{\frac{1}{3}} - 1 \right) \cdot \frac{b}{0.985} + 1 \right]^{\frac{1}{3}}$$
(III.47)

- et pour $90^{\circ} \le \beta \le 180^{\circ}$

$$Nu = 1 + \left\{ \left[\left(Nu_{80}^{\frac{1}{3}} - 1 \right) \frac{b}{0.985} + 1 \right]^{\frac{1}{3}} - 1 \right\} b$$
(III.48)

où Nu_{80} est la valeur du nombre de Nusselt donnée par la première équation pour $\beta = 80^{\circ}$.

b) Echange convectif entre la saumure et le condenseur :

Selon BAUM **[26 et 27]**, il existe une « Zone Tampon » où la température et la pression partielle de la vapeur d'eau sont constantes. Ceci implique que seule la couche adjacente à la surface d'évaporation (évaporateur) et la surface de condensation (condenseur), participe au processus de transfert de masse et de chaleur.

L'échange par convection dépend du nombre de Grashoff (Gr) et de l'inclinaison β .

Pour
$$\beta = 30^{\circ}$$
:
Si : Gr < 3 × 10³; NU = 1 (III.49)

Si :
$$3 \times 10^{-3} < \text{Gr} < 5 \times 10^{-4}$$
; Nu = 0.0588 × Gr^{0.37} (III.50)

Si:
$$Gr > 2 \times 10^{5}$$
; $NU = 0.0354 \times Gr^{0.37}$ (III.51)

Avec :

$$Gr = \frac{B_w \times D^3 \times g \times (T_{ev} - T_{cd})}{v_m^2}$$
(III.52)

où :

 B_w : coefficient d'expansion volumétrique de l'eau; $[K^{-1}]$

D : longueur caractéristique du distillateur ;

 v_m : la viscosité cinématique du mélange air - vapeur.

Et :

$$h_{ev-cd}^{c} = \frac{Nu \times \lambda_{m}}{D}$$
(III.53)

 λ_m : la conductivité thermique du mélange air- vapeur.

Dunkle (1961) [21]a donné la relation suivante, en fonction des pressions partielles de la vapeur d'eau[28,30,31] :

$$h_{ev-cd}^{c} = 0.884 \times \left[\left\{ \left(T_{ev} - T_{cd} \right) + \frac{\left(p_{v}^{ev} - p_{v}^{cd} \right)}{268.9 \times 10^{3} - p_{v}^{ev}} \right\} \times \frac{1 + \cos(\beta)}{2} \right]^{\frac{1}{3}}$$
(III.54)

La pression à L'intérieur de l'appareil est une fonction de la température :

$$Pv = 7236, 2 - 431, 41 T_f + 10, 76 T_f^2$$
(III.55)

c) Echange convectif entre la vitre et le milieu ambiant :

L'échange thermique entre la vitre et l'extérieur qui dépend de la vitesse du vent, est donné par la corrélation de MACADAMS [26] :

$$h_{s-a} = 5.7 + 3.8 \times v$$
 (III.56)

avec :

v: la vitesse du vent. [m / s].

Le coefficient d'échange thermique par convection entre le condenseur pour le distillateur à un seule étage et le dernier condenseur du distillateur à plusieurs étages et le milieu ambiant h_{cd-a}^c est analogue à h_{v-a}^c .

III.5.3. Echange par rayonnement :

a) Echange par rayonnement entre l'évaporateur et la vitre :

D'après [21] pour deux surfaces planes, infinies en parallèle, le coefficient radiatif est donné sous la forme :

$$h_{ev-v}^{r} = \varepsilon_{ev-v} \times \sigma \times (T_{ev}^{2} + T_{vi}^{2}) \times (T_{ev} + T_{v})$$
(III.57)

avec : $\varepsilon_{ev-v} = \left[\frac{1}{\varepsilon_v} + \frac{1}{\varepsilon_{ev}} - 1\right]^{-1}$

b) Echange par rayonnement entre la vitre et l'extérieur :

$$h_{\nu-a}^{r} = \varepsilon_{\nu} \times \sigma \times \left(T_{\nu}^{2} + T_{c}^{2}\right) \times \left(T_{\nu} + T_{c}\right)$$
(III.58)

où :

T_C : est la température du ciel.

Cette température est donnée par[21] :

les relations de Whillier (1967) :

$$T_C = T_a - 6 \tag{III.59}$$

$$T_c = T_a - 12 \tag{III.60}$$

Et la relation de Swinbank (1963):

$$T_C = 0,00552 \cdot T_a^{1.5} \tag{III.61}$$

Ta : en [K].

III.5.4. Echange pendant le changement de phase :

Par l'utilisation de la relation de la convection naturelle à l'intérieur du distillateur et par analogie entre le transfert de masse et de chaleur, Dunkle est arrivé à l'expression du coefficient de transfert thermique par évaporation [29,30]:

$$h_{ev-cd}^{ev} = 16.276 \times 10^{-3} \times h_{ev-cd}^{c} \times \frac{\left(p_{v}^{ev} - p_{v}^{cd}\right)}{\left(T_{ev} - T_{cd}\right)}$$
(III.62)

les valeurs de P_{ev} et P_{cd} pour des température comprises entre 10°C et 90°C, peut être obtenus par l'expression de Fernandez & Chargoy (1990) [21]:

$$P(T) = \exp\left(25.317 - \frac{5144}{T + 273}\right)$$
(III.63)

III.6. Caractéristiques de fonctionnement du distillateur solaire :

Plusieurs grandeurs sont définies afin de caractériser la production d'eau d'un distillateur. On distingue constamment , le rendement, l'efficacité interne et globale et la performance.

a) Le rendement :

C'est la quantité d'eau produite par unité de surface de plan noir et par jour. L'inconvénient majeur de ce critère est qu'il ne fait pas mention de l'énergie solaire qui arrive sur le distillateur.

b) L'efficacité : [32 et 33]

b₁) L'efficacité globale :

L'efficacité globale est définie par le rapport:

$$\eta_{g} = \frac{(Quantité totale d'eau distillée) \times L_{v}}{(Radiations solaire aquises par la vitre)}$$
(III.64)

$$\eta_g = \frac{Q_{ev}}{I_G \times A_g} \tag{III.65}$$

b₂) L'efficacité interne :

Si l'efficacité globale rapporte la quantité d'eau produite à l'énergie solaire tombant sur une surface horizontale, elle ne fait pas mention de la quantité d'énergie entrant réellement dans le distillateur, d'autant plus qu'un distillateur est construit en général pour un lieu donné et avec une pente fixe. Un changement de pente et de la localité fait varier la quantité d'énergie qui entre dans le distillateur. On définit donc une efficacité dite interne qui tient compte de tous ces paramètres et qui est définie par :

$$\eta_i = \frac{Q_{ev}}{Q_w} \tag{III.66}$$

Pour le distillateur à Film Capillaire, l'expression de Q_w est :

$$Q_{w} = \left[I_{D} \times \alpha_{GD} + I_{d} \times \alpha_{GD}\right] \times \left[\alpha_{ev} + T_{D}\right] \times A_{g}$$
(III.67)

$$Q_{w} = \alpha_{t} \times I_{G} \times A_{g}$$
(III.68)

$$\alpha_{t} = \alpha_{ev} + T_{D} \tag{III.69}$$

c) La performance :

Le souci de caractériser un distillateur d'une manière absolue a amené ainsi Satcunanathan et Hansen **[34]** à définir le facteur de performance brut (F.P.B) et le facteur de performance horaire (F.P.H) :

$$FPB = \frac{Quantité d'eau \ produite \ au \ bout \ de \ 24h}{Quantité \ d'énergie \ entrée \ au \ bout \ de \ 24h}$$
(III.70)

$$FPH = \frac{Quantité d'eau \ produite \ au \ bout \ d'une \ heure}{Quantité \ d'énergie \ entrée \ au \ bout \ d'une \ heure}$$
(III.71)

A un instant donné de la journée, le facteur de performance ''F.P'' est donné par la relation :

$$F.P = \frac{m_d}{\alpha_t \times I_G \times A_g} \tag{III.72}$$

III.7. Traitement informatique :

a) Principe de simulation :

Pour le régime transitoire, la plus rigoureuse est une simulation ''pas à pas'', qui rend compte de l'évolution des températures de tous les éléments du distillateur dans le temps et dans l'espace. Les données météorologiques proviennent de fichiers (vitesse du vent et température ambiante) ou de formules approchées (température du ciel), cette méthode nécessite des calculs numériques.

La seconde démarche est celle suivie par HOTTEL, WHILLIER et BLISS **[35]**. Elle suppose que le régime est permanent et que les éléments du distillateur se trouvant chacun à une température moyenne constante. Cette approche néglige les effets transitoires mais elle constitue un outil commode pour un calcul de conception, bien qu'il faille, là aussi, procéder à des itérations. Les données météorologiques sont traitées comme précédemment.

b) Programme principal :

1) La première étape consiste à calculer les différents échanges thermiques qui sont indépendants de la température, à savoir :

-Les coefficients d'échange thermique par conduction à travers la paroi (évaporante – condensante).

-Les coefficients d'échange thermique dû au vent.

2) On calcule, à chaque heure de la journée :

-Le rayonnement solaire frappant un plan horizontal et un plan incliné respectivement;

-La puissance absorbée par la vitre et l'évaporateur;

-la température ambiante et la température du ciel.

3) On suppose que les différents composants du distillateur sont à la température ambiante, excepte l'évaporateur qui se trouve à une température supérieure que cette dernière, et on calcule pour les températures initiales :

-La pression partielle de la vapeur d'eau est à la température de la saumure et la pression partielle de la vapeur est à la température du condenseur.

-A la température $T_{\text{ev}},$ on calcule les propriétés de la saumure :

- La masse volumique ;
- la conductivité thermique ;
- La viscosité cinématique et dynamique ;
- La capacité thermique ;
- la chaleur latente de vaporisation.

-Calcul des coefficients d'échange thermique par rayonnement entre la vitre et la voûte céleste, entre la vitre et l'évaporateur et entre le condenseur et le milieu ambiant.

-Calcul du coefficient d'échange thermique par convection entre :

- La vitre et l'extérieur;
- L'évaporateur et la vitre.
- l'évaporateur et le condenseur ;

-Calcul du coefficient d'échange thermique par évaporation entre la saumure et le condenseur.

-Calcul des éléments de la matrice.

-Résolution du système d'équation par la méthode de GAUSS-SEIDEL d'itération.

4) La troisième étape est reprise avec les températures obtenues.

5) Calcul de :

- L'efficacité globale ;
- L'efficacité interne ;
- la performance.

- c) Organigramme général :
- 1 . Distillateur à Film Capillaire à Un Seul Etage :

2 . Distillateur à Film Capillaire à Plusieurs Etages :

CHAPITRE IV Résultats et discussions

CHAPITRE IV : RESULTATS ET DISCUSSION

IV.1. Introduction :

La résolution du système des équations discrétisées dans les annexes nous a permis d'obtenir des résultats en tenant compte des considérations suivantes :

- Les calculs sont effectués à Ouargla selon les coordonnées géographiques du site : latitude 31°.57 Nord, longitude 5°.24Est.
- les calculs sont effectués à partir d'un instant initial "t₀" pour chaque composant du distillateur, à une température initiale et avec un pas de temps égale à une heure.
- L'inclinaison du distillateur est égale à 30° par rapport à l'horizontal et avec un azimut de 0° par rapport au sud.
- Le 17 juillet a été choisi comme jour de calcul pseudo représentatif.
- Les résultats ont été traduit en graphe grâce au logiciel Origin 6, et à partir de ces résultats, une régression polynomiale a été obtenue par le biais de la méthode des moindres carrées, où "R²" représente le coefficient de détermination et "P" l'erreur relative.

IV .2. Distillateur à Film Capillaire à un seul étage:

Figure IV.1 : Schéma d'un distillateur solaire à film capillaire à un seul étage

IV.2.1. Variation des puissances solaires absorbées :

La figure IV.2 montre l'évolution de la puissance, du rayonnement solaire global, reçu par mètre carré de surface plane et de la puissance absorbée par la vitre et par l'évaporateur, en fonction du temps, ces puissances sont calculées par les formules (II.8), (II.30) et (II.31). D'après cette figure, on remarque que ces puissances atteignent leurs valeurs maximales entre $11^{h}00$ et $15^{h}00$ (la valeur maximale est atteinte à $13^{h}00$).

Le distillateur commence à être opérationnel dés 9^h 00 du matin, et la puissance absorbée par la vitre reste toujours faible par rapport à la puissance absorbée par l'évaporateur, qui est très importante, grâce au fait qu'il soit très proche de la vitre, et grâce à ses caractéristiques particulières : un coefficient d'absorption très important et des coefficients de transmission et de réflexion très faibles ; l'évaporateur absorbe une grande quantité de rayonnement incident, ainsi que celle transmise par la vitre.

Figure. IV . 2: Variation temporelle des puissances absorbées

IV.2.2. Variation des Températures :

La température ambiante et la température du ciel suivent la même allure, cela est dû au fait que la température du ciel varie en fonction de la température ambiante suivant la relation (III-61). Elles atteignent leur valeurs maximales entre 12h00 et 14h00 d'où le flux solaire est important (Figure IV.4).

La figure IV.3 représente la variation temporelle des températures de chaque composant du distillateur. La température de l'évaporateur est la plus élevée , ceci est dû à la puissance absorbée par l'absorbeur- évaporateur qui est importante et qui est supérieure à celle absorbée par la vitre. La température du condenseur se trouve assez faible, par rapport à celle de l'évaporateur, ce qui favorise la condensation de la vapeur d'eau.

Figure. IV . 3: Variation temporelle des températures ambiante et du ciel

Figure. IV . 4: Variation temporelle des différentes températures du distillateur

IV. 2. 3. Variation de la Production, de l'Efficacité et du Facteur de Performance :

La figure IV.5 montre la production horaire de l'eau distillée, où cette dernière commence à être considérable dès 9h00 du matin. Elle atteint sa valeur maximale à 13h00, où l'écart de température entre l'évaporateur et le condenseur est au maximum.

Les variations des efficacités internes et globales et du facteur de performance sont représentées dans les figures IV.6 et IV.7.

On remarque trois courbes inversées, ces allures sont dues au fait que le rayonnement incident et la puissance reçue par le tissu mouillé d'eau saline, collé sur la plaque évaporante, atteignent leurs valeurs maximales entre 11h00 et 14h00, et comme :

- L'efficacité interne représente le rapport entre la quantité de chaleur utilisée pour l'évaporation et le rayonnement global incident sur la vitre .
- L'efficacité interne représente le rapport entre la quantité de chaleur utilisée pour l'évaporation et la quantité de chaleur effectivement reçue par l'eau sur l'évaporateur – absorbeur.

Donc les rapports des efficacité interne et globale et le facteur de performance atteignent leurs valeurs maximales avant 11h00 et après 13h00. Tandis que l'efficacité interne et globale et le facteur de performance atteignent des valeurs maximales entre 11h00 et 14h00, cela est dû au fait que ce distillateur possède une inertie thermique très faible, lui permettant d'être opérationnel très tôt, et comme l'eau distillée coule doucement sur le tissus collé à la plaque d'évaporation, elle s'évapore rapidement, et en quantité, au fait que sa température élevée.

Figure. IV . 5: Quantité horaire de l'eau distillée

<u>Figure. IV. 6</u>: Variation temporelle des efficacités globale et interne

Figure. IV . 7: Variation temporelle du facteur de performance

IV.2.4. Variation de la Chaleur Latente de Vaporisation :

la figure IV.8 montre sue la chaleur latente de vaporisation de la saumure diminue au fur et à mesure que sa température augmente. On peut conclure que la température de la saumure influe inversement sur la chaleur la tente de vaporisation. Elle atteint ses valeurs minimales entre 11h00 et 15h00.

En effet, l'énergie nécessaire pour évaporer l'eau est la chaleur latente de vaporisation de l'eau, elle atteint la valeur de 2260KJ/Kg à 100°C, cela veut dire que pour produire 1L d'eau distillée, il est nécessaire d'apporter donc une quantité de chaleur de 2260Kj/Kg. Cette caractéristique diminue au fur et à mesure que la température s'accroît.

Figure. IV . 8: Variation temporelle de la chaleur latente de vaporisation

IV. 2. 5. Variation de la masse volumique de la saumure:

La masse volumique de la saumure diminue lorsque la température de la saumure augmente, ou, autrement dit, la température de la saumure influe inversement sur la masse volumique, où elle atteint ses valeurs minimales entre 11h00 et 15h00.

Figure. IV . 9: Variation temporelle de la masse volumique

IV. 2. 6. Variation de la viscosité dynamique de la saumure:

Nous pouvons constater que la viscosité dynamique diminue lorsque la température de la saumure augmente, cela explique que la température de la saumure influe inversement sur la viscosité dynamique. Les valeurs maximales de la température de la saumure correspondent à des valeurs minimale de la viscosité dynamique, et cela entre 12h00 et 14h00.

Figure. IV .10: Variation temporelle de la viscosité dynamique

IV.2.7. Variation de la conductivité thermique de la saumure:

Les figure IV.11 et IV.12 montrent que la conductivité thermique et la chaleur spécifique de la saumure suivent la même allure que la température de la saumure, donc elles atteignent ses valeurs maximales à 13h00. On peut conclure que la température de la saumure influe directement sur la conductivité thermique et sur la chaleur spécifique, où son accroissement mène à leurs accroissement.

Figure. IV . 11: Variation temporelle de la conductivité thermique

<u>Figure. IV. 12</u>: Variation temporelle de la chaleur spécifique

IV . 3. Distillateur à Film Capillaire à plusieurs étages :

La figure IV.14 montre l'évolution de la puissance, du rayonnement solaire global, reçu par mètre carré de surface plane et de la puissance absorbée par la vitre et par l'évaporateur, en fonction du temps, ces puissances sont calculées par les formules (II.8), (II.30) et (II.31). D'après cette figure, on remarque que ces puissances atteignent leurs valeurs maximales entre $11^{h}00$ et $15^{h}00$ (la valeur maximale est atteinte à $13^{h}00$).

Le distillateur commence à être opérationnel dés 9^h 00 du matin, et la puissance absorbée par la vitre reste toujours faible par rapport à la puissance absorbée par l'évaporateur, qui est très importante, grâce au fait qu'il soit très proche de la vitre, et à ses caractéristiques particulières : à savoir un coefficient d'absorption très important et des coefficients de transmission et de réflexion très faibles. l'évaporateur absorbe donc une grande quantité de rayonnement incident, ainsi que celle transmise par la vitre.

Figure. IV . 14: Variation temporelle des puissances absorbées

IV. 3.2. Variation des températures des différents composants du distillateur :

La figure IV.15 représente la variation temporelle des températures de chaque composant du distillateur, depuis la température de la vitre jusqu'au dernier condenseur, passant par les différents étages du distillateur. On remarque que la température de l'évaporateur (1), qui se trouve très proche de la vitre, donc reçoit directement une quantité d'énergie du flux solaire incident, contrairement aux autres évaporateurs qui réutilisent la chaleur dégagée par condensation des mêmes plaques (évaporantes- condansantes).

On remarque aussi qu'il y a une dégradation de température, dûe à l'introduction de l'eau saline, au niveau de chaque étage, qui absorbe une quantité de chaleur nécessaire à la condensation.

Les températures des deux côtés de chaque plaque de séparation, des différents étages du distillateur, à savoir : plaque évaporante- condensante, sont proches les unes des autres. Cela est dû au fait que la plaque possède une conductivité thermique importante.

L'écart de température entre le premier évaporateur et le premier condenseur (première cellule), est supérieur aux autres écarts des différents étages du distillateur.

Par contre, les valeurs maximales de température sont atteintes entre 12h00 et 14h00.

Figure. IV . 15: Variation temporelle des différentes températures du distillateur

IV. 2. 3. Variation de la Production, de l'Efficacité et du Facteur de Performance :

Les figures IV.16 et IV.17 et IV.18 montrent l'évolution en fonction du temps local des efficacités interne et globale, ainsi que le facteur de performance.

Ces caractéristiques prennent des allures inverses que celles de le température de la saumure, et où on constate que plus le nombre d'étage augmente plus la température de la saumure diminue et plus l'efficacité augmente, dont elle prenne des valeurs maximales avant 11h00 et après 13h00.

<u>Figure. IV . 16</u>: Variation temporelle des efficacités globale des différents étages du distillateur

<u>Figure. IV . 17</u>: Variation temporelle des efficacités interne des différents étages du distillateur

<u>Figure. IV .18</u>: Variation temporelle des facteurs de performance des différents étages du distillateur

IV . 3 . 4. Variation de la Chaleur Latente de Vaporisation, de la masse volumique et de la viscosité dynamique de la saumure :

Ces propriétés sont représentées respectivement dans les figures IV.19, IV.20 et IV.21.

On constate que ces trois propriétés diminuent lorsque la température de la saumure augmente, et a une allure inverse que celle de la température. Le minimum est donc atteint entre 12h00 et 14h00.

On remarque que ces propriétés prennent des valeurs minimales pour le premier étage, et commencent à augmenter au fur et à mesure que la température de la saumure diminue dans les autres étages. Il faut noter que l'écart de température est réduit entre les autres étages dès qu'en passe au deuxième étage.

<u>Figure .IV.19</u>: Variation temporelle des chaleurs latente des différents étages du distillateur

<u>Figure. IV . 20</u>: Variation temporelle des masses volumique des différents étages du distillateur

<u>Figure. IV . 21</u>: Variation temporelle des viscosités dynamique des différents étages du distillateur

IV.3.5. Variation de la conductivité thermique de la saumure :

Comme c'est représentée par la figure IV.22 l'évolution temporelle de la conductivité thermique est proportionnelle à l'évolution temporelle de la température de la saumure, ce qui explique que ces variations ont la même allure, ceci est dû à l'effet direct de la température sur la conductivité. Les valeurs maximales sont atteintes entre 12h00 et 14h00.

Comme la température de la saumure diminue avec l'augmentation du nombre des étages, on observe que la conductivité thermique diminue au fur et à mesure que le nombre d'étage augmente.

Figure. IV . 22: Variation temporelle des conductivité thermique des différents étages du distillateur

IV . 4. Comparaison entre les Distillateurs à un seul étage et les distillateurs à plusieurs étages :

IV.4.1. Comparaison de la Production:

Le distillateur à film capillaire à plusieurs étages est plus rentable que le distillateur à film capillaire à un seule étage. En faisant comparaison entre les différentes résultats issus de la figure IV.23, on constate que la production en eau distillée augmente en fonction du nombre d'étages. on pourrait obtenir près de 2.18 L d'eau distillée en une journée (8 heures de fonctionnement) pour le distillateur à un seul étage tandis que pour les mêmes conditions et avec un distillateur à quatre étages on pourrait atteindre 6.56 L d'eau distillée en une journée.

En faisant comparaison entre la production en eau distillée du premier étage d'un distillateur à quatre étages et celle d'un distillateur à un seule étage ; on constate que le premier étage d'un distillateur multi – étagé produit un débit plus grand que celui produit par un distillateur mono – étagé ; cela est due au fait que la plaque condansante du distillateur à un seule étage est refroidie par l'air ambiant tandis que la plaque du premier étage du distillateur multi – étagé est une plaque évaporante du seconde étage.

Le premier étage du distillateur multi -étagé produit presque 3.75 L d'eau distillée en une journée, ce débit est presque doublé lorsqu'on atteind le deuxième étages (5.76L d'eau distillée en une journée). La production pour trois étages de distillation atteind 6.34 L d'eau distillée en journée. La production peut atteindre quotidiennement 6.56L si on opte pour un système à quatre étages.

On constate finalement que la production augmente au fur et à mesure que le nombre d'étage augmente, mais elle devient insignifiante au niveau du dernier étage (quatrième étage).

Figure. IV . 23: Variation temporelle de la production.

IV. 4. 2. Comparaison des Efficacités et du facteur de performance:

Les figures IV.24, IV.25 et IV.26 montrent que les efficacités interne et globale et le facteur de performance augmentent avec l'augmentation du nombre d'étage. Cette augmentation est importante entre le premier et le deuxième étage et même entre le deuxième et le troisième étage, est elle est par contre insignifiante entre le troisième et le quatrième étage. Donc on peut conclure que l'augmentation du nombre d'étage est limité par un nombre optimal d'étage (le système doit être optimisé par rapport au nombre d'étage choisi).

Figure. IV . 24: Variation temporelle de l'efficacité

Figure. IV . 25: Variation temporelle de l'efficacité globale

Figure. IV . 26: Variation temporelle du facteur de performance

IV.4.3. Comparaison de la Chaleur Latente de vaporisation:

Pour deux distillateur à film capillaire à un seule étage et à plusieurs étages, et d'après la figure IV.27, on remarque que la chaleur latente augmente avec l'augmentation du nombre d'étage, car plus on augmente le nombre d'étage la température de la saumure devient de plus en plus faible.

Figure. IV . 27: Variation temporelle de la chaleur latente de vaporisation

IV. 5. Effet de Certains Paramètres Thermo Physiques da la Saumure Sur le Rendement :

On a choisi d'étudier l'effet de certains paramètres thermo physiques sur l'efficacité interne et globale ainsi que le facteur de performance, du premier étage du distillateur solaire à film capillaire à quatre étages.

IV.5.1 Effet de la Masse Volumique de la Saumure Sur l'Efficacité :

Selon les figures IV.28 et IV.29,la masse volumique de la saumure varie légèrement, donc son influence sur les efficacités interne et globale n'est pas importante, mais on ne peut pas la négliger. Donc on peut dire que l'efficacité est proportionnelle à la masse volumique.

Figure. IV . 28: Effet de la masse volumique sur l'efficacité interne

Figure. IV . 29: Effet de la masse volumique sur l'efficacité globale

IV.5.2 Effet de la chaleur spécifique de la saumure Sur l'Efficacité :

Nous avons représenté la variation de la chaleur spécifique et les efficacités interne et globale, afin de voir l'effet de la chaleur spécifique sur ces efficacités.

D'après la figure IV.30 la chaleur spécifique varie légèrement et prend une allure inverse que celle des efficacités, Donc elle influe inversement sur l'efficacité.

<u>Figure. IV . 30</u>: Effet de la chaleur spécifique sur l'efficacité interne

Figure. IV . 31: Effet de la chaleur spécifique sur l'efficacité globale

IV.5.3 Effet de la Température et de la Conductivité Thermique de la Saumure Sur l'Efficacité :

Les figures IV.32, IV.33, IV.34 et IV.35 montrent la variation des efficacités interne et globale par rapport aux variations de la température et de la conductivité thermique de la saumure.

On constate que la température et la conductivité thermique prenne des allures inverses à celles des efficacités interne et globale, donc elles influent inversement sur ces efficacités.

Figure. IV . 32: Effet de la température de la saumure sur l'efficacité interne

Figure. IV . 33: Effet de la température sur l'efficacité globale

Figure. IV .34: Effet de la conductivité thermique sur l'efficacité interne

Figure. IV . 35: Effet de la conductivité thermique sur l'efficacité globale

IV.6 Validation des résultats :

Le distillateur à film capillaire multi - étagé a été conçu et breveté par **R. et C. Ouahes** et **P. Le Goff [18]**, les résultats obtenus des essais concernant le débit d'eau distillée sont représentés sur les figure IV.36 et la figure IV.37 :

<u>Figure. IV . 36</u>: Variation horaire d la production d'un distillateur à film capillaire à un seule étage. (Expérimental)

<u>Figure. IV . 37</u>: Variation horaire d la production d'un distillateur à film capillaire à deux étages.(Expérimental)

Ces résultats obtenus expérimentalement se trouve en concordance avec les résultats de l'étude théorique.

<u>Figure. IV . 38</u>: Variation horaire d la production d'un distillateur à film capillaire à un et deux étages.

Les travaux réalisés par **M. El haimer** et **M.Barkaoui [14]** sur un distillateur solaire à film capillaire multi – étagé à Casablanca (Maroc) ; déterminent le nombre optimal d'étage du distillateur en fonction de l'écart de température entre la plaque noire du distillateur et la dernière plaque (Figure IV.39). Dans notre cas le nombre optimal d'étage est trois étages, puisque l'écart de température entre la plaque noire et la dernière plaque est de l'ordre de 30°C (Figure IV.15). Cela est justifier par la différence insignifiante entre la production du distillateur à trois étage et celle du distillateur à quatre étages.

Figure. IV . 39: Nombre optimal d'étage en fonction de l'écart de température entre la plaque noire et la dernière plaque. (Expérimental)

Conclusions et recommandations
CONCLUSION ET RECOMMANDATIONS

La distillation solaire est l'un des procédés de dessalement, des eaux saumâtres ou des eaux de mer, les plus simples et économiques, elle apparaît comme une solution intéressante en particulier dans les régions éloignées ou isolées manquantes d'eau potable.

Après avoir développé ces équations, nous avons élaboré un programme qui nous a permis de mettre en évidence les différents paramètres influant sur la production du distillat pour des périodes et des lieux différents et même pour des distillateurs différents.

Nous avons étudier l'évolution du débit de distillat en fonction du temps et en fonction du nombre d'étage, et les résultats obtenus nous ont permet de faire une comparaison entre le rendement du distillateur à film capillaire mono- étagé et multi- étagé.

En tenant compte des hypothèses considérées, on peut tirer les conclusions suivantes :

- Qu'un distillateur multi étagé possède le meilleur rendement qu'un distillateur à un seule étage, même pour un seule étage de distillation ;
- Un distillateur à plusieurs étages est recommandé pour :
 - Récupérer le maximum de quantité d'énergie au condenseur ;
 - Réduire la température de la sortie du condenseur ;
- Pour avoir une meilleure efficacité, on doit maintenir:
 - Un large écart de température entre la surface d'évaporation et la surface de condensation ;
 - Des parois étanche, où il n'y a pas de perte de vapeur;
- Une température élevée de la saumure donne un meilleur rendement, donc une chaleur spécifique et une conductivité thermique élevées, une masse volumique et viscosité dynamique réduites;
- Un large écart L'utilisation d'un absorbeur possédant une conductivité thermique et une chaleur spécifique élevées permis d'améliorer le rendement mais d'une manière insignifiante.

Il serait intéressant de poursuivre l'étude sur ce distillateur à plusieurs étages et voir l'influence de la concentration du sel de la saumure, la présence des tensio - actifs dans la saumure sur l'efficacité du système. Et déterminer un meilleur dimensionnement (dimension optimale: géométrie et nombre d'étage) afin de réduire les pertes de chaleurs. Une validation du modèle proposé à travers des résultats expérimentaux est recommandée.

Bibliographie

BIBLIOGRAPHIE

[1] : A. Khedim, K. Schwarzer, C. Faber, C. Muller, production décentralisée de l'eau potable à l'énergie solaire, 2004.

[2] : Le CNRS en ligne, dist-cellule web du CNRS. sagascience@cnrs-dir.fr

[3] : Perreau Benoit, le dessalement de l'eau de mer et des eaux saumâtres : les techniques d'hier et d'aujourd'hui, contexte économique et perspectives, février 1998.

[4]: Maurel .A, Desalination of sea water and brackish water, Saint Paul Lez Durance, CEA, May 1990, P14.

[5]: Smith, M.Sidem, production d'eau douce par dessalement, Paris, P43.

[6] Sadi Abdelkrim 'Le Dessalement Solaire : Considérations Techniques'.

[7]: Raymond Desjardins, Le traitement de eaux, 2^{ème} édition de l'Ecole Polytechnique de Montréal,1990, P242,P6,P241,P248,P251

[8]: Sidem, fresh water through desalination, Paris, Mai 1997, p27

[9]: R.Bernard, G.Merguy, M. Schwartz, Le rayonnement solaire: conversion thermique et application. technique et documentation, deuxième edition-1980.

[10]: B.W. Tleimat, Solar distillation: the state of the art, Sea water conversion laboratory, Richmond, U.S.A.

[11]: M.L. Khanna & K.N. Mathur, Experiments on demineralization of water in North India, New Delhi.

[12]: Maria Telkes, Solar stills, Research Division College Of Engineering, New York University.

[13]: Hydroplus, magazine de professionnels de l'eau et de l'assainissement, Avril 2006, P28-29

[14] : M. El Haimer, M. Barkaoui, A. Irhzo & H. Le Goff 'Distillateur solaire rustique, à film capillaire et à multiples effets essais expérimentaux à Casablanca', Maroc 2002

[15]: Technical brief, solar distillation, International Technology Development Group.

[16]: 'Dessalement par énergies renouvelables .MEDRC' A. MaureL, Février 2004.

[17]: R & C. Ouahes, P & J. Legoff, A hardy, high – yield solar distiller of brackish water, Desalination,1989.

[18]: B. Bouchkima, B.Legoff, R. Ouhes, M. Diboun, Etude théorique et application pratique du distillateur solaire à film capillaire, Juillet 1999.

[19] : Diffie J, Beckman W.A, Solar Engineering of Thermal Processes, Wiley, New York, 1980. [20]: C. Armenta-Deu, Water distillation : a prototype to determine flow rate gains temperature and salt concentration changes in pressurised system, December 2003.
[21]: G.N.Tiwari, Solar energy: Fundamentals, Design, Modelling and applications, Alfa Science International Ltd 2002, P79-80, P108-109, P288-289

[22]: Yves Jannot, Transferts Thermiques, 2003, P143.

[23]: Inaba.H, Experimental study of natural convection in an inclined air layer, Int.j. Heat mass Tran. 27 (8) (1984), P1127-1139.

[24]: Jakob. M, Heat Transfer, Vol.1 Willey, New York, 1949.

[25]: Churichill. S.W, Free convection in layers and enclosures, heat Exchanger, Design Handbook, Fluid Mech. Heat Tran. 2 (1983), P 1-25.

[26]: Kreith .f , Transmission de la chaleur et thermodynamique, p 484-488, 1967.

[27]: M.H. Kerrouche, C. Kerssi, O. Belleche & A. Hamid, Etude comparative entre deux distillateurs solaires l'un type cascade l'autre chapelle, revue internationale d'héliotechnique, 2000.

[28] : Anil. Kr. Tiwari, G.N.Tiwari, Effect of water depths on heat and mass transfer in passive solar still: In summer climatic condition, Desalination 195 (2006) 78-94.

[29] P.I. Cooper & W.R.W. Read, Design philosophy and generating experience for Australian solar stills, Solar energy, vol 16, Pergamon Press 1974, p1-8.

[**30**] : R.V. Dunkle, Solar water distillation, The roof type Still and Multiple effect diffusion Still, International Developments in Heat Transfer, ASME, Proc. International heat transfer, Part V, University of Colorado, 1961, P865.

[**31**] : M.A.S. Malik, G.N. Tiwari, A. Kumar, M.S. Sodha, Solar Distillation, A Practical Study of a Wide Range of Stills and Their Optimum Design, Construction and Performance, Pergamon Press Ltd, 1982, P11-86

[**32**] : H. Tanaka, T. Nosoko, T. Nagata, Parametric investigation of a basin- type- multipleeffect coupled solar still, Desalination 130 (2000) 295-304.

[33] : E. Zayouti, L. Bouirden, A.A. Haroune & M. Banoumi, Distillation solaire : Amélioration de la condensation de la vapeur d'eau dans les distillateurs solaires, Tétouan-Maroc 2002.

[34]: Satcunanathan & Hansen, An investigation of some of parameters involved in solar distillation, Solar energy, vol 14, pp 353-363, 1973

[35]:Roger Kling, thermodynamique générale et applications, Editions TECNNIP, 1967

Annexes

DISCRETISATION DES EQUATIONS DE TRANSFERT THERMIQUE

Les équations de transfert thermique, en régime transitoire, sont discrétisées est ordonnées, par rapport aux température comme suit :

• Pour le Distillateur à Film Capillaire à un Seule Etage:

dans ces équations, Δt désigne le pas de temps et l'astérisque (*), le temps t- Δt .

1. La couverture :

$$M_{v}Cp_{v}\frac{T_{v}^{t}(j)-T_{v}^{*}(j)}{\Delta t} = P_{g} + h_{ev-v}^{c}\left(T_{ev}^{t}(j)-T_{v}^{t}(j)\right) + h_{ev-v}^{r}\left(T_{ev}^{t}(j)-T_{v}^{t}(j)\right) - h_{v-a}^{c}\left(T_{v}^{t}(j)-T_{a}^{t}(j)\right) - h_{v-c}^{r}\left(T_{v}^{t}(j)-T_{c}^{t}(j)\right)$$

2. L'évaporateur (Absorbeur) :

$$M_{ev}Cp_{ev}\frac{T_{ev}^{t}(j) - T_{ev}^{*}(j)}{\Delta t} = P_{ev} - h_{ev-v}^{c} \left(T_{ev}^{t}(j) - T_{v}^{t}(j)\right) - h_{ev-v}^{r} \left(T_{ev}^{t}(j) - T_{v}^{t}(j)\right) - h_{ev-cd}^{c} \left(T_{ev}^{t}(j) - T_{cd}^{t}(j)\right) - h_{ev-cd}^{c} \left(T_{ev}^{t}(j) - T_{c$$

3. Le condenseur :

$$M_{cd} \cdot Cp_{cd} \cdot \frac{T_{cd}^{t}(j) - T_{cd}^{*}(j)}{\Delta t} = h_{ev-cd}^{c} \times \left(T_{ev(j)}^{t} - T_{cd(j)}^{t}\right) + h_{ev-cd}^{r} \times \left(T_{ev(j)}^{t} - T_{cd(j)}^{t}\right) - h_{cd-a}^{c} \times \left(T_{cd(j)}^{t} - T_{a(j)}^{t}\right) + h_{ev-cd}^{r} \times \left(T_{ev(j)}^{t} - T_{cd(j)}^{t}\right) + h_{cd-a}^{c} \times \left(T_{cd(j)}^{t} - T_{cd(j)}^{t}\right) + h_{ev-cd}^{r} \times \left(T_{ev(j)}^{t} - T_{cd(j)}^{t}\right) + h_{cd-a}^{r} \times \left(T_{cd(j)}^{t} - T_{cd(j)}^{t}\right) + h_{ev-cd}^{r} \times \left(T_{cd(j)}^{t} - T_{cd(j)}^{t}\right) + h_{ev-cd}^{r} \times \left(T_{cd(j)}^{t} - T_{cd(j)}^{t}\right) + h_{ev-cd}^{r} \times \left(T_{ev(j)}^{t} - T_{cd(j)}^{t}\right) + h_{ev-cd}^{r} \times \left(T_{cd(j)}^{t} - T_{cd(j)}^{t}\right) + h_{ev-cd}^{r} \times \left(T_{ev(j)}^{t} - T_{cd(j)}^{t}\right) + h_{ev-cd}^{r} \times \left(T_{cd(j)}^{t} - T_{cd(j)}^{t}\right) + h_{ev-cd}^{r}$$

Après développement, on aura :

$$1)\left(\frac{M_{\nu} \times Cp_{\nu}}{\Delta t} + h_{l}\right) \times T_{\nu}^{t}(j) - h_{2} \times T_{e\nu}^{t}(j) = \frac{M_{\nu} \times Cp_{\nu}}{\Delta t} \times T_{\nu}^{*}(j) + h_{ga}^{r} \times T_{c} + h_{ga}^{c} \times T_{a} + P_{ga}$$
(C.1)

$$2)\left(\frac{M_{ev} \times Cp_{ev}}{\Delta t} - M_{ea} \times Cp_{ea} + h_3\right) \times T_{ev}^t(j) - h_2 \times T_v^t(j) - h_4 \times T_{cd}^t(j) = \frac{M_{ev} \times Cp_{ev}}{\Delta t} \times T_{ev}^*(j) - D_i \times L_{vl} - M_{ea} \times Cp_{ea} \times T_{ea} + P_{ev}$$
(C.2)

$$3)\left(\frac{M_{cd} \times Cp_{cd}}{\Delta t} + h_5 + h_{bw}^c\right) \times T_{cd}^t(j) - h_4 \times T_{ev}^t(j) = \frac{M_{cd} \times Cp_{cd}}{\Delta t} \times T_{cd}^*(j) + h_{cd-c}^* \times T_{ct}^t(j) + D_i \times L_{vl}$$
(C.3)

A1

Ces équations forment un système des équations linéaire sous forme $A \times X = B$, on résout ce système par les méthodes itératives.

On forme la matrice A qui s'écrit comme suit :

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \times \begin{pmatrix} T_{\nu} \\ T_{e\nu} \\ T_{cd} \end{pmatrix} = \begin{pmatrix} B_1 \\ B_2 \\ B_3 \end{pmatrix}$$

Avec:

$$A_{11} = \frac{M_{v} \times Cp_{v}}{\Delta t} + h_{I}$$

$$A_{12} = -h_{2}$$

$$A_{13} = 0$$

$$A_{21} = -h_{2}$$

$$A_{22} = \frac{M_{ev} \times Cp_{ev}}{\Delta t} + h_{3} - M_{ea} \times Cp_{ea}$$

$$A_{23} = -h_{4}$$

$$A_{31} = 0$$

$$A_{32} = -h_{4}$$

$$A_{33} = \frac{M_{cd} \times Cp_{cd}}{\Delta t} + h_{5}$$

$$\mathbf{B}_{1} = \frac{M_{v} \times Cp_{v}}{\Delta t} \times T_{g^{*}}(j) + h_{v-a} \times T_{c} + h_{s-a} \times T_{a} + P_{g}$$

$$B_{2} = \frac{M_{ev} \times Cp_{ev}}{\Delta t} \times T_{ev}^{*}(j) - M_{ea} \times Cp_{ea} \times T_{ea}(j) - D_{i} \times L_{vl} + P_{ev}$$
$$B_{3} = \frac{M_{cd} \times Cp_{cd}}{\Delta t} \times T_{cd}^{*}(j) + h_{cd-a}^{c} \times T_{a}^{t}(j) + h_{cd-c}^{r} \times T_{c}^{t}(j) + D_{i} \times L_{vl}$$

- Pour le Distillateur à Film Capillaire à plusieurs Etages :
 - au niveau de la couverture vitrée :

$$M_{v} \times Cp_{v} \left(\frac{T_{v}^{t}(j) - T_{v}^{*}(j)}{\Delta t} \right) = P_{g} + h_{evl-v}^{c} \times \left(T_{evl}(j) - T_{v}^{t}(j) \right) + h_{evl-v}^{r} \times \left(T_{evl}(j) - T_{v}^{t}(j) \right) - h_{ev-v}^{c} \times \left(T_{v}^{t}(j) - T_{v}^{t}(j) - T_{v}^{t}(j) \right)$$

- Au niveau du premier étage:
 - Absorbeur évaporateur1 :

$$M_{ev 1} \times Cp_{ev 1} \left(\frac{T_{ev 1(j)} - T_{ev 1(j)}}{\Delta t} \right) = -D_{1} L_{v1} + P_{ev} - h_{ev 1-cd 1}^{c} \times \left(T_{ev 1(j)}^{t} - T_{cd 1(j)}^{t} \right) - h_{ev 1-v}^{c} \times \left(T_{ev 1(j)}^{t} - T_{v}^{t}(j) \right) \right)$$
$$h_{ev 1-cd 1}^{r} \times \left(T_{ev 1(j)}^{t} - T_{cd 1(j)}^{t} \right) + M_{ea} \cdot Cp_{ea} \times \left(T_{ev 1(j)}^{t} - T_{ea}^{t}(j) \right) - h_{ev 1-v}^{t} \times \left(T_{ev 1(j)}^{t} - T_{v}^{t}(j) \right) - h_{ev 1-cd 1}^{t} \times \left(T_{ev 1(j)}^{t} - T_{v}^{t}(j) \right) - h_{ev 1-cd 1}^{t} \times \left(T_{ev 1(j)}^{t} - T_{cd 1(j)}^{t} \right) \right)$$

• Condenseur1:

$$M_{cd 1} \cdot Cp_{cd 1} \left(\frac{T_{cd 1(j)}^{t} - T_{cd 1(j)}^{*}}{\Delta t} \right) = D_{1} \cdot L_{v1} + h_{ev 1-cd 1}^{c} \times \left(T_{ev 1(j)}^{t} - T_{cd 1(j)}^{t} \right) \\ + h_{ev 1-cd 1}^{r} \times \left(T_{ev 1(j)}^{t} - T_{cd 1(j)}^{t} \right) - h_{ev 2-cd 1}^{c} \times \left(T_{ev 1(j)}^{t} - T_{cd 1(j)}^{t} \right) \\ + h_{ev 1-cd 1}^{ev} \times \left(T_{ev 1(j)}^{t} - T_{cd 1(j)}^{t} \right) - h_{ev 2-cd 1}^{c} \times \left(T_{ev 1(j)}^{t} - T_{cd 1(j)}^{t} \right) \right)$$

- Au niveau du deuxième étage:
- l' évaporateur2 :

$$M_{ev 2}.Cp_{ev 2}\left(\frac{T_{ev 2(j)} - T_{ev 2(j)}}{\Delta t}\right) = -D_{2}.L_{v2} - h_{ev 2-cd 2}^{c} \times \left(T_{ev 2(j)} - T_{cd 2(j)}^{t}\right)$$
$$-h_{ev 2-cd 2}^{r} \times \left(T_{ev 2(j)} - T_{cd 2(j)}^{t}\right) + M_{ea}.Cp_{ea} \times \left(T_{ev 2(j)} - T_{ea}^{t}(j)\right)$$
$$+h_{ev 2-cd 1}^{cd} \times \left(T_{ev 2(j)} - T_{cd 1(j)}^{t}\right) - h_{ev 2-cd 2}^{ev} \times \left(T_{ev 2(j)} - T_{cd 2(j)}^{t}\right)$$

• Condenseur2 :

$$M_{cd 2} \cdot Cp_{cd 2} \left(\frac{T_{cd 2(j)} - T_{cd 2(j)}}{\Delta t} \right) = D_{2} \cdot L_{v2} + h_{ev 2-cd 2}^{c} \times \left(T_{ev 2(j)}^{t} - T_{cd 2(j)}^{t} \right) + h_{ev 2-cd 2}^{r} \times \left(T_{ev 2(j)}^{t} - T_{cd 2(j)}^{t} \right) - h_{ev 3-cd 2}^{cd} \times \left(T_{ev 3(j)}^{t} - T_{cd 2(j)}^{t} \right) + h_{ev 2-cd 2}^{ev} \times \left(T_{ev 2(j)}^{t} - T_{cd 2(j)}^{t} \right) - h_{ev 3-cd 2}^{cd} \times \left(T_{ev 3(j)}^{t} - T_{cd 2(j)}^{t} \right) \right)$$

- Au niveau du troisième étage:

• l'évaporateur3

$$M_{ev 3}.Cp_{ev 3}\left(\frac{T_{ev 3(j)}^{t}-T_{ev 3(j)}^{*}}{\Delta t}\right) = -D_{3}.L_{v3} - h_{ev 3-cd 3}^{c} \times \left(T_{ev 3(j)}^{t}-T_{cd 3(j)}^{t}\right) \\ -h_{ev 3-cd 3}^{r} \times \left(T_{ev 3(j)}^{t}-T_{cd 3(j)}^{t}\right) + M_{ea}.Cp_{ea} \times \left(T_{ev 3(j)}^{t}-T_{ea}^{t}(j)\right) \\ + h_{ev 3-cd 2}^{cd} \times \left(T_{ev 3(j)}^{t}-T_{cd 2(j)}\right) - h_{ev 3-cd 3}^{ev} \times \left(T_{ev 3(j)}^{t}-T_{cd 3(j)}\right)$$

• condenseur3

$$M_{cd 3}. Cp_{cd 3} \left(\frac{T_{cd 3(j)} - T_{cd 3(j)}}{\Delta t} \right) = D_{3}.L_{v3} + h_{ev 3-cd 3}^{c} \times \left(T_{ev 3(j)} - T_{cd 3(j)} \right) \\ + h_{ev 3-cd 3}^{r} \times \left(T_{ev 3(j)} - T_{cd 3(j)} \right) - h_{ev 4-cd 3}^{cd} \times \left(T_{ev 4(j)} - T_{cd 3(j)} \right) \\ + h_{ev 3-cd 3}^{ev} \times \left(T_{ev 3(j)} - T_{cd 3(j)} \right) - h_{ev 4-cd 3}^{cd} \times \left(T_{ev 4(j)} - T_{cd 3(j)} \right) \right)$$

- Au niveau du quatrième étage:

• l'évaporateur4

$$M_{ev4} \cdot Cp_{ev4} \left(\frac{T_{ev4}^{t} - T_{ev4}^{*}}{\Delta t} \right) = D_{4} \cdot L_{v4} - h_{ev4-cd4}^{c} \times \left(T_{ev4(j)}^{t} - T_{cd4(j)}^{t} \right) - h_{ev4-cd4}^{r} \times \left(T_{ev4(j)}^{t} - T_{cd4(j)}^{t} \right) \right)$$
$$M_{ea} \cdot Cp_{ea} \times \left(T_{ev4(j)}^{t} - T_{ea}^{t}(j) \right) + h_{ev4-cd3}^{cd} \times \left(T_{ev4(j)}^{t} - T_{cd3(j)}^{t} \right) - h_{ev4-cd4}^{ev} \times \left(T_{ev4(j)}^{t} - T_{cd4(j)}^{t} \right) \right)$$

• condenseur4

$$M_{cd 4} \cdot Cp_{cd 4} \left(\frac{T_{cd 4(j)} - T_{cd 4(j)}}{\Delta t} \right) = D_{4} \cdot L_{v4} + h_{ev 4-cd 4}^{c} \times \left(T_{ev 4(j)} - T_{cd 4(j)}^{t} \right) \\ + h_{ev 4-cd 4}^{r} \times \left(T_{ev 4(j)}^{t} - T_{cd 4(j)}^{t} \right) - h_{cd 4-a}^{c} \times \left(T_{cd 4(j)}^{t} - T_{d}^{t} \right) \\ + h_{ev 4-cd 4}^{ev} \times \left(T_{ev 4(j)}^{t} - T_{cd 4(j)}^{t} \right) \\ - h_{cd 4-c}^{r} \times \left(T_{cd 4(j)} - T_{c (j)} \right)$$

Après développement, on aura :

$$1)\left(\frac{M_{v} \times Cp_{v}}{\Delta t} + h_{l}\right) \times T_{g}^{t}(j) - h_{2} \times T_{evl}^{t}(j) = \frac{M_{v} \times Cp_{v}}{\Delta t} \times T_{v}^{*}(j) + h_{v-c}^{r} \times T_{c} + h_{v-a}^{c} \times T_{a} + P_{g} \quad (C.1)$$

$$(\frac{M_{evl} \times Cp_{evl}}{\Delta t} - M_{ea} \times Cp_{ea} + h_3) \times T_{evl}^{t}(j) - h_2 \times T_{v}^{t}(j) - h_4 \times T_{cdl}^{t}(j) = \frac{M_{evl} \times Cp_{evl}}{\Delta t} \times T_{evl}^{*}(j) - D_i \times L_{vl} - M_{ea} \times Cp_{ea} \times T_{ea} + P_{ev}$$

A4

(C.4)

$$3)\left(\frac{M_{cdl} \times Cp_{cdl}}{\Delta t} + h_5\right) \times T_{cdl}^{t}(j) - h_4 \times T_{evl}^{t}(j) - h_6 \times T_{ev2(j)}^{t} = \frac{M_{cdl} \times Cp_{cdl}}{\Delta t} \times T_{cdl}^{*}(j) + D_i \times L_{vl}$$
(C.3)

$$\begin{pmatrix} \underline{M}_{ev2} \times Cp_{ev2} \\ \underline{\Delta t} \end{pmatrix} \sim M_{ea} \times Cp_{ea} + h_7 \end{pmatrix} \times T_{ev2}^{t}(j) - h_8 \times T_{cd2}^{t}(j) - h_6 \times T_{cd1}^{t}(j) = \frac{M_{ev1} \times Cp_{ev1}}{\underline{\Delta t}} \times T_{ev1}^{*}(j) - D_i \times L_{v2} - M_{ea} \times Cp_{ea} \times T_{ea}$$

$$5)\left(\frac{M_{cd2} \times Cp_{cd2}}{\Delta t} + h_g\right) \times T_{cd2}^{t}(j) - h_g \times T_{ev2}^{t}(j) - h_{10} \times T_{ev3(j)}^{t} = \frac{M_{cd2} \times Cp_{cd2}}{\Delta t} \times T_{cd2}^{*}(j) + D_i \times L_{v2}$$
(C.5)

$$\begin{pmatrix} \underline{M}_{ev3} \times Cp_{ev3} - M_{ea} \times Cp_{ea} + h_{11} \end{pmatrix} \times T_{ev3}^{t}(j) - h_{10} \times T_{cd2}^{t}(j) - h_{12} \times T_{cd3}^{t}(j) = \frac{\underline{M}_{ev3} \times Cp_{ev3}}{\Delta t} \times T_{ev1}^{*}(j) - h_{10} \times T_{cd2}^{t}(j) - h_{12} \times T_{cd3}^{t}(j) = \frac{\underline{M}_{ev3} \times Cp_{ev3}}{\Delta t} \times T_{ev1}^{*}(j) - h_{10} \times T_{cd2}^{t}(j) - h_{12} \times T_{cd3}^{t}(j) = \frac{\underline{M}_{ev3} \times Cp_{ev3}}{\Delta t} \times T_{ev1}^{*}(j)$$

(C.6)

$$(T_{cd3} \times Cp_{cd3} + h_{13}) \times T_{cd3}^{t}(j) - h_{14} \times T_{ev4}^{t}(j) - h_{12} \times T_{ev3(j)}^{t} = \frac{M_{cd3} \times Cp_{cd3}}{\Delta t} \times T_{cd3}^{*}(j) + D_{i} \times L_{v3}$$
(C.7)

$$\begin{pmatrix} \underline{M}_{ev4} \times Cp_{ev4} - M_{ea} \times Cp_{ea} + h_{15} \end{pmatrix} \times T_{ev4}^{t}(j) - h_{16} \times T_{cd4}^{t}(j) - h_{14} \times T_{cd3}^{t}(j) = \frac{M_{ev4} \times Cp_{ev4}}{\Delta t} \times T_{ev4}^{*}(j) - h_{16} \times T_{cd4}^{t}(j) - h_{14} \times T_{cd3}^{t}(j) = \frac{M_{ev4} \times Cp_{ev4}}{\Delta t} \times T_{ev4}^{*}(j) - h_{16} \times T_{cd4}^{t}(j) - h_{16} \times T_{cd4}^{t}(j) - h_{16} \times T_{cd3}^{t}(j) = \frac{M_{ev4} \times Cp_{ev4}}{\Delta t} \times T_{ev4}^{*}(j)$$

(C.8)

$$\begin{pmatrix}
\frac{M_{cd4} \times Cp_{cd4}}{\Delta t} + h_{17} \end{pmatrix} \times T_{cd3}^{t}(j) - h_{16} \times T_{ev4}^{t}(j) = \frac{M_{cd3} \times Cp_{cd3}}{\Delta t} \times T_{cd3}^{*}(j) - h_{cd4-a}^{c} \times T_{d}^{t}(j) - h_{cd4-a}^{c} \times T_{d}^{t}(j) - h_{cd4-a}^{c} \times T_{c}^{t}(j) + D_{i} \times L_{v4}$$
(C.9)

Ces équations forment un système des équations linéaire sous forme $A \times X = B$, on résout ce système par les méthodes itératives.

On forme la matrice A qui s'écrit comme suit :

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} & A_{15} & A_{16} & A_{17} & A_{18} & A_{19} \\ A_{21} & A_{22} & A_{23} & A_{24} & A_{25} & A_{26} & A_{27} & A_{28} & A_{29} \\ A_{31} & A_{32} & A_{33} & A_{34} & A_{35} & A_{36} & A_{37} & A_{38} & A_{39} \\ A_{41} & A_{42} & A_{43} & A_{44} & A_{45} & A_{46} & A_{47} & A_{48} & A_{49} \\ A_{51} & A_{52} & A_{53} & A_{54} & A_{55} & A_{56} & A_{57} & A_{58} & A_{59} \\ A_{61} & A_{62} & A_{63} & A_{64} & A_{65} & A_{66} & A_{67} & A_{68} & A_{69} \\ A_{71} & A_{72} & A_{73} & A_{74} & A_{75} & A_{76} & A_{77} & A_{78} & A_{79} \\ A_{81} & A_{82} & A_{83} & A_{84} & A_{85} & A_{86} & A_{87} & A_{88} & A_{89} \\ A_{91} & A_{92} & A_{93} & A_{94} & A_{95} & A_{96} & A_{97} & A_{98} & A_{99} \end{pmatrix} \times \begin{pmatrix} T_{\nu} \\ T_{e\nu1} \\ T_{cd1} \\ T_{e\nu2} \\ T_{cd2} \\ T_{e\nu3} \\ T_{cd3} \\ T_{e\nu4} \\ T_{cd4} \end{pmatrix} = \begin{pmatrix} B_1 \\ B_2 \\ B_2 \\ B_3 \\ B_4 \\ B_5 \\ B_6 \\ B_7 \\ B_8 \\ B_9 \end{pmatrix}$$

、

Avec:

$$A_{11} = \frac{M_{v} \times Cp_{v}}{\Delta t} + h_{I}$$

$$A_{12} = -h_{2}$$

$$A_{13} = 0$$

$$A_{14} = 0$$

$$A_{15} = 0$$

$$A_{16} = 0$$

$$A_{17} = 0$$

$$A_{18} = 0$$

$$A_{21} = -h_{2}$$

$$A_{22} = \frac{M_{evl} \times Cp_{evl}}{\Delta t} + h_{3} - M_{ea} \times Cp_{ea}$$

$$A_{23} = -h_{4}$$

$$A_{24} = 0$$

$$A_{25} = 0$$

$$A_{26} = 0$$

$$A_{27} = 0$$

$$A_{28} = 0$$

$$A_{29} = 0$$

$$A_{31} = 0$$

$$A_{32} = -h_{4}$$

$$A_{33} = \frac{M_{edl} \times Cp_{edl}}{\Delta t} + h_{5}$$

 $A_{34} = -h_6$ $A_{35} = 0$ $A_{36} = 0$ $A_{37} = 0$ $A_{38} = 0$ $A_{39} = 0$ $A_{41} = 0$ $A_{42} = 0$ $A_{43} = -h_6$ $A_{44} = \frac{M_{ev2} \times Cp_{ev2}}{\Delta t} + h_7 - M_{ea} \times Cp_{ea}$ $A_{45} = -h_8$ $A_{46} = 0$ $A_{47} = 0$ $A_{48} = 0$ $A_{49} = 0$ $A_{51} = 0$ $A_{52} = 0$ $A_{53} = 0$ $A_{54} = -h_8$ $\mathbf{A}_{55} = \frac{M_{cd2} \times Cp_{cd2}}{\Delta t} + h_9$ $A_{56} = -h_{10}$ $A_{57} = 0$ $A_{58} = 0$ $A_{59} = 0$ $A_{61} = 0$ $A_{62} = 0$ $A_{63} = 0$ $A_{64} = 0$ $A_{65} = -h_{10}$ $A_{66} = \frac{M_{ev2} \times Cp_{ev2}}{\Delta t} + h_{11} - M_{ea} \times Cp_{ea}$

 $A_{67} = -h_{12}$ $A_{68} = 0$ $A_{69} = 0$ $A_{71} = 0$ $A_{72} = 0$ $A_{73} = 0$ $A_{74} = 0$ $A_{75} = 0$ $A_{76} = -h_{12}$ $\mathbf{A}_{77} = \frac{M_{cd3} \times Cp_{cd3}}{\Delta t} + h_{13}$ $A_{78} = -h_{14}$ $A_{79} = 0$ $A_{81} = 0$ $A_{82} = 0$ $A_{83} = 0$ $A_{84} = 0$ $A_{85} = 0$ $A_{86} = 0$ $A_{87} = -h_{14}$ $A_{88} = \frac{M_{ev4} \times Cp_{ev4}}{\Delta t} + h_{15} - M_{ea} \times Cp_{ea}$ $A_{89} = -h_{16}$ $A_{91} = 0$ $A_{92} = 0$ $A_{93} = 0$ $A_{94} = 0$ $A_{95} = 0$ $A_{96} = 0$ $A_{97} = 0$ $A_{98} = -h_{16}$ $A_{99} = \frac{M_{cd4} \times Cp_{cd4}}{\Lambda t} + h_{17}$

$$B_{1} = \frac{M_{g} \times Cp_{g}}{\Delta t} \times T_{v}^{*}(j) + h_{v}^{*}a \times T_{c} + h_{v}^{*}a \times T_{a} + P_{g}$$

$$B_{2} = \frac{M_{evl} \times Cp_{evl}}{\Delta t} \times T_{evl}^{*}(j) - M_{ea} \times Cp_{ea} \times T_{ea}(j) - D_{l} \times L_{vl} + P_{ev}$$

$$B_{3} = \frac{M_{edl} \times Cp_{edl}}{\Delta t} \times T_{edl}^{*}(j) + D_{l} \times L_{vl}$$

$$B_{4} = \frac{M_{ev2} \times Cp_{ev2}}{\Delta t} \times T_{ev2}^{*}(j) - M_{ea} \times Cp_{ea} \times T_{ea}(j) - D_{2} \times L_{v2}$$

$$B_{5} = \frac{M_{ed2} \times Cp_{ed2}}{\Delta t} \times T_{ev3}^{*}(j) + D_{2} \times L_{v2}$$

$$B_{6} = \frac{M_{ev3} \times Cp_{ev3}}{\Delta t} \times T_{ev3}^{*}(j) - M_{ea} \times Cp_{ea} \times T_{ea}(j) - D_{3} \times L_{v3}$$

$$B_{7} = \frac{M_{ev4} \times Cp_{ev4}}{\Delta t} \times T_{ev3}^{*}(j) - M_{ea} \times Cp_{ea} \times T_{ea}(j) - D_{4} \times L_{v4}$$

$$B_{8} = \frac{M_{ev4} \times Cp_{ev4}}{\Delta t} \times T_{ev3}^{*}(j) - M_{ea} \times Cp_{ea} \times T_{ea}(j) - D_{4} \times L_{v4}$$

$$B_{9} = \frac{M_{ed4} \times Cp_{ed4}}{\Delta t} \times T_{ed4}^{*}(j) + D_{4} \times L_{v} + h_{cd}^{*} + a \times T_{a}(j) + h_{cd}^{*} + c \times T_{c}(j)$$

NOMBRES ADIMONSIONNELLES

B.1. Nombre de Nusselt

La combinaison du coefficient d'échange de chaleur par convection, de la longueur caractéristique et de la conductivité thermique du fluide est appelée module ou nombre de Nusselt.

C'est le rapport du gradient de température dans le fluide en contact immédiat avec la surface au gradient de température de référence. Il caractérise l'intensité de l'échange de chaleur sur la limite fluide - surface.

$$Nu = \frac{\overline{h_c} \times L}{\lambda_f} \tag{B.1}$$

 $\overline{h_c}$: coefficient de convection thermique [w/m².°C]

L : longueur caractéristique [m]

 λ_f : coefficient de conductivité thermique du fluide [w/m.°C]

B.2. Nombre de Grashoff

Ce nombre caractérise la transmission de chaleur en convection naturelle, il exprime le rapport entre les forces de viscosité et les forces ascensionnelles créées dans le fluide par les différences de température qui y règnent.

$$Gr = \frac{\beta \times \rho^2 \times g \times L^3 \times \Delta T}{\mu^2} = \frac{\beta \times g \times L^3 \times \Delta T}{\nu^2}$$
(B.2)

 β : est le coefficient de dilatation thermique rapporté à la température moyenne du fluide ($\beta = \frac{1}{T}$ pour un fluide parfait) [1/K]

g: l'accélération de la chute libre [m/s²]

L : une dimension caractéristique (par exemple : la hauteur d'une plaque plane verticale) [m].

B.3. Nombre de Prandlt

Ce nombre représente le rapport de la viscosité cinématique à la diffusivité thermique ; il caractérise les propriétés physiques du fluide.

$$\Pr = \frac{\mu \times Cp}{\lambda_f} = \frac{\nu}{a}$$
(B.3)

Cp : la chaleur spécifique à pression constante [j/kg.°C]

 λ_f : la conductivité thermique du fluide [w/m.°C]

a: la diffusivité thermique [m²/s]

Plus la viscosité est grande plus l'énergie dépensée nécessaire pour véhiculer le fluide est élevée et plus la diffusivité est grande plus le fluide extrait facilement la chaleur de la paroi.

B.4. Nombre de Reynolds

Ce nombre est une mesure de la grandeur relative des forces d'inertie par rapport aux forces de viscosité dans l'écoulement.

$$\operatorname{Re} = \frac{\rho \times v \times L}{\mu} = \frac{v \times L}{v}$$
(B.4)

v : est la vitesse caractéristique du fluide [m/s]

L : la dimension linéaire caractéristique du corps [m]

 μ : la viscosité dynamique [kg/m.s]

v: la viscosité cinématique [m²/s]

 ρ : la densité du fluide [kg/m³]

B.5. Nombre de Peclet

Il exprime le rapport des flux thermiques par convection et par conduction dans un échange de chaleur convectif. Ce nombre intervient surtout dans les problèmes d'écoulements à faible nombre de Prandlt : c'est à dire pour les métaux liquides.

$$Pe=\Pr \times \operatorname{Re}=\frac{\nu \times L}{a}$$
 (B.5)

B.6. Nombre de Stanton ou de Margoulis

Ce nombre est aussi un coefficient de transfert de chaleur sans dimension : il exprime le rapport entre le flux thermique total et par convection dans un échange de chaleur convectif.

$$St = \frac{Nu}{\text{Re} \times \text{Pr}} = \frac{q}{\rho \times Cp \times v \times L^2 \times \Delta T}$$
(B.6)

B.7. Nombre de Rayleigh

Il exprime la relation entre les nombres de Grashoff et de Prandlt. Ce nombre peut fournir un critère de passage de la convection naturelle laminaire à la convection naturelle turbulente. $Ra=Gr \times Pr$ (B.7)

B.8. Nombre de Graetz

$$Gr = \operatorname{Re} \times \operatorname{Pr}(L/D)$$
 (B.8)

Let D sont des dimensions caractéristiques du conduit.

CARACTERISTIQUES THERMOPHYSIQUES DE L'EAU ET DU MELANGE AIR-VAPEUR

C.1. Caractéristiques thermo physiques de l'eau

Dans ce paragraphe, nous avons exprimé les caractéristiques thermo physiques de l'eau en fonction de la température exprimé en °C.

B.1.1. Conductivité thermique λ [w/m °C]

$$\lambda = 0.5692 + 0.1858 \times 10^{-2} \times T_f - 0.7499 \times 10^{-5} \times T_f^2 \qquad (C.1)$$

C.1.2. Capacité calorifique Cp (j/kg °**C)**

$$Cp = 4216.664 - 3.165 \times T_f + 0.886 \times 10^{-1} \times T_f^2 - 0.101 \times 10^{-2} \times T_f^3 + 0.445 \times 10^{-5} \times T_f^4$$
(C.2)

C.1.3. Coefficient de dilatation volumique β [1/°K]

$$\beta = (-0.884 + 0.188 \times T_f - 0.26 \times 10^{-2} \times T_f^2 + 0.252 \times 10^{-4} \times T_f^3 - 0.975 \times 10^{-7} \times T_f^4) \times 10^{-4}$$
(C.3)

C.1.4. Chaleur latente de vaporisation Lv [kj/kg]

Une valeur empirique donne avec une très bonne approximation la valeur de la chaleur latente de vaporisation pour $0^{\circ}C < T < 200^{\circ}C$:

$$Lv = 2500.8 - 2.48 \times T_f \tag{C.4}$$

Formule que l'on peut arrondir avec une erreur négligeable de façon à la retenir plus facilement :

$$Lv = 2500 - 2.5 \times T_f \tag{C.5}$$

On peut aussi utilisé la formule suivante :

$$Lv = 4185 x [597 - 0.56 x T_f]$$
(C.6)

C.1.5. Viscosité dynamique µ [kg/m.s]

$$\mu = 5.449 - 0.1067 \times T_f + 7.325 \times 10^{-4} \times T_f^2.$$
 (C.7)

C.1.6. Viscosité cinématique v [m²/s]

$$v = \begin{cases} 3.65 \times T_f + 1.788 \times 10^{-6} \quad pour \ T_f \in [0, \ 20]^{\circ}C; \\ -1.725 \times (T_f - 20) + 1.006 \times 10^{-6} \quad pour \ T_f \in [20, \ 40]^{\circ}C; \\ 0.875 \times (T_f - 40) + 0.568 \times 10^{-6} \quad pour \ T_f \in [40, 60]^{\circ}C; \\ 0.587 \times (T_f - 60) + 0.478 \times 10^{-6} \quad pour \ T_f \in [60, 80]^{\circ}C. \end{cases}$$

C.2. Mélange air-vapeur d'eau

C.2.1. Définition

Nous allons considérer le mélange air-vapeur d'eau à l'intérieur du distillateur, comme un mélange de gaz parfaits et nous utilisons donc la loi de Dalton qui nous dit que « la pression, l'énergie interne, l'enthalpie et l'entropie d'un mélange de gaz parfaits sont respectivement égales à la somme des pressions partielles, des énergies internes partielles, des enthalpies partielles et des entropies partielles qu'auraient les gaz constituants s'ils occupaient seuls le volume total à la température du mélange. » .

C.2.2. Pression partielle

La pression partielle de l'air humide est donnée par la loi de Dalton :

$$P = Pa + Pv \tag{C.9}$$

Pa : pression partielle de l'air sec ;

Pv : pression partielle de la vapeur d'eau.

B.2.3. Humidité relative

Par définition, l'humidité relative de l'air humide est :

$$Hr = \frac{\rho_v}{\rho_{vs}} = \frac{m_v \times P_v}{m_{vs} \times P_{vs}} = \frac{P_v}{P_{vs}} \qquad (m_v = m_{vs})$$
(C.10)

- ρ_v : masse volumique de la vapeur ;
- ρ_{vs} : masse volumique de la vapeur saturée ;
- m_v : masse molaire de la vapeur ;
- m_{vs} : masse molaire de la vapeur saturée.

C.2.4. Concentration de la vapeur d'eau dans l'air

On définit la concentration de la vapeur d'eau dans l'air (ou bien la fraction massique de l'air humide) par la relation suivante :

$$c_{v} = \frac{0.622 \times P_{v}}{P - 0.378} \tag{C.11}$$

P : pression atmosphérique.

C.3. Caractéristiques thermo physiques de l'air humide

C.3.1. Conductivité thermique λ_m [w/m.°C]

$$\lambda_m = \lambda_0 + 0.00476 \times (c_v/l - c_v) \tag{C.12}$$

où λ_0 est la conductivité de l'air à la température T, qui peut être approchée par un polynôme de degré trois :

$$\lambda_0 = 0.0243 + (9.7416 \times T - 0.1825 \times T^2 + 0.00227 \times T^3) \times 10^5 \quad (C.13)$$

Où T est exprimée en °C.

C.3.2. Viscosité dynamique μ_m [kg/m.s]

$$\mu = \frac{\rho \times g \times h}{\frac{P_v}{\mu_v} + \frac{P_a}{\mu_a}}$$
(C.14)

ph pris égal à l'unité, g est l'accélération de la pesanteur.

 μ_{v} et μ_{a} représentent respectivement la viscosité dynamique de la vapeur d'eau et de l'air sec avec :

$$\mu_{v} = 30.147 \times 10^{-7} \times \sqrt{\frac{T}{273}} \times \left(1 + \frac{673}{T}\right)^{-1} \quad [kg/m.s]$$
$$\mu_{a} = 25.393 \times 10^{-7} \times \sqrt{\frac{T}{273}} \times \left(1 + \frac{122}{T}\right)^{-1} \quad [kg/m.s]$$

P en atm et T en °k.

C.3.3. Viscosité cinématique $v_m [m^2/s]$

$$v_m = \frac{\mu_m}{\rho_m} \tag{C.15}$$

où ρ_m est la masse volumique du mélange air - vapeur ;

$$\rho_m = \frac{1}{R \times T} \times \left[(m_v - m_a) \times P_v + m_a \times P_a \right] = \frac{32.989}{T} \times \left(1 - \frac{0.378 \times c_v}{0.622 + 0.378 \times c_v} \right) \times P$$
(C.16)

C3

où P et P_v sont exprimés en atm et T en °k.

C.3.4. Chaleur spécifique cp_m [j/kg.°C]

Considérons une masse m du mélange la température T. Pour élever sa température de dT en une seconde, il faudrait lui fournir une énergie ($m \times cp_m \times dT$) telle que :

$$m \times cp_{m} \times dT = m_{v} \times cp_{v} \times dT + m_{a} \times cp_{a} \times dT \qquad (C.17)$$

cp a et cp v étant les chaleurs spécifiques de l'air et de la vapeur d'eau.

Comme : $m = m_v + m_a$ et $\frac{m_v}{m_a} = \frac{0.622 \times P_v}{P - 0.378 \times P_v}$

L'expression de la chaleur massique du mélange s'écrit :

$$cp_m = cp_a + \frac{0.622 \times P_v}{P - 0.378 \times P_v} \times (cp_v - cp_a)$$
(C.18)

cpv = 1862.3 j/kg.°C *cpa* = 1004.4 j/kg.°C

C.3.5. Coefficient de dilatation thermique $\beta_m\,[K^{\text{-}1}]$

Il est défini comme suit :

$$\beta_m(T) = -\frac{1}{\rho_m} \times \left(\frac{\partial \rho_m}{\partial T}\right)_{P,c_v}$$
(C.19)

En dérivant ρ_m par rapport à T, pression P et concentration c_v constantes, et en négligeant

l'expression $\frac{1}{R \times T} (m_v - m_a) \times \left(\frac{\partial P_v}{\partial T} \right)_{P,c_v}$, le coefficient de dilatation s'exprime ainsi :

$$\beta_m(T) \approx \frac{1}{T} \tag{C.20}$$

C.3.6. Coefficient de dilatation massique β_m^*

Il est défini de la façon suivante :

$$\beta_m^*(T) = -\frac{1}{\rho_m} \times \left(\frac{\partial \rho_m}{\partial T}\right)_{P,T}$$
(C.21)

en tenant compte des relations (B.15) et (B.10), l'expression du coefficient de dilatation massique devient :

$$\beta_m^*(T) = 0.61 \times \left(1 - 0.378 \times \frac{P_v}{P}\right)$$
 (C.22)

RESOLUTION DES SYSTEMES D'EQUATION LINEAIRES PAR LES METHODES ITERATIVES

D.1. Introduction

Les méthodes itératives sont généralement préférées pour les grands systèmes linéaire $A \times T = B$ à matrice A creuse parce qu'elles ne modifient pas la matrice A et que dans un grand nombre d'applications A est creuse et présente une structure particulière (tri diagonale, penta diagonale) ce qui lui permet de ne pas être mémorisées explicitement et d'assurer pratiquement la convergence.

Dans les méthodes élémentaires, la méthode de Guass-Seidel est préférée, parce qu'elle consomme moins de mémoire et converge plus vite.

D.2. Méthode de Gauss Seidel

On veut résoudre le système linéaire :

$$A \times T = B \tag{D.1}$$

Où :

A : est une matrice carrée d'ordre n ;

B : est une matrice colonne ;

T : est le vecteur des inconnues ; $\mathbf{T} = (\mathbf{T}_1, \mathbf{T}_2, \dots, \mathbf{T}_n)$.

Ecrivons A sous la forme :

$$A = M - N \tag{D.2}$$

Où :

$$M = D - L \tag{D.3}$$

$$N = U \tag{D.4}$$

Avec:

D : matrice diagonale

L: matrice inférieure

U : matrice supérieure

Donc la matrice « A » s'écrit comme suit :

$$A = (D - L) - U \qquad (D.5)$$

A partir d'un vecteur initial $T^{(0)}$ on peut écrire :

$$T^{(1)} = (D - L)^{-1} \times U \times T^{(0)} + (D - L)^{-1} \times B$$
 (D.6)

Comme l'inverse de (D - L) peut être compliquée à calculer, on préfère écrire le système comme suit :

$$(D - L) \times T^{(1)} = U \times T^{(0)} + B$$
 (D.7)

$$D \times T^{(1)} = L \times T^{(1)} + U \times T^{(0)} + B$$
 (D.8)

Où :

En développant cette récurrence vectorielle on obtient:

$$T_{1}^{(k+1)} = (B_{1} - A_{12} \times T_{2}^{(k)} - A_{13} \times T_{3}^{(k)} - \dots - A_{1n} \times T_{n}^{(k)}) / A_{11}$$

$$T_{2}^{(k+1)} = (B_{2} - A_{21} \times T_{1}^{(k+1)} - A_{23} \times T_{3}^{(k)} - \dots - A_{2n} \times T_{n}^{(k)}) / A_{22}$$

$$\dots$$

$$T_{n}^{(k+1)} = (B_{n} - A_{n1} \times T_{1}^{(k+1)} - A_{n2} \times T_{2}^{(k+1)} - \dots - A_{nn-1} \times T_{n-1}^{(k)}) / A_{nn}$$

D.3. Condition de convergence

Le système de ces équations précédente converge si :

1)
$$|T_{j}^{(k+1)} - T_{j}^{(k)}| < eps$$
 (D.9)

ou bien

ou bien

3)
$$\sqrt{\sum_{j=1}^{n} (T_{j}^{(k+1)} - T_{j}^{(k)})^{2}} < eps$$
 (D.11)

Tableaux des résultats numériques

TL (hr)	TSV (hr)	β (°)	ω (°)	h (°)	i (°)	Igh(W/m ²)	Ig (W/m ²)	Pg (W/m ²)	Pev(W/m ²)
7	6.253906	30	-1.503561	2.427380 ^E -01	1.498215	471.180700	104.454	8.875393	86.740970
8	7.253906	30	-1.241895	4.459600 ^E -01	1.254646	746.321200	312.0771	43.0459	379.689200
9	8.253906	30	-9.802279E-01	6.317132 ^E -01	1.013597	880.307900	544.6572	53.80055	840.531400
10	9.253906	30	-7.185613E-01	7.873517 ^E -01	7.793294E-01	953.198700	753.0301	61.51086	1241.051000
11	10.25391	30	-4.568946E-01	9.022795 ^E -01	5.619777E-01	993.734100	911.3585	72.67104	1510.218000
12	11.25391	30	-1.952279E-01	9.686725 ^E -01	3.921585E-01	1013.537000	1004.025	81.91004	1641.151000
13	12.25391	30	6.643877E-02	9.820107 ^E -01	3.489484E-01	1017.250000	1022.729	83.83654	1662.425000
14	13.25391	30	3.281054E-01	9.413859 ^E -01	4.688750E-01	1005.674000	965.849	77.91019	1591.117000
15	14.25391	30	5.897721E-01	8.495639 ^E -01	6.691262E-01	976.241900	838.369	66.80517	1391.093000
16	15.25391	30	8.514388E-01	7.127959 ^E -01	8.970397E-01	921.421400	652.1533	57.07268	1052.205000
17	16.25391	30	1.113106	5.403930 ^E -01	1.135492	823.004500	427.342	50.17766	603.830600
18	17.25391	30	1.374772	3.440925 ^E -01	1.378195	633.362900	198.5459	27.70164	192.666500
19	18.25391	30	1.636439	1.372582 ^E -01	1.622036	223.797600	42.08849	4.644917	39.982950

Tableau n°= 01 : Evolution temporelle du rayonnement et des puissances absorbées

TL (hr)	B (°)	Ig (W/m ²)	Tc (°C)	Ta (°C)	Tea (°C)	Tv (°C)	Tev (°C)	Tcd (°C)
7	30	104.454	21.993290	32.620720	32.620720	24.189740	30.045200	25.826830
8	30	312.0771	25.022720	34.709500	34.709500	30.782490	34.480720	33.826230
9	30	544.6572	28.066450	36.801030	36.801030	38.232070	44.116880	39.601190
10	30	753.0301	30.917290	38.753620	38.753620	44.266050	51.723380	45.448240
11	30	911.3585	33.379350	40.435040	40.435040	48.435150	56.834270	49.759020
12	30	1004.025	35.282070	41.731370	41.731370	50.753410	59.580000	52.227790
13	30	1022.729	36.492730	42.554820	42.554820	51.504140	60.398530	53.072730
14	30	965.849	36.926530	42.849610	42.849610	50.850440	59.518780	52.455070
15	30	838.369	36.552980	42.595770	42.595770	48.399010	56.400880	50.004700
16	30	652.1533	35.398330	41.810500	41.810500	44.009210	50.779300	45.734400
17	30	427.342	33.543510	40.546980	40.546980	37.809990	42.704460	40.348610
18	30	198.5459	31.117910	38.890800	38.890800	30.589000	35.980370	33.099780
19	30	42.08849	28.289690	36.954150	36.954150	26.749950	33.485500	28.065800

Tableau n°= 02 : Evolution temporelle des différentes températures

TL (hr)	β (°)	Ig (W/m ²)	Tw (°C)	m _d (l/m²/hr)	Eg (%)	Ei (%)	F.P(kg/J)
8	30	312.0771	34.480720	4.076461E-03	44.477750	36.557510	3.348069E-01
9	30	544.6572	44.116880	8.783317E-02	25.183550	16.318730	1.923681E-01
10	30	753.0301	51.723380	1.871049E-01	18.036550	10.944000	1.394643E-01
11	30	911.3585	56.834270	2.644353E-01	14.802460	8.932715	1.154309E-01
12	30	1004.025	59.580000	3.056115E-01	13.387310	8.190100	1.048807E-01
13	30	1022.729	60.398530	3.129536E-01	13.128880	8.076923	1.029995E-01
14	30	965.849	59.518780	2.904693E-01	13.919790	8.449670	1.090410E-01
15	30	838.369	56.400880	2.301831E-01	16.105420	9.706241	1.255003E-01
16	30	652.1533	50.779300	1.377788E-01	20.860630	12.929350	1.610526E-01
17	30	427.342	42.704460	3.617281E-02	32.167340	22.765420	2.451735E-01

Tableau n°= 03 : Evolution temporelle des caractéristiques du fonctionnement du distillateur

TL (hr)	<i>h</i> ^c _{v−a} (W/m². •C)	$\begin{array}{c} h_{v-a}^r\\ (W/m^2. {}^{\bullet}C)\end{array}$	h_{e-cd}^{ev} (W/m ² . \bullet C)	h _{e−v} (W/m².•C)	$\begin{array}{c} h_{e-v}^r\\ (W/m^2. {}^{\bullet}C)\end{array}$	h^c_{e-cd} (W/m².•C)	h_{e-cd}^r (W/m².•C)	h^c_{cd-a} (W/m².•C))	h^r_{cd-a} (<i>W/m</i> ² .• <i>C</i>)
7	20.9	5.188829	4.153783	100.322400	5.410401	1.508379	5.571583	20.90	6.073968E-01
8	20.9	5.446187	4.160361	125.818500	5.836271	1.573469	5.923637	20.90	6.283937E-01
9	20.9	5.736977	12.850600	144.500800	6.339546	1.685116	6.380826	20.90	6.563610E-01
10	20.9	5.991347	19.527920	155.751500	6.761552	1.956731	6.798687	20.90	6.847845E-01
11	20.9	6.185882	24.333440	162.034900	7.059107	2.092595	7.101877	20.90	7.074678E-01
12	20.9	6.311582	26.976870	164.892600	7.225085	2.151141	7.273457	20.90	7.223378E-01
13	20.9	6.370252	27.698120	165.461800	7.277023	2.158557	7.328739	20.90	7.293633E-01
14	20.9	6.363133	26.689340	164.154300	7.226220	2.123295	7.278893	20.90	7.286702E-01
15	20.9	6.277647	23.442140	160.007100	7.043751	2.021657	7.095602	20.90	7.188982E-01
16	20.9	6.112686	17.905910	151.831100	6.723540	1.815139	6.777627	20.90	7.004423E-01
17	20.9	5.878833	10.160740	137.684800	6.284041	1.353034	6.360404	20.90	6.763695E-01
18	20.9	5.607400	7.017406	113.955500	5.791198	1.385527	5.946145	20.90	6.543468E-01
19	20.9	5.424979	6.258188	95.702320	5.542069	1.669967	5.730890	20.90	6.374654E-01

Tableau n°= 04 : Evolution temporelle des différents coefficients d'échange thermique

TL (hr)	<i>Tw</i> (* <i>C</i>)	p_v^{cd} (N/m ²)	p_v^w (N/m ²)	$ ho_w$ (kg/m ³)	μ_w (kg/m.s)	V_w (m^2/s)	λ_w (W/m.•C)	$a_w.10^{-07}$ (m ² /s)	β _w .10 ⁻⁰⁴ (1/•K)	$Cp_w (J/kg. ^C)$	Lv _w (kJ/kg)
7	34.480720	3977.975	3264.251	996.9996	8.695054E-04	9.054872E-07	6.121842E-01	1.469455	2.667922	4178.601	2428.189
8	44.116880	4942.850	5141.074	994.4188	7.143971E-04	7.562076E-07	6.243494E-01	1.502849	3.442433	4177.756	2404.649
9	51.723380	7009.792	9125.569	990.7523	5.775442E-04	6.218126E-07	6.365739E-01	1.537262	4.184047	4179.610	2378.436
10	56.834270	9833.048	13680.740	987.3387	4.962033E-04	5.549515E-07	6.452399E-01	1.562653	4.713434	4182.082	2357.744
11	59.580000	12385.240	17440.130	984.8181	4.547745E-04	5.100268E-07	6.505753E-01	1.578888	5.051476	4183.986	2343.842
12	60.398530	14026.790	19691.700	983.3954	4.369070E-04	4.858917E-07	6.532798E-01	1.587335	5.228723	4185.067	2336.373
13	59.518780	14618.720	20394.280	982.9626	4.321741E-04	4.396649E-07	6.540642E-01	1.589815	5.281047	4185.397	2334.146
14	56.400880	14184.500	19639.730	983.4277	4.372719E-04	4.864299E-07	6.532208E-01	1.587149	5.224801	4185.042	2336.539
15	50.779300	12542.730	17099.550	985.0384	4.578751E-04	5.138363E-07	6.501380E-01	1.577537	5.023241	4183.819	2345.021
16	42.704460	9990.087	13047.770	987.7852	5.050190E-04	5.632499E-07	6.442115E-01	1.559582	4.649643	4181.748	2360.313
17	34.480720	7329.710	8416.676	991.3379	5.952400E-04	6.342278E-07	6.348692E-01	1.532381	4.081178	4179.224	2382.278
18	44.116880	4733.612	5630.001	994.8781	7.371049E-04	7.800289E-07	6.224835E-01	1.497690	3.327030	4177.688	2408.405
19	51.723380	4843.296	3595.430	996.4012	8.264528E-04	8.668650E-07	6.154394E-01	1.478348	2.880983	4178.058	2422.099

Tableau $n^\circ = 05$: Evolution temporelle des caractéristiques thermo physiques de la saumure

TL (hr)	TSV (hr)	β (°)	(°)	h (°)	i (°)	Igh (W/m ²)	Ig (W/m ²)	Pg (W/m ²)	Pev(W/m ²)
7	6.253906	30	-1.503561	2.427380 ^E -01	1.498215	471.180700	104.454	8.875393	86.740970
8	7.253906	30	-1.241895	4.459600 ^E -01	1.254646	746.321200	312.0771	43.0459	379.689200
9	8.253906	30	-9.802279E-01	6.317132 ^E -01	1.013597	880.307900	544.6572	53.80055	840.531400
10	9.253906	30	-7.185613E-01	7.873517 ^E -01	7.793294E-01	953.198700	753.0301	61.51086	1241.051000
11	10.25391	30	-4.568946E-01	9.022795 ^E -01	5.619777E-01	993.734100	911.3585	72.67104	1510.218000
12	11.25391	30	-1.952279E-01	9.686725 ^E -01	3.921585E-01	1013.537000	1004.025	81.91004	1641.151000
13	12.25391	30	6.643877E-02	9.820107 ^E -01	3.489484E-01	1017.250000	1022.729	83.83654	1662.425000
14	13.25391	30	3.281054E-01	9.413859 ^E -01	4.688750E-01	1005.674000	965.849	77.91019	1591.117000
15	14.25391	30	5.897721E-01	8.495639 ^E -01	6.691262E-01	976.241900	838.369	66.80517	1391.093000
16	15.25391	30	8.514388E-01	7.127959 ^E -01	8.970397E-01	921.421400	652.1533	57.07268	1052.205000
17	16.25391	30	1.113106	5.403930 ^E -01	1.135492	823.004500	427.342	50.17766	603.830600
18	17.25391	30	1.374772	3.440925 ^E -01	1.378195	633.362900	198.5459	27.70164	192.666500
19	18.25391	30	1.636439	1.372582 ^E -01	1.622036	223.797600	42.08849	4.644917	39.982950

Tableau n°= 01 : Evolution temporelle du rayonnement et des puissances absorbées.

TL (hr)	Tv (°C)	Tev1 (°C)	Tcd1 (°C)	Tev2 (°C)	Tcd2 (°C)	Tev3 (°C)	Tcd3 (°C)	Tev4 (°C)	Tcd4 (°C)
7	43.884710	46.754170	34.200210	34.199330	32.160140	32.159790	31.131150	31.130980	30.532150
8	50.020660	53.331380	36.551720	36.550610	34.323390	34.323010	33.309460	33.309280	32.764600
9	56.129380	60.003040	38.607140	38.605920	36.408040	36.407660	35.477040	35.476880	35.005690
10	60.511630	64.701990	40.238250	40.237120	38.292730	38.292380	37.496510	37.496370	37.104630
11	63.408710	67.706930	41.568840	41.567860	39.920340	39.920030	39.249740	39.249620	38.920440
12	65.060130	69.347540	42.589740	42.588910	41.183720	41.183460	40.609000	40.608900	40.325530
13	65.705770	69.945590	43.265750	43.265000	42.005480	42.005240	41.483000	41.482890	41.221660
14	65.426040	69.606110	43.523550	43.522820	42.303210	42.302980	41.796640	41.796540	41.542940
15	63.957800	68.012870	43.334190	43.333410	42.052550	42.052300	41.526750	41.526650	41.266310
16	61.084470	64.872550	42.663220	42.662380	41.263700	41.263440	40.692630	40.692520	40.411510
17	56.539100	59.847700	41.419340	41.418500	39.952420	39.952150	39.341330	39.341220	39.037140
18	50.677850	53.433460	39.517770	39.517060	38.158840	38.158600	37.552850	37.552740	37.237500
19	46.611000	49.169600	37.477430	37.476800	36.135130	36.134890	35.494950	35.494840	35.145730

Tableau n°=02 : Evolution temporelle des différentes températures.

TL (hr)	β (°)	Tc (°C)	Ta (°C)	Tea (°C)
7	30	21.993290	32.620720	32.620720
8	30	25.022720	34.709500	34.709500
9	30	28.066450	36.801030	36.801030
10	30	30.917290	38.753620	38.753620
11	30	33.379350	40.435040	40.435040
12	30	35.282070	41.731370	41.731370
13	30	36.492730	42.554820	42.554820
14	30	36.926530	42.849610	42.849610
15	30	36.552980	42.595770	42.595770
16	30	35.398330	41.810500	41.810500
17	30	33.543510	40.546980	40.546980
18	30	31.117910	38.890800	38.890800
19	30	28.289690	36.954150	36.954150

TL (hr)	Tw1 (°C)	m _{d1} (l/m²/hr)	Tw2 (°C)	m _{d2} (l/m²/hr)	Tw3 (°C)	m _{d3} (l/m²/hr)	Tw4 (°C)	m _{d4} (l/m²/hr)
8	53.331380	1.656817E-01	36.550610	2.300978E-01	34.323010	7.113018E-02	33.309280	2.913762E-02
9	60.003040	2.790891E-01	38.605920	2.603886E-01	36.407660	7.443925E-02	35.476880	2.855748E-02
10	64.701990	3.795025E-01	40.237120	2.464647E-01	38.292380	6.881362E-02	37.496370	2.573347E-02
11	67.706930	4.500066E-01	41.567860	2.150335E-01	39.920030	6.064189E-02	39.249620	2.280674E-02
12	69.347540	4.871139E-01	42.588910	1.849817E-01	41.183460	5.316880E-02	40.608900	2.023022E-02
13	69.945590	4.960300E-01	43.265000	1.662023E-01	42.005240	4.902017E-02	41.482890	1.905615E-02
14	69.606110	4.802523E-01	43.522820	1.614848E-01	42.302980	4.780537E-02	41.796540	1.863182E-02
15	68.012870	4.317315E-01	43.333410	1.704746E-01	42.052300	4.955443E-02	41.526650	1.901497E-02
16	64.872550	3.492788E-01	42.662380	1.845864E-01	41.263440	5.295710E-02	40.692520	2.010056E-02
17	59.847700	2.406033E-01	41.418500	1.834257E-01	39.952150	5.376710E-02	39.341220	2.064554E-02

Tableau n°= 03 : Evolution temporelle des caractéristiques du fonctionnement du distillateur.

TL (hr)	Eg1 (%)	Ei1 (%)	F.P1(kg/J)	Eg2 (%)	Ei2(%)	F.P2(kg/J)	Eg3 (%)	Ei3 (%)	F.P3(kg/J)
8	44.978530	36.969110	6.083815E-01	62.666750	51.507550	8.196108E-01	68.148520	56.013180	8.413766E-01
9	43.077470	27.913840	4.632845E-01	54.519920	35.328450	5.713450E-01	57.799240	37.453410	5.816424E-01
10	42.135600	25.566530	4.269297E-01	49.954700	30.310910	4.962462E-01	52.142650	31.638490	5.026973E-01
11	41.138200	24.825320	4.162367E-01	46.766440	28.221750	4.659609E-01	48.356650	29.181380	4.706352E-01
12	40.342550	24.680800	4.147857E-01	44.732240	27.366330	4.541645E-01	45.995980	28.139470	4.579374E-01
13	40.301270	24.793460	4.170896E-01	44.170210	27.173640	4.520276E-01	45.312960	27.876670	4.554625E-01
14	41.333790	25.090670	4.219661E-01	45.313110	27.506220	4.574376E-01	46.492780	28.222310	4.609379E-01
15	42.888220	25.847400	4.338438E-01	47.728890	28.764720	4.766710E-01	49.138060	29.613990	4.808207E-01
16	44.769550	27.748030	4.639028E-01	51.512700	31.927420	5.251935E-01	53.450380	33.128380	5.310548E-01
17	47.340740	33.503920	5.565722E-01	57.581080	40.751190	6.626489E-01	60.587820	42.879120	6.730135E-01

Eg4 (%)	Ei4 (%)	F.P4(kg/J)
70.396640	57.860970	8.502927E-01
59.058620	38.269480	5.855928E-01
52.961590	32.135400	5.051098E-01
48.955170	29.542560	4.723931E-01
46.477140	28.433830	4.593729E-01
45.757460	28.150130	4.567978E-01
46.952810	28.501560	4.623021E-01
49.679110	29.940060	4.824130E-01
54.186330	33.584520	5.332795E-01
61.743160	43.696770	6.769934E-01

TL (hr)	<i>h</i> ^c _{v−a} (W/m².•C)	$\begin{array}{c} h_{v-a}^r\\ (W/m^2. {}^{\bullet}C)\end{array}$	$\begin{array}{c} h_{e1-cd1}^{ev}\\ (W/m^2.{}^{\bullet}C)\end{array}$	$h_{e_{1-v_{1}}}^{c}$ (<i>W/m</i> ² .• <i>C</i>)	$\begin{array}{c} h_{e_{1-\nu_{1}}}^{r} \\ (W/m^{2}. {}^{\bullet}C) \end{array}$	$h_{e_{1-cd_{1}}}^{c}$ (<i>W/m</i> ² . • <i>C</i>)	$\begin{array}{c} h_{e1-cd1}^r\\ (W/m^2. {}^{\bullet}C)\end{array}$	$\begin{array}{c} h_{e2-cd1}^{cd} \\ (W/m^2. {}^{\bullet}C) \end{array}$	$\begin{array}{c} h_{e2-cd2}^{ev}\\ \textbf{(W/m^2.}^{\bullet}\textbf{C)}\end{array}$	$\begin{array}{c} h_{e2-cd2}^c\\ \textbf{(W/m^2.}^{\bullet}\textbf{C)}\end{array}$	$h_{e^2-cd^2}^r$ (<i>W/m²</i> .• <i>C</i>)
7	20.9	5.730914	16.824100	121.9373	6.593221	2.355528	6.299420	38900.00	5.623379	1.225468	5.867564
8	20.9	5.994226	23.237090	128.1369	6.995991	2.669512	6.574216	38900.00	6.884620	1.279988	5.998243
9	20.9	6.265300	30.460730	134.9601	7.417117	2.977131	6.851269	38900.00	7.876560	1.290602	6.119759
10	20.9	6.484527	36.027680	138.7800	7.726396	3.177289	7.057187	38900.00	8.411692	1.252079	6.224222
11	20.9	6.649561	39.843560	140.3765	7.931927	3.293482	7.200357	38900.00	8.648231	1.195202	6.313032
12	20.9	6.760018	42.048920	140.6731	8.048125	3.346945	7.288867	38900.00	8.712492	1.141052	6.382187
13	20.9	6.817781	42.913480	140.4241	8.092310	3.356209	7.331157	38900.00	8.726565	1.104969	6.427806
14	20.9	6.821968	42.516920	139.8560	8.070279	3.328916	7.327906	38900.00	8.753743	1.094934	6.444781
15	20.9	6.763109	40.471440	138.4470	7.961964	3.248082	7.267505	38900.00	8.801048	1.111557	6.431333
16	20.9	6.636230	36.516940	135.4105	7.752029	3.096426	7.140069	38900.00	8.733543	1.139801	6.386851
17	20.9	6.438094	30.494510	129.7746	7.425596	2.850904	6.934279	38900.00	8.291435	1.149151	6.309485
18	20.9	6.187771	23.364740	122.4867	7.020493	2.528256	6.668314	38900.00	7.277822	1.107943	6.198706
19	20.9	5.985619	19.040150	119.1758	6.754156	2.339540	6.472109	38900.00	6.384542	1.089939	6.078376

Tableau n°= 04 : Evolution temporelle des différents coefficients d'échange thermique.
TL (hr)	$\begin{array}{c} h_{e3-cd2}^{cd}\\ (W/m^2. {}^{\bullet}C)\end{array}$	$\begin{array}{c} h_{e3-cd3}^{ev}\\ \textbf{(W/m^2.}^{\bullet}C)\end{array}$	$\begin{array}{c} h_{e3-cd3}^c\\ \textbf{(W/m^2.}^{\bullet}C\textbf{)}\end{array}$	$\begin{array}{c} h_{e3-cd3}^r\\ (W/m^2. {}^{\bullet}C)\end{array}$	$\begin{array}{c} h_{e4-cd3}^{cd}\\ (W/m^2. {}^{\bullet}C)\end{array}$	$\begin{array}{c} h_{e4-cd4}^{ev}\\ \textbf{(W/m^2.}^{\bullet}C\textbf{)} \end{array}$	$\begin{array}{c} h_{e4-cd4}^c\\ (W/m^2. {}^{\bullet}C)\end{array}$	h^r_{e4-cd4} (W/m ² . C)	$\begin{array}{c} h^c_{cd4-a}\\ (W/m^2. {}^{\bullet}C) \end{array}$	h^r_{cd4-a} (W/m².•C)
7	38900.00	3.913746	9.659109E-01	5.779793	38900.00	3.022215	8.022751E-01	5.733604	20.90	6.088945E-01
8	38900.00	4.688516	9.744409E-01	5.904165	38900.00	3.577961	7.883072E-01	5.859302	20.90	6.250626E-01
9	38900.00	5.331306	9.596459E-01	6.027695	38900.00	4.043729	7.615057E-01	5.986763	20.90	6.415893E-01
10	38900.00	5.750476	9.217575E-01	6.142619	38900.00	4.372914	7.251018E-01	6.107491	20.90	6.573325E-01
11	38900.00	6.005890	8.793213E-01	6.243312	38900.00	4.602909	6.916239E-01	6.213418	20.90	6.711463E-01
12	38900.00	6.135460	8.417394E-01	6.322177	38900.00	4.735579	6.633500E-01	6.296298	20.90	6.819605E-01
13	38900.00	6.216437	8.194910E-01	6.373522	38900.00	4.834001	6.489788E-01	6.349755	20.90	6.889089E-01
14	38900.00	6.250625	8.125398E-01	6.392101	38900.00	4.866881	6.437930E-01	6.369003	20.90	6.914108E-01
15	38900.00	6.244261	8.214388E-01	6.376279	38900.00	4.839782	6.484100E-01	6.352433	20.90	6.892561E-01
16	38900.00	6.149473	8.403610E-01	6.327118	38900.00	4.744380	6.618310E-01	6.301407	20.90	6.826254E-01
17	38900.00	5.843265	8.528075E-01	6.247015	38900.00	4.510157	6.739956E-01	6.219637	20.90	6.720598E-01
18	38900.00	5.237474	8.413554E-01	6.140321	38900.00	4.092045	6.748252E-01	6.113075	20.90	6.584021E-01
19	38900.00	4.663989	8.463202E-01	6.020236	38900.00	3.679835	6.893884E-01	5.991364	20.90	6.427354E-01

Tableau n°= 05 : Evolution temporelle des différents coefficients d'échange thermique.

Tableau $n^\circ = 06$: Evolution	temporelle des	s caractéristiques	thermo physiques	s de la saumure	(1 ^{er}	étage).
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· ·	

TL (hr)	<i>Tw1</i> (* <i>C</i>)	p_v^{cd} (N/m ²)	p_v^w (N/m ²)	$ ho_w$ (kg/m ³)	μ_w (kg/m.s)	V_w (m^2/s)	λ_w (W/m. •C)	$a_w.10^{-07}$ (m ² /s)	$\beta_{w}.10^{-04}$ (1/•K)	Cp_w (J/kg.•C)	$ Lv_w \\ (kJ/kg) $
7	46.754170	5054.990	10564.040	989.6173	5.466755E-04	5.986308E-07	6.396767E-01	1.546234	4.371915	4180.402	2371.262
8	53.331380	5828.997	14802.980	986.5643	4.820228E-04	5.408172E-07	6.469607E-01	1.567832	4.821054	4182.665	2353.370
9	60.003040	6602.917	20053.010	983.1722	4.344269E-04	4.418624E-07	6.536865E-01	1.588619	5.255794	4185.237	2335.222
10	64.701990	7281.719	24325.050	980.6246	4.117759E-04	4.199118E-07	6.580229E-01	1.602558	5.552532	4187.208	2322.439
11	67.706930	7877.818	27305.860	978.9337	4.020011E-04	4.106520E-07	6.606223E-01	1.611146	5.738609	4188.564	2314.265
12	69.347540	8360.983	29015.220	977.9916	3.982151E-04	4.071764E-07	6.619844E-01	1.615721	5.838966	4189.347	2309.802
13	69.945590	8693.256	29652.720	977.6450	3.971074E-04	4.061877E-07	6.624709E-01	1.617368	5.875323	4189.642	2308.176
14	69.606110	8822.555	29289.900	977.8420	3.977183E-04	4.067307E-07	6.621954E-01	1.616434	5.854701	4189.474	2309.099
15	68.012870	8727.438	27620.230	978.7590	4.012120E-04	4.099191E-07	6.608794E-01	1.612005	5.757391	4188.708	2313.433
16	64.872550	8396.625	24489.050	980.5298	4.111227E-04	4.192863E-07	6.581740E-01	1.603052	5.563170	4187.282	2321.976
17	59.847700	7808.944	19919.890	983.2543	4.353291E-04	4.835387E-07	6.535375E-01	1.588148	5.245861	4185.175	2335.644
18	53.433460	6974.829	14876.100	986.5145	4.811580E-04	5.399198E-07	6.470687E-01	1.568158	4.827846	4182.702	2353.093
19	49.169600	6166.310	12012.690	988.5320	5.208869E-04	5.773992E-07	6.424271E-01	1.554293	4.539752	4181.193	2364.691

TL (hr)	<i>Tw2</i> (* <i>C</i>)	p_v^{cd} (N/m ²)	$\begin{array}{c} p_v^w \\ (N/m^2) \end{array}$	$ ho_w$ (kg/m ³)	μ_w (kg/m.s)	V_w (m^2/s)	λ_w (W/m. •C)	$a_w.10^{-07}$ (m ² /s)	$egin{aligned} & eta_w.10^{-04} \ & (1/^{ullet}K) \end{aligned}$	Cp_w $(J/kg. \circ C)$	$ Lv_w (kJ/kg) $
7	34.199330	4479.803	5054.722	994.5138	7.189612E-04	7.610615E-07	6.239715E-01	1.501803	3.419137	4177.737	2405.414
8	36.550610	5092.582	5828.602	993.6981	6.818139E-04	7.205020E-07	6.270927E-01	1.510469	3.610546	4177.971	2399.018
9	38.605920	5778.293	6602.431	992.9454	6.511853E-04	6.850480E-07	6.297531E-01	1.517908	3.772228	4178.298	2393.427
10	40.237120	6478.650	7281.228	992.3223	6.281004E-04	6.559157E-07	6.318195E-01	1.523725	3.897192	4178.627	2388.990
11	41.567860	7144.928	7877.365	991.7975	6.100696E-04	6.442185E-07	6.334757E-01	1.528415	3.997135	4178.936	2385.370
12	42.588910	7701.370	8360.579	991.3851	5.967237E-04	6.352435E-07	6.347284E-01	1.531980	4.072687	4179.193	2382.593
13	43.265000	8081.726	8692.881	991.1074	5.881200E-04	6.293006E-07	6.355492E-01	1.534325	4.122205	4179.374	2380.753
14	43.522820	8223.114	8822.188	991.0005	5.848880E-04	6.270344E-07	6.358605E-01	1.535216	4.140985	4179.444	2380.052
15	43.333410	8103.950	8727.051	991.0790	5.872598E-04	6.286993E-07	6.356320E-01	1.534562	4.127194	4179.392	2380.567
16	42.662380	7737.751	8396.218	991.3550	5.957796E-04	6.345976E-07	6.348179E-01	1.532235	4.078088	4179.213	2382.393
17	41.418500	7158.633	7808.557	991.8571	6.120575E-04	6.455314E-07	6.332911E-01	1.527891	3.986002	4178.899	2385.776
18	39.517060	6426.377	6974.534	992.6001	6.381572E-04	6.693307E-07	6.309122E-01	1.521167	3.842376	4178.475	2390.949
19	37.476800	5683.209	6166.073	993.3635	6.677988E-04	7.045252E-07	6.282995E-01	1.513837	3.684019	4178.105	2396.499

Tableau n° = 07 : Evolution temporelle des caractéristiques thermo physiques de la saumure (2^{eme} étage).

TL (hr)	Tw3 (•C)	p_v^{cd} (N/m ²)	p_v^w (N/m ²)	ρ_w (kg/m^3)	μ_w (kg/m.s)	V_w (m^2/s)	$\begin{array}{c}\lambda_{w}\\(W/m.\bullet C)\end{array}$	$a_w.10^{-07}$ (m ² /s)	$\beta_{w}.10^{-04}$ (1/•K)	Cp_w $(J/kg. \circ C)$	$ Lv_w \\ (kJ/kg) $
7	32.159790	4223.635	4479.712	995.1807	7.530057E-04	7.962437E-07	6.211970E-01	1.494143	3.246877	4177.679	2410.962
8	34.323010	4792.840	5092.465	994.4721	7.169513E-04	7.589282E-07	6.241378E-01	1.502263	3.429390	4177.745	2405.078
9	36.407660	5460.511	5778.158	993.7491	6.840081E-04	7.229680E-07	6.269053E-01	1.509947	3.599113	4177.952	2399.407
10	38.292380	6173.455	6478.513	993.0626	6.557466E-04	6.904565E-07	6.293514E-01	1.516782	3.747879	4178.241	2394.280
11	39.920030	6863.513	7144.797	992.4451	6.325030E-04	6.623795E-07	6.314209E-01	1.522600	3.873119	4178.559	2389.853
12	41.183460	7443.989	7701.250	991.9506	6.152040E-04	6.475974E-07	6.330000E-01	1.527065	3.968441	4178.843	2386.416
13	42.005240	7838.211	8081.611	991.6219	6.043008E-04	6.403739E-07	6.340142E-01	1.529945	4.029615	4179.044	2384.18
14	42.302980	7983.686	8223.003	991.5014	6.004183E-04	6.377568E-07	6.343791E-01	1.530984	4.051625	4179.120	2383.370
15	42.052300	7858.379	8103.834	991.6028	6.036846E-04	6.399602E-07	6.340719E-01	1.530110	4.033099	4179.056	2384.052
16	41.263440	7480.997	7737.631	991.9188	6.141309E-04	6.468944E-07	6.330991E-01	1.527346	3.974423	4178.862	2386.198
17	39.952150	6901.377	7158.518	992.4327	6.320553E-04	6.618255E-07	6.314614E-01	1.522714	3.875562	4178.566	2389.765
18	38.158600	6194.601	6426.281	993.1123	6.577050E-04	6.927643E-07	6.291795E-01	1.516300	3.737456	4178.218	2394.644
19	36.134890	5466.449	5683.126	993.8459	6.882180E-04	7.276732E-07	6.265469E-01	1.508949	3.577227	4177.917	2400.149

Tableau n° = 08 : Evolution temporelle des caractéristiques thermo physiques de la saumure (3^{eme} étage).

TL (hr)	<i>Tw4</i> (* <i>C</i>)	p_v^{cd} (N/m ²)	p_v^w (N/m ²)	ρ_w (kg/m ³)	μ_{w} (kg/m.s)	V_w (m^2/s)	λ_w (W/m.•C)	$a_w.10^{-07}$ (m ² /s)	$\beta_{w}.10^{-04}$ (1/•K)	Cp_w $(J/kg. \circ C)$	$ Lv_w \\ (kJ/kg) $
7	31.130980	4084.996	4223.594	995.5024	7.708211E-04	8.139907E-07	6.197737E-01	1.490228	3.157580	4177.708	2413.761
8	33.309280	4640.899	4792.792	994.8095	7.336099E-04	7.764149E-07	6.227684E-01	1.498477	3.344715	4177.694	2407.835
9	35.476880	5306.728	5460.458	994.0767	6.984983E-04	7.390238E-07	6.256777E-01	1.506533	3.524039	4177.844	2401.939
10	37.496370	6028.252	6173.402	993.3563	6.675065E-04	7.041877E-07	6.283248E-01	1.513908	3.685560	4178.108	2396.446
11	39.249620	6728.862	6863.462	992.7021	6.419462E-04	6.739441E-07	6.305733E-01	1.520213	3.821878	4178.421	2391.676
12	40.608900	7319.651	7443.941	992.1771	6.229905E-04	6.526478E-07	6.322848E-01	1.525040	3.925288	4178.710	2387.979
13	41.482890	7718.611	7838.162	991.8314	6.111994E-04	6.449654E-07	6.333707E-01	1.528117	3.990804	4178.915	2385.601
14	41.796540	7865.852	7983.640	991.7059	6.070437E-04	6.422084E-07	6.337576E-01	1.529216	4.014139	4178.992	2384.748
15	41.526650	7738.942	7858.333	991.8140	6.106172E-04	6.445807E-07	6.334248E-01	1.528270	3.994066	4178.926	2385.482
16	40.692520	7357.184	7480.949	992.1443	6.218489E-04	6.519127E-07	6.323892E-01	1.525336	3.931589	4178.729	2387.751
17	39.341220	6776.313	6901.332	992.6673	6.406452E-04	6.723640E-07	6.306895E-01	1.520540	3.828907	4178.439	2391.427
18	37.552740	6077.112	6194.560	993.3357	6.666652E-04	7.032153E-07	6.283978E-01	1.514112	3.689997	4178.117	2396.292
19	35.494840	5351.917	5466.411	994.0705	6.982154E-04	7.387140E-07	6.257015E-01	1.506599	3.525498	4177.846	2401.890

Tableau n°= 09 : Evolution temporelle des caractéristiques thermo physiques de la saumure(4^{ème} étage).

Résumé

Résumé

L'approvisionnement en eau potable est devenu le problème le plus préoccupant de notre époque, puisque la demande en eau croît tandis que les ressources naturelles diminuent ou tendent à disparaître. Une des solutions qui peut contribuer à l'augmentation des potentialités en eau est le dessalement de l'eau de mer ou des eaux saumâtres. Le procédé le plus adéquat pour effectuer ce dessalement est la distillation solaire, vu sa simplicité, son moindre coût et surtout la disponibilité de la source d'énergie.

Notre travail à pour but l'étude de la production d'eau douce à travers une comparaison de la performance d'un distillateur à film capillaire à un seule étage avec celle d'un distillateur à film capillaire à plusieurs étages et l'étude de l'influence de certains paramètres thermo physiques sur la production afin de l'optimiser.

Les résultats obtenus confirment que certains paramètres thermo physiques influent sur la production, car ces paramètres dépendent directement de la température de la saumure qui influe directement sur le rendement. Un distillateur à film capillaire multi - étagé a donc une meilleure production qu'un distillateur à film capillaire mono- étagé, donc un meilleur rendement.

Il serait intéressant d'entreprendre des études futures, sur ce distillateur à plusieurs étages, en étudiants l'effet de la concentration du sel de la saumure sur l'efficacité du système et de déterminer un meilleur dimensionnement (dimension optimale : géométrie et nombre d'étage afin de réduire les pertes de chaleurs. Une validation du modèle proposé à travers des résultats expérimentaux est recommandée.

Mots clés : Distillation solaire / Film capillaire / Plusieurs étages / Production

Abstract

Supply drinking water became the most alarming problem of our time, since the demand for water grows while the natural resources decrease or tend to disappear. One of the solutions which can contribute to the increase in the water potentialities is the desalination of sea water or brackish water. The most adequate process to carry out this desalination is solar distillation, considering its simplicity, its lower cost and especially the availability of the source of energy.

The aim of our work has been to study the production of fresh water through a comparison of the performance of a distiller with capillary film with one only stage with that of a distiller with capillary film on several stages and the study of the influence of certain thermo physical parameters on the production in order to optimize it.

The results obtained confirm that certain thermo physical parameters influence the production, because these parameters depend directly on the temperature of the brine which influences directly the output. Thus a distiller with capillary film multi - stage has a better production than a distiller with capillary film with single - stage, therefore a better output.

It would be interesting to undertake future studies, on this distiller on several stages, as studies of the salt concentration of the brine effect on the system efficiency and to determine a better dimensioning (optimal dimension: geometry and a number of stage in order to reduce the heat losses). A validation of the model suggested through experimental results is recommended.

Key words: Solar distillation/Capillary film/multi - stage/Production

ملخص

التزويد بالماء الشروب أصبح يعد مشكلا محيرا في وقتنا الحالي، لأن الطلب على الماء يزيد في حين موارده الطبيعية تنقص أو توشك على الزوال.

تعد تحلية مباه البحر أو المياه الجوفية إحدى التقنيات المساعدة على رفع نسبة الماء العذب. و التقنية المثلى المتبعة لعملية التحلية هي التقطير الشمسي، نظرا لبساطتها، قلة تكلفتها، و خاصة التوفر في مورد الطاقة.

الهدف من عملنا هو دراسة تأثير بعض العوامل الفيزيوحرارية على المنتوج بغرض تحسينه، كذلك مقارنة لمنتوج المياه العذبة بين مقطر شمسي دو طبقة شعرية بسيط التأثير و مقطر شمسي دو طبقة شعرية متعدد التأثير.

النتائج المحصل عليها تثبت بأن بعض العوامل الفيزيوحرارية تؤثر على الإنتاج لأنها متعلقة بدرجة حرارة الماء المالح التي تؤثر مباشرة على المردود، و بأن المقطر الشمسي دو الطبقة الشعرية المتعدد التأثر له إنتاج أحسن، أي مردود أحسن مقارنة مع المقطر دو الطبقة الشعرية بسيط التأثير.

سيكون من المهم متابعة الدراسة مستقبلا لمقطر شمسي دو طبقة شعرية متعددة التأثير، و ذلك بدراسة تأثير تركيز الملح في الماء على مردود النظام ووضع الأبعاد المناسبة (أبعاد أمثل: سواء كانت أبعاد هندسية أو عدد طبقات المقطر)و المساعدة على التقليل من الضياع في الحرارة، كذلك إثبات مصداقية النموذج المقترح عن طريق النتائج التجريبية.

كلمات المفتاح: تقطير شمسى/ طبقة شعرية/ متعدد التأثير / إنتاج.