

الجمهورية الجزائرية الديمقر اطية الشعبية REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE CONSTANTINE I

FACULTE DES SCIENCES DE LA TECHNOLOGIE DEPARTEMENT DE GENIE CIVIL

N° d'ordre : Série :

Mémoire

Présenté en vue de l'obtention du diplôme de Magister en Génie civil Option : STRUCTURE Présenté par : DJAHRA ASAAD

Thème

Analyse des poteaux mixtes acier-béton soumis à la compression excentrée : Cas des poteaux formés par des sections HEA enrobés de béton

Soutenue le:/ 2014

Devant le Jury composé de:

Président	Mr BELOUAR ABDELGHANI	Pr	Université de Constantine 1
Rapporteur	Mr BOULFOUL AZEDINE	MC	Université de Constantine 1
Examinateur :	Mr GUETTECHE M.NACER	Pr	Université de Constantine 1
	Mr ROUABEH KAMEL	MC	Université de Constantine 1

وزارة التعليم العالمي و البحث العلمي

جامعة قسنطينة 1

كلية علوم التكنولوجيا قسم : الهندسة المدنية

.....

REMERCIEMENTS

J'exprime toute ma gratitude à mon encadreur Monsieur **Dr. BOULFOUL Azedine**, Professeur à l'université de Constantine 1, ses conseils m'ont été d'une aide précieuse tout au long de ce mémoire.

Je tiens à exprimer ma sincère gratitude aux membres du Jury pour avoir pris le temps de lire et d'évaluer ce travail.

Mes remerciements s'adressent à toutes les personnes que j'ai rencontrées avant et pendant ce projet du mémoire, sachant que d'une façon ou d'une autre, elles ont contribué à sa finalisation.

DEDICACE

Je dédie ce modeste travail à:

Mes très chers parents pour leurs : amour, sacrifices, patiences, soutiens morale et matériel depuis mon enfance jusqu'à ce jour.

🌋 Mes frères et sœurs.

nes amis et collègues.

Ceux que j'aime et je respect.

RESUME

L'objet du présent travail de recherche est de proposer des abaques et des modèles d'équations approchées des courbes d'interactions pour les poteaux mixte en profils métalliques totalement enrobés de béton soumise à la flexion composée biaxiale avec un effort normal de compression, par la méthode de calcul de l'Eurocode 4 en élaborant un programme de calcul permettant d'effectuer une étude paramétrique rapide et automatisable afin de vérifier la résistance d'une section mixte.

Mots-clés: construction mixte, poteaux mixtes, la flexion composée, bi axiale, section mixte totalement enrobée, programme de calcul, Eurocode 4, élancement.

الملخص

الغرض من هذا البحث هو تقديم الرسوم البيانية والمعادلات التقريبية لمنحنيات التفاعل لأعمدة معدنية مركبة مغطاة تماما بالخرسانة المتعرضة للانحناء المركب الثنائي الاتجاه مع قوة ضغط بواسطة طريقة حساب الكود الأوربي 4 وهدا من خلال تطوير برنامج كمبيوتر للحساب لأداء دراسة نوعية و آلية للتحقق من مقاومة المقطع المركب

الكلمات الرئيسية: البناء المركب - الأعمدة المركبة - الانحناء المركب الثنائي الاتجاه - مقطع مركب مغطى كليا بالخرسانة - برنامج الكومبيوتر للحساب - الكود الأوربي4 – النحول

ABSTRACT

The purpose of this research is to provide graphs and equations to approximate the interaction curves for mixed metal poles profiles completely encased in concrete subjected to combined bending united with a normal bi axial compressive stress models by the method of calculation of the Eurocode 4 by developing a computer program for performing a fast and automated parametric study to test the strength of a composite section.

Keywords: composite construction, composite columns, bending composed, biaxial, fully coated composite section calculation routine, Eurocode 4, slenderness.

TABLE DES MATIERES

Remerciements	i
Dédicace	ii
Résumé	iii
Table des matières	iv
Liste des figures	vii
List des tableaux	x
Liste des symboles	xiv
PROBLEMATIQUE	1
Notre Objectif	1
Organisation du mémoire	2
CHAPITRE 1.INTRODUCTION GENERALE	4
1.1 Généralités	4
1.2. Raisons d'utiliser des structures mixtes	5
1.2.1. Aspects économiques	5
1.2.2. Aspects architecturaux	6
1.2.3 Fonctionnalité	6
1.2.4. Equipements et utilisation flexible du bâtiment	7
1.2.5. Montage	7
1.2.6. Comparaison avec d'autres méthodes	8
1.3. Eléments de construction	9
1.3.1. Les poutres mixtes	9
1.3.2. Les dalles mixtes	10
1.3.3. Les poteaux mixtes	10
1.4. Matériaux utilisés dans un élément mixte	11
1.5. Conclusion	11
CHAPITRE 2. LA FLEXION COMPOSEE	13
2.1. Introduction	13
2.2. Domaine élastique	14
2.3. Domaine élasto-plastique	15
2.4. Cas du béton armé	17

CHAPITRE 3. CALCUL DES POTEAUX MIXTES SELON L'EUROCODE 4	19
3.1. Introduction	19
3.2. Voilement local des éléments structuraux en acier	20
3.3. Méthode simplifiée de calcul	21
3.3.1 Poteaux mixtes soumis à compression axiale	22
3.3.1.1 Résistance de la section	22
3.3.1.2 Elancement réduit	23
3.3.1.3 Résistance au flambement	25
3.3.2 Poteaux mixtes soumis à compression axiale et flexion	26
3.3.2.1 Résistance de la section sous moment de flexion et effort normal	26
3.3.2.2 Amplification de second ordre des moments de flexion	28
3.3.3 Résistance d'un poteau mixte sous compression accompagnée de flexion mono-	
axiale	29
3.3.4 Résistance d'un poteau mixte sous compression accompagnée de flexion bi-	
axiale	30
3.4. Conclusions	32
CHAPITRE 4. LES DIAGRAMMES D'INTERACTIONS	34
4.1. Introduction	34
4.2. Hypothèses de calcul	34
4.3. Caractéristiques des matériaux	34
4.3.1. Béton	35
4.3.2. Aciers d'armature	35
4.3.3. Acier de construction	36
4.4. Caractéristiques géométriques des poteaux étudiés	36
4.5. La courbe d'interactions M-N	37
4.6. Programme de calcul	37
4.7. Résultats	39
CHAPITRE 5. LES EQUATIONS APPROCHEES ET LES ABAQUES DES	
COURBES D'INTERACTION	53
5.1. Introduction	53
5.2. La première approche	53
5.2.1. Détermination de l équation générale	54
a) Le premier cas $C_{Y} = C_{z} = 40 \text{ mm}$	54

65
66
66
67
68
71
71
/1
89
90
87
93
94
94
98
100
102
104
113
123
125

LISTE DE TABLEAUX

CHAPITRE 1.INTRODUCTION GENERALE

Tableau (1-1) Comparaison d'éléments mixtes et en béton armé	09
CHAPITRE 3. CALCUL DES POTEAUX MIXTES SELON L'EUROCODE 4	
Tableau (3-1) Courbes de flambement et imperfections	25
CHAPITRE 4. LES DIAGRAMMES D'INTERACTIONS	
Tableau (4-1) principales caractéristiques des bétons de masse volumique normale	35
Tableau (4-2) valeurs nominales de limite élastique f_y et de résistance à la rupture	36
Tableau (4-3) Caractéristiques géométriques des poteaux	37
Tableau (4-4) valeurs de calcul des points des courbes d'interactions Selon l'axe yy	39
Tableau (4-5) valeurs de calcul des points des courbes d'interactions Selon l'axe zz	41
Tableau (4-6) valeurs de calcul des points des courbes d'interactions Selon l'axe yy	42
Tableau (4-7) valeurs de calcul des points des courbes d'interactions Selon l'axe zz	44
Tableau (4-8) valeurs de calcul des points des courbes d'interactions Selon l'axe yy	45
Tableau (4-9) valeurs de calcul des points des courbes d'interactions Selon l'axe zz	47
Tableau (4-10) valeurs de calcul des points des courbes d'interactions Selon l'axe yy	48
Tableau (4-11) valeurs de calcul des points des courbes d'interactions Selon l'axe zz	50

CHAPITRE 5. LES EQUATIONS APPROCHEES ET LES ABAQUES DES COURBES D'INTERACTION

Tableau (5-1) Les équations des Courbe d'interaction inversée M=f(N)	55
Tableau (5-2) Le pourcentage d'erreur entre Ag et A	56
Tableau (5-3) Le pourcentage d'erreur entre B _g et B	57
Tableau (5-4) Le pourcentage d'erreur entre C_g et C	58
Tableau (5-5) Le pourcentage d'erreur entre D_g et D	59
Tableau (5-6) valeurs des coefficients d'équation générale selon yy	59

Tableau (5-7) Les équations des Courbe d'interaction inversée M=f(N)	60
Tableau (5-8) Le pourcentage d'erreur entre Ag et A	61
Tableau (5-9) Le pourcentage d'erreur entre Bg et B	62
Tableau (5-10) Le pourcentage d'erreur entre C_g et C	63
Tableau (5-11) Le pourcentage d'erreur entre D_g et D	64
Tableau (5-12) valeurs des coefficients d'équation générale selon l'axe zz	65
Tableau (5-13) valeurs des coefficients d'équation générale selon l'axe yy	65
Tableau (5-14) valeurs des coefficients d'équation générale selon l'axe zz	65
Tableau (5-15) valeurs des coefficients d'équation générale selon l'axe yy	66
Tableau (5-16) valeurs des coefficients d'équation générale selon l'axe zz	66
Tableau (5-17) valeurs des coefficients d'équation générale selon l'axe yy	66
Tableau (5-18) valeurs des coefficients d'équation générale selon l'axe zz	67
Tableau (5-19) les points caractéristiques pour le premier cas	68
Tableau (5-20) les points caractéristiques pour le deuxième cas	69
Tableau (5-21) les points caractéristiques pour le troisième cas	70
Tableau (5-22) les points caractéristiques pour le quatrième cas	71
Tableau (5-23) Les équations des Courbe d'interaction inversée M=f(N)	72
Tableau (5-24)Le pourcentage d'erreur entre A_g et A	73
Tableau (5-25) Le pourcentage d'erreur entre B_g et B	74
Tableau (5-26) Le pourcentage d'erreur entre Cg et C	75
Tableau (5-27) valeurs des coefficients d'équation générale selon l'axe yy	75
Tableau (5-28) Les équations des Courbe d'interaction inversée M=f(N)	74
Tableau (5-29) Le pourcentage d'erreur $A1_g$ et $A1$.	77
Tableau (5-30) Le pourcentage d'erreur entre $B1_g$ et $B1$	78
Tableau (5-31) valeurs des coefficients d'équation générale selon l'axe yy	79
Tableau (5-32) Les équations des Courbe d'interaction inversée M=f(N)	79

Tableau (5-33) Le pourcentage d'erreur entre $A1_g$ et $A1$ pour le groupe 1	81
Tableau (5-34) Le pourcentage d'erreur A1g et A1 pour le groupe 2	81
Tableau (5-35) Le pourcentage d'erreur entre $B1_g$ et B1 pour le groupe 1	82
Tableau (5-36) Le pourcentage d'erreur entre $B1_g$ et B1 pour le groupe 2	83
Tableau (5-37) Le pourcentage d'erreur entre $C1_g$ et C1 pour le groupe 1	83
Tableau (5-38) Le pourcentage d'erreur entre $C1_g$ et C1 pour le groupe 2	84
Tableau (5-39) valeurs des coefficients d'équation générale selon l'axe yy	84
Tableau (5-40) Les équations des Courbe d'interaction inversée M=f(N)	85
Tableau (5-41) Le pourcentage d'erreur entre $A1_g$ et A1 pour le groupe 1	86
Tableau (5-42) Le pourcentage d'erreur entre $A1_g$ et A1 pour le groupe 2	87
Tableau (5-43) Le pourcentage d'erreur entre $B1_g$ et B1 pour le groupe 1	88
Tableau (5-44) Le pourcentage d'erreur entre $B1_g$ et B1 pour le groupe 2	89
Tableau (5-45) valeurs des coefficients d'équation générale selon l'axe yy	89
Tableau (5-46) valeurs des coefficients d'équation générale selon l'axe yy	89
Tableau (5-48) valeurs des coefficients d'équation générale selon l'axe yy	90
Tableau (5-49) valeurs des coefficients d'équation générale selon l'axe yy	90
Tableau (5-50) valeurs des coefficients d'équation générale selon l'axe yy	90
Tableau (5-51) valeurs des coefficients d'équation générale selon l'axe yy	91
Tableau (5-52) valeurs des coefficients d'équation générale selon l'axe yy	91
Tableau (5-53) valeurs des coefficients d'équation générale selon l'axe yy	91
Tableau (5-54) valeurs des coefficients d'équation générale selon l'axe yy	92
Tableau (5-55) valeurs des coefficients d'équation générale selon l'axe yy	92
Tableau (5-56) valeurs des coefficients d'équation générale selon l'axe yy	92
Tableau (5-57) valeurs des coefficients d'équation générale selon l'axe yy	93
Tableau (5-58) Les équations des Courbe d'interaction inversée $(M/M_{pl.rd})=f(N/N_{pl.rd})$.	94
Tableau (5-59) valeurs des coefficients d'équation générale selon yy	95

Tableau (5-60) valeurs des coefficients d'équation générale selon yy	95
Tableau (5-61) valeurs des coefficients d'équation générale selon yy	96
Tableau (5-62) Les équations des Courbe d'interaction inversée $(M/M_{pl.rd})=f(N/N_{pl.rd})$.	97
Tableau (5-63) valeurs des coefficients d'équation générale selon ZZ	97
Tableau (5-64) valeurs des coefficients d'équation générale selon ZZ	98
Tableau (5-65) valeurs des coefficients d'équation générale selon ZZ	98
Tableau (5-66) valeurs des coefficients d'équation générale selon yy	98
Tableau (5-67) valeurs des coefficients d'équation générale selon yy	99
Tableau (5-68) valeurs des coefficients d'équation générale selon yy	99
Tableau (5-69) valeurs des coefficients d'équation générale selon ZZ	99
Tableau (5-70) valeurs des coefficients d'équation générale selon ZZ	100
Tableau (5-71) valeurs des coefficients d'équation générale selon ZZ	100
Tableau (5-72) valeurs des coefficients d'équation générale selon yy	100
Tableau (5-73) valeurs des coefficients d'équation générale selon yy	101
Tableau (5-74) valeurs des coefficients d'équation générale selon yy	101
Tableau (5-75) valeurs des coefficients d'équation générale selon ZZ	101
Tableau (5-76) valeurs des coefficients d'équation générale selon ZZ	102
Tableau (5-77) valeurs des coefficients d'équation générale selon ZZ	102
Tableau (5-78) valeurs des coefficients d'équation générale selon yy	102
Tableau (5-79) valeurs des coefficients d'équation générale selon yy	103
Tableau (5-80) valeurs des coefficients d'équation générale selon yy	103
Tableau (5-81) valeurs des coefficients d'équation générale selon ZZ	103
Tableau (5-82) valeurs des coefficients d'équation générale selon ZZ	104
Tableau (5-83) valeurs des coefficients d'équation générale selon ZZ	104

LISTE DES FIGURES

CHAPITRE 1.INTRODUCTION GENERALE

Figure (1-1) Poutres non mixte et mixte	5
Figure (1-2) Exemples typiques de poteaux mixtes	11
CHAPITRE 2. LA FLEXION COMPOSEE	
Figure (2-1) Section de forme quelconque soumise à la compression biaxialement excentré	13
Figure (2-2) Etat limite ultime d'une section rectangulaire en acier soumise à la	
compression excentrée uniaxialement	15
Figure (2-3) Etat limite ultime d'une section rectangulaire en acier soumise à la	
compression excentrée biaxialement	16
Figure (2-4) Section en béton armé	17
CHAPITRE 3. CALCUL DES POTEAUX MIXTES SELON L'EUROCODE 4	
Figure (3-1) Exemples types de sections transversales de poteaux	21
Figure (3-2) Courbe d'interaction M-N (flexion mono-axiale)	26
Figure (3-3) Répartition des contraintes correspondant à la courbe d'interaction (section	
enrobée de béton)	27
Figure (3-4) Résistance du poteau sous compression axiale et flexion uni-axiale	29
Figure (3-5) Résistance du poteau sous compression et flexion bi-axiale	31
CHAPITRE 4. LES DIAGRAMMES D'INTERACTIONS	
Figure (4-1) sections HEA enrobée de béton	36
Figure (4-2) les Courbes d'interactions (M-N) Selon l'axe de forte inertie yy	40
Figure (4-3) les Courbes d'interactions (M-N) Selon l'axe de faible inertie zz	40
Figure (4-4) les Courbes d'interactions (M-N) Selon l'axe de forte inertie yy	41
Figure (4-5) les Courbes d'interactions (M-N) Selon l'axe de faible inertie zz	42
Figure (4-6) les Courbes d'interactions (M-N) Selon l'axe de forte inertie yy	43
Figure (4-7) les Courbes d'interactions (M-N) Selon l'axe de faible inertie zz	43
Figure (4-8) les Courbes d'interactions (M-N) Selon l'axe de forte inertie yy	44
Figure (4-9) les Courbes d'interactions (M-N) Selon l'axe de faible inertie zz	45
Figure (4-10) les Courbes d'interactions (M-N) Selon l'axe de forte inertie yy	46
Figure (4-11) les Courbes d'interactions réduites (M-N) Selon l'axe de forte inertie yy	46
Figure (4-12) les Courbes d'interactions (M-N) Selon l'axe de faible inertie zz	47
Figure (4-13) les Courbes d'interactions réduites (M-N) Selon l'axe de faible inertie zz	48
Figure (4-14) les Courbes d'interactions (M-N) Selon l'axe de forte inertie yy	49

Figure (4-15) les Courbes d'interactions réduites (M-N) Selon l'axe de forte inertie yy....49Figure (4-16) les Courbes d'interactions (M-N) Selon l'axe de faible inertie zz.....50Figure (4-17) les Courbes d'interactions réduites (M-N) Selon l'axe de faible inertie zz....51

CHAPITRE 5. LES EQUATIONS APPROCHEES ET LES ABAQUES DES COURBES D'INTERACTION

Figure (5-1) Courbe d'interaction inversée pour la compression et la flexion uni-axiale	53
Figure (5-2) les Courbes d'interactions inversées M-N Selon l'axe de forte inertie yy	54
Figure (5-3) Le coefficient A en fonction de (tw.W _{ply})	55
Figure (5-4) Le coefficient B en fonction de (W _{ply})	56
Figure (5-5) Le coefficient C en fonction de (h)	57
Figure (5-6) Le coefficient D en fonction de (t _w .W _{ply})	58
Figure (5-7) les Courbes d'interactions inversées M-N Selon l'axe de faible inertie zz	60
Figure (5-8) Le coefficient A en fonction de (t _w .W _{ply})	61
Figure (5-9) Le coefficient B en fonction de (W _{ply})	62
Figure (5-10) Le coefficient C en fonction de (W_{plz}/W_{ply})	63
Figure (5-11) Le coefficient D en fonction de (W _{plz})	64
Figure (5-12) Courbe d'interaction inversée pour la compression et la flexion uni-axiale	67
Figure (5-13) les Courbes d'interactions inversées pour : N $\in [0 N_c]$	71
Figure (5-14) Le coefficient A en fonction de (W _{ply})	72
Figure (5-15) Le coefficient B en fonction de (h)	73
Figure (5-16) Le coefficient C en fonction de (W _{ply})	74
Figure (5-17) les Courbes d'interactions inversées pour : N €[N _c N _{pl.rd}]	76
Figure (5-18) Le coefficient A1 en fonction de $(W_{ply}.t_w/b)$	77
Figure (5-19) Le coefficient B1 en fonction de (Wply)	78
Figure (5-20) les Courbes d'interactions inversées pour : N €[0 Nc]	79
Figure (5-21) Le coefficient A1 en fonction de (W_{ply}) pour le groupe 1	80
Figure (5-22) Le coefficient A1 en fonction de (W_{ply}) pour le groupe 2	81
Figure (5-23) Le coefficient B1 en fonction de (t_w) pour le groupe 1	82
Figure (5-24) Le coefficient B1 en fonction de (t_w) pour le groupe 2	82
Figure (5-25) Le coefficient C1 en fonction de (W_{ply}) pour le groupe 1	83
Figure (5-26) Le coefficient C1 en fonction de (W_{plz}) pour le groupe 2	84
Figure (5-27) les Courbes d'interactions inversées pour : N €[N _c N _{pl.rd}]	85
Figure (5-28) Le coefficient A1 en fonction de (W_{plz}) pour le groupe 1	86

Figure (5-29) Le coefficient A1 en fonction de (W_{plz}) pour le groupe 2	87
Figure (5-30) Le coefficient B1 en fonction de (W_{plz}) pour le groupe 1	87
Figure (5-31) Le coefficient B1 en fonction de (W_{plz}) pour le groupe 2	88
Figure (5-32) Courbes d'interaction inversée réduite	93
Figure (5-33) les Courbes d'interactions inversées réduites N-M Selon l'axe yy	94
Figure (5-34) les Courbes d'interactions inversées réduites M-N Selon l'axe ZZ	96
Figure (5-35) Section du poteau mixte enrobé de béton	105
Figure (5-36) Comparions entre l'Eurocode 4 et équations approchées selon l'axe yy	112
Figure (5-37) comparions entre Eurocode 4 et les équations approchées selon l'axe zz	112

LISTE DES SYMBOLES

Alphabet latin

Α	Aire de la section transversale
A_a	Aire de la section d'acier
A_s	Aire de la section d'armature
A_c	Aire de la section du béton
b	Largeur de la section
В	Largeur de la section transversale du poteau
e	Excentricité de charge, ou épaisseur de profilé
E_a	Valeur caractéristique du module d'élasticité de l'acier de construction
E_S	Valeur caractéristique du module d'élasticité de l'acier des armatures
E_C	Valeur caractéristique du module d'élasticité du béton
E_{cm}	Module sécant du béton
$(EI)_e$	Rigidité flexionnelle
f_y	Valeur caractéristique de la limite d'élasticité de l'acier de construction
f_{sk}	Valeur caractéristique de la limite d'élasticité de l'acier d'armature
f_{ck}	Valeur caractéristique de la résistance à la compression du béton sur éprouvette
	cylindrique à 28 jours
h	Hauteur de la section
L	Longueur du poteau
L_{f}	Longueur de flambement en situation d'incendie
N _{cr}	La charge élastique critique
I_a , I_c et I_s	Inerties flexionnelles
$N_{pl.rd}$	Résistance plastique
M Max.rd	Moment résistant maximum
$M_{pl.rd}$	Moment résistant maximum
W_{pa}	modules de résistance plastique de l'acier
W_{ps}	modules de résistance plastique de l'armature
W_{pc}	modules de résistance plastique de béton
	Epaisseur de la paroi du profil
t	Epaisseur de la semelle
t_f	Epaisseur de l'âme
t_w	

Alphabet Grec Déformation, ou rapport 8 Contrainte σ Facteur d'élancement λ L'élancement réduit du poteau mixte λ Diamètre d'une barre Φ Facteur de réduction, ou paramètre d'imperfection généralisée a le paramètre d'imperfection généralisée φ Densité volumique, courbure, ou taux d'armature ρ Facteur de réduction X les valeurs de h_a pour une excentricité nulle η_{a0} les valeurs de h_c pour une excentricité nulle. η_{c0}

PROBLEMATIQUE

Dans les deux dernières décennies, le développement et l'application des sections mixtes a considérablement augmenté dans le monde entier. L'élément mixte est utilisé non seulement aux structures offshores et aux ponts, mais également aux gratte-ciel et aux grands ouvrages.

Dans la conception des bâtiments aujourd'hui, de grands efforts ont été fournis pour augmenter la flexibilité de la structure. Ceci a eu comme conséquence une demande de poteaux avec une section transversale réduite. L'augmentation de la résistance à la compression du béton permet l'utilisation de petites sections transversales du poteau, qui exige moins de matériau, ce qui réduit son poids propre et permet une surface au sol plus utilisable. Cependant, un des soucis principaux liés aux poteaux en béton armé est la fourniture des armatures transversales suffisant afin de confiner le béton comprimé, et de ce fait, il y aura un écrasement et une rupture fragile. On a montré que les poteaux mixtes, offrent une solution très concurrentielle aux poteaux en béton armé conventionnels.

Les poteaux mixtes sont devenus de plus en plus populaires dans les applications structurelles dans le monde. C'est dû à leur haute résistance, aussi bien qu'aux autres propriétés telles que la ductilité élevée, et la capacité portante.

Le calcul des poteaux mixte acier béton soumise à la flexion composée uni axiale et bi axiale avec effort normal de compression tel que présente par l'Eurocode 4 se base la détermination graphique des courbe d'interaction qui elles même dépondent de plusieurs facteurs géométriques et mécaniques (type de section mixte, disposition des matériaux de la section).en particulier ,pour une section donnée soumise à la flexion composée bi axiale , il faut déterminer les deux courbes d'interaction par rapport aux deux axes centraux principaux pour pouvoir vérifier la résistance .ceci rend la procédure de calcul et la vérification de résistance très longues dans le temps et ne permet pas d'automatiser les calculs.

Notre objectif

L'objectif à travers ce travail est de proposer des abaques et un modèle d'équations approchées des courbe d'interaction pour les sections **HEA** enrobées de béton avec les conditions d'enrobage et ferraillage minimum .Ceci permettra un calcul rapide et automatisable des poteaux mixtes enrobés.

Une fois ce travail accompli, il servira de base pour l'étude et l'analyse à d'autres types de sections mixtes acier-béton.

1

Organisation du mémoire

Ce mémoire se compose d'une partie de problématique et de cinq chapitres suivit de conclusions et recommandations. Le Chapitre 1 donne les informations générales sur la construction mixte, ces avantages et ces inconvénients dans le domaine du bâtiment, alors que le 2^{ème} Chapitre donne les informations générales sur la flexion composée Le Chapitre 3, traite la méthode simplifiée du calcul des poteaux mixtes proposée par l'EC4. Dans le Chapitre 4 nous avons calculés les cordonner des diagrammes d'interactions dans chaque cas d'enrobage pour chaque profile. En chapitre 5, nous avons proposé des équations approchées et des abaques des courbes d'interactions.

Finalement, le mémoire se termine par la conclusion.

CHAPITRE 1 INTODUCTION GENERALE

1. INTRODUCTION GENERALE

1.1 Généralités

Dans le domaine des constructions de Génie Civil, les avantages d'un matériau relèvent de divers facteurs comme sa disponibilité, sa résistance structurale et sa mise en œuvre. Le choix du matériau dépend des critères esthétiques, ainsi que des coûts liés au type de construction. Il est très surprenant de constater qu'aucun matériau connu à l'état naturel ne possède pas toutes ces propriétés au niveau souhaitable. Le problème consiste donc à trouver une solution optimale dans l'utilisation de différents matériaux et méthodes de construction, avec l'objectif de réaliser une structure de coût minimal tout en satisfaisant aux exigences structurales de celle-ci. De nos jours, la majorité des constructions est réalisée en utilisant un des matériaux: béton ou acier.

La solution mixte tend à être utilisée de plus en plus dans divers pays où le risque sismique est élevé, en raison d'une bonne ductilité des structures et d'une meilleure résistance vis-à-vis des phénomènes d'instabilité [1].

La définition d'un poteau mixte est basée sur la contribution plus ou moins importante de l'acier à la résistance de l'élément, mais le mode de fonctionnement d'un poteau mixte ne peut se définir uniquement considérant le principe du béton armé qui impose qu'aucun glissement apparaisse à l'interface acier– béton ; en raison de l'élancement souvent plus important et la flexibilité plus grande d'un poteau mixte, son mode de fonctionnement s'apparente également à celui des poteaux métalliques, affecté par des imperfections géométriques et structurelles [2].

De nombreuses recherches ont été consacrées à l'étude de ce matériau composite notamment en Grande Bretagne, aux USA, en Allemagne, en Belgique et au Japon. La conclusion était très positive à propos de cette association acier-béton dans tous les points de vue, à savoir résistance, économie, technologie, etc. [3].

Le dimensionnement des structures de bâtiments et de ponts est dominé principalement par la réalisation et le support de surfaces horizontales. Dans les bâtiments, les planchers sont généralement réalisés en béton armé par des armatures en acier pour résister à la traction. Cependant lorsque les portées augmentent, il est plus économique de supporter la dalle, par exemple par des poutres, plutôt que d'épaissir le plancher. Dans les structures de bâtiment, le grillage de poutres est soutenu à son tour par des poteaux. Les poutres et les poteaux peuvent

être réalisés en utilisant des sections acier, généralement des profilés laminés en I et en H. Auparavant, il était usuel de dimensionner l'ossature métallique pour reprendre seule l'ensemble des charges, mais depuis les années 50, il est devenu de plus en plus courant de connecter les dalles de béton aux poutres les supportant à l'aide de moyens mécaniques. Ces derniers éliminent ou du moins réduisent le glissement à l'interface acier- béton de telle façon que la dalle et la poutre métallique agissent ensemble comme un élément unique, communément appelé "poutre mixte" (Figure 1.1).

Figure (1-1) Poutre non mixte et mixte

Pratiquement, la connexion est assurée par des connecteurs qui sont soudés ou fixés par pistolet à l'acier structurel et ceinturé par le béton. Le rôle des connecteurs est de transférer les tensions entre la dalle en béton et la poutre en acier, et assurer la stabilité de la structure mixte [4].

1.2. Raisons d'utiliser des structures mixtes

Tout dimensionnement doit non seulement prendre en compte l'optimisation de la résistance aux charges, de la raideur et de la ductilité mais également les aspects architecturaux, économiques, de fabrication et d'utilisation des poutres, dalles et poteaux [5], [6].

1.2.1. Aspects économiques

L'intérêt économique des structures mixtes provient de dimensions plus réduites (la rigidité plus élevée entraîne des flèches plus faibles, des portées plus grandes et des hauteurs totales plus faibles) et d'une construction plus rapide.

Les rapports portée sur hauteur (l/h=35) des poutres sont faibles et peuvent présenter plusieurs avantages:

- ✓ La réduction des hauteurs permet de réduire la hauteur totale du bâtiment et permet dès lors une diminution de la surface de couverture
- ✓ Les portées plus grandes pour des hauteurs identiques (par rapport aux autres méthodes de construction) permettent de libérer des poteaux les pièces qui offrent alors plus de flexibilité
- ✓ Pour une même hauteur totale de bâtiment, celui-ci peut présenter plus d'étages.

Les structures mixtes sont simples à construire et présentent des temps de construction réduits:

- ✓ économie de coûts suite à la réalisation plus rapide du bâtiment
- ✓ coûts de financement plus faibles
- ✓ prêt à l'emploi plus rapidement et donc revenu d'utilisation plus élevé

1.2.2. Aspects architecturaux

Les structures mixtes permettent de nombreuses variations architecturales pour combiner les différents types d'élément mixtes.

En plus de réduire les dimensions des poutres, la construction mixte permet :

- ✓ des portées plus importantes
- \checkmark des dalles plus minces
- ✓ des poteaux plus élancés

Et offre une grande flexibilité et de nombreuses possibilités lors de la conception.

1.2.3 Fonctionnalité

Les structures métalliques traditionnelles présentent des systèmes de protection au feu rapportés qui permettent d'isoler l'acier de la chaleur due à l'incendie. Les structures métalliques et mixtes actuelles peuvent présenter une résistance au feu en utilisant les principes des constructions en béton armé dans lesquelles le béton protège l'acier grâce à sa masse élevée et sa conductivité thermique relativement faible.

Tout comme les planchers mixtes qui peuvent résister au feu, les poutres mixtes peuvent également être utilisés sans protection des semelles mais avec un enrobage de béton armé entre les semelles. Ce béton ne sert pas uniquement à maintenir des températures relativement basses dans la semelle supérieure et dans l'âme mais également à apporter de la résistance flexionnelle compensant la perte de résistance de la semelle inférieure portée à haute température.

1.2.4. Equipements et utilisation flexible du bâtiment

Les structures mixtes s'adaptent aisément aux modifications susceptibles de se produire durant la vie d'un bâtiment. Cela est particulièrement le cas lorsque la dalle est en présence de structures en portiques. Il est alors toujours possible de créer une nouvelle cage d'escalier entre deux planchers en ajoutant simplement les poutres de renvoi nécessaires.

Les évolutions récentes dans les technologies informatiques, de communication et d'information ont montré l'importance d'être capable de modifier rapidement l'organisation des équipements d'un bâtiment. De plus, dans les bâtiments commerciaux ou en co-propriété, il doit être possible de modifier les équipements sans occasionner d'inconvénient aux autres occupants. Pour résoudre ces problèmes, les ingénieurs doivent choisir entre plusieurs solutions. Il y a généralement trois manières d'installer les équipements:

- ✓ dans les faux plafonds
- ✓ dans un faux-plancher
- ✓ des caissons situés le long des murs

L'espace entre la retombée et la semelle inférieure d'une poutre mixte constitue une zone idéale dans laquelle les équipements peuvent être installés.

1.2.5. Montage

Les planchers mixtes sont maintenant la solution privilégiée pour une grande variété de structures car ils offrent aux concepteurs et aux clients les avantages suivants:

Plate-forme de travail

Avant le bétonnage, la tôle profilée constitue une plate-forme de travail sûre et qui permet d'accélérer le processus de construction d'autres éléments.

Coffrage permanent

La tôle profilée porte de poutre à poutre et sert de coffrage permanent au béton tel que généralement des étais provisoires ne sont pas nécessaires. La tôle profilée est également une barrière efficace à la vapeur.

La retombée de la poutre reste propre après le bétonnage et l'utilisation de tôles peintes peut donner un bon aspect au plafond mais la peinture peut causer des difficultés en cas de soudage des goujons à travers la tôle.

> Armatures

La section d'acier du profilé métallique est généralement suffisante pour résister, en tant qu 'armature, au moment de flexion positif. Des armatures supplémentaires peuvent être présentes dans la dalle pour résister au retrait, aux mouvements dus à la température ou afin d'assurer une continuité aux appuis (moment négatifs). L'action mixte est obtenue grâce à la forme du profil ou à l'aide de moyens mécaniques tel que des indentations ou un bossage de la tôle profilée.

Vitesse et simplicité de construction

Les tôles profilées combinant une rigidité élevée et un faible poids rendent aisé le transport et le stockage du matériel sur chantier. Un camion est souvent capable de transporter jusqu'à 1500m² de plancher. Une équipe de quatre hommes peut installer 400m² de plancher par jour. Les panneaux sont légers et sont des éléments préfabriqués qui peuvent être aisément transportés et installés par deux ou trois hommes.

Produits à la qualité contrôlée:

Les éléments métalliques des structures mixtes sont fabriqués et contrôlés en usine. Cela permet l'établissement de procédures de qualités strictes qui diminuent l'incertitude liée au travail sur chantier. Le résultat en est une précision de construction plus élevée.

1.2.6. Comparaison avec d'autres méthodes

Pour pouvoir user des effets de synergie et profiter des avantages disponibles possibles, il est nécessaire d'utiliser des éléments mixtes, les éléments mixtes présentant une rigidité et une capacité de charge plus grandes qu'un élément métallique présentant les mêmes dimensions.

Généralement, les dimensions des sections d'éléments mixtes sont bien inférieures à celles des éléments correspondant en béton armé ou en acier seul.

Le Tableau (1.1) par exemple, compare les tailles de poteaux et poutres mixtes relativement importantes avec leur équivalent en béton armé pour des conditions de chargements identiques.

	Mixte Béton armé		
Poteau			
Dimensions [cm]	70 / 70	80 / 120	
Poutre			
Dimensions [cm]	160 / 40	160 / 120	

Tableau (1-1) Comparaison d'éléments mixtes et en béton armé

1.3. Eléments de construction

Un élément mixte est généralement porteur; il ne s'agit donc pas d'une simple juxtaposition d'éléments porteurs indépendants.

Dans la pratique courante de la construction métallique, on peut distinguer trois types principaux d'éléments mixtes :

- \checkmark Les poutres mixtes,
- \checkmark Les dalles mixtes,
- \checkmark Les poteaux mixtes.

La section d'une poutre mixte ou d'une dalle mixte, est essentiellement sollicitée par des efforts de flexion, alors que la section d'un poteau mixte est sollicitée en compression, souvent combinées avec la flexion.

1.3.1. Les poutres mixtes

Les poutres mixtes acier-béton sont des éléments porteurs fléchis composés d'une poutre métallique et d'une dalle de béton; elles peuvent être :

- 1. Des profilés métalliques plus des dalle coulées sur le coffrage.
- 2. Des profilés métalliques plus des dalles partiellement préfabriquées.
- 3. Des profilés métalliques plus des dalles complètement préfabriquées.

Il s'agit en général d'un profilé en acier connecté à une dalle de béton. Cette dalle peut être coulée sur un coffrage non permanent ou sur un coffrage permanent, comme par exemple une tôle profilée en acier, ou une série de pédalles.

1.3.2. Les dalles mixtes

Différentes dalles mixtes peuvent être utilisées en combinaison avec une poutre en acier.

Il s'agit

- ✓ soit d'une dalle coulée in situ sur un platelage
- ✓ soit d'une dalle composée d'éléments préfabriqués en béton (prédalles ou hourdis) et de béton coulé sur chantier.

La hauteur totale des dalles mixtes varie en général de 120 à 180mm; elle est fonction notamment de la résistance au feu exigée. La hauteur classique des nervures (de la tôle) est entre 40 et 85mm. Les entraxes varient de 150 à 300mm. L'épaisseur de la tôle utilisée varie entre 0.75 et 2mm.

1.7.3. Les poteaux mixtes

Ce sont des éléments porteurs verticaux composés essentiellement d'un profilé métallique et du béton armé ou non.

Deux types de poteaux mixtes, les poteaux enrobés de béton, que ce soit totalement ou partiellement et les poteaux remplis de béton sont couramment utilisés dans les bâtiments. Formes de base de sections représentant des colonnes composites sont indiqués à la figure (1.2).

Les poteaux mixtes acier-béton enrobé de béton sont devenus la forme préférée pour de nombreuses structures sismiques résistant. En cas de surcharge sévère à la flexion, des fissures de l'enrobage de béton résultant en une réduction de la rigidité, mais l'âme en acier fournit la capacité et de la résistance au cisaillement ductile pour des cycles subséquents de surcharge.

Les poteaux remplis de béton ont été utilisés pour les structures parasismiques, piles de pont soumis à l'impact de la circulation, des colonnes pour soutenir les réservoirs de stockage, les ponts de chemins de fer, des colonnes dans les bâtiments de grande hauteur et de pieux. les poteaux remplis de béton nécessitent une isolation anti-feu supplémentaire si la protection incendie de la structure est nécessaire. En raison de l'utilisation accrue des colonnes composites, beaucoup de travaux théoriques et expérimentaux ont été effectués [7], [8].

		1	
<u></u> ,		Shear connectors welded to web of profile	لعسا
Completely encased sections	Partially encased sections		Concrete filled
Composite colum	hollow sections		

Figure (1.2) Exemples typiques de poteaux mixtes [9].

1.4. Matériaux utilisés dans un élément mixte

Pour réaliser les différents éléments structuraux mixtes, on utilise généralement cinq matériaux de base [10]:

- ✓ L'acier de construction
- ✓ L'acier d'armature ou de renfort
- ✓ Les tôles profilées en acier
- ✓ Le béton
- ✓ Les connecteurs de cisaillement (shear connectors)

Ces matériaux sont décrits dans différents codes. Certaines exigences essentielles sont abordées également dans des règlements comme les Eurocodes : Eurocode 2, Eurocode 3 et Eurocode 4 [11, 12, 13].

1.5. Conclusions

De nombreuses recherches ont été consacrées à l'étude des structures mixtes. La conclusion était très positive à propos de cette association acier-béton dans tous les points de vue, à savoir résistance, économie, technologie, etc. Tous les résultats d'essais ont abouti à une conclusion forte intéressante: la résistance d'une section mixte n'était pas la somme des résistances du béton et de l'acier, le matériau mixte est un nouveau matériau qui a son propre comportement.

Les structures mixtes sont de plus en plus utilisées dans la conception des structures modernes élancées. Leur utilisation contribue à afférer aux éléments une haute résistance, une grande ductilité et une rigidité élevée, avec une optimisation remarquable des matériaux mis en œuvre. En plus de ces avantages les structures mixtes servent aussi de coffrage ce qui réduit le coût et la durée de réalisation.

CHAPITRE 2 LA FLEXION COMPOSEE

2. LA FLEXION COMPOSEE

2.1. Introduction

Soit une section de forme quelconque de matériau ductile et homogène soumise à un système de forces. On dit que cette section est soumise à une compression excentrée si et seulement si la direction (d-d) de la résultante N du système de forces ne coïncide pas avec la direction de l'axe longitudinal (Oz) de la section Figure (2.1). [11]

Figure (2-1) Section de forme quelconque soumise à la compression biaxialement excentrée

 $e = OG = \frac{M}{N}$

Avec ;
$$M = N.e$$
, $e = (e_x^2 + e_y^2)^{0.5}$

OzReprésente l'axe qui contient les centres de gravités des sections considérées.

G Étant le point d'application de la force.

D'après le principe d'équilibre, on aura :

$$N = \int_{s} \sigma.ds, \quad M_{x} = N.e_{y} = \int_{s} \sigma.y.ds, \quad M_{y} = N.e_{x} = \int_{s} \sigma.x.ds$$

Où :

- \checkmark s représente l'aire de la section ;
- \checkmark σ contrainte se trouvant au point de coordonnées (*x*, *y*) dépendant de la loi de comportement du matériau.

2.2. Domaine élastique

En particulier dans le domaine élastique et lorsque la section est homogène, on peut écrire cette contrainte σ sous la forme suivante :

$$\sigma = \frac{N}{S} + \frac{M_x \cdot y}{I_x} + \frac{M_y \cdot x}{I_y} \text{ Avec } M_x = N.e_y, \quad M_y = N.e_x$$

où M_x , M_y , x, et y peuvent être positifs ou négatifs.

La contrainte peut s'écrire de la manière suivante :

$$\sigma = N \left(\frac{1}{S} + \frac{e_y \cdot y}{I_x} + \frac{e_x \cdot x}{I_y} \right)$$

On remarque aussi qu'il existe une droite pour laquelle la valeur de σ est nulle; elle est appelée ligne neutre.

$$\sigma = 0 \quad \text{donc} \, \left(\frac{1}{S} + \frac{e_y \cdot y}{I_x} + \frac{e_x \cdot x}{I_y} \right) = 0$$

D'où
$$y = -\frac{e_x}{e_y} \cdot \frac{I_x}{I_y} \cdot x - \frac{I_x}{S \cdot e_y}$$
 dont la pente est $-(\frac{e_x}{e_y} \cdot \frac{I_x}{I_y})$

Remarque :

- ✓ Si l'une des excentricités est nulle, la pente de la ligne neutre est nulle ou infinie de sorte que la ligne neutre se retrouve parallèle à l'un des axes principaux. On dit que l'on est en présence d'un problème uniaxial ou de flexion composée droite;
- ✓ Si e_x et e_y sont toutes les deux différentes de zéro nous sommes en présence d'un problème biaxial ou flexion composée déviée;
- ✓ Pour chaque position de la résultante N, on a une ligne neutre propre, et inversement, à chaque ligne neutre correspond une résultante N de coordonnées propres.

2.3. Domaine élasto-plastique

Les équations écrites précédemment ne sont valables que pour un matériau homogène et ductile et travaillant dans le domaine élastique.

Pour un matériau travaillant au-delà de ce domaine élastique, l'écriture des équations est très complexe, parfois impossible, car elle dépend de la loi de comportement du matériau et de la géométrie de la section.

Par exemple, le traitement d'une section de forme rectangulaire représentée sur Figure.(2-2), en acier (matériau ductile), soumise à la flexion composée uniaxiale, l'état limite ultime est représenté sur la figure (2.2).

Figure (2-2) Etat limite ultime d'une section rectangulaire en acier soumise à la compression excentrée uniaxialement

$$N = \int_{y} (\pm \sigma_e) . b . dy = -2.\sigma_e . b . y0$$

Soit $N_p = 2.\sigma_e.b.h$ effort limite ultime centré

$$\frac{N}{N_p} = -\frac{y0}{h}$$
$$M = \int_{y} (\pm \sigma_e) . b. y. dy = \sigma_e . b. (h^2 - y0^2)$$

Soit $M_p = \sigma_e . b . h^2$ moment limite ultime en flexion simple (moment plastique)

$$\frac{M}{M_p} = 1 - \left(\frac{y0}{h}\right)^2 = 1 - \left(\frac{N}{N_p}\right)^2$$

D'où
$$\frac{M}{M_p} + \left(\frac{N}{N_p}\right)^2 = 1$$

Cette équation représente l'état limite ultime en flexion composée simple d'une section rectangulaire.

Le problème se complique encore plus si l'axe neutre est oblique Figure.(2-3). La relation $N = f(M_x, M_y)$ n'est pas définie.

Figure (2-3) Etat limite ultime d'une section rectangulaire en acier soumise à la compression excentrée biaxialement

$$N = \int_{s} (\pm \sigma_{e}) ..ds$$
$$M_{x} = \int_{s} (\pm \sigma_{e}) .y.ds$$
$$M_{y} = \int_{s} (\pm \sigma_{e}) .x.ds$$

2.4. Cas du béton armé

Dans le béton armé, le problème est encore plus complexe : en plus des facteurs géométriques, il faut aussi tenir compte de deux lois de comportement dont celle du béton qui est une parabole rectangle Figure (2.4). En plus la section de calcul change de forme pour chaque position de l'axe neutre à cause de la fragilité du béton (béton tendu négligé).

Figure (2-4) Section en béton armé

$$N = \int_{s} \sigma_{b} ..ds + \sum A_{i} .\sigma_{a}$$
$$M_{x} = \int_{s} \sigma_{b} .y.ds + \sum A_{i} .\sigma_{a} .y_{ai}$$
$$M_{y} = \int_{s} \sigma_{b} .x.ds + \sum A_{i} .\sigma_{a} .x_{ai}$$

Pour résoudre le problème il faut tout d'abord trouver les valeurs de N, M_x et M_y pour toute position de l'axe neutre et pour toute variation du pourcentage d'acier et par la suite chercher une relation qui lie les trois efforts.

CHAPITRE 3

CALCUL DES POTEAUX MIXTES SELON L'EUROCODE 4

3. CALCUL DES POTEAUX MIXTES SELON L'EUROCODE 4

3.1. Introduction

Les EUROCODES [12, 13, 14, 15] sont des normes européennes de conception et de calcul pour les bâtiments et les ouvrages de génie civil. Ils fournissent une série de méthodes et de règles techniques communes pour calculer la résistance mécanique des éléments ayant une fonction structurelle dans un ouvrage de construction. Ils concernent les aspects techniques du calcul structural et du calcul au feu.

L'ensemble des EUROCODES est constitué de 10 documents:

- 1. NF EN 1990 Eurocode 0 : Bases de calcul des structures
- 2. NF EN 1991 Eurocode 1 : Actions sur les structures
- 3. NF EN 1992 Eurocode 2 : Calcul des structures en béton
- 4. NF EN 1993 Eurocode 3 : Calcul des structures en acier
- 5. NF EN 1994 Eurocode 4 : Calcul des structures mixtes acier-béton
- 6. NF EN 1995 Eurocode 5 : Calcul des structures en bois
- 7. NF EN 1996 Eurocode 6 : Calcul des structures en maçonnerie
- 8. NF EN 1997 Eurocode 7 : Calcul géotechnique
- 9. NF EN 1998 Eurocode 8 : Calcul des structures pour leur résistance aux séismes
- 10. NF EN 1999 Eurocode 9 : Calcul des structures en alliages d'aluminium

La philosophie de base du dimensionnement des structures selon les Eurocodes distingue principalement deux types d'états limites [16], [17]:

- les états limites ultimes ou ELU, qui concernent la sécurité des personnes et/ou de la structure (effondrement, ...); leur vérification nécessite de contrôler la capacité portante maximale d'une structure ou d'un élément et les déformations excessives pouvant mener à une défaillance structurale par instabilité mécanique (flambement d'une colonne, déversement d'une poutre, ...)
- les états limites de service ou ELS, qui concernent le fonctionnement de la structure ou des éléments structuraux, le confort des personnes et l'aspect de la construction (fissuration, déformation excessive, vibrations, ...).

L'Eurocode 4 présente deux méthodes de dimensionnement [18], [19].

Une méthode générale qui impose de prendre en compte les effets du second ordre au niveau local de l'élément et les imperfections. Cette méthode peut s'appliquer à des sections de poteaux qui ne sont pas symétriques et à des poteaux de section variable sur leur hauteur. Elle nécessite l'emploi de méthodes de calcul numérique et ne peut être appliquée qu'avec l'utilisation de programmes informatiques.

Une méthode simplifiée utilisant les courbes de flambement européennes des poteaux en acier tenant compte implicitement des imperfections qui affectent ces poteaux. Cette méthode est limitée au calcul des poteaux mixtes de section uniforme sur toute la hauteur et de sections doublement symétriques.

Chacune des deux méthodes est basée sur les hypothèses classiques suivantes :

- ✓ Il y a une interaction totale entre la section d'acier et la section de béton jusqu'à la ruine,
- ✓ Les imperfections géométriques et structurales sont prises en compte dans le calcul,
- ✓ Les sections planes restent planes lors de la déformation du poteau.

3.2. Voilement local des éléments structuraux en acier

La présence de béton correctement tenu en place dans les sections totalement enrobées prévient le voilement local des parois du profil en acier si l'épaisseur d'enrobage de béton est suffisante. Celle-ci ne peut dès lors être inférieure au maximum des deux valeurs suivantes à savoir 40 mm et 1/6 de la largeur b de la semelle du profil en acier.

Cet enrobage destiné à empêcher tout éclatement prématuré du béton doit être armé transversalement.

Pour les autres types de poteaux mixtes, à savoir les sections partiellement enrobées et les sections creuses remplies de béton, l'élancement des parois du profil en acier doit satisfaire les conditions suivantes:

- ✓ d/ t ≤ 90 ϵ^2 pour les profils creux ronds remplis de béton de diamètre d et d'épaisseur t ;
- ✓ h/t ≤ 52ε pour l'âme des profils creux rectangulaires remplis de béton de hauteur h et d'épaisseur t ;
- ✓ $b/t_f \le 44\epsilon$ pour les semelles de largeur b et d'épaisseur t_f des profils en H partiellement enrobés ;
Avec $\varepsilon = \sqrt{\frac{285}{f_y}}$ où f_y est la limite d'élasticité de l'acier constituant le profil.

3.3. Méthode simplifiée de calcul

L'application de la méthode simplifiée comporte les limitations suivantes :

- ✓ La section transversale du poteau est constante et présente une double symétrie sur toute la hauteur du poteau et est telle que le rapport de sa hauteur à sa largeur soit compris entre0,2 et 5,0.
- ✓ La contribution relative de la section en acier à la résistance de calcul de la section complète, à savoir $\delta = (A_a f_y / \gamma_a) / N_{pl.rd}$ est compris entre 0,2 et 0,9 ;
- ✓ L'élancement réduit \overline{A} du poteau mixte, ne dépasse pas la valeur de 2,0 ;
- Pour les sections totalement enrobées, l'aire des armatures doit au moins être égale à 0,3% de l'aire de béton et les armatures présentent des épaisseurs d'enrobage de béton satisfaisant les conditions suivantes :
 - dans le sens y : 40 mm $< c_y < 0,4 b_c$
 - dans le sens z : 40 mm < $c_z < 0.3 h_c$ avec b_c et h_c définis à la figure 3.1(a).

Figure (3-1) Exemples types de sections transversales de poteaux

Il est souvent nécessaire d'utiliser des épaisseurs d'enrobage plus importantes (par exemple pour assurer une résistance suffisante à l'incendie) mais il convient dans ces cas, aux fins de calcul, d'ignorer le supplément d'épaisseur d'enrobage par rapport aux valeurs maximales cidessus. L'aire de l'armature longitudinale ne peut être utilisée dans les calculs que si elle est limitée à6% de l'aire du béton. Pour des raisons de résistance à l'incendie, il est quelquefois nécessaire de mettre en œuvre des sections d'armature plus importantes; il n'est toutefois tenu compte au maximum que de 6 % de l'aire de béton pour le calcul de la résistance de la section mixte.

3.3.1 Poteaux mixtes soumis à compression axiale

3.3.1.1 Résistance de la section

La résistance en section vis-à-vis d'une charge axiale de compression est obtenue en additionnant les résistances plastiques des éléments constitutifs de cette section, suivant les formules suivantes:

✓ Pour les sections enrobées de béton:

$$N_{pl.Rd} = A_s \frac{f_y}{r_{Ns}} + A_s \cdot 0.85 \frac{f_{ck}}{r_c} + A_s \frac{f_{sk}}{r_s}$$
(3-1)

✓ Pour les sections creuses remplies de béton:

$$N_{pl,Rd} = A_a \frac{f_y}{\gamma_{Na}} + A_c \frac{f_{ck}}{\gamma_c} + A_s \frac{f_{sk}}{\gamma_s}$$
(3-2)

 A_a , A_c et A_s sont les aires respectives de la section transversale de la section en acier, du béton et de l'armature. Le confinement du béton remplissant un profil creux, quelle que soit la forme de celui-ci, est source d'une augmentation de la résistance du béton; celle-ci est prise en compte en remplaçant la valeur 0,85 f_{ck} par f_{ck}.

Pour une section creuse circulaire remplie de béton, une autre augmentation de résistance à la compression provient du frettage du poteau de béton. Elle n'est effective que si le profil creux en acier est circulaire et suffisamment rigide pour s'opposer efficacement au gonflement du béton comprimé sous l'effet de la compression axiale.

Cette augmentation de résistance ne peut donc être utilisée dans les calculs que lorsque l'élancement réduit du poteau mixte constitué d'un tube circulaire rempli de béton ne dépasse pas 0,5 et que le plus grand moment fléchissant de calcul admis, $M_{\text{max.Sd}}$, calculé au premier ordre, ne dépasse pas $0,1N_{\text{Sd}}d$, où *d* représente le diamètre extérieur du poteau et N_{Sd} l'effort de compression sollicitant de calcul. La résistance plastique de calcul à la compression d'un poteau mixte fait d'une section creuse circulaire remplie de béton peut être calculée par la relation suivante:

$$N_{pl,Rd} = A_{\alpha} \eta_{\alpha} \frac{f_{y}}{\gamma_{Ma}} + A_{c} \frac{f_{ck}}{\gamma_{c}} \left[1 + \eta_{c} \frac{t}{d} \frac{f_{y}}{f_{ck}} \right] + A_{s} \frac{f_{sk}}{\gamma_{s}}$$
(3-3)

Où t représente l'épaisseur de la paroi du tube en acier. Les coefficients η_a et η_c sont définis ci-après pour 0 < e < d/10, où e désigne l'excentricité de l'effort axial de compression, défini par le rapport $M_{max.Sd}/N_{Sd}$:

$$\eta_a = \eta_{a0} + (1 - \eta_{a0}) \left(10 \frac{s}{d} \right) \tag{3-4}$$

$$\eta_c = \eta_{c0} \left(1 - 10 \frac{s}{a} \right) \tag{3-5}$$

Pour e > d/10, on doit adopter $\eta a = 0$ et $\eta c = 1, 0$.

Dans les relations (4) et (5) ci-dessus, les facteurs $\eta a0$ et $\eta c0$ sont les valeurs de ha et hc pour une excentricité e nulle. Ils sont donnés en fonction de l'élancement réduit \overline{A} selon:

$$\eta_{a0} = 0.25(3+2\bar{\lambda}) \tag{3-6}$$

$$\eta_{e0} = 4,9 - 18,5\bar{\lambda} + 17\bar{\lambda}^2 \tag{3-7}$$

La présence de moments sollicitant de calcul M_{Sd} a pour effet de réduire la contrainte de compression moyenne à la ruine dans le poteau et donc l'effet favorable du frettage sur la résistance du poteau. Les bornes imposées à η_a et η_c , d'une part, et sur η_{a0} et η_{c0} , d'autre part, traduisent les influences respectives de l'excentricité et de l'élancement sur la capacité portante.

Cette augmentation de résistance due au frettage n'est pas permise pour un tube rectangulaire parce que ses faces planes se déforment sous l'effet du gonflement du béton.

3.3.1.2 Elancement réduit

La charge élastique critique N_{cr} d'un poteau mixte est calculée en utilisant la formule d'Euler:

$$N_{er} = \frac{\pi^{z} (EL)_{eff,k}}{L_{fl}^{2}}$$
(3-8)

Où (EI)e est la rigidité flexionnelle du poteau mixte relative au plan de flambement considéré

et L_{fl} , la longueur de flambement correspondante de ce poteau. Si ce poteau appartient à une ossature rigide, cette longueur de flambement peut, de manière sécuritaire, être prise égale à la longueur d'épure *L*.

Pour les charges de courte durée, la rigidité élastique de flexion effective $(El)_e$ de la section transversale d'un poteau mixte vaut :

$$(EL)_{off,k} = E_a I_a + K_o E_{om} I_o + E_s I_s$$
(3-9)

avec :

 I_a , I_c et I_s inerties flexionnelles respectives, pour le plan de flexion considéré, du profil en acier, du béton (supposé non fissuré) et de l'armature;

 E_{a} et E_{s} modules d'élasticité respectifs du matériau constituant le profil en acier et de l'acier d'armature ;

 $E_{\rm cm}$ module sécant du béton ;

 $K_{\rm e}$ un facteur de correction prenant en compte la fissuration du béton et qui peut être pris égal à 0,6.

Dans le cas d'application de charges de longue durée, la rigidité flexionnelle du béton est déterminée en remplaçant le module d'élasticité du béton E_{cd} par une valeur minorée E_c calculée comme suit :

$$E_{c} = E_{cm} \frac{1}{1 + \frac{N_{C,Sd}}{N_{Sd}}\varphi_{c}}$$
(3-10)

Où $N_{G \cdot Sd}$ est la fraction de la charge axiale N_{Sd} qui agit de manière permanente, tandis que φ test un coefficient de fluage défini dans l'Eurocode 2 qui dépend de l'âge du béton lors du chargement et du temps considéré. Dans le cas d'un poteau de bâtiment, il est généralement suffisant de considérer seulement le poteau en un temps "infini". Cette modification du module d'élasticité du béton n'est nécessaire que si:

✓ l'élancement réduit $\frac{1}{\lambda}$, pour le plan de flexion considéré, dépasse 0,8 pour les sections enrobées de béton et 0,8/(1- δ) pour les sections creuses remplies de béton avec

 $\delta = \frac{A_{a}f_{y}}{\gamma_{Ma}N_{gLRd}}$ qui représente la contribution de la section métallique à la résistance

axiale totale du poteau. On notera que le calcul de l exige que l'on connaisse une première valeur de la rigidité E_c du béton. Pour la comparaison avec les limites

indiquées ci-dessus, il est autorisé de calculer $\overline{\lambda}$ sans se préoccuper de l'influence éventuelle des charges de longue durée.

 ✓ l'excentricité relative *e/d* (d étant la dimension de la section associée à la hauteur dans le plan de flambement considéré) est inférieure à 2.

Ces valeurs limites sont d'application dans le cas d'ossatures contreventées rigides; elles sont à remplacer respectivement par 0,5 et $0,5/(1-\delta)$ dans le cas d'ossatures souples et/ou non contreventées.

L'élancement réduit du poteau mixte pour le plan de flexion considéré est donné par :

$$\bar{\lambda} = \sqrt{\frac{N_{\text{pl.5k}}}{N_{\text{cr}}}} \tag{3-11}$$

Où N_{pl. Rk} est la valeur de l'effort normal résistant plastique $N_{pl.Rd}$ calculé en posant tous les facteurs partiels de sécurité γ_a , γ_c et γ_y égaux à 1,0 (c'est a dire en utilisant les résistances caractéristiques des matériaux).

3.3.1.3 Résistance au flambement

Le poteau mixte présente une résistance au flambement suffisante si, pour chacun des plans de flambement, l'effort axial de calcul N_{Sd} est tel que :

$$N_{sd} \le \chi N_{plRd} \tag{3-12}$$

Où la valeur de χ , coefficient de réduction relatif au plan de flambement considéré est donnée en fonction de l'élancement $\overline{\lambda}$ et de la courbe européenne de flambement appropriée.

Les courbes européennes s'appliquant aux poteaux mixtes sont données au Tableau (3-1).

Tableau (3-1) Courbes	de flambement e	et imperfections
-----------------------	-----------------	------------------

Courbe de	Type de section	Imperfection
flambement		

Courbe a	Sections creuses remplies de béton, armée $(A_s/A_c < 3\%)$	L/300
(a = 0,21)	ou non et sans profilé en I additionnel.	
Courbe b	Sections en H totalement ou partiellement enrobées de	L/210
(a = 0,34)	béton flambant par flexion autour de l'axe fort (y-y);	
	Sections creuses remplies de béton, armée	
	$(3\% < A_s/A_c < 6\%)$ ou avec un profilé en I additionnel.	
Courbe c	Sections en H totalement ou partiellement enrobées de	L/170
(a = 0,49)	béton flambant par flexion autour de l'axe faible du profil	
	en acier.	

Le coefficient de réduction au flambement est calculé suivant:

$$\chi = \frac{1}{\left[\hat{\sigma}^2 - \lambda^2\right]^{\frac{1}{2}}} \le 1 \tag{3-13}$$

Avec :

$$\Phi = 0.5 \begin{bmatrix} 1 + \alpha (\overline{\lambda} & 0.2) + \overline{\lambda}^2 \end{bmatrix}$$
(3-14)

Où a est le paramètre d'imperfection généralisée, qui couvre les effets défavorables du défaut de rectitude initial et des contraintes résiduelles.

Dans certains cas, en particulier lors du calcul de poteaux élancés soumis à de la compression et de la flexion, il peut être préférable d'utiliser les imperfections données au Tableau 3.1 pour calculer un moment de flexion de premier ordre supplémentaire causé par l'excentricité de cette charge axiale

3.3.2 Poteaux mixtes soumis à compression axiale et flexion

3.3.2.1 Résistance de la section sous moment de flexion et effort normal

Il est nécessaire de procéder à une vérification du comportement dans chacun des plans principaux, en prenant en compte l'élancement, la distribution des moments fléchissant et la résistance en flexion associés au plan de sollicitation considéré. La résistance en section du poteau mixte sous combinaison de compression et de flexion mono-axiale est définie par une courbe d'interaction M-N, telle que celle présentée à la Figure (3-2).

Figure (3-2) Courbe d'interaction M-N (flexion mono-axiale)

Le point D de cette courbe d'interaction correspond au maximum du moment résistant $M_{max,Rd}$ supérieur à $M_{pl,Rd}$. En effet, dans un poteau mixte, l'augmentation de la charge axiale retarde la fissuration par traction du béton et rend ainsi le poteau mixte plus apte à résister à la flexion.

La courbe d'interaction précitée peut se déterminer point par point, en considérant successivement diverses positions particulières de l'axe neutre plastique dans la section droite et en calculant pour chacune de ces positions, la résistance de la section droite à partir de l'hypothèse des blocs de contrainte, ce qui, à partir des deux équations d'équilibre de translation et de rotation, fournit le couple (M, N) des efforts résistants concomitants.

La Figure 3.3 illustre cette procédure pour quatre positions particulières de l'axe neutre plastique, auxquelles correspondent respectivement les points repérés A, B, C, D et E de la Figure (3-2).

Figure (3-3) Répartition des contraintes correspondant à la courbe d'interaction

(Section enrobée de béton)

✓ **Point A**: résistance en compression seule:

$$N_A = N_{pl.rd} \qquad \qquad M_A = 0$$

✓ **Point B:** résistance en flexion seule:

$$N_B = 0 \qquad \qquad M_B = M_{pl.rat}$$

 Point C: résistance en flexion identique à celle associée à la situation du point *B* mais avec une résultante non nulle en compression:

 $N_C = N_{pm.rd} = A_C.0,85. f_{CK}/\gamma_C$ (section enrobe) = $A_C. f_{CK}/\gamma_C$ (section creuse remplie de béton)

 $M_C = M_{pl.rd}$

Note: f_{ck} doit éventuellement être affecté d'un facteur $\left[1 + \eta_c \frac{c}{d} \frac{f_y}{f_{ck}}\right]$ s'il s'agit d'une

section creuse circulaire

✓ **Point D**: moment résistant maximum

$$N_d = N_{pm.rd}/2 = A_C.0,85. f_{CK}/2.\gamma_C$$
 (section enrobe)
= $A_C. f_{ck}/2.\gamma_C$ (section creuse remplie de béton)
 $M_C = M_{pl.rd}$

 $\left[1 + \eta_{\sigma} \frac{t}{\alpha} \frac{f_y}{f_{ck}}\right]$ De même f_{ck} doit éventuellement être affecté d'un facteur s'il s'agit

d'une section creuse circulaire.

$$M_{p} = W_{pa} \frac{f_{y}}{\gamma_{a}} + W_{ps} \frac{f_{s}}{\gamma_{s}} + \frac{1}{2} W_{pc} 0.85 \frac{f_{ck}}{\gamma_{c}}$$
(3-15)

 W_{pa} , W_{ps} , W_{pc} sont, pour la configuration étudiée, les modules de résistance plastique respectivement du profil en acier, de l'armature et du béton.

✓ **Point E**: situé à mi-distance de A et C.

L'augmentation en résistance au point E est généralement faible par rapport au résultat d'une interpolation linéaire directe entre A et C. Le calcul du point E peut dès lors être omis.

Habituellement, aux fins de calcul, on substitue à la courbe continue d'interaction M-N, le contour polygonal AECDB, ou encore, plus simplement, le contour ACDB de la Figure 3.2.

3.3.2.2 Amplification de second ordre des moments de flexion

Il est nécessaire de considérer les effets locaux du second ordre géométrique au niveau du poteau, à savoir l'amplification des moments de premier ordre existant dans le poteau suite à l'augmentation de l'excentricité avec laquelle l'effort axial agit. Ceux-ci peuvent toutefois être négligés lors de la vérification des poteaux isolés d'ossatures rigides si N_{Sd}/N_{cr}≤0,1 ou si λ <0,2(2-r), où r est le rapport des moments de flexion existant aux extrémités du poteau (-1≤ r \leq + 1). Les effets du second ordre sur le comportement d'un poteau isolé faisant partie d'une ossature rigide peuvent être pris en compte de manière approchée en appliquant au moment maximum de calcul de premier ordre M_{Sd} le facteur multiplicateur **k** donné ci-après:

$$k = \frac{\beta}{1 - \frac{N_{Sd}}{N_{er}}} \ge 1,0 \tag{3-16}$$

Dans laquelle:

- $\beta = 0,66 + 0,44$ r pour un poteau soumis à des moments d'extrémité;
- \Rightarrow β = 1,0 lorsque la flexion résulte de charges transversales sur le poteau.

En présence de l'action conjointe de charges transversales et de moments d'extrémité, β ne pourra jamais être pris inférieur à 1,0 à moins d'être évalué de manière plus précise.

3.3.3. Résistance d'un poteau mixte sous compression accompagnée de flexion monoaxiale

Le principe du calcul suivant l'EC4 de la résistance d'un membre soumis à la fois à un moment de flexion uni-axial et un effort normal est représenté schématiquement à la figure (3-4) qui est une version normée du diagramme d'interaction caractérisant la résistance d'une section. Pour un effort de compression N_{Sd} le moment plastique résistant M_{Rd} , qui est une fraction d de la pleine résistance plastique $M_{pl.Rd}$, est défini à l'aide de la courbe d'interaction.

Figure (3-4) Résistance du poteau sous compression axiale et flexion uni-axiale

Le moment de calcul M_{Sd} est le moment maximum s'exerçant sur le poteau et prenant en compte toute augmentation due aux imperfections du poteau ainsi que l'amplification des moments de premier ordre par les effets de second ordre '*P*- Δ '. Sous une charge axiale de calcul N_{Sd} , un poteau mixte présente suffisamment de résistance si

$$M_{sd} \le 0.9 \mu_d M_{pl,Rd} \tag{3-17}$$

La réduction de 10 % opérée par l'introduction du facteur 0,9 tient compte des simplifications qui sont sous-jacentes à la méthode de calcul. Ainsi, la courbe d'interaction a été établie

indépendamment de toute limite sur les déformations du béton. Dès lors, les moments de flexion, en ce compris les effets de second ordre, peuvent être calculés en utilisant la raideur flexionnelle effective (*EI*)_e déterminée sur base d'une participation de toute l'aire du béton de la section.

La Figure 3.4 montre clairement que les valeurs de μ d déterminées à partir du diagramme d'interaction peuvent être supérieures à 1,0 aux environs du point D où l'effort axial décompression est favorable à la résistance flexionnelle de la section. Il semble cependant prudent en pratique de borner la valeur de μ_d à 1,0 à moins que le moment M_{Sd} soit directement causé par l'effort axial N_{Sd} , agissant suivant une excentricité fixée sur un poteau déterminé.

3.3.4. Résistance d'un poteau mixte sous compression accompagnée de flexion bi-axiale

Lorsqu'un poteau mixte est soumis à compression et à flexion bi -axiale, il faut en premier lieu vérifier la résistance sous compression accompagnée de flexion mono-axiale, et ce dans chacun des plans de flexion. Cette vérification ne suffit toutefois pas et il importe de lui adjoindre une autre vérification, relative au comportement bi-axial. Pour cette dernière, il n'y a lieu de tenir compte des imperfections que pour le seul plan dans lequel la ruine est susceptible de se produire (cas (a) à la **Figure (3-5**)). Pour l'autre plan de flexion, on néglige donc tout effet des imperfections (cas (b) à **la Figure (3-5**)).

Figure (3-5) Résistance du poteau sous compression et flexion bi-axiale

En cas de doute sur le plan de ruine, il est recommandé de se placer en sécurité entant compte des imperfections dans les deux plans.

Pour prendre en compte les pics de contraintes causés par les moments de flexion répondant aux inégalités (18) et (19) et agissant suivant deux axes orthogonaux, ces deux moments de flexion doivent également satisfaire la formule d'interaction linéaire (3-20). Les moments de calcul sont déterminés en incluant à la fois les imperfections et l'amplification due aux effets de second ordre 'P- Δ '.

Les trois conditions (18)-(20) définissent la résistance ultime en terme de moments de calcul orthogonaux pour un effort axial de calcul N_{Sd} comme le montre **la Figure (3-5)(c).**

$$M_{y.5d} \le 0.9\mu_{dy}M_{pl.y.Rd} \tag{3-18}$$

$$M_{Z,Sd} \le 0.9 \mu_{dz} M_{pl,z,Rd} \tag{3-19}$$

 $\frac{M_{y.Sd}}{\mu_{dy}M_{pl.y.Rd}} + \frac{M_{Z.Sd}}{\mu_{dz}M_{pl.zRd}}$

(3-20)

3.4. Conclusions

Cette leçon n'a développé que la méthode de calcul des poteaux simplifiée. Son usage est limité aux poteaux bi-symétriques contenant seulement une section métallique, cette méthode ne s'appliquant pas si deux ou plusieurs sections non connectées sont utilisées. Les méthodes de calcul plus générales données dans l'EC4 pour des sections non symétriques entraîneront souvent l'usage de modèles analytiques avancés, particulièrement lorsque qu'aucun axe de symétrie ne sera présent. Ce type de situation ne se rencontrera méthode décrite ici s'appliquera donc sans aucun doute à la grande majorité des poteaux mixtes rencontrés en pratique.

Les poteaux mixtes ne sont pas fréquents dans les bâtiments généralement considérés comme "mixtes". Le schéma d'ossature le plus fréquent dans les bâtiments multi-étagés est d'utiliser des planchers mixtes et des poteaux à section en H. Cette situation est due aux difficultés d'assembler les poutres à des poteaux mixtes sur chantier. Les solutions à ce problème augmentent généralement le coût de fabrication de manière considérable et rendent la construction "entièrement" mixte non économique. L'utilisation de poteaux mixtes devient beaucoup plus intéressante lorsque la nécessité de disposer de poteaux hautement résistants présentant un encombrement minimal ainsi qu'une résistance au feu propre élevée devient plus importante que le prix de base de l'ossature. Pour ces raisons, bien qu'il soit peu vraisemblable que les poteaux mixtes deviennent d'un usage courant, ceux-ci seront probablement de plus en plus présents pour supporter les planchers de grande portée plus pratiques des centres commerciaux et des bâtiments de grande taille que dans des situations très particulières tel que par exemple les poteaux de coin soumis à des moments de flexion bi-axiaux élevés.

CHAPITRE 4

LES DIAGRAMMES D'INTERACTIONS

4. LES DIAGRAMMES D'INTERACTIONS

4.1. Introduction

Des poteaux mixtes sont habituellement classés comme courts ou élancés. La résistance d'une colonne enrobée de béton est régie par la résistance de la section, qui est la capacité de la section transversale de résister aux charges axiales, et aux moments appliqués sur la section du poteau.

La résistance d'une colonne enrobé de béton ,que ce soit totalement ou partiellement est régie par ce qui se nomme résistance élémentaire reflétant le fait que la résistance de charge dépend non seulement des caractéristiques mécaniques, mais également des caractéristiques géométriques de l'élément .

Dans ce chapitre, nous nous concentrons sur la partie théorique liée au calcul de la résistance des poteaux enrobé de béton, nous discutons également leurs résistance à la compression, et à la flexion, et dans ce chapitre, aussi on va déterminer les courbes d'interaction moment-effort normal des poteaux enrobés de béton.

En se basant sur la méthode de calcul simplifiée de la résistance des poteaux mixtes proposée par l'EC4, on a développé un programme informatique en utilisant le langage de programmation (FORTRAN 90). Le programme nous permet de calculer la résistance des poteaux mixte enrobés de béton sous chargement centré de compression, ainsi que la résistance à la flexion-compression combinées.

4.2. Hypothèses de calcul

- ✓ Les sections planes restent planes et qu'il existe une collaboration totale jusqu'à la ruine entre les composants acier et béton de l'élément structural.
- ✓ Pour utiliser la Méthode Simplifiée, les sections des poteaux mixtes doivent être constantes et doublement symétriques sur toute leur hauteur.
- ✓ On peut considérer que l'effort tranchant est repris par la seule section métallique.

4.3. Caractéristiques des matériaux

On donne les caractéristiques du béton, des armatures et des aciers de construction en relation directe avec le calcul et la conception des éléments mixtes.

4.3.1. Béton

On peut utiliser soit des bétons de masse volumique normale (r =2400 kg/m³), soit des bétons légers (r compris entre 1600 et 1800 kg/m³).

Pour les bétons de masse volumique normale, le tableau 1 rassemble les valeurs de trois caractéristiques essentielles selon la classe de résistance du béton, allant de C20 à C50.

Vu le comportement non linéaire « contrainte-déformation » du béton, y compris pour de faibles niveaux de contrainte, E_{cm} doit être interprété comme un module sécant moyen pour les contraintes de courte durée.

 f_{ck} est la résistance caractéristique à la compression sur cylindrique mesurée à 28 jour ;

 $f_{cm} \mbox{ est}$ la résistance moyenne à la traction, à la même période $\ \ ;$

 E_{cm} est le module sécant d élasticité à prendre en compte pour les sections ayant des effets à court terme

C ré	Classe de ésistance	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
f _{ck}	(N/mm ²)	20	25	30	35	40	45	50
f _{cm}	(N/mm ²)	2.2	2.6	2.9	3.2	3.5	3.8	4.1
E _{cm}	(KN/mm ²)	2.2	30.5	33.5	29	30.5	35	37

Tableau (4-1) principales caractéristiques des bétons de masse volumique normal [20]

Pour les besoins de calcul, il y a lieu de considérer la valeur nominale du coefficient de Poisson concernant les déformations élastiques comme égale à 0.2.

Dans notre cas, on a choisi f_{CK} =30MPA.

4.3.2. Aciers d'armature

Une nuance indique la valeur de la limite d'élasticité caractéristique spécifiée f_{sk} en N/mm².

La norme européenne EN10080 3 définit trois nuances d'aciers d'armature .La nuance S200 concerne les ronds lisse laminés à chaud, alors que les nuances S400 et S500 concernent les barres et fils à verrous conférant une haute adhérence .Le module d'élasticité E_s des armatures

est de l'ordre de 190 à 200 KN/mm².pour simplifier le calcul en structure mixte, il est permis de prendre pour E_s la valeur $E_a = 210$ KN/mm² de l'acier de construction, spécifié dans l'EC3.

4.3.3. Acier de construction

Les aciers de construction sont définis par leurs limite d'élasticité f_y , pour les aciers courants de construction les valeurs de la limite élastique varient de 235 MPa à 355 MPa.les déformations sont linéaires et réversibles ; c'est le domaine de l'élasticité défini par la loi de Hooke.

Tableau (4-2) valeurs nominales de limite élastique fy et de résistance à la rupture en traction f_u pou
l'acier de construction [21]

Nuance	t≤4() mm	40 mm <t≤100 mm<="" th=""></t≤100>			
de l'acier	f _y (N/mm²)	F _u (N/mm ²)	f _y (N/mm ²)	F _u (N/mm²)		
S235	235	360	215	340		
S275	275	430	255	460		
S355	355	510	355	490		

t : représente l'épaisseur nominale de l'élément.

Dans notre cas, on a choisi $f_y = 355$ Mpa

4.4. Caractéristiques géométriques des poteaux étudiés

Figure (4-1) sections HEA enrobée de béton

Les caractéristiques des spécimens sont présentées dans le tableau suivant :

				cas 1		cas 2		cas 3		cas 4					
antion	h	b	t _w	t _f	A _a	W _{PLY}	W _{PLZ}	Cy	Cz	Cy	Cz	Cy	Cz	Cy	Cz
section	(mm)	(mm)	(mm)	(mm)	(mm ²)	(mm ³)	(mm ³)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
HEA100	96	100	5	8	1560	58360	28440	40	40	60	60	80	80	48	100
HEA120	114	120	5	8	2530	119500	58850	40	40	60	60	80	80	57	120
HEA 140	133	140	5.5	8.5	3140	173500	84850	40	40	60	60	80	80	66.5	140
HEA 160	152	160	6	9	3880	245100	117600	40	40	60	60	80	80	76	160
HEA180	171	180	6	9.5	4530	324900	156500	40	40	60	60	80	80	85.5	180
HEA200	190	200	6.5	10	5380	429500	203800	40	40	60	60	80	80	95	200
HEA220	210	220	7	11	6430	568500	270600	40	40	60	60	80	80	105	220
HEA240	230	240	7.5	12	7680	744600	351700	40	40	60	60	80	80	115	240
HEA260	250	260	7.5	12.5	8680	919800	430200	40	40	60	60	80	80	125	260
HEA280	270	280	8	13	9730	1112000	518100	40	40	60	60	80	80	135	280
HEA300	290	300	8.5	14	11250	1383000	641200	40	40	60	60	80	80	145	300
HEA 320	310	300	9	15.5	12440	1628000	709700	40	40	60	60	80	80	155	300
HEA 340	330	300	9.5	16.5	13350	1850000	755900	40	40	60	60	80	80	165	300
HEA 360	350	300	10	17.5	14280	2088000	802300	40	40	60	60	80	80	175	300
HEA 400	390	300	11	19	15900	2562000	872900	40	40	60	60	80	80	195	300
HEA 450	440	300	11.5	21	17800	3216000	965500	40	40	60	60	80	80	220	300
HEA 500	490	300	12	23	19750	3949000	1059000	40	40	60	60	80	80	245	300
HEA550	540	300	12.5	24	21180	4622000	1107000	40	40	60	60	80	80	270	300
HEA 600	590	300	13	25	22650	5350000	1156000	40	40	60	60	80	80	295	300
HEA650	640	300	13.5	26	24160	6316000	1205000	40	40	60	60	80	80	320	300

Tableau (4-3) Caractéristiques géométriques des poteaux

4.5. La courbe d'interactions M-N

La courbe d'interaction précitée peut se déterminer point par point, en considérant successivement diverses positions particulières de l'axe neutre plastique dans la section droite et en calculant pour chacune de ces positions, la résistance de la section droite à partir de l'hypothèse des blocs de contrainte, ce qui, à partir des deux équations d'équilibre de translation et de rotation, fournit le couple (M, N) des efforts résistants concomitants.

4.6. Programme de calcul

Pour le calcul de la résistance des poteaux mixtes de sections HEA enrobée de béton ,on a développé un programme de calcul à l'aide du logiciel de programmation (FORTRAN) qui nous a permis d'exécuter des opérations de procédure très compliqué d'une façon très précise.

Le programme complet est représenté dans l'organigramme suivant :

4.7. Résultats

Les tableaux (5-4) jusqu'au (5-11) représentent les résultats numériques des résistances des points d'interactions (1, 2, 3, 4, 5 et 6) on fonction de l'enrobage du poteau.

a) Le premier cas $C_y=C_z=40mm$

i. Selon l'axe de forte inertie yy

Tableau (4-4) valeurs de calcul des points des courbes d'interactions Selon l'axe yy

Axe neutre		1		2		3		4		5		6
Classe HEA	N (kN)	M (KN.m)	N (KN)	M (KN.m)	N (KN)	M (KN. m)	N (KN)	M (KN.m)	N (KN)	M (KN. m)	N (KN)	M (KN.m)
HEA100	1047	0	909	9	640	23	601	27	300	34	0	27
HEA120	1471	0	1316	12	995	31	723	50	362	59	0	50
HEA 140	1802	0	1630	15	1234	43	872	71	436	83	0	71
HEA 160	2187	0	1997	18	1520	56	1033	98	516	114	0	98
HEA180	2558	0	2349	22	1785	73	1211	128	605	149	0	128
HEA200	3003	0	2776	26	2117	92	1400	168	700	193	0	168
HEA220	3529	0	3283	30	2487	119	1607	220	803	251	0	220
HEA240	4130	0	3865	35	2919	150	1825	284	912	322	0	284
HEA260	4669	0	4384	40	3318	181	2064	349	1032	395	0	349
HEA280	5238	0	4933	46	3740	217	2318	421	1159	476	0	421
HEA300	5965	0	5639	53	4264	263	2579	520	1290	584	0	520
HEA 320	6464	0	6135	56	4613	305	2707	608	1354	677	0	608
HEA 340	6879	0	6546	60	4926	342	2840	690	1420	765	0	690
HEA 360	7299	0	6963	64	5245	381	2973	778	1487	858	0	778
HEA 400	8067	0	7724	72	5858	455	3244	956	1622	1047	0	956
HEA 450	8989	0	8637	82	6575	560	3585	1198	1793	1307	0	1198
HEA 500	9926	0	9565	93	7307	676	3925	1470	1963	1597	0	1470
HEA550	10704	0	10334	105	7978	775	4276	1726	2138	1875	0	1726
HEA 600	11495	0	11116	117	8661	880	4625	2005	2313	2175	0	2005
HEA650	12298	0	11909	130	9357	990	4974	2363	2487	2555	0	2363

Figure (4-2) les Courbes d'interactions (M-N) Selon l'axe de forte inertie yy

Figure (4-3) les Courbes d'interactions réduites (M-N) Selon l'axe de forte inertie yy

ii. Selon l'axe de faible inertie zz

Axe neutre	1		2	2		3	4		
Classe HEA	N _{pl.rd}	М	Ν	М	Ν	М	N	M pl.rd	
	(KN)	(KN.m)	(KN)	(N. m)	(KN)	(KN. m)	(KN)	(KN. m)	
HEA100	1047	0	600.59	23.785	300.3	25.076	0	23.7848	
HEA120	1471	0	723.22	38.755	361.6	40.51	0	38.7547	
HEA 140	1802.3	0	871.78	53.885	435.9	56.035	0	53.885	
HEA 160	2186.9	0	1032.9	72.567	516.4	75.153	0	72.5668	
HEA180	2557.8	0	1211	94.371	605.5	97.833	0	94.3706	
HEA200	3003.4	0	1400.2	120.81	700.1	124.89	0	120.814	
HEA220	3529	0	1606.6	155.53	803.3	160.18	0	155.534	
HEA240	4130	0	1824.9	196.77	912.5	202.02	0	196.775	
HEA260	4669.3	0	2064.2	238.64	1032	245.35	0	238.64	
HEA280	5238.2	0	2318.4	286.32	1159	294.01	0	286.316	
HEA300	5964.8	0	2579.2	347.6	1290	356.15	0	347.604	
HEA 320	6464.5	0	2707.1	378.17	1354	385.88	0	378.175	
HEA 340	6878.9	0	2840.5	401.58	1420	408.69	0	401.578	
HEA 360	7299.4	0	2973.5	424.97	1487	431.56	0	424.968	
HEA 400	8067.2	0	3244.2	464.51	1622	470.39	0	464.511	
HEA 450	8989	0	3585.2	514.42	1793	520.31	0	514.42	
HEA 500	9926	0	3925.2	564.42	1963	570.51	0	564.42	
HEA550	10704	0	4275.5	600.04	2138	606.57	0	600.043	
HEA 600	11494	0	4624	635.94	2312	642.93	0	635.942	
HEA650	12311	0	4988.8	671.78	2494	679.29	0	671.785	

Tableau (4-5) valeurs de calcul des points des courbes d'interactions Selon l'axe zz

Figure (4-4) les Courbes d'interactions (M-N) Selon l'axe de faible inertie zz

Figure (4-5) les Courbes d'interactions réduites (M-N) Selon l'axe de faible inertie zz

b) Le deuxième cas $C_y=C_z=60mm$

i. Selon l'axe de forte inertie yy

Tableau (4-6) valeurs de calcul des points des courbes d'interactions Selon l'axe yy

Axe neutre	1	l	2	2	Í	3		4		5		6
Classe	Ν	М	Ν	М	Ν	М	Ν	М	Ν	М	Ν	М
HEA	(KN)	(KN.m)	(KN)	(KN.m)	(KN)	(KN.m)	(KN)	(KN.m)	(KN)	(KN.m)	(KN)	(KN.m)
HEA100	1332.8	0	1084.4	20.1	809.9	34.4	916.4	35.2	458.2	47.7	0	35.2
HEA120	1784.2	0	1511.4	24.3	1185.3	44.3	1069.4	58.4	534.7	75.2	0	58.4
HEA 140	2143.7	0	1845.8	29.3	1444.4	57.9	1249.0	80.5	624.5	102.3	0	80.5
HEA 160	2556.4	0	2233.1	34.8	1750.0	74.1	1441.3	109.3	720.6	136.6	0	109.3
HEA180	2955.5	0	2606.3	40.9	2035.0	93.1	1650.4	140.7	825.2	175.3	0	140.7
HEA200	3429.2	0	3053.8	47.5	2388.0	114.9	1870.8	182.0	935.4	223.7	0	182.0
HEA220	3983.7	0	3581.7	54.8	2778.2	144.6	2109.1	235.8	1054.5	285.6	0	235.8
HEA240	4613.6	0	4184.6	62.5	3230.7	179.2	2359.3	302.9	1179.7	361.4	0	302.9
HEA260	5181.7	0	4725.2	71.1	3650.9	213.7	2630.5	369.1	1315.2	439.5	0	369.1
HEA280	5779.5	0	5295.1	80.3	4093.9	252.4	2916.6	443.8	1458.3	525.6	0	443.8
HEA300	6535.0	0	6022.5	89.8	4638.5	302.7	3209.3	545.2	1604.7	639.0	0	545.2
HEA 320	7049.1	0	6532.9	95.4	5000.6	347.0	3353.1	636.2	1676.6	736.4	0	636.2
HEA 340	7478.0	0	6957.8	101.1	5326.6	386.1	3502.5	720.8	1751.2	827.7	0	720.8
HEA 360	7912.9	0	7388.8	107.0	5658.8	427.3	3651.4	811.2	1825.7	924.9	0	811.2
HEA 400	8709.6	0	8177.6	119.1	6299.3	506.2	3954.1	994.0	1977.1	1121.9	0	994.0
HEA 450	9667.5	0	9125.5	134.8	7049.5	617.1	4335.0	1242.3	2167.5	1392.9	0	1242.3
HEA 500	10640.5	0	10088.6	151.0	7814.9	738.8	4714.8	1520.3	2357.4	1695.0	0	1520.3
HEA550	11455.2	0	10893.0	168.0	8520.4	843.7	5105.0	1783.8	2552.5	1984.7	0	1783.8
HEA 600	12282.0	0	11709.6	185.6	9238.2	954.3	5494.5	2069.6	2747.2	2297.8	0	2069.6
HEA650	13121.0	0	12538.5	203.7	9968.2	1070.6	5883.1	2434.9	2941.5	2691.7	0	2434.9

Figure (4-6) les Courbes d'interactions (M-N) Selon l'axe de forte inertie yy

Figure (4-7) les Courbes d'interactions réduites (M-N) Selon l'axe de forte inertie yy

ii. Selon l'axe de faible inertie zz

Axe neutre	1			2	ĺ	3	4		
	Ν	М	Ν	М	N	М	Ν	М	
Classe HEA	(KN)	(KN.m)	(KN)	(KN.m)	(KN)	(KN.m)	(KN)	(KN. m)	
HEA100	1333	0	916	35	458	39	0	35	
HEA120	1784	0	1069	52	535	57	0	52	
HEA 140	2144	0	1249	70	625	76	0	70	
HEA 160	2556	0	1441	91	721	98	0	91	
HEA180	2956	0	1650	116	825	125	0	116	
HEA200	3429	0	1871	146	935	156	0	146	
HEA220	3984	0	2109	184	1055	195	0	184	
HEA240	4614	0	2359	230	1180	242	0	230	
HEA260	5182	0	2630	275	1315	290	0	275	
HEA280	5780	0	2917	328	1458	344	0	328	
HEA300	6535	0	3209	394	1605	411	0	394	
HEA 320	7049	0	3353	429	1677	445	0	429	
HEA 340	7478	0	3502	457	1751	471	0	457	
HEA 360	7913	0	3651	484	1826	498	0	484	
HEA 400	8710	0	3954	533	1977	545	0	533	
HEA 450	9667	0	4335	595	2167	607	0	595	
HEA 500	10641	0	4715	659	2357	669	0	659	
HEA550	11455	0	5105	709	2553	719	0	709	
HEA 600	12281	0	5493	760	2747	770	0	760	
HEA650	13136	0	5901	811	2950	822	0	811	

 Tableau (4-7) valeurs de calcul des points des courbes d'interactions Selon l'axe zz

Figure (4-8) les Courbes d'interactions (M-N) Selon l'axe de faible inertie zz

Figure (4-9) les Courbes d'interactions réduites (M-N) Selon l'axe de faible inertie zz

c) Le Troisième cas $C_y=C_z=80mm$

i. Selon l'axe de forte inertie yy

Tableau (4-8) valeurs de calcul des points des courbes d'interactions Selon l'axe yy

Axe neutre		1		2		3		4		5		6
Classe	Ν	М	Ν	М	Ν	М	Ν	М	N	М	Ν	М
HEA	(KN)	(KN.m)	(KN)	(KN.m)	(KN)	(KN.m)	(KN)	(KN.m)	(KN)	(KN.m)	(KN)	(K.m)
HEA100	1676	0	1289	36	1009	51	1296	48	648	68	0	48
HEA120	2155	0	1736	43	1404	63	1479	72	740	98	0	72
HEA 140	2543	0	2091	50	1683	80	1690	96	845	129	0	96
HEA 160	2984	0	2498	59	2009	99	1913	126	957	167	0	126
HEA180	3411	0	2892	68	2314	121	2154	159	1077	210	0	159
HEA200	3913	0	3360	77	2688	146	2405	201	1203	263	0	201
HEA220	4496	0	3909	88	3098	179	2675	257	1338	330	0	257
HEA240	5155	0	4533	99	3571	217	2958	326	1479	411	0	326
HEA260	5752	0	5095	111	4012	255	3261	394	1630	495	0	394
HEA280	6379	0	5686	124	4476	298	3579	471	1789	587	0	471
HEA300	7163	0	6435	137	5042	353	3903	575	1952	706	0	575
HEA 320	7692	0	6959	145	5417	399	4063	669	2031	808	0	669
HEA 340	8135	0	7398	153	5756	441	4228	756	2114	903	0	756
HEA 360	8584	0	7843	161	6102	485	4393	849	2197	1005	0	849
HEA 400	9410	0	8660	178	6769	569	4728	1037	2364	1211	0	1037
HEA 450	10404	0	9643	200	7553	687	5149	1292	2574	1494	0	1292
HEA 500	11413	0	10641	222	8352	815	5568	1577	2784	1809	0	1577
HEA550	12264	0	11481	245	9092	927	5998	1847	2999	2112	0	1847
HEA 600	13126	0	12332	269	9844	1044	6428	2140	3214	2438	0	2140
HEA650	14002	0	13196	293	10608	1168	6856	2514	3428	2847	0	2514

Figure (4-10) les Courbes d'interactions (M-N) Selon l'axe de forte inertie yy

Figure (4-11) les Courbes d'interactions réduites (M-N) Selon l'axe de forte inertie yy

ii. Selon l'axe de faible inertie zz

Axe neutre	1		2		3		4	
	Ν	М	Ν	М	Ν	М	Ν	М
Classe HEA	(KN)	(KN.m)	(KN)	(KN. m)	(KN)	(KN. m)	(KN)	(KN. m)
HEA100	1676	0	1296	50	648	59	0	50
HEA120	2155	0	1479	69	740	81	0	69
HEA 140	2543	0	1690	90	845	103	0	90
HEA 160	2984	0	1913	115	957	130	0	115
HEA180	3411	0	2154	143	1077	160	0	143
HEA200	3913	0	2405	176	1203	196	0	176
HEA220	4496	0	2675	219	1338	240	0	219
HEA240	5155	0	2958	269	1479	292	0	269
HEA260	5752	0	3261	319	1630	346	0	319
HEA280	6379	0	3579	376	1789	406	0	376
HEA300	7163	0	3903	448	1952	479	0	448
HEA 320	7692	0	4063	486	2031	515	0	486
HEA 340	8135	0	4228	517	2114	544	0	517
HEA 360	8584	0	4393	548	2197	574	0	548
HEA 400	9410	0	4728	603	2364	626	0	603
HEA 450	10404	0	5149	672	2574	694	0	672
HEA 500	11413	0	5568	743	2784	763	0	743
HEA550	12264	0	5998	800	2999	819	0	800
HEA 600	13125	0	6426	858	3213	877	0	858
HEA650	14019	0	6877	918	3438	936	0	918

 Tableau (4-9) valeurs de calcul des points des courbes d'interactions Selon l'axe zz

Figure (4-12) les Courbes d'interactions (M-N) Selon l'axe de faible inertie zz

Figure (4-13) les Courbes d'interactions réduites (M-N) Selon l'axe de faible inertie zz

d) Le quatrième cas $C_y = h/2$ et $C_z = b$

i. Selon l'axe de forte inertie yy

Tableau (4-10) valeurs de calcul des points des courbes d'interactions Selon l'axe yy

Axe neutre	1		2		3		4	
	Ν	М	Ν	М	Ν	М	Ν	М
Classe HEA	(KN)	(KN.m)	(KN)	(KN.m)	(KN)	(KN.m)	(KN)	(KN.m)
HEA100	1515	0	1117	35	559	50	0	35
HEA120	2252	0	1586	64	793	91	0	64
HEA 140	2973	0	2165	97	1083	140	0	97
HEA 160	3815	0	2832	140	1416	206	0	140
HEA180	4713	0	3592	190	1796	287	0	190
HEA200	5753	0	4439	256	2220	389	0	256
HEA220	6961	0	5399	341	2700	521	0	341
HEA240	8316	0	6451	447	3225	683	0	447
HEA260	9682	0	7604	559	3802	865	0	559
HEA280	11150	0	8851	688	4425	1074	0	688
HEA300	12847	0	10184	854	5092	1331	0	854
HEA 320	13859	0	10878	997	5439	1537	0	997
HEA 340	14786	0	11578	1136	5789	1744	0	1136
HEA 360	15719	0	12277	1286	6139	1965	0	1286
HEA 400	17512	0	13681	1600	6840	2433	0	1600
HEA 450	19715	0	15438	2031	7719	3086	0	2031
HEA 500	21933	0	17193	2518	8597	3819	0	2518
HEA550	23993	0	18959	3012	9480	4587	0	3012
HEA 600	26064	0	20719	3555	10362	5426	0	3555
HEA650	28149	0	22557	4192	11245	6395	0	4192

Figure (4-14) les Courbes d'interactions (M-N) Selon l'axe de forte inertie yy

Figure (4-15) les Courbes d'interactions réduites (M-N) Selon l'axe de forte inertie yy

I ableau (4-11) valeurs de calcul des points des courbes d'interactions Selon l'axe zz								
Axe neutre		1		2	3		4	
Classa HEA	Ν	М	N	М	Ν	М	N	М
Classe IIEA	(KN)	(KN.m)	(kN)	(KN.m)	(KN)	(KN.m)	(KN)	(KN. m)
HEA100	2078	0	1740	68.1	870	85.7620	0	68.1
HEA120	3070	0	2491	116.0	1245	151.15	0	116.0
HEA 140	4087	0	3396	178.5	1698	238.30	0	178.5
HEA 160	5270	0	4440	259.948	2220	353.95	0	259.948
HEA180	6554	0	5627	359.2	2814	501.766	0	359.2
HEA200	8027	0	6951	484.0	3476	686.190	0	484.0
HEA220	9700	0	8426	646.10	4213	916.842	0	646.10
HEA240	11564	0	10040	841.20	5020	1194.43	0	841.20
HEA260	13482	0	11803	1051.57	5901	1517.77	0	1051.57
HEA280	15545	0	13708	1300.07	6854	1894.429	0	1300.07
HEA300	17881	0	15748	1605.33	7874	2336.21	0	1605.33
HEA 320	18569	0	16083	1744.037	8041	2446.1627	0	1744.037
HEA 340	19171	0	16424	1864.45	8212	2551.05	0	1864.45
HEA 360	19779	0	16764	1986.3	8382	2657.810	0	1986.3
HEA 400	20922	0	17449	2218.6	8725	2869.87	0	2218.6
HEA 450	22313	0	18309	2508.7	9154	3146.500	0	2508.7
HEA 500	23719	0	19167	2809.85	9584	3434.63	0	2809.85
HEA550	24967	0	20036	3093.75	10018	3720.020	0	3093.75
HEA 600	26225	0	20901	3391.07	10451	4016.9	0	3391.07
HEA650	27555	0	21837	3696.00	10918	4325.11	0	3696.00

ii. Selon l'axe de faible inertie zz

Figure (4-16) les Courbes d'interactions (M-N) Selon l'axe de faible inertie zz

Figure (4-17) les Courbes d'interactions réduites (M-N) Selon l'axe de faible inertie zz

CHAPITRE 5

LES EQUATIONS APPROCHEES ET LES ABAQUES DES COURBES D'INTERACTION

5. LES EQUATIONS APPROCHEES ET LES ABAQUES DES COURBES D'INTERACTIONS

5.1. Introduction :

L'Eurocode 4 définit les règles générales à respecter lors du dimensionnement de poteaux mixtes. Cependant, si toutes les non-linéarités, aussi bien géométriques que physiques devaient être prises en compte, il faudrait absolument avoir recours à un ordinateur et utiliser des méthodes d'analyse numérique pour satisfaire aux impositions du code. C'est la raison pour laquelle l'Eurocode 4 propose aussi une méthode de dimensionnement simplifiée et plus pratique.

Pour obtenir une courbe d'interaction Avec la méthode simplifiée de l'EC4, on peut calculer manuellement cinq points et tracer un schéma polygonal passant par ces points, et pour faciliter les choses dans ce chapitre nous devons proposer des abaques et des équations approchées des courbes d'interactions pour la section HEA avec une certaine tolérance d'erreur.

Dans cette recherche nous avons souligné l'importance d'avoir une bonne précision dans la détermination des coefficients (petite tolérance d'erreur), en variant plusieurs paramètres géométriques pour choisir la solution la plus adéquate de ces derniers. Pour cela, on a mené une étude paramétrique, cette dernière est faite avec les logiciels des calculs Microsoft office Excel et le programme de fortran.

5.2. La première approche

Les équations approchées des courbes d'interactions inversées N- M sont des paraboles d'ordre trois la figure (5-1)

✤ Selon l'axe de forte inertie yy

$$M_{YY} = A \cdot N^3 + B \cdot N^2 + C \cdot N + D$$

$$M_{gyy} = A_g \cdot N^3 + B_g \cdot N^2 + C_g \cdot N + D_g$$

Selon l'axe de faible inertie zz

$$M_{zz} = A.N^3 + B.N^2 + C.N + D$$

$$M_{gzz} = A_g \cdot N^3 + B_g \cdot N^2 + C_g \cdot N + D_g$$

Remarque :

- A, B, C, D, sont des coefficients des équations des courbes d'interactions inversées (pour chaque section)
- ✤ A_g, B_{g, Cg, Dg} sont des équations en fonction des caractéristiques géométriques de section

5.2.1. Détermination de l équation générale

- a) Le premier cas $C_Y = C_z = 40 \text{ mm}$
 - i. Selon l'axe de forte inertie yy

> Déterminations les équations des courbe d'interaction inversées

Figure (5-2) les Courbes d'interactions inversées M-N Selon l'axe de forte inertie yy

section	M =	Α	$x N^{3} +$	В	$x N^2 +$	С	x N +	D
HEA100	M =	2.0011×10^{-11}	$x N^{3} +$	-9.163x10 ⁻⁵	$x N^{2} +$	47.81	x N +	27414216.6
HEA120	M =	2.2509x10 ⁻¹¹	$x N^3 +$	-9.450 x10 ⁻⁵	$x N^{2} +$	56.57	x N +	49614878.9
HEA140	M =	1.5839x10 ⁻¹¹	$x N^{3} +$	-8.449 x10 ⁻⁵	$x N^{2} +$	61.62	x N +	70658026.9
HEA160	M =	1.1727×10^{-11}	$x N^{3} +$	-7.663 x10 ⁻⁵	$x N^{2} +$	66.64	x N +	98098641.1
HEA180	M =	0.9536x10 ⁻¹¹	$x N^{3} +$	-7.317 x10 ⁻⁵	$x N^{2} +$	74.62	x N +	128261804
HEA200	M =	0.7325×10^{-11}	$x N^{3} +$	-6.711 x10 ⁻⁵	$x N^{2} +$	79.61	x N +	167848753
HEA220	M =	0.5797×10^{-11}	$x N^{3} +$	-6.215 x10 ⁻⁵	$x N^{2} +$	84.88	x N +	219646810
HEA240	M =	0.4727×10^{-11}	$x N^3 +$	-5.802 x10 ⁻⁵	$x N^{2} +$	90.14	x N +	284393758
HEA260	M =	0.4080x10 ⁻¹¹	$x N^3 +$	-5.615 x10 ⁻⁵	$x N^{2} +$	98.51	x N +	348753744
HEA280	M =	0.3298×10^{-11}	$x N^{3} +$	-5.244 x10 ⁻⁵	$x N^{2} +$	103.85	x N +	420912495
HEA300	M =	0.2777×10^{-11}	$x N^{3} +$	-4.945 x10 ⁻⁵	$x N^{2} +$	109.08	x N +	519542056
HEA320	M =	0.2495×10^{-11}	$x N^3 +$	-4.793 x10 ⁻⁵	$x N^{2} +$	111.46	x N +	608243337
HEA340	M =	0.2212×10^{-11}	$x N^{3} +$	-4.635 x10 ⁻⁵	$x N^{2} +$	113.80	x N +	690331219
HEA360	M =	0.1969×10^{-11}	$x N^{3} +$	-4.487x10 ⁻⁵	$x N^{2} +$	116.01	x N +	778257862
HEA400	M =	0.1546x10 ⁻¹¹	$x N^{3} +$	-4.206 x10 ⁻⁵	$x N^{2} +$	120.16	x N +	955746730
HEA450	M =	0.1270×10^{-11}	$x N^{3} +$	-4.063 x10 ⁻⁵	$x N^{2} +$	129.34	x N +	1198064479
HEA500	M =	0.1058×10^{-11}	$x N^{3} +$	-3.933 x10 ⁻⁵	$x N^{2} +$	138.08	x N +	1469611041
HEA550	M =	0.0857×10^{-11}	$x N^{3} +$	-3.793 x10 ⁻⁵	$x N^{2} +$	146.49	x N +	1726381399
HEA600	M =	0.0697×10^{-11}	$x N^{3} +$	$-3.662 \text{ x}10^{-5}$	$\mathbf{X} \mathbf{N}^2 +$	154.46	x N +	2004956212
HEA650	M =	$0.0503 x 10^{-11}$	$x N^3 +$	$-3.492 \text{ x}10^{-5}$	$\mathbf{X} \mathbf{N}^2 +$	161.23	x N +	2362636903

Tableau (5-1) Les équations des Courbe d'interaction inversée M=f(N)

> Déterminations Les coefficients de l'équation générale

• coefficient A_g

La courbe ci-dessous représente la relation A=f(tw.Wply)

section	t _w (mm)	W _{PLY} (mm ³)	tw*wply (mm ⁴)	Α	$\mathbf{A}_{\mathbf{g}}$	Erreur %
HEA 100	5	58360	291800	2.00113E-11	2.10562E-11	5.1704411
HEA 120	5	119500	597500	2.25093E-11	2.32958E-11	3.49373005
HEA 140	5.5	173500	954250	1.58391E-11	1.66219E-11	4.94217639
HEA 160	6	245100	1470600	1.17272E-11	1.21689E-11	3.76698812
HEA180	6	324900	1949400	9.53601E-12	9.93111E-12	4.14332076
HEA200	6.5	429500	2791750	7.32464E-12	7.66548E-12	4.65333154
HEA220	7	568500	3979500	5.79737E-12	5.93663E-12	2.40221991
HEA240	7.5	744600	5584500	4.72678E-12	4.64987E-12	1.62713382
HEA260	7.5	919800	6898500	4.08039E-12	3.99277E-12	2.14724009
HEA280	8	1112000	8896000	3.29751E-12	3.32389E-12	0.80001649
HEA300	8.5	1383000	11755500	2.77698E-12	2.71877E-12	2.0962507
HEA 320	9	1628000	14652000	2.49549E-12	2.31956E-12	7.04991061
HEA 340	9.5	1850000	17575000	2.21163E-12	2.03445E-12	8.01129286
HEA 360	10	2088000	20880000	1.96854E-12	1.79676E-12	8.72618281
HEA 400	11	2562000	28182000	1.54632E-12	1.44739E-12	6.39766621
HEA 450	11.5	3216000	36984000	1.2695E-12	1.18981E-12	6.27725426
HEA 500	12	3949000	47388000	1.05829E-12	9.95084E-13	5.97238508
HEA550	12.5	4622000	57775000	8.57195E-13	8.62585E-13	0.628854
HEA 600	13	5350000	69550000	6.96635E-13	7.54606E-13	8.32154839
HEA650	13.5	6316000	85266000	5.03045E-13	6.31519E-13	9.5149992

Tableau (5-2)Le pourcentage d'erreur entre Ag et A

• coefficient B_g

Figure (5-4) Le coefficient B en fonction de (W_{ply})

section	$W_{PLY}(mm^4)$	В	Bg	Erreur %
HEA 100	58360	-9.1631E-05	-0.0000109	8.9297828
HEA 120	119500	-9.4497E-05	-9.136E-05	3.31759369
HEA 140	173500	-8.4488E-05	-8.335E-05	1.34075303
HEA 160	245100	-7.663E-05	-7.656E-05	0.08737536
HEA180	324900	-7.317E-05	-7.143E-05	2.372301
HEA200	429500	-6.7114E-05	-6.669E-05	0.62565846
HEA220	568500	-6.2149E-05	-6.225E-05	0.16196639
HEA240	744600	-5.8021E-05	-5.825E-05	0.39721937
HEA260	919800	-5.6147E-05	-5.53E-05	1.50677621
HEA280	1112000	-5.2439E-05	-5.278E-05	0.64759301
HEA300	1383000	-4.9454E-05	-5.002E-05	1.14685912
HEA 320	1628000	-4.7929E-05	-4.805E-05	0.2622028
HEA 340	1850000	-4.6346E-05	-4.657E-05	0.47668732
HEA 360	2088000	-4.4869E-05	-4.52E-05	0.7386717
HEA 400	2562000	-4.2055E-05	-4.298E-05	2.2038895
HEA 450	3216000	-4.0628E-05	-4.064E-05	0.0411694
HEA 500	3949000	-3.9332E-05	-3.864E-05	1.75247181
HEA550	4622000	-3.7927E-05	-3.717E-05	1.98197658
HEA 600	5350000	-3.6618E-05	-3.586E-05	2.06571521
HEA650	6316000	-3.4918E-05	-3.443E-05	1.40844105

Tableau (5-3) Le pourcentage d'erreur entre $B_{g} \mbox{ et } B$

• coefficient C_g

Figure (5-5) Le coefficient C en fonction de (h)

section	h(mm)	С	C_{g}	Erreur %
HEA 100	96	47.81481026	53.1031091	11.05996
HEA 120	114	56.56908282	58.8404817	4.01526554
HEA 140	133	61.61681995	64.5124377	4.69939505
HEA 160	152	66.63944541	69.8658014	4.84151092
HEA180	171	74.62244578	74.9553612	0.44613305
HEA200	190	79.61260331	79.821507	0.26240033
HEA220	210	84.88277747	84.7361918	0.17269186
HEA240	230	90.14125954	89.4654893	0.74967919
HEA260	250	98.5113508	94.0316828	4.54736225
HEA280	270	103.8512676	98.4528269	5.19824255
HEA300	290	109.0807576	102.743801	5.80941759
HEA 320	310	111.45809	106.917047	4.07421582
HEA 340	330	113.7989974	110.983098	2.47444972
HEA 360	350	116.0120012	114.950971	0.91458619
HEA 400	390	120.1623781	122.622338	2.04719672
HEA 450	440	129.3405049	131.778716	1.88511013
HEA 500	490	138.0787973	140.524188	1.77101067
HEA550	540	146.4872107	148.916595	1.65842771
HEA 600	590	154.4572193	157.001092	1.64697584
HEA650	640	161.2319694	164.81376	2.22151399

Tableau (5-4) Le pourcentage d'erreur entre C_g et C

• Coefficient D_g

section	t _w (mm)	W_{PLY} (mm^4)	$t_{\rm w}.w_{\rm ply}$ (mm ⁴)	D	Dg	Erreur %
HEA 100	5	58360	291800	27414216.62	29044159.63	5.94561219
HEA 120	5	119500	597500	49614878.93	50542543.30	1.86973018
HEA 140	5.5	173500	954250	70658026.91	72581634.49	2.72241905
HEA 160	6	245100	1470600	98098641.09	101396084.31	3.36135463
HEA180	6	324900	1949400	128261803.55	126078586.47	1.70215685
HEA200	6.5	429500	2791750	167848752.91	166421886.75	0.85009042
HEA220	7	568500	3979500	219646809.83	218884659.50	0.34698903
HEA240	7.5	744600	5584500	284393758.01	284424332.76	0.01075085
HEA260	7.5	919800	6898500	348753743.94	334892365.07	3.97454626
HEA280	8	1112000	8896000	420912494.98	407638737.78	3.15356692
HEA300	8.5	1383000	11755500	519542055.75	505643306.36	2.67519236
HEA 320	9	1628000	14652000	608243337.41	599495874.93	1.4381518
HEA 340	9.5	1850000	17575000	690331219.12	690004591.42	0.04731463
HEA 360	10	2088000	20880000	778257861.56	788314581.48	1.29220923
HEA 400	11	2562000	28182000	955746730.06	993976455.37	3.99998494
HEA 450	11.5	3216000	36984000	1198064479.23	1226373103.89	2.3628632
HEA 500	12	3949000	47388000	1469611040.55	1485386748.86	1.07346147
HEA550	12.5	4622000	57775000	1726381398.72	1731302165.50	0.28503358
HEA 600	13	5350000	69550000	2004956212.19	1998221247.10	0.33591582
HEA650	13.5	6316000	85266000	2362636903.46	2339040009.50	0.99875245

 $\textbf{Tableau}~(\textbf{5-5})~Le~pourcentage~d'erreur~entre~D_g~et~D$

Après la détermination du calcule des coefficients, l'équation générale s'écrit comme suite :

$$\mathbf{M}_{yy} = \mathbf{A}_{\mathbf{g}} . \mathbf{N}^3 + \mathbf{B}_{\mathbf{g}} . \mathbf{N}^2 + \mathbf{C}_{\mathbf{g}} . \mathbf{N} + \mathbf{D}_{\mathbf{g}}$$

Tableau (5-6) valeurs des coefficients d'équation	générale s	elon yy.
---	------------	----------

Le coefficient	Section	équation
A _g =	[HEA100-HEA650 [$34042 \times 10^{-12} \times (t_{w.}w_{plz})^{-0.72}$
B _g =	[HEA100-HEA650 [$-162.1 \times 10^{-5} \times w_{ply}^{-0.24}$
C _g =	[HEA100-HEA650 [3.481*h ^{0.597}
D _g =	[HEA100-HEA650 [$1732 \times (t_w.w_{plz})^{0.773}$

ii. Selon l'axe de faible inertie zz

> Déterminations les équations des courbe d'interaction inversées

Figure (5-7) les Courbes d'interactions inversées M-N Selon l'axe de faible inertie zz

section	M =	Α	$x N^{3} +$	В	$x N^2 +$	С	x N +	D
HEA100	M =	-4.899x10 ⁻¹¹	$x N^{3} +$	2.982 x10 ⁻⁶	$x N^{2} +$	-0.24	x N +	23784814
HEA120	M =	-1.966x10 ⁻¹¹	$x N^{3} +$	7.911 x10 ⁻⁶	$x N^{2} +$	4.56	x N +	38754724
HEA140	M =	-1.523×10^{-11}	$x N^{3} +$	8.604 x10 ⁻⁶	$x N^{2} +$	4.08	x N +	53885046
HEA160	M =	-1.141x10 ⁻¹¹	$x N^{3} +$	7.981 x10 ⁻⁶	$x N^{2} +$	3.93	x N +	72566841
HEA180	M =	-9.194 x10 ⁻¹²	$x N^{3} +$	7.258 x10 ⁻⁶	$x N^{2} +$	4.69	x N +	94370650
HEA200	M =	$-7.288 \text{ x}10^{-12}$	$x N^{3} +$	7.002 x10 ⁻⁶	$x N^{2} +$	4.48	x N +	120814438
HEA220	M =	-5.771 x10 ⁻¹²	$x N^{3} +$	6.712 x10 ⁻⁶	$x N^{2} +$	4.11	x N +	155534257
HEA240	M =	$-4.464 \text{ x} 10^{-12}$	$x N^{3} +$	5.914 x10 ⁻⁶	$x N^{2} +$	4.07	x N +	196774713
HEA260	M =	$-3.662 \text{ x} 10^{-12}$	$x N^{3} +$	5.041 x10 ⁻⁶	$x N^{2} +$	5.20	x N +	238640018
HEA280	M =	-3.186 x10 ⁻¹²	$x N^{3} +$	5.354 x10 ⁻⁶	$x N^{2} +$	4.71	x N +	286315639
HEA300	M =	$-2.583 \text{ x}10^{-12}$	$x N^{3} +$	4.859 x10 ⁻⁶	$x N^{2} +$	4.65	x N +	347603718
HEA320	M =	$-2.223 \text{ x}10^{-12}$	$x N^{3} +$	4.822 x10 ⁻⁶	$x N^{2} +$	3.24	x N +	378174796
HEA340	M =	$-2.002 \text{ x}10^{-12}$	$x N^{3} +$	5.006 x10 ⁻⁶	$x N^{2} +$	1.94	x N +	401577675
HEA360	M =	$-1.803 \text{ x}10^{-12}$	$x N^{3} +$	5.058 x10 ⁻⁶	$x N^{2} +$	0.90	x N +	424967526
HEA400	M =	$-1.506 \text{ x} 10^{-12}$	$x N^{3} +$	5.093 x10 ⁻⁶	$x N^{2} +$	-0.67	x N +	464511310
HEA450	M =	$-1.217 \text{ x}10^{-12}$	$x N^{3} +$	4.709 x10 ⁻⁶	$x N^{2} +$	-1.24	x N +	514420243
HEA500	M =	-9.913 x10 ⁻¹³	$x N^{3} +$	4.255 x10 ⁻⁶	$x N^{2} +$	-1.43	x N +	564419961
HEA550	M =	$-8.511 \text{ x} 10^{-13}$	$x N^3 +$	$4.030 \text{ x}10^{-6}$	$\mathbf{X} \mathbf{N}^2 +$	-1.67	x N +	600042703
HEA600	M =	$-7.346 \text{ x}10^{-13}$	$x N^{3} +$	3.788 x10 ⁻⁶	$x N^{2} +$	-1.81	x N +	635942236
HEA650	M =	-6.364×10^{-13}	$x N^{3} +$	3.556×10^{-6}	$\mathbf{x} \mathbf{N}^2 +$	-1.90	x N +	671784957

Tableau (5-7) Les équations des Courbe d'interaction inversée M=f(N)

- Déterminations des coefficients généraux
 - coefficient A_g

Figure	(5-8) I	Le coefficient A	A en fonction	de	$(t_w.W)$	/ _{ply})
--------	------------------	------------------	---------------	----	-----------	--------------------

section	t _w (mm)	W _{PLY} (mm ³)	$t_{w}.W_{ply}$ (mm ⁴)	Α	$\mathbf{A}_{\mathbf{g}}$	Erreur %
HEA 100	5	58360	291800	-4.89903E-11	-4.80031E-11	2.42734618
HEA 120	5	119500	597500	-1.96631E-11	-1.27001E-11	5.44555208
HEA 140	5.5	173500	954250	-1.52337E-11	-1.62121E-11	6.422119811
HEA 160	6	245100	1470600	-1.14094E-11	-1.18792E-11	4.117506143
HEA180	6	324900	1949400	-9.19444E-12	-9.7001E-12	5.499674151
HEA200	6.5	429500	2791750	-7.28799E-12	-7.49256E-12	2.806895019
HEA220	7	568500	3979500	-5.77115E-12	-5.80682E-12	0.618147168
HEA240	7.5	744600	5584500	-4.46419E-12	-4.55128E-12	1.950781203
HEA260	7.5	919800	6898500	-3.66227E-12	-3.90976E-12	6.757984651
HEA280	8	1112000	8896000	-3.18582E-12	-3.25645E-12	2.217040381
HEA300	8.5	1383000	11755500	-2.58333E-12	-2.66509E-12	3.165031983
HEA 320	9	1628000	14652000	-2.22335E-12	-2.27476E-12	2.312144971
HEA 340	9.5	1850000	17575000	-2.00237E-12	-1.99588E-12	0.323761191
HEA 360	10	2088000	20880000	-1.80251E-12	-1.76331E-12	2.174742847
HEA 400	11	2562000	28182000	-1.50567E-12	-1.4213E-12	5.603770701
HEA 450	11.5	3216000	36984000	-1.21673E-12	-1.169E-12	3.922894151
HEA 500	12	3949000	47388000	-9.91335E-13	-9.78159E-13	1.329120726
HEA550	12.5	4622000	57775000	-8.51105E-13	-8.48251E-13	0.335387841
HEA 600	13	5350000	69550000	-7.34622E-13	-7.42341E-13	1.050813132
HEA650	13.5	6316000	85266000	-6.36367E-13	-6.41191E-13	0.758001059

Tableau (5-8) Le pourcentage d'erreur entre A_g et A

• coefficient B_g

Figure (5-9)	Le coefficient E	en fonction	de (W _{ply})
--------------	------------------	-------------	------------------------

section	$W_{PLY}(mm^3)$	В	Bg	Erreur %
HEA 100	58360	2.98E-05	1.05685E-05	64.55765857
HEA 120	119500	7.91E-06	8.09178E-06	6.92514883
HEA 140	173500	8.60E-06	8.40704E-06	2.292376255
HEA 160	245100	7.98E-06	7.81869E-06	2.039778359
HEA180	324900	7.26E-06	7.36934E-06	1.534023473
HEA200	429500	7.00E-06	6.94982E-06	0.738150536
HEA220	568500	6.71E-06	6.55243E-06	2.380898148
HEA240	744600	5.91E-06	6.19145E-06	4.688583086
HEA260	919800	5.04E-06	5.92271E-06	7.49821766
HEA280	1112000	5.35E-06	5.69133E-06	6.309777591
HEA300	1383000	4.86E-06	5.43655E-06	11.89671037
HEA 320	1628000	4.82E-06	5.2535E-06	8.944753591
HEA 340	1850000	5.01E-06	5.11434E-06	2.166677339
HEA 360	2088000	5.06E-06	4.986E-06	1.432690047
HEA 400	2562000	5.09E-06	4.77633E-06	6.21252246
HEA 450	3216000	4.71E-06	4.55365E-06	3.298430918
HEA 500	3949000	4.26E-06	4.36148E-06	2.498559189
HEA550	4622000	4.03E-06	4.2197E-06	4.696417777
HEA 600	5350000	3.79E-06	4.09206E-06	8.029599183
HEA650	6316000	3.56E-06	3.95187E-06	1.1101

Fableau (5-9) Le	pourcentage	d	'erreur	entre	B _g et B	
--------------	------	-------------	---	---------	-------	---------------------	--

• coefficient C_g

section	W _{PLY} (mm ³⁾	W _{PLZ} (mm ³)	$\left(w_{plz}\!/w_{ply} ight)^{0.5}$	С	Cg	Erreur %
HEA 100	58360	28440	0.69808315	-0.2375	-0.14769	5.33
HEA 120	119500	58850	0.70176108	4.56336	4.96013	8.886
HEA 140	173500	84850	0.69932038	4.07654	4.31879	5.861
HEA 160	245100	117600	0.69267897	3.92828	4.14149	8.61
HEA180	324900	156500	0.69403651	4.69374	4.61774	1.6193
HEA200	429500	203800	0.68884341	4.48486	4.32846	3.4873
HEA220	568500	270600	0.68991988	4.11198	4.38789	6.7098
HEA240	744600	351700	0.6872657	4.07427	4.24187	4.1136
HEA260	919800	430200	0.68389354	5.19956	4.05881	21.939
HEA280	1112000	518100	0.68258133	4.71228	4.03832	8.363
HEA300	1383000	641200	0.68090366	4.65417	3.89881	6.23
HEA 320	1628000	709700	0.66025273	3.23917	2.95288	9.926
HEA 340	1850000	755900	0.63921404	1.93647	1.89361	2.2134
HEA 360	2088000	802300	0.61987361	0.89562	0.95643	7.538
HEA 400	2562000	872900	0.58370402	-0.6747	-0.6224	4.86
HEA 450	3216000	965500	0.54792122	-1.2432	-1.26	7.468
HEA 500	3949000	1059000	0.51785052	-1.4287	-1.5454	8.1666
HEA550	4622000	1107000	0.48939422	-1.6738	-1.735	8.6299
HEA 600	5350000	1156000	0.46483843	-1.8079	-1.9272	6.594
HEA650	6316000	1205000	0.43678977	-1.9039	-1.8536	2.6427

Tubleau (5 10) De pourcentage à effetit entre C_g et c

• coefficient D_g

Figure (5-11) Le	e coefficient D er	n fonction de	(W _{plz})
------------------	--------------------	---------------	---------------------

section	$W_{PLZ} (mm^3)$	D	Dg	Erreur %
HEA 100	28440	23784814.2	160148271	573.322
HEA 120	58850	38754723.8	36129100.8	6.77498
HEA 140	84850	53885045.7	50773740.1	5.77397
HEA 160	117600	72566841.5	68781516.5	5.21633
HEA180	156500	94370649.7	89720415.4	4.92763
HEA200	203800	120814438	114697202	5.06333
HEA220	270600	155534257	149299305	4.00873
HEA240	351700	196774713	190516783	3.18025
HEA260	430200	238640018	229776926	3.714
HEA280	518100	286315639	273147719	4.59909
HEA300	641200	347603718	333040389	4.18964
HEA 320	709700	378174796	366009625	3.21681
HEA 340	755900	401577675	388118889	3.35148
HEA 360	802300	424967526	410228808	3.4682
HEA 400	872900	464511310	443700499	4.48015
HEA 450	965500	514420243	487318116	5.26848
HEA 500	1059000	564419961	531063167	5.90992
HEA550	1107000	600042703	553414107	7.77088
HEA 600	1156000	635942236	576160822	9.40045
HEA650	1205000	671784957	598840124	10.8584

Tableau	(5-11) Le	pourcentage d'erreur entre	D _g et D
---------	-----------	----------------------------	---------------------

$$M_{gZZ} = \boldsymbol{A_g} . \boldsymbol{N}^3 + \boldsymbol{B_g} . \boldsymbol{N}^2 + \boldsymbol{C_g} . \boldsymbol{N} + \boldsymbol{D_g}$$

Le coefficient	section	équation
A _g =	[HEA100-HEA650 [$-323009 \times 10^{-12} \times (t_w.w_{ply})^{-0.72}$
$B_g =$	[HEA100-HEA650 [$10.59 \times 10^{-5} \times w_{ply}^{-0.21}$
C _g =	[HEA100-HEA650 [$121.2 \times (w_{plz}/w_{ply}) - 119.9 \times (w_{plz}/w_{ply})^{0.5} + 23.89$
$D_g =$	[HEA100-HEA650 [$1324.32 \times w_{plz}^{0.93}$

Tableau (5-12) valeurs des coefficients d'équation générale selon l'axe zz.

b) Le deuxième cas $C_Y = C_z = 60 \text{ mm}$

i. Selon l'axe de forte inertie yy

$$\mathbf{M}_{gyy} = \mathbf{A}_{\mathbf{G}} \cdot \mathbf{N}^3 + \mathbf{B}_{\mathbf{g}} \cdot \mathbf{N}^2 + \mathbf{C}_{\mathbf{g}} \cdot \mathbf{N} + \mathbf{D}_{\mathbf{g}}$$

Tableau (5-13) valeurs des coefficients d'équation générale selon l'axe yy

Le coefficient	section	équation
$A_g =$	[HEA100-HEA650 [$105474.23 \times 10^{-12} \times (t_w.w_{ply})^{-0.664}$
B _g =	[HEA100-HEA650 [$-117.65 \times 10^{-5} \times w_{ply}^{-0.22}$
C _g =	[HEA100-HEA650 [6.372×h ^{0.521}
D _g =	[HEA100-HEA650 [$2526 \times (t_w.w_{ply})^{0.753}$

ii. Selon l'axe de faible inertie zz

$$M_{ZZ} = \mathbf{A}_{\mathbf{G}} . \mathbf{N}^3 + \mathbf{B}_{\mathbf{g}} . \mathbf{N}^2 + \mathbf{C}_{\mathbf{g}} . \mathbf{N} + \mathbf{D}_{\mathbf{g}}$$

Tableau (5-14) valeurs des coefficients d'équation générale selon l'axe zz

Le coefficient	section	équation
Ag	[HEA100-HEA650 [323009×10 ⁻¹² ×(tw.wply) ^{-0.72}
Bg	[HEA100-HEA650 [$129.68 \times 10^{-5} \times w_{plz}^{-0.41}$
Cg	[HEA100-HEA260 [$-0.051 \times (w_{plz})^{0.5} + 50.15$
	[HEA260-HEA650 [$0.03 \times (w_{plz})^{0.5} + 8.02$
Dg	[HEA100-HEA650 [$4199 \times w_{plz}^{0.859}$

c) Le troisième cas $C_Y = C_z = 80 \text{ mm}$

i. Selon l'axe de forte inertie yy

Tableau (5-15) valeurs des coefficients d'équation générale selon l'axe yy

Le coefficient	section	équation
$A_g =$	[HEA100-HEA650 [$0.795 \times 10^{-12} \times \ln (t_w.w_{ply}) + 14.88$
$B_g =$	[HEA100-HEA650[$-57.22 \times 10^{-5} \times w_{ply}^{-0.182}$
C _g =	[HEA100-HEA650]	$6.925 \times h^{0.529}$
D _g =	[HEA100-HEA650[$4220 \times (t_w.w_{ply})^{0.726}$

ii. Selon l'axe de faible inertie zz

Lastena (* 10) (aleais des coefficients à constant seron i ante 22	Tableau (5-16)	valeurs des	coefficients	d'équation	générale selo	n l'axe zz
--	----------------	-------------	--------------	------------	---------------	------------

Le coefficient	section	équation
$A_g =$	[HEA100-HEA650]	$-22956.44 \times 10^{-12} \times (t_w.w_{ply})^{-0.704}$
$B_g =$	[HEA100-HEA260[$5642.76 \times 10^{-5} \times w_{plz}^{-0.717}$
6	[HEA260-HEA650[$0.000151 \times 10^{-5} \times w_{plz}^{0.000}$
$C_g =$	[HEA100-HEA260[$1.095 \times (w_{ply}/b)^{0.363}$
, i i i i i i i i i i i i i i i i i i i	[HEA260-HEA650[-33.88×ln (w _{ply} /b)+291.13
$D_g =$	[HEA100-HEA650]	$10631.32 \times w_{plz}^{0.8}$

d) Le quatrième cas $C_Y = h/2$ et $C_z = b$

i. Selon l'axe de forte inertie yy

 Tableau (5-17) valeurs des coefficients d'équation générale selon l'axe yy

Le coefficient	section	équation
$A_g =$	[HEA100-HEA650 [$-314.39 \times 10^{-12} \times (t_w.w_{ply})^{-0.36}$
$B_g =$	[HEA100-HEA650]	$-6037.22 \times 10^{-5} \times w_{ply}^{-0.641}$
$C_g =$	[HEA100-HEA650]	$1.50 imes h^{0.804}$
$D_g =$	[HEA100-HEA650[$1219 \times (t_w \times w_{plz})^{0.824}$

ii. Selon l'axe de faible inertie zz

Tableau (5-18) valeurs des coefficients d'équation générale selon l'axe zz

Le coefficient	section	équation
A _g =	[HEA100-HEA650 [$-208338.41 \times 10^{-12} \times w_{ply}^{-0.678}$
	[HEA100-HEA160]	$1743.98 \times w_{plz}^{0.48}$
$B_g =$	[HEA180-HEA260]	$66.100 \times w_{plz}^{-1.04}$
	[HEA260-HEA650[6501061.22×w _{plz} - ^{0.18}
	[HEA100-HEA180[-0.121×(w _{ply} /b)+42.524
$C_{\sigma} =$	[HEA180-HEA280[-0.1×(w _{ply} /b)+15.05
8	[HEA280-HEA400[0.082×(w _{ply} /b)-365.9
	[HEA400-HEA650[-0.051×(w _{ply} /b)+60.07
$D_g =$	[HEA100-HEA650 [$965.9 \times w_{plz}^{1.072}$

5.3. La deuxième approche

Les équations approchées des courbes d'interactions inversées N- M sont des paraboles du seconde ordre plus une droite **figure (5-12)**

Figure (5-12) Courbe d'interaction inversée pour la compression et la flexion uni-axiale.

Selon l'axe de forte inertie yy on a:

> Pour : N €[0 ; N_c]

$$M_{YY} = \mathbf{A} \cdot N^2 + \mathbf{B} \cdot N + \mathbf{C}$$
$$M_{gyy} = \mathbf{A}_g \cdot N^2 + \mathbf{B}_g \cdot N + \mathbf{C}_g$$

> pour : N €] Nc ; Npl.rd]

 $M_{YY} = A1 . N + B1$ $M_{gyy} = A1_g . N + B1_g$

Selon l'axe de faible inertie zz on a:

> Pour : N €[0 ; N_c]

$$M_{ZZ} = \mathbf{A} \cdot N^2 + \mathbf{B} \cdot N + \mathbf{C}$$
$$M_{gZZ} = \mathbf{A}_g \cdot N^2 + \mathbf{B}_g \cdot N + \mathbf{C}_g$$

> pour : N € Nc ; N_{pl.rd}]

$$M_{ZZ} = A1 . N + B1$$
$$M_{gZZ} = A1_g . N + B1_g$$

Remarque :

- A, B, C, A1, B1 sont des coefficients des équations des courbes d'interactions inversées
- A_g, B_g, C_g, A1_g, B1_g sont des équations en fonction des caractéristiques géométriques de section
- $N_{\rm c} = 0.85 \times f_{\rm ck} \times A_{\rm c} / \gamma_{\rm c}$
- $N_{\text{pl.rd}} = f_y \times A_a / \gamma_{Ma} + f_{ck} \times A_c / \gamma_c + f_s \times A_s / \gamma$

5.3.1. Valeurs des points caractéristiques

Les points caractéristiques sont les points pour lequel on change notre équation générale c'est a dire on passe de l'équation du deuxième dégrée a l'équation du première dégrée.

a) Le premier cas $C_Y = C_z = 40 \text{ mm}$

Tableau (5-19) les points caractéristiques pour le premier cas

	Classe HEA	$N_c(N)$
section1	HEA100	600592.8
section2	HEA120	723223.8
section3	HEA 140	871776.8
section4	HEA 160	1032892
section5	HEA180	1210956.2
section6	HEA200	1400186.8
section7	HEA220	1606565.8
section8	HEA240	1824908.8
section9	HEA260	2064188.8
section10	HEA280	2318423.8
section11	HEA300	2579239
section12	HEA 320	2707054.4

section13	HEA 340	2840453
section14	HEA 360	2973452.8
section15	HEA 400	3244238
section16	HEA 450	3585212
section17	HEA 500	3925189
section18	HEA550	4275534.8
section19	HEA 600	4625083
section20	HEA650	4973833.6

b) le deuxième cas $C_Y = C_z = 60 \text{ mm}$

Tableau (5-20) les points caractéristiques pour le deuxième cas

	Classe HEA	$N_c(N)$
section1	HEA100	916442.4
section2	HEA120	1069382.2
section3	HEA 140	1249041.6
section4	HEA 160	1441263.2
section5	HEA180	1650433.8
section6	HEA200	1870770.8
section7	HEA220	2109053.8
section8	HEA240	2359300.8
section9	HEA260	2630484.8
section10	HEA280	2916623.8
section11	HEA300	3209343
section12	HEA 320	3353110.4
section13	HEA 340	3502461
section14	HEA 360	3651412.8
section15	HEA 400	3954102
section16	HEA 450	4334956
section17	HEA 500	4714813
section18	HEA550	5105038.8
section19	HEA 600	5494467
section20	HEA650	5883097.6

c) le troisième cas $C_Y = C_z = 80 \text{ mm}$

	Classe HEA	$N_{czz}(N)$
section1	HEA100	1296100
section2	HEA120	1479348.6
section3	HEA 140	1690114.4
section4	HEA 160	1913442.4
section5	HEA180	2153719.4
section6	HEA200	2405162.8
section7	HEA220	2675349.8
section8	HEA240	2957500.8
section9	HEA260	3260588.8
section10	HEA280	3578631.8
section11	HEA300	3903255
section12	HEA 320	4062974.4
section13	HEA 340	4228277
section14	HEA 360	4393180.8
section15	HEA 400	4727774
section16	HEA 450	5148508
section17	HEA 500	5568245
section18	HEA550	5998350.8
section19	HEA 600	6427659
section20	HEA650	6856169.6

 Tableau (5-21)
 les points caractéristiques pour le troisième cas

d) le quatrième cas $C_Y = h$, $C_z = b/2$

Tableau (5-22) les points caractéristiques pour le quatrième cas

	Classe HEA	$N_c(N)$
section1	HEA100	1117437.6
section2	HEA120	1586227
section3	HEA 140	2165085.2
section4	HEA 160	2832277.6
section5	HEA180	3592191
section6	HEA200	4439042.8
section7	HEA220	5399153.8

section8	HEA240	6450988.8
section9	HEA260	7603520.8
section10	HEA280	8850767.8
section11	HEA300	10184355
section12	HEA 320	10878466.4
section13	HEA 340	11578161
section14	HEA 360	12277456.8
section15	HEA 400	13680834
section16	HEA 450	15437548
section17	HEA 500	17193265
section18	HEA550	18959350.8
section19	HEA 600	20719329.6
section20	HEA650	22556800

5.3.2. Détermination de l équation générale

- a) Le premier cas $C_Y = Cz = 40 \text{ mm}$
 - i. Selon l'axe de forte inertie yy :
 - **1. Pour : N € [0 Nc]**

> Détermination les équations des courbes d'interaction inversées M-N

Figure (5-13) les Courbes d'interactions inversées pour : N €[0 Nc]

section	<i>M</i> =	A	X	$N^2 +$	В	X	N +	С
HEA100	M =	-7.3603×10 ⁻⁵	Х	$N^2 +$	44.21	Х	N +	27414216.6
HEA120	M =	-7.0078×10 ⁻⁵	Х	$N^2 +$	50.68	Х	N +	49614878.9
HEA140	M =	-6.3776×10 ⁻⁵	Х	$N^2 +$	55.60	Х	N +	70658026.9
HEA160	M =	-5.8461×10 ⁻⁵	Х	$N^2 +$	60.38	Х	N +	98098641.1
HEA180	M =	-5.5849×10 ⁻⁵	Х	$N^2 +$	67.63	Х	N +	128261804
HEA200	M =	-5.1731×10 ⁻⁵	Х	$N^2 +$	72.43	Х	N +	167848753
HEA220	M =	-4.8178×10^{-5}	Х	$N^2 +$	77.40	Х	N +	219646810
HEA240	M =	-4.5082×10^{-5}	Х	$N^2 +$	82.27	Х	N +	284393758
HEA260	M =	-4.3513×10 ⁻⁵	Х	$N^2 +$	89.82	Х	N +	348753744
HEA280	M =	-4.0971×10 ⁻⁵	Х	$N^2 +$	94.99	Х	N +	420912495
HEA300	M =	-3.8711×10 ⁻⁵	Х	$N^2 +$	99.84	Х	N +	519542056
HEA320	M =	-3.7795×10 ⁻⁵	Х	$N^2 +$	102.31	Х	N +	608243337
HEA340	M =	-3.6923×10 ⁻⁵	Х	$N^2 +$	104.88	Х	N +	690331219
HEA360	M =	-3.6089×10 ⁻⁵	Х	$N^2 +$	107.31	Х	N +	778257862
HEA400	M =	-3.453×10 ⁻⁵	Х	$N^2 +$	112.02	Х	N +	955746730
HEA450	M =	-3.38×10 ⁻⁵	Х	$N^2 +$	121.18	Х	N +	1198064479
HEA500	M =	-3.3101×10 ⁻⁵	Х	$N^2 +$	129.93	Х	N +	1469611041
HEA550	M =	-3.2429×10^{-5}	Х	N^2 +	138.65	X	N +	1726381399
HEA600	M =	-3.1785×10 ⁻⁵	X	$N^2 +$	147.01	X	N +	2004956212
HEA650	M =	-3.1165×10 ⁻⁵	X	$N^2 +$	155.01	x	N +	2362636903

Tableau (5-23)	Les	équations d	des Courbe d'	'interaction	inversée	M=f(N)
----------------	-----	-------------	---------------	--------------	----------	--------

> Déterminations des coefficients de l'équation générale

• coefficient A_g

section	$W_{\rm prv}$ (mm ³)	Δ	Δσ	Frreur %
	VV PLY (IIIII)		Ag	Lifeur 70
HEA 100	58360	-/.36034E-05	-/.65/99E-05	4.04409082
HEA 120	119500	-7.00783E-05	-6.61637E-05	5.58609479
HEA 140	173500	-6.37755E-05	-6.13176E-05	3.85392523
HEA 160	245100	-5.84609E-05	-5.71448E-05	2.25125781
HEA180	324900	-5.58489E-05	-5.39518E-05	3.39691333
HEA200	429500	-5.17306E-05	-5.09657E-05	1.47864276
HEA220	568500	-4.8178E-05	-4.81324E-05	0.09462624
HEA240	744600	-4.5082E-05	-4.55544E-05	1.04793357
HEA260	919800	-4.35127E-05	-4.36324E-05	0.27519697
HEA280	1112000	-4.09714E-05	-4.19756E-05	2.45106359
HEA300	1383000	-3.87106E-05	-4.0149E-05	3.71584933
HEA 320	1628000	-3.77955E-05	-3.88352E-05	2.75077182
HEA 340	1850000	-3.69227E-05	-3.78355E-05	2.47231213
HEA 360	2088000	-3.60892E-05	-3.69128E-05	2.28215051
HEA 400	2562000	-3.45304E-05	-3.5404E-05	2.5300124
HEA 450	3216000	-3.38004E-05	-3.37995E-05	0.00267836
HEA 500	3949000	-3.31006E-05	-3.2413E-05	2.07738274
HEA550	4622000	-3.24292E-05	-3.1389E-05	3.20778144
HEA 600	5350000	-3.17846E-05	-3.04662E-05	4.14776599
HEA650	6316000	-3.1165E-05	-2.94518E-05	5.49708456

Tableau (5-24)	Le pourcentage d'erreur entre	A _g et A
----------------	-------------------------------	---------------------

• coefficient B_g

section	h (mm)	В	Bg	Erreur %
HEA 100	96	44.20564973	45.88927558	3.80862142
HEA 120	114	50.68229696	51.32130456	1.26081025
HEA 140	133	55.5980102	56.73878706	2.05183037
HEA 160	152	60.38377976	61.89175602	2.49732009
HEA180	171	67.63057575	66.82409672	1.19247696
HEA200	190	72.43253762	71.56838603	1.19304338
HEA220	210	77.40112036	76.38663697	1.31068308
HEA240	230	82.27047869	81.04709453	1.48702691
HEA260	250	89.81834177	85.56803813	4.73211101
HEA280	270	94.98905617	89.96434857	5.28977526
HEA300	290	99.84385206	94.24834349	5.60425951
HEA 320	310	102.314453	98.43036415	3.79622696
HEA 340	330	104.8770912	102.5191989	2.24824336
HEA 360	350	107.3096483	106.5223959	0.73362686
HEA 400	390	112.0247928	114.2972255	2.02850872
HEA 450	440	121.1815757	123.6346835	2.02432408
HEA 500	490	129.9262127	132.6081686	2.06421465
HEA550	540	138.6523667	141.2670795	1.88580462
HEA 600	590	147.0062211	149.6501956	1.79854596
HEA650	640	155.0095467	157.7886615	1.79286689

Tableau (5-25) Le pourcentage d'erreur entre B_g et B

• coefficient C_g

Figure (5-16) Le coefficient C en fonction de $(W_{\mbox{\scriptsize ply}})$

section	$\mathbf{W}_{\mathbf{ply}}$	С	Cg	Erreur %
HEA 100	58360	27414216.62	24897315.32	9.18100757
HEA 120	119500	49614878.93	49646518.04	0.06376939
HEA 140	173500	70658026.91	71093337.08	0.61608028
HEA 160	245100	98098641.09	99156482.15	1.07834425
HEA180	324900	128261803.6	130076389.5	1.41475163
HEA200	429500	167848752.9	170187254.7	1.39321965
HEA220	568500	219646809.8	222940486	1.49953289
HEA240	744600	284393758	289098195.9	1.65419872
HEA260	919800	348753743.9	354340057.3	1.60179309
HEA280	1112000	420912495	425385235.3	1.06262951
HEA300	1383000	519542055.7	524801733.9	1.01236813
HEA 320	1628000	608243337.4	614054176.5	0.95534775
HEA 340	1850000	690331219.1	694496204	0.60333138
HEA 360	2088000	778257861.6	780340177.1	0.26756113
HEA 400	2562000	955746730.1	950266019.4	0.57344801
HEA 450	3216000	1198064479	1182847751	1.2701093
HEA 500	3949000	1469611041	1441453416	1.91599165
HEA550	4622000	1726381399	1677315403	2.84212955
HEA 600	5350000	2004956212	1931026323	3.68735681
HEA650	6316000	2362636903	2265735789	4.10139682

Tableau (5-26)	Le pourcentage d'erreur	entre C _g et C
----------------	-------------------------	---------------------------

Tableau (5-27) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [0, N_c]$

Le coefficient	section	équation
$A_g =$	[HEA100-HEA650 [$-71.846 \times 10^{-5} \text{ wpl}_{y}^{0.204}$
$B_g =$	[HEA100-HEA650 [$2.351 \times h^{0.651}$
C _g =	[HEA100-HEA650 [$640.3 \times w_{ply}^{0.963}$

2. pour : $N \in [N_c \ N_{pl.rd}]$

> Détermination les équations des courbes d'interaction inversées *M*-*N*

Figure (5-17) les Courbes d'interactions inversées pour : N \in [N _c]	N _{pl.rd}]
---	----------------------

section	M =	A1	х	N +	B1
HEA100	M =	-61.42	х	N +	64300441
HEA120	M =	-66.35	х	N +	97602021.8
HEA140	M =	-75.94	х	N +	136856945
HEA160	M =	-85.01	х	N +	185901982
HEA180	M =	-95.23	х	N +	243582305
HEA200	M =	-104.70	х	N +	314444520
HEA220	M =	-114.25	х	N +	403204799
HEA240	M =	-123.38	х	N +	509545139
HEA260	M =	-133.88	х	N +	625097408
HEA280	M =	-144.16	х	N +	755135896
HEA300	M =	-153.46	х	N +	915352358
HEA320	M =	-161.88	х	N +	1046456276
HEA340	M =	-170.94	х	N +	1175881246
HEA360	M =	-179.91	х	N +	1313200193
HEA400	M =	-198.16	х	N +	1598640352
HEA450	M =	-221.71	х	N +	1992939460
HEA500	M =	-244.90	х	N +	2430905417
HEA550	M =	-268.53	Х	N +	2874498688
HEA600	M =	-291.84	Х	N +	3354721969
HEA650	M =	-322.57	х	N +	3967068479

Tableau (5-28) Les équations des Courbe d'interaction inversée M=f(N)

> Déterminations des coefficients de l'équation générale

• coefficient A_{1g}

Figure (5-18)	Le coefficient A1	en fonction de ($W_{ply}.t_w/b)$
----------------------	-------------------	------------------	------------------

Section	b (mm)	t _w (mm)	W _{PLY} (mm ³)	t _w .W _{ply} /b	A1	A1 _g	Erreur %
HEA 100	100	5	58360	2918	-61.42	-57.58	6.24
HEA 120	120	5	119500	4979.16667	-66.35	-70.02	5.53
HEA 140	140	5.5	173500	6816.07143	-75.94	-78.55	3.44
HEA 160	160	6	245100	9191.25	-85.01	-87.63	3.09
HEA180	180	6	324900	10830	-95.23	-93.05	2.29
HEA200	200	6.5	429500	13958.75	-104.70	-102.11	2.47
HEA220	220	7	568500	18088.6364	-114.25	-112.27	1.74
HEA240	240	7.5	744600	23268.75	-123.38	-123.11	0.21
HEA260	260	7.5	919800	26532.6923	-133.88	-129.17	3.51
HEA280	280	8	1112000	31771.4286	-144.16	-137.98	4.29
HEA300	300	8.5	1383000	39185	-153.46	-148.99	2.92
HEA 320	300	9	1628000	48840	-161.88	-161.49	0.24
HEA 340	300	9.5	1850000	58583.3333	-170.94	-172.61	0.98
HEA 360	300	10	2088000	69600	-179.91	-183.85	2.19
HEA 400	300	11	2562000	93940	-198.16	-205.18	3.54
HEA 450	300	11.5	3216000	123280	-221.71	-226.64	2.22
HEA 500	300	12	3949000	157960	-244.90	-248.16	1.33
HEA550	300	12.5	4622000	192583.333	-268.53	-266.83	0.63
HEA 600	300	13	5350000	231833.333	-291.84	-285.57	2.15
HEA650	300	13.5	24160	1087.2	-322.57	-307.68	4.62

Tableau	(5-29) L	e pourcentage d'erreur	A1 _g et A1
---------	-------------------	------------------------	-----------------------

• coefficient B1_g

Figure (5-19) Le coefficient B1	en fonction de (W_{ply})
---------------------------------	----------------------------

Section	$W_{PLY} (mm^3)$	B1	B1g	Erreur %
HEA 100	58360	64300441.03	76847023.10	19.51
HEA 120	119500	97602021.83	114511830.98	7.33
HEA 140	173500	136856944.53	147778098.98	7.98
HEA 160	245100	185901982.23	191886706.18	3.22
HEA180	324900	243582305.42	241046857.78	1.04
HEA200	429500	314444520.43	305484850.98	2.85
HEA220	568500	403204799.01	391114688.98	3.00
HEA240	744600	509545139.45	499599685.18	1.95
HEA260	919800	625097408.04	607530243.58	2.81
HEA280	1112000	755135896.33	725933515.98	3.87
HEA300	1383000	915352358.33	892880897.98	2.45
HEA 320	1628000	1046456275.76	1043811187.98	0.25
HEA 340	1850000	1175881245.97	1180572511.98	0.40
HEA 360	2088000	1313200193.40	1327190507.98	1.07
HEA 400	2562000	1598640351.99	1619194415.98	1.29
HEA 450	3216000	1992939459.84	2022085883.98	1.46
HEA 500	3949000	2430905417.39	2473644669.98	1.76
HEA550	4622000	2874498687.59	2888240935.98	0.48
HEA 600	5350000	3354721968.88	3336719511.98	0.54
HEA650	6316000	3967068479	3931816083.98	0.89

Tableau (5-30) L	e pourcentage d'erreur entre	B1 _g et B1
------------------	------------------------------	-----------------------

 $M_{gyy} = A1_g .N + B1_g$

Le coefficient	section	équation
A1g=	[HEA100-HEA650 [$-3.104 \times (w_{ply} \times t_w/b)^{0.366}$
$B1_g =$	[HEA100-HEA650 [$616.04 \times w_{ply} + 40894811.9$

Tableau (5-31) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [0, N_c]$

ii. Selon l'axe de faible inertie zz :

1. pour : N € [0 Nc]

> Détermination les équations des courbes d'interaction inversées M-N

Figure (5-20) les Courbes d'interactions inversées pour : *N* €[0 *N*c]

Tableau (5-32) Les	équations des Courbe d'interaction	inversée M=f(N)
--------------------	------------------------------------	-----------------

section	M =	A1	Х	N +	B1	х	N +	C1
HEA100	M =	-1.43160979×10 ⁻⁵	Х	N +	8.598	Х	N +	23784814.2
HEA120	M =	-1.342014367×10 ⁻⁵	Х	N +	9.706	Х	N +	38754723.83
HEA140	M =	-1.131633265×10 ⁻⁵	Х	N +	9.865	Х	N +	53885045.67
HEA160	M =	-0.969552504×10 ⁻⁵	Х	N +	10.014	Х	N +	72566841.49
HEA180	M =	-0.944309578×10 ⁻⁵	Х	N +	11.435	Х	N +	94370649.7

HEA200	M =	-0.830531488×10 ⁻⁵	х	N +	11.629	х	N +	120814438.3
HEA220	M =	-0.719534728×10 ⁻⁵	Х	N +	11.560	Х	N +	155534257.1
HEA240	M =	-0.630595951×10 ⁻⁵	Х	N +	11.508	х	N +	196774713.3
HEA260	M =	-0.629874141×10 ⁻⁵	Х	N +	13.002	Х	N +	238640018.5
HEA280	M =	-0.572557458×10 ⁻⁵	Х	N +	13.274	Х	N +	286315638.6
HEA300	M =	-0.51359823×10 ⁻⁵	Х	N +	13.247	Х	N +	347603717.7
HEA320	M =	-0.42059329×10 ⁻⁵	Х	N +	11.386	Х	N +	378174795.7
HEA340	M =	-0.352556375×10 ⁻⁵	Х	N +	10.014	Х	N +	401577675
HEA360	M =	-0.298104688×10 ⁻⁵	Х	N +	8.864	Х	N +	424967526.2
HEA400	M =	-0.223442808×10 ⁻⁵	Х	N +	7.249	Х	N +	464511310.1
HEA450	M =	-0.183436669×10 ⁻⁵	Х	N +	6.577	Х	N +	514420243.1
HEA500	M =	-0.158160797×10 ⁻⁵	Х	N +	6.208	х	N +	564419961.2
HEA550	M =	-0.142797798×10 ⁻⁵	Х	N +	6.105	Х	N +	600042703.2
HEA600	M =	-0.130746922×10 ⁻⁵	X	N +	6.046	х	N +	635942236.5
HEA650	M =	-0.120571729×10 ⁻⁵	Х	N +	6.015	Х	N +	671784957.4

> Déterminations des coefficients de l'équation générale

Dans cette approche nous avons divisés nos sections d'étude en deux groupes pour obtenir une bonne précision

Groupe 1 : section1 jusqu'a. Section10.

Groupe 2 : section11 jusqu'a. Section20.

• Coefficient A1

Figure (5-21) Le coefficient A1 en fonction de (W_{ply}) pour le groupe 1

section	w _{ply} (mm ³)	A1	A1 _g	Erreur %
HEA 100	58360	-1.4316E-05	-1.57776E-05	10.2086616
HEA 120	119500	-1.342E-05	-1.23922E-05	7.65974083
HEA 140	173500	-1.1316E-05	-1.09289E-05	3.42346744
HEA 160	245100	-9.6955E-06	-9.72775E-06	0.33240217
HEA180	324900	-9.4431E-06	-8.8463E-06	6.31993335
HEA200	429500	-8.3053E-06	-8.05216E-06	3.04805008
HEA220	568500	-7.1953E-06	-7.32617E-06	1.8181755
HEA240	744600	-6.306E-06	-6.68934E-06	6.07963068
HEA260	919800	-6.2987E-06	-6.22955E-06	1.09852202
HEA280	919800	-5.7256E-06	-5.84365E-06	2.06218195

Гаbleau (5-33) Le	e pourcentage d'erreur entre	Alg et Al	pour le groupe 1
-------------------	------------------------------	-----------	------------------

Figure (5-22) Le coefficient A1 en fonction de (W_{ply}) pour le groupe 2

section	w _{ply} (mm ³)	A1	A1g	Erreur %
HEA300	1383000	-5.136E-06	-5.03355E-06	1.99437954
HEA 320	1628000	-4.2059E-06	-4.30403E-06	2.33241632
HEA 340	1850000	-3.5256E-06	-3.80697E-06	7.9817503
HEA 360	2088000	-2.981E-06	-3.3894E-06	13.6982324
HEA 400	2562000	-2.2344E-06	-2.42502E-06	5.6411515
HEA 450	3216000	-1.8344E-06	-1.93893E-06	10.054625
HEA 500	3949000	-1.5816E-06	-1.63838E-06	6.2351019
HEA550	4622000	-1.428E-06	-1.48062E-06	7.689274
HEA 600	5350000	-1.3075E-06	-1.37355E-06	5.0540237
HEA650	6316000	-1.2057E-06	-1.17122E-06	2.86094643

Tableau (5-34) Le	pourcentage d'erreur	Alg et Al	pour le groupe 2

• Coefficient B1

1) Groupe 1

Figure (5-23) Le coefficient B1 en fonction de (t_w) pour le groupe 1

section	t _w (mm)	B1	B1g	Erreur %
HEA 100	5	8.59814533	9.322	8.4187
HEA 120	5	9.7057673	9.322	3.9540
HEA 140	5.5	9.86531626	9.957	0.9294
HEA 160	6	10.0144302	10.592	5.7674
HEA180	6	11.4351754	10.592	7.3735
HEA200	6.5	11.6289923	11.227	3.4568
HEA220	7	11.5597989	11.862	2.6142
HEA240	7.5	11.507801	12.497	8.5959
HEA260	7.5	13.0017915	12.497	3.8825
HEA280	8	13.2743084	13.132	1.0721

Tableau (5-35) Le pourcentage d'erreur entre $B1_g$ et B1 pour le groupe 1

Figure (5-24) Le coefficient B1 en fonction de (t_w) pour le groupe 2

section	t _w (mm)	B1	B1g	Erreur %
HEA300	8.5	13.2469	12.17685586	8.07787412
HEA 320	9	11.3857	10.99261329	3.45236792
HEA 340	9.5	10.0142	9.978604017	0.35543641
HEA 360	10	8.8640	9.103220076	2.69875691
HEA 400	11	7.2490	7.675419759	5.88222233
HEA 450	11.5	6.5766	7.088362315	7.78167089
HEA 500	12	6.2081	6.568415417	5.80378246
HEA550	12.5	6.1054	6.105568653	0.00326093
HEA 600	13	6.0458	5.69162714	5.85787688
HEA650	13.5	6.0151	5.319828069	11.5585176

Tableau (5-36) Le pourcentage d'erreur entre $B1_g$ et B1 pour le groupe 2

• Coefficient c1

Figure (5-25) Le coefficient C1 en fonction de (W_{ply}) pour le groupe 1

Tableau (5-37)) Le pourcentage d'erreur entre	C1. et C1 pc	our le groupe 1
1 abicau (3-57)	f Le pourcemage à cheur entre	cig ci ci pi	ful le groupe i

section	w _{plz} (mm ³)	C1	C1 _g	Erreur %
HEA 100	28440	23784814	21646172.9	8.9916
HEA 120	58850	38754724	40929525.1	5.6117
HEA 140	84850	53885046	56394638.62	4.6573
HEA 160	117600	72566841	75061219.19	3.4374
HEA180	156500	94370650	96412504.32	2.1637
HEA200	203800	120814438	121507101.7	0.5733
HEA220	270600	155534257	155760720.1	0.1456
HEA240	351700	196774713	195968286.4	0.4098
HEA260	430200	238640018	233794384.7	2.0305
HEA280	518100	286315639	275147206.1	3.9007

2) Groupe 2

Figure (5-26) Le coefficient C1 en fonction de (W_{plz}) pour le groupe 2

section	$W_{ply}(mm^3)$	C1	C1 _g	Erreur %
HEA300	641200	347603717.7	337010808.9	3.04740952
HEA 320	709700	378174795.7	376097593.9	0.54927029
HEA 340	755900	401577675.0	402459775.9	0.21965885
HEA 360	802300	424967526.2	428936079.9	0.9338487
HEA 400	872900	464511310.1	469221145.9	1.01393352
HEA 450	965500	514420243.1	522059631.9	1.48504825
HEA 500	1059000	564419961.2	575411666.9	1.94743391
HEA550	1107000	600042703.2	602800946.9	0.45967458
HEA 600	1156000	635942236.5	630760836.9	0.81475946
HEA650	1205000	671784957.4	658720726.9	1.94470422

 Tableau (5-38) Le pourcentage d'erreur entre C1g et C1 pour le groupe 2

Après la détermination du calcule les coefficients, l'équation générale s'écrit comme suite :

$$\mathbf{M}_{gyy} = \mathbf{A}_{\mathbf{g}} \cdot \mathbf{N}^2 + \mathbf{B}_{\mathbf{g}} \cdot \mathbf{N} + \mathbf{C}_{\mathbf{g}}$$

Tableau (5-39) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [0, N_c]$

Le coefficient	section	équation
A _g =	[HEA100-HEA280 [$-63.7 \times 10^{-5} \times w_{ply}^{-0.34}$
	[HEA300-HEA650]	$-395424.7 \times 10^{-5} \times w_{ply}^{-1.15}$
B _g =	[HEA100-HEA280 [1.27×tw+2.97
6	[HEA300-HEA650]	561.36×t _w ^{-1.8}
$C_g =$	[HEA100-HEA280 [$2714.81 \times w_{plz}^{0.88}$

[HEA300-HEA650[$570.61 \times w_{plz}$ -28864323.06

2. Pour : N € [0 Nc]

> Détermination les équations des courbes d'interaction inversées M-N

Figure (5-27) les Courbes d'interactions inversées pour : N \in [N_c N_{pl.rd}]

section	M =	A1	Х	N +	B1
HEA100	M =	-53.29	Х	N +	55787625.2
HEA120	M =	-51.83	Х	N +	76238005.3
HEA140	M =	-57.91	Х	N +	104369497
HEA160	M =	-62.88	Х	N +	137517906
HEA180	M =	-70.07	Х	N +	179219532
HEA200	M =	-75.36	Х	N +	226331370
HEA220	M =	-80.91	Х	N +	285513634
HEA240	M =	-85.37	Х	N +	352559070
HEA260	M =	-91.61	Х	N +	427732346
HEA280	M =	-98.06	Х	N +	513663099
HEA300	M =	-102.67	Х	N +	612423728
HEA320	M =	-100.65	Х	N +	650633330
HEA340	M =	-99.44	Х	N +	684030569
HEA360	M =	-98.24	Х	N +	717072663
HEA400	M =	-96.31	Х	N +	776969987
HEA450	M =	-95.20	Х	N +	855720555
HEA500	M =	-94.06	Х	N +	933615429
HEA550	M =	-93.33	Х	N +	999096703

fableau (5-40) Les	équations des Courbe d'interaction	inversée M=f(N)
--------------------	------------------------------------	-----------------

HEA600	M =	-92.56	Х	N +	1063960877
HEA650	M =	-91.75	х	N +	1129497137

> Déterminations des coefficients de l'équation générale

Dans cette approche nous avons divisés nos sections d'étude en deux groupes pour obtenir une bonne précision

Groupe 1: section1 jusqu'a. Section10.

Groupe 2 : section11 jusqu'a. Section20.

• Coefficient A1

Figure (5-28) Le coefficient A1 en fonction de $(W_{\mbox{\scriptsize plz}})$ pour le groupe 1

section	$W_{plz} (mm^3)$	A1	A1g	Erreur %
HEA 100	28440	-53.285	-42.229	20.7499
HEA 120	58850	-51.828	-52.029	0.3881
HEA 140	84850	-57.910	-57.790	0.2068
HEA 160	117600	-62.883	-63.465	0.9266
HEA180	156500	-70.068	-68.890	1.6809
HEA200	203800	-75.359	-74.314	1.3867
HEA220	270600	-80.905	-80.614	0.3604
HEA240	351700	-85.366	-86.912	1.8120
HEA260	430200	-91.606	-92.086	0.5238

Tableau (5-41) Le pourcentage d'erreurentre $A1_g$ et A1 pour le groupe 1

HEA280	518100	-98.061	-97.133	0.9466

2) Groupe 2

Figure (5-29) Le coefficient A1 en fonction de (W_{plz}) pour le groupe 2

section	wply	A1	A1g	Erreur %
HEA300	641200	-102.674	-102.597	0.07488289
HEA 320	709700	-100.648	-100.821	0.17248833
HEA 340	755900	-99.439	-99.733	0.29573666
HEA 360	802300	-98.238	-98.717	0.48764945
HEA 400	872900	-96.312	-97.295	1.02084261
HEA 450	965500	-95.197	-95.622	0.44712845
HEA 500	1059000	-94.058	-94.114	0.05962462
HEA550	1107000	-93.334	-93.399	0.06959657
HEA 600	1156000	-92.564	-92.706	0.15354176
HEA650	1205000	-91.748	-92.046	0.32533401

Tableau (5-42) Le pourcentage d'erreur entre A1g et A1 pour le groupe 2

• Coefficient B1

Figure (5-30) Le coefficient B1 en fonction de $(W_{\mbox{\scriptsize plz}})$ pour le groupe 1

Tableau (5-43) Le pourcentage d'erreur entre $B1_g$ et B1 pour le groupe 1

section	w _{plZ} (mm ³)	B1	B1 _g	Erreur %
HEA 100	28440	55787625.237	54562584.060	2.1959
HEA 120	58850	76238005.261	83041853.160	8.9245
HEA 140	84850	104369496.705	107391113.160	2.8951
HEA 160	117600	137517905.717	138061815.660	0.3955
HEA180	156500	179219532.095	174492054.660	2.6378
HEA200	203800	226331369.546	218788977.660	3.3325
HEA220	270600	285513634.009	281347845.660	1.4591
HEA240	351700	352559069.611	357298806.660	1.3444
HEA260	430200	427732345.799	430814841.660	0.7207
HEA280	518100	513663098.574	513134070.660	0.1030

Figure (5-31) Le coefficient B1 en fonction de (W_{plz}) pour le groupe 2

section	$W_{ply} (mm^3)$	B1	B1 _g	Erreur %
HEA300	641200	612423728.276	582896301.160	4.82140481
HEA 320	709700	650633330.402	645131976.160	0.84553834
HEA 340	755900	684030569.369	687106986.160	0.44974844
HEA 360	802300	717072663.417	729263706.160	1.70011261
HEA 400	872900	776969986.783	793407336.160	2.1155707
HEA 450	965500	855720555.288	877539066.160	2.54972382
HEA 500	1059000	933615428.536	962488491.160	3.0926077
HEA550	1107000	999096702.513	1006098891.160	0.70085194
HEA 600	1156000	1063960877.203	1050617841.160	1.25409085
HEA650	1205000	1129497136.828	1095136791.160	3.04209232

Tableau (5-44) Le	pourcentage d'erreur	entre B1 _a et B1	pour le groupe 2
		entre Dig et Di	pour le Broupe -

Après la détermination du calcule les coefficients, l'équation générale s'écrit comme suite :

$$M_{gyy} = A1_g .N + B1_g$$

Tableau (5-45) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [N_c \ N_{pl.rd}]$

Le coefficient	section	équation
A1g=	[HEA100-HEA280 [$-2.23 \times (w_{ply} \times t_w/b)^{0.29}$
	[HEA300-HEA650]	$-1023.14 \times (w_{ply} \times t_w/b)^{-0.17}$
$B1_g =$	[HEA100-HEA280[936.51×w _{ply} + 27928239.66
	[HEA300-HEA650]	908.55×w _{ply} -334041.16

b) Le deuxième cas $C_Y = C_z = 60mm$

i. Selon l'axe de forte inertie yy

1. pour : $N \in [0 N_c]$

$$M_{gyy} = A_g \cdot N^2 + B_g \cdot N + C_g$$

Tableau (5-46) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [0 \text{ N}_c]$

Le coefficient	section	équation
A _g =	[HEA100-HEA650 [$-43.819 \times 10^{-5} \times w_{ply}^{-0.174}$
B _g =	[HEA100-HEA650 [$3.99 \times h^{0.587}$
C _g =	[HEA100-HEA650 [$1155.39 \times w_{ply}^{0.926}$

2. pour : $N \in [N_c \ N_{pl.rd}]$

$$M_{\rm gyy} = \mathbf{A1_g} \cdot N + \mathbf{B1_g}$$

Tableau (5-47) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [N_c \ N_{pl.rd}]$

Le coefficient	section	équation
A1 _g =	[HEA100-HEA650 [$-5.48 \times (w_{ply} \times t_w/b)^{0.321}$
$B1_g =$	[HEA100-HEA650 [$678.925 \times w_{ply} + 972675846.4$

ii. Selon l'axe de faible inertie zz :

1. Pour : N € [0 Nc]

Tableau (5-48) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [0 N_c]$

Le coefficient	section	équation
A _a =	[HEA100-HEA280 [$-89.46 \times 10^{-5} \times W_{ply}^{-0.34}$
, sp	[HEA300-HEA650]	$-362262.8 \times 10^{-5} \times w_{ply}^{-1.15}$
B _g =	[HEA100-HEA280[$7.17 \times w_{ply}^{0.068}$
	[HEA300-HEA650]	$66432778861.85 \times w_{plz}^{-1.8}$
C _g =	[HEA100-HEA280[$8992.48 \times w_{plz}^{0.794}$
	[HEA300-HEA650[$88.79 \times w_{plz}^{1.14}$

2. pour : $N \in N_c N_{pl.rd}$]

Tableau (5-49) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [N_c \ N_{pl.rd}]$

Le coefficient	section	équation
A1,=	[HEA100-HEA280 [-9.44× $(w_{ply} \times t_w/b)^{0.23}$
6	[HEA300-HEA650[$-152.52 \times (w_{ply} \times t_w/b)^{-0.026}$
B1g=	[HEA100-HEA280 [525.82×w _{ply} + 8112259.77
	[HEA300-HEA650]	$144.2 \times w_{ply} + 596107667.34$

c) Le troisième cas $C_Y = C_z = 80mm$

i. Selon l'axe de forte inertie yy :

1. pour : N $\in [0 \ N_c]$

Tableau (5-50) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [0 \ N_c]$

Le coefficient	section	équation
A _g =	[HEA100-HEA650 [$-23.412 \times 10^{-5} \times w_{ply}^{-0.135}$
$\mathbf{B}_{g} =$	[HEA100-HEA650 [$4.85 \times h^{0.576}$

$C_g =$	[HEA100-HEA650[$2475.18 imes w_{ply}^{0.877}$

2. pour : $N \in N_c N_{pl.rd}$]

Tableau (5-51) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [N_c \ N_{pl.rd}]$

Le coefficient	section	equation
A1 _g =	[HEA100-HEA650[$-11.39 \times (w_{ply} \times t_w/b)^{0.26}$
$B1_g =$	[HEA100-HEA650]	745.73×w _{ply} + 188770656.22

ii. Selon l'axe de faible inertie zz :

1. pour : N € [0 Nc]

Tableau (5-52) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [0 N_c]$

Le coefficient	section	équation
$A_{\sigma} =$	[HEA100-HEA280 [$-83.24 \times 10^{-5} \times w_{ply}^{-0.32}$
5	[HEA300-HEA650[$-6983341.67 \times 10^{-5} \times w_{ply}^{-1.12}$
$B_g =$	[HEA100-HEA280 [$19.85 \times w_{ply}^{0.037}$
	[HEA300-HEA650]	84927916349.1×w _{plz} ^{-1.8}
C _g =	[HEA100-HEA280 [$27041.14 \times w_{plz}^{0.72}$
	[HEA300-HEA650]	$114.42 \times w_{plz}^{1.13}$

2. pour : $N \in [N_c N_{pl.rd}]$

Tableau (5-53) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [N_c \ N_{pl.rd}]$

Le coefficient	section	equation
$A1_{a} =$	[HEA100-HEA280 [$-30.3 \times (w_{ply} \times t_w/b)^{0.141}$
g	[HEA300-HEA650]	-188.68×(w_{ply} ×t _w /b) ^{-0.026}
$B1_g =$	[HEA100-HEA280 [621.68×w _{ply} + 8112259.77
5	[HEA300-HEA650]	168.83×w _{ply} + 596107667.34
d) Le quatrième cas $C_Y=h/2$; $C_z=b$

i. Selon l'axe de forte inertie yy :

1. pour : N € [0 ; N_c]

Tableau (5-54) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [0; N_c]$

Le coefficient	section	équation
A _g =	[HEA100-HEA650 [$-62.350 \times 10^{-5} \times w_{ply}^{-0.239}$
B _g =	[HEA100-HEA650]	$0.563 \times h^{1.018}$
C _g =	[HEA100-HEA650]	$1219.07 \times w_{ply}^{0.877}$

2. pour : $N \in [N_c : N_{pl.rd}]$

Tableau (5-55)) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [0, N_c]$

Le coefficient	section	equation
A1 _g =	[HEA100-HEA650]	$-0.44 \times (w_{ply} \times t_w/b)^{-0.467}$
$B1_g =$	[HEA100-HEA650[3031.31×w _{ply} -161584774.54

ii. Selon l'axe de faible inertie zz :

1. pour : N € [0 ; N_c]

Tableau (5-56) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [0, N_c]$

Le coefficient	section	equation
$A_g =$	[HEA100-HEA280 [$-30.05 \times 10^{-5} \times w_{ply}^{-0.225}$
5	[HEA300-HEA650[$-2216.711 \times 10^{-5} \times w_{ply}^{-0.53}$
$B_{g} =$	[HEA100-HEA280 [$0.224 \times w_{ply}^{0.506}$
5	[HEA300-HEA650[$464533.2 \times w_{plz}^{-0.76}$
$C_g =$	[HEA100-HEA280 [$30.05 \times w_{plz}^{-0.22}$
6	[HEA300-HEA650[$114.42 \times w_{plz}^{-0.533}$

2. pour : $N \in [N_c N_{pl.rd}]$

Tableau (5-57) valeurs des coefficients d'équation générale selon l'axe yy pour $N \in [0, N_c]$

Le coefficient	section	equation
$A1_g =$	[HEA100-HEA280 [-0.783× $(w_{ply} \times t_w/b)^{0.658}$
6	[HEA300-HEA650]	$-1495.3 \times (w_{ply} \times t_w/b)^{-0.071}$
$B1_g =$	[HEA100-HEA280 [9996.4×w _{ply} - 630285221.2
5	[HEA300-HEA650[168.83×w _{ply} + 1125095209.3

5.4. La troisième approche

Les équations approchées des courbes d'interactions inversées $(N/N_{pl.rd} - M/M_{pl.rd})$ sont des paraboles d'ordre trois **.la figure** (5-31)

Figure (5-32) Courbes d'interaction inversée réduite

Selon l'axe de forte inertie yy

$$M_{yy}/M_{pl.rd} = A \cdot (N/N_{pl.rd})^3 + B \cdot (N/N_{pl.rd})^2 + C \cdot (N/N_{pl.rd}) + D$$
$$M_{yy}/M_{pl.rd} = A_g \cdot (N/N_{pl.rd})^3 + B_g \cdot (N/N_{pl.rd})^2 + C_g \cdot (N/N_{pl.rd})^3 + D_g$$

Selon l'axe de faible inertie zz

$$M_{zz}/M_{pl.rd} = A \cdot (N/N_{pl.rd})^3 + B \cdot (N/N_{pl.rd})^2 + C \cdot (N/N_{pl.rd}) + D$$
$$M_{zz}/M_{pl.rd} = A_g \cdot (N/N_{pl.rd})^3 + B_g \cdot (N/N_{pl.rd})^2 + C_g \cdot (N/N_{pl.rd})^3 + D_g$$

Remarque :

- ✓ les coefficients A, B, C, D sont des constants (pour chaque diagramme d'interaction)
- ✓ les coefficients A_g , B_g , C_g , D_g sont des constants d'équation générale.

5.4.1. Détermination de l équation générale

- a) Le premier cas $C_{Y} = C_{z} = 40 \text{ mm}$
- i. Selon l'axe de forte inertie yy

> Déterminations les équations des courbe d'interaction inversées réduites

Figure (5-33) les Courbes d'interactions inversées réduites N-M Selon l'axe yy

section	$M/M_{pl \cdot rd} =$	Α	$(N/N_{pl.rd})^3 +$	В	$(N/N_{pl.rd})^2 +$	С	$x (N/N_{pl.rd}) +$	D
HEA100	$M/M_{pl \cdot rd} =$	0.84	$(N/N_{pl.rd})^3 +$	-3.664	$x (N/N_{pl.rd})^2 +$	1.826	$x (N/N_{pl.rd}) +$	1
HEA120	$M/M_{pl \cdot rd} =$	1.44	$(N/N_{pl.rd})^3 +$	-4.121	$(N/N_{pl.rd})^2 +$	1.677	$x (N/N_{pl.rd}) +$	1
HEA140	M/M _{pl•rd} =	1.31	$x (N/N_{pl.rd})^3 +$	-3.884	$(N/N_{pl.rd})^2 +$	1.572	$x (N/N_{pl.rd}) +$	1
HEA160	$M/M_{pl \cdot rd} =$	1.25	$x (N/N_{pl.rd})^3 +$	-3.736	$x (N/N_{pl.rd})^2 +$	1.486	$x (N/N_{pl.rd}) +$	1
HEA180	$M/M_{pl \cdot rd} =$	1.24	$x (N/N_{pl.rd})^3 +$	-3.732	$(N/N_{pl.rd})^2 +$	1.488	$x (N/N_{pl.rd}) +$	1
HEA200	$M/M_{pl \cdot rd} =$	1.18	$x (N/N_{pl.rd})^3 +$	-3.607	$(N/N_{pl.rd})^2 +$	1.425	$x (N/N_{pl.rd}) +$	1
HEA220	$M/M_{pl \cdot rd} =$	1.16	$x (N/N_{pl.rd})^3 +$	-3.524	$(N/N_{pl.rd})^2 +$	1.364	$x (N/N_{pl.rd}) +$	1
HEA240	$M/M_{pl \cdot rd} =$	1.17	$x (N/N_{pl.rd})^3 +$	-3.480	$x (N/N_{pl.rd})^2 +$	1.309	$x (N/N_{pl.rd}) +$	1
HEA260	$M/M_{pl \cdot rd} =$	1.19	$(N/N_{pl.rd})^3 +$	-3.510	$x (N/N_{pl.rd})^2 +$	1.319	$x (N/N_{pl.rd}) +$	1

Tableau (5-58) Les équations des Courbe d'interaction inversée (M/M_{pl.rd})=f(N/N_{pl.rd})

HEA280	$M/M_{pl \cdot rd} =$	1.13	$(N/N_{pl.rd})^{3} +$	-3.418	$(N/N_{pl.rd})^{2} +$	1.292	$x (N/N_{pl.rd}) +$	1
HEA300	$M/M_{pl \cdot rd} =$	1.13	$(N/N_{pl.rd})^3 +$	-3.387	$(N/N_{pl.rd})^2 +$	1.252	$x (N/N_{pl.rd}) +$	1
HEA320	$M/M_{pl \cdot rd} =$	1.11	$(N/N_{pl.rd})^3 +$	-3.293	$(N/N_{pl.rd})^2 +$	1.185	$x (N/N_{pl.rd}) +$	1
HEA340	$M/M_{pl \cdot rd} =$	1.04	$(N/N_{pl.rd})^3 +$	-3.177	$(N/N_{pl.rd})^2 +$	1.134	$x (N/N_{pl.rd}) +$	1
HEA360	$M/M_{pl \cdot rd} =$	0.98	$(N/N_{pl.rd})^3 +$	-3.072	$(N/N_{pl.rd})^2 +$	1.088	$x (N/N_{pl.rd}) +$	1
HEA400	$M/M_{pl \cdot rd} =$	0.85	$(N/N_{pl.rd})^3 +$	-2.864	$(N/N_{pl.rd})^2 +$	1.014	$x (N/N_{pl.rd}) +$	1
HEA450	$M/M_{pl \cdot rd} =$	0.77	$(N/N_{pl.rd})^3 +$	-2.740	$(N/N_{pl.rd})^2 +$	0.970	$x (N/N_{pl.rd}) +$	1
HEA500	$M/M_{pl \cdot rd} =$	0.70	$(N/N_{pl.rd})^3 +$	-2.637	$(N/N_{pl.rd})^2 +$	0.933	$x (N/N_{pl.rd}) +$	1
HEA550	$M/M_{pl \cdot rd} =$	0.61	$(N/N_{pl.rd})^3 +$	-2.517	$(N/N_{pl.rd})^2 +$	0.908	$x (N/N_{pl.rd}) +$	1
HEA600	$M/M_{pl \cdot rd} =$	0.53	$(N/N_{pl.rd})^3 +$	-2.413	$(N/N_{pl.rd})^2 +$	0.886	$x (N/N_{pl.rd}) +$	1
HEA650	$M/M_{pl \cdot rd} =$	0.40	$(N/N_{pl.rd})^3 +$	-2.235	$(N/N_{pl.rd})^2 +$	0.839	$x (N/N_{pl.rd}) +$	1

> Déterminations Les coefficients de l'équation générale

Dans cette approche nous avons divisés nos sections d'étude en trois groupes :

$$M_{yy}/M_{pl.rd} = A_g .(N/N_{pl.rd})^3 + B_g .(N/N_{pl.rd})^2 + C_g .(N/N_{pl.rd})^3 + D_g$$

➢ Groupe 1

Tableau (5-59)	valeurs des	coefficients d	l'équation	générale selon vv.
		••••••••••	- equation	Benerale Selon JJ.

Le coefficient	Section	équation
A _g =	[HEA100-HEA220 [1.2
B _g =	[HEA100-HEA220 [-3.75
C _g =	[HEA100-HEA220 [1.54
D _g =	[HEA100-HEA220 [1

➢ Groupe 2

Tableau (5-60) valeurs des coefficients d'équation générale selon yy.

Le coefficient	Section	équation
A _g =	[HEA240-HEA360 [1.11
B _g =	[HEA240-HEA360 [-3.33
C _g =	[HEA240-HEA360 [1.22

$D_g =$	[HEA240-HEA360 [1

Tableau (5-61)	valeurs des	coefficients of	d'équation	générale sel	on vy.
				0	

Le coefficient	Section	équation
A _g =	[HEA400-HEA650 [0.64
B _g =	[HEA400-HEA650 [-2.56
C _g =	[HEA400-HEA650 [0.92
$D_g =$	[HEA400-HEA650 [1

ii. Selon l'axe de faible inertie zz

> Déterminations les équations des courbe d'interaction inversées réduites

Figure (5-34) les Courbes d'interactions inversées réduites M-N Selon l'axe ZZ

soction	M/M rd -	•	$(N/N)^{3}$	P	$(N/N)^2$	C	\mathbf{v} (N/N)	D
section	1 v1 /1 v1 _{pl} .1 u –	A	X (11/11pl.rd) +	D	X (11/11pl.rd) +	C	$X (1 \sqrt{1} pl.rd) +$	D
HEA100	$M/M_{pl} \cdot rd =$	-2.36	$(N/N_{pl.rd})^3 +$	1.37	$(N/N_{pl.rd})^2 +$	-0.01	$x (N/N_{pl.rd}) +$	1
HEA120	M/M_{pl} .rd =	-1.61	$x (N/N_{pl.rd})^3 +$	0.44	$(N/N_{pl.rd})^2 +$	0.17	$x (N/N_{pl.rd}) +$	1
HEA140	M/M_{pl} .rd =	-1.66	$(N/N_{pl.rd})^3 +$	0.52	$(N/N_{pl.rd})^2 +$	0.14	$x (N/N_{pl.rd}) +$	1
HEA160	M/M_{pl} .rd =	-1.64	$(N/N_{pl.rd})^3 +$	0.53	$(N/N_{pl.rd})^2 +$	0.12	$x (N/N_{pl.rd}) +$	1
HEA180	M/M_{pl} .rd =	-1.63	$x (N/N_{pl.rd})^3 +$	0.50	$x (N/N_{pl.rd})^2 +$	0.13	$x (N/N_{pl.rd}) +$	1
HEA200	M/M_{pl} .rd =	-1.63	$x (N/N_{pl.rd})^3 +$	0.52	$(N/N_{pl.rd})^2 +$	0.11	$x (N/N_{pl.rd}) +$	1
HEA220	M/M_{pl} .rd =	-1.63	$x (N/N_{pl.rd})^3 +$	0.54	$(N/N_{pl.rd})^2 +$	0.09	$x (N/N_{pl.rd}) +$	1
HEA240	M/M_{pl} .rd =	-1.60	$x (N/N_{pl.rd})^3 +$	0.51	$(N/N_{pl.rd})^2 +$	0.09	$x (N/N_{pl.rd}) +$	1
HEA260	M/M_{pl} .rd =	-1.56	$x (N/N_{pl.rd})^3 +$	0.46	$x (N/N_{pl.rd})^2 +$	0.10	$x (N/N_{pl.rd}) +$	1
HEA280	M/M_{pl} .rd =	-1.60	$x (N/N_{pl.rd})^3 +$	0.51	$(N/N_{pl.rd})^2 +$	0.09	$x (N/N_{pl.rd}) +$	1
HEA300	M/M_{pl} .rd =	-1.58	$(N/N_{pl.rd})^3 +$	0.50	$(N/N_{pl.rd})^2 +$	0.08	$x (N/N_{pl.rd}) +$	1
HEA320	M/M_{pl} .rd =	-1.59	$(N/N_{pl.rd})^3 +$	0.53	$(N/N_{pl.rd})^2 +$	0.06	$x (N/N_{pl.rd}) +$	1
HEA340	M/M_{pl} .rd =	-1.62	$(N/N_{pl.rd})^3 +$	0.59	$(N/N_{pl.rd})^2 +$	0.03	$x (N/N_{pl.rd}) +$	1
HEA360	M/M_{pl} .rd =	-1.65	$(N/N_{pl.rd})^3 +$	0.63	$(N/N_{pl.rd})^2 +$	0.02	$x (N/N_{pl.rd}) +$	1
HEA400	M/M_{pl} .rd =	-1.70	$(N/N_{pl.rd})^3 +$	0.71	$(N/N_{pl.rd})^2 +$	-0.01	$x (N/N_{pl.rd}) +$	1
HEA450	M/M_{pl} .rd =	-1.72	$x (N/N_{pl.rd})^3 +$	0.74	$x (N/N_{pl.rd})^2 +$	-0.02	$x (N/N_{pl.rd}) +$	1
HEA500	M/M_{pl} .rd =	-1.72	$(N/N_{pl.rd})^3 +$	0.74	$(N/N_{pl.rd})^2 +$	-0.03	$x (N/N_{pl.rd}) +$	1
HEA550	M/M_{pl} .rd =	-1.74	$(N/N_{pl.rd})^3 +$	0.77	$(N/N_{pl.rd})^2 +$	-0.03	$x (N/N_{pl.rd}) +$	1
HEA600	$M/M_{pl}.rd =$	-1.75	$x (N/N_{pl.rd})^3 +$	0.79	$x (N/N_{pl.rd})^2 +$	-0.03	$x (N/N_{pl.rd}) +$	1
HEA650	M/M_{pl} .rd =	-1.77	$(N/N_{pl.rd})^3 +$	0.80	$x (N/N_{pl.rd})^2 +$	-0.03	$x (N/N_{pl.rd}) +$	1

Tableau ((5-62) Les	équations c	les Courbe d'inter	raction inversée	$(M/M_{pl.rd})=f(N/N_{pl.rd})$
-----------	---------------------	-------------	--------------------	------------------	--------------------------------

> Déterminations Les coefficients de l'équation générale

Dans cette approche nous avons divisés nos sections d'étude en trois groupes :

➢ Groupe 1

Tableau (5-63) valeurs	des coefficients	d'équation	générale selon ZZ.
------------------------	------------------	------------	--------------------

Le coefficient	Section	équation
A _g =	[HEA100-HEA220 [-1.63
B _g =	[HEA100-HEA220 [0.51
C _g =	[HEA100-HEA220 [0.10

$D_g =$	[HEA100-HEA220 [1

1 ableau (5-64) valeurs des coefficients d'equation generale selon Zz	Tableau (5-64)	valeurs des	coefficients d'éc	uation générale	selon ZZ.
--	----------------	-------------	-------------------	-----------------	-----------

Le coefficient	Section	équation
A _g =	[HEA240-HEA360 [-1.58
B _g =	[HEA240-HEA360 [0.53
C _g =	[HEA240-HEA360 [0.06
D _g =	[HEA240-HEA360 [1

➢ Groupe 3

Tableau (5-65) vale	eurs des coefficier	nts d'équation gé	nérale selon ZZ.
---------------------	---------------------	-------------------	------------------

Le coefficient	Section	équation
A _g =	[HEA400-HEA650 [-1.73
B _g =	[HEA400-HEA650 [0.75
C _g =	[HEA400-HEA650 [0.02
$D_g =$	[HEA400-HEA650 [1

b) Le deuxième cas $C_Y = C_z = 60 \text{ mm}$

i. Selon l'axe de forte inertie yy

➢ Groupe 1

 Tableau (5-66) valeurs des coefficients d'équation générale selon yy.

Le coefficient	Section	équation
A _g =	[HEA100-HEA220 [1.2
B _g =	[HEA100-HEA220 [-4.1
C _g =	[HEA100-HEA220 [1.95

$D_g =$	[HEA100-HEA220 [1

Tableau (5-67) valeurs des coefficients d'équation générale selon yy.

Le coefficient	Section	équation
A _g =	[HEA240-HEA360 [1.15
B _g =	[HEA240-HEA360 [-3.60
C _g =	[HEA240-HEA360 [1.45
D _g =	[HEA240-HEA360 [1

➢ Groupe 3

Tableau (5-68) valeurs des coefficients d'équation générale selon yy.

Le coefficient	Section	équation
A _g =	[HEA400-HEA650 [0.60
B _g =	[HEA400-HEA650 [-2.80
C _g =	[HEA400-HEA650 [1.06
D _g =	[HEA400-HEA650 [1

ii. Selon l'axe de faible inertie zz

➢ Groupe 1

 Tableau (5-69) valeurs des coefficients d'équation générale selon ZZ.

Le coefficient	Section	équation
A _g =	[HEA100-HEA220 [-1.63
B _g =	[HEA100-HEA220 [0.51
C _g =	[HEA100-HEA220 [0.10

$D_g =$	[HEA100-HEA220 [1

Tableau (5-70) valeurs des coefficients d'équation générale selon ZZ.

Le coefficient	Section	équation
A _g =	[HEA240-HEA360 [-1.58
B _g =	[HEA240-HEA360 [0.53
C _g =	[HEA240-HEA360 [0.06
D _g =	[HEA240-HEA360 [1

➢ Groupe 3

Tableau (5-71) valeurs des coefficients d'équation générale selon ZZ.

Le coefficient	Section	équation
A _g =	[HEA400-HEA650 [-1.73
B _g =	[HEA400-HEA650 [0.75
C _g =	[HEA400-HEA650 [0.02
D _g =	[HEA400-HEA650 [1

c) Le troisième cas $C_Y = C_z = 80 \text{ mm}$

i. Selon l'axe de forte inertie yy

➢ Groupe 1

Tableau (5-72) valeurs des coefficients d'équation générale selon yy.

Le coefficient	Section	équation
A _g =	[HEA100-HEA220 [0.8
B _g =	[HEA100-HEA220 [-4.04

C _g =	[HEA100-HEA220 [2.20
D _g =	[HEA100-HEA220 [1

Tableau (5-73) valeurs des coefficients d'équation générale selon yy.

Le coefficient	Section	équation
A _g =	[HEA240-HEA360 [1.17
B _g =	[HEA240-HEA360 [-3.74
C _g =	[HEA240-HEA360 [1.65
D _g =	[HEA240-HEA360 [1

> Groupe 3

Tableau (5-74) valeurs des coefficients d'équation générale selon yy.

Le coefficient	Section	équation
$A_g =$	[HEA400-HEA650 [0.57
$B_g =$	[HEA400-HEA650 [-2.80
$C_g =$	[HEA400-HEA650 [1.20
$D_g =$	[HEA400-HEA650 [1

ii. Selon l'axe de faible inertie zz

➢ Groupe 1

Tableau (5-75) valeurs des coefficients d'équation générale selon ZZ.

Le coefficient	Section	équation
A _g =	[HEA100-HEA220 [-1.63
B _g =	[HEA100-HEA220 [0.51

C _g =	[HEA100-HEA220 [0.10
$D_g =$	[HEA100-HEA220 [1

Tableau (5-76) valeurs des coefficients d'équation générale selon ZZ.

Le coefficient	Section	équation
A _g =	[HEA240-HEA360 [-1.58
B _g =	[HEA240-HEA360 [0.53
C _g =	[HEA240-HEA360 [0.06
D _g =	[HEA240-HEA360 [1

➢ Groupe 3

Tableau (5-77) valeurs des coefficients d'équation générale selon ZZ.

Le coefficient	Section	équation
$A_g =$	[HEA400-HEA650 [-1.73
$B_g =$	[HEA400-HEA650 [0.75
$C_g =$	[HEA400-HEA650 [0.02
$D_g =$	[HEA400-HEA650 [1

d) Le quatrième cas $C_Y = h/2$ et $C_z = b$

i. Selon l'axe de forte inertie yy

➢ Groupe 1

 Tableau (5-78) valeurs des coefficients d'équation générale selon yy.

Le coefficient	Section	équation
A _g =	[HEA100-HEA220 [-1.15
B _g =	[HEA100-HEA220 [-2.63

C _g =	[HEA100-HEA220 [2.35
D _g =	[HEA100-HEA220 [1

Tableau (5-79) valeurs des coefficients d'équation générale selon yy.

Le coefficient	Section	équation
A _g =	[HEA240-HEA360 [-1.86
B _g =	[HEA240-HEA360 [-1.36
C _g =	[HEA240-HEA360 [2.18
D _g =	[HEA240-HEA360 [1

➢ Groupe 3

Tableau (5-80) valeurs des coefficients d'équation générale selon yy.

Le coefficient	Section	équation
$A_g =$	[HEA400-HEA650 [-2.34
$B_g =$	[HEA400-HEA650 [-0.56
$C_g =$	[HEA400-HEA650 [1.9
$D_g =$	[HEA400-HEA650 [1

ii. Selon l'axe de faible inertie zz

➢ Groupe 1

Tableau (5-81) valeurs des coefficients d'équation générale selon ZZ.

Le coefficient	Section	équation
A _g =	[HEA100-HEA220 [-1.63
B _g =	[HEA100-HEA220 [0.51

C _g =	[HEA100-HEA220 [0.10
D _g =	[HEA100-HEA220 [1

Tableau (5-82) valeurs des coefficients d'équation générale selon ZZ.

Le coefficient	Section	équation
A _g =	[HEA240-HEA360 [-1.58
B _g =	[HEA240-HEA360 [0.53
C _g =	[HEA240-HEA360 [0.06
$D_g =$	[HEA240-HEA360 [1

➢ Groupe 3

Tableau (5-83) valeurs des coefficients d'équation générale selon ZZ.

Le coefficient	Section	équation
A _g =	[HEA400-HEA650 [-1.73
B _g =	[HEA400-HEA650 [0.75
C _g =	[HEA400-HEA650 [0.02
$D_g =$	[HEA400-HEA650 [1

5.5. Exemple de calcule

5.5.1. Calcul des poteaux mixtes enrobé de béton

Calcul d'un poteau mixte à profil en HEA enrobé de béton présenté comme suit : Acier: Profile HEA 360: f_y = 355 N/mm2 (f_e 510), E= 210000 N/mm² Béton : Section 430 x 830 mm2, Classe C30/37: f_{Ck} = 30 N/mm² Armatures : A_{min} en acier S 420 (voir figure) f_{sk} = 420 N/mm², Es= 210000 N/mm². On considère les armatures concentrées sur leur centre de gravité. Leurs propres modules plastiques seront négligés.

Coefficients partiels de sécurité:

Figure(5-35) Section du poteau mixte enrobé de béton

Le dimensionnement en compression centrée a été étudié dans la première partie de la rubrique. Nous reprenons le dimensionnement sous compression et flexion combinées.

a) Selon l'Eurocode4.

1. Calcul des modules de résistance plastique:

> Axe fort YY

- Acier: $W_{pa} = 2088,5 \text{ cm}^3$,

-Armatures: $W_{ps} = \Sigma A_i \times e_i = 447.36 \times 185 = 82.76 \text{cm}^3$,

- Béton: $b_c h_c^2/4$ - W_{pa} - W_{ps} = 15394.73 cm³,

> Axe faible ZZ:

- Acier: $W_{pa} = 2088,5 \text{ cm}^3$,
- -Armatures: $W_{ps} = \Sigma A_i \times e_i = 447.36 \times 185 = 82.76 \text{cm}^3$,
- Béton: $b_c.h_c^2/4$ W_{pa} W_{ps} = 15394.73 cm³

2. Calcul des coordonnées des points de la courbe d'interaction

- > Axe fort YY
 - Point A: $N_A = N_{pl. Rd} = 7299.364 \text{ kN}$ $M_A = 0$,
 - Point D: $N_D = 1/2 A_C f_{CD} = 1486.72 kN$

 $M_D = M_{max.Rd} = W_{pa} \cdot f_{Yd} + W_{ps} \cdot f_{sd} + W_{PC} \cdot f_{CD}/2 = 858.027905 \text{KN.m}$

• Point B: $M_{pL.Rd} = M_{max.Rd} - M_{m.Rd}$

 $M_{m.Rd} = W_{pan} \times f_{Yd} - W_{psn} \times f_{Sd} + W_{pcn} \times f_{Cd}/2$

Position de l'axe neutre de flexion pour le point B avec:

 $N_{pm.Rd} = 2 X N_D$

 $h_n = (N_{pm.Rd} - A_{sn}(2 f_{sd} - f_{Cd})) / (2 b_c \times f_{cd} + 2 \times t_w \times (2 f_{Yd} - f_{cd})) = 107.30 \text{mm}$

L'axe neutre se situe bien dans l'âme du profil et la formule pour le calcul de h_n est applicable.

- $$\begin{split} W_{pan} &= t_{w} \times h_{n}^{2} = 10 \ X \ 107.30 = 115153.606 \ mm^{3} \\ W_{psn} &= 0 \ \text{Négligée} \\ W_{pcn} &= b_{c} \times h_{n}^{2} W_{pan} W_{psn} = 4260683.43 \ mm^{4} \\ M_{n \ Rd} &= 79.77 \ \text{KN .mm} \\ M_{B} &= M_{pl.Rd} = M_{max.Rd} M_{n. \ Rd} = 778.2 \ \text{kN x m} \\ N_{B} &= 0 \ \text{KN} \end{split}$$
 - Point C: Nc= 2×N_D= 2973.45 kN
 Mc= M_B=778.2 kN.m
- ✤ Axe faible ZZ:
 - Point A : NA = $N_{pl. Rd}$ =7299.364 kN M_A = 0,
 - Point D: $N_D = 1/2 A_C f_{CD} = 1486.72 kN$

 $M_{D} = M_{max.Rd} = W_{pa}.f_{Yd} + W_{ps}.f_{sd} + W_{PC}.f_{CD}/2 = 431.55 KN.m$

• Point B: $M_{pL.Rd} = M_{max.Rd} - M_{m.Rd}$

 $M_{m.Rd} = W_{pan} \times f_{Yd} - W_{psn} \times f_{Sd} + W_{pcn} \times f_{Cd}/2$

Position de l'axe neutre de flexion pour le point B avec:

 $N_{pm.Rd} = 2 X N_D$

$$\begin{split} h_n &= (N_{pm.Rd^-} \ A_{sn}(2 \ f_{sd^-} \ f_{Cd}) + t_w(2t_{f^-} \ h)(2f_{Yd^-} \ f_{cd}) \)/ \ (2 \ b_c \times \ f_{cd} + 4 \times t_f \times \ (2 \ f_{Yd^-} \ f_{cd})) = 16.4 mm \\ L'axe neutre se situe bien sur les semelles. \end{split}$$

$$W_{pan} = 2t_{f} \times h_{n}^{2} - (h-2t_{f})t_{w}^{2}/4 = 17348.354 \text{mm}^{3}$$

$$W_{psn} = 0 \text{ Négligée}$$

$$W_{pcn} = h_{c} \times h_{n}^{2} - W_{pan} - W_{psn} = 99038.5771 \text{mm}^{4}$$

$$M_{n Rd} = 6.58 \text{KN .m}$$

$$M_{B} = M_{pl.Rd} = M_{max.Rd} - M_{n. Rd} = 424.96 \text{kN x m}$$

 $N_B = 0 \ KN$

• Point C: $N_c= 2 \times N_D= 2973.45 \text{ kN}$

 $M_c = M_B = 424.96 \text{kN.m}$

- b) Selon la première approche
 - * Equation général

> Axe fort YY

$$M_{yy} = A_G . N^3 + B_g . N^2 + C_g . N + D_g$$

Avec les valeurs des coefficients d'équation générale selon yy pour HEA360 sont :

Le coefficient	équation	valeur
A _g =	340421.11×10 ⁻¹² ×(wplz) ^{-0.721}	1.828×10 ⁻¹²
Bg=	$-162.1 \times 10^{-5} \times w_{ply}^{-0.248}$	-4.336×10 ⁻⁵
C _g =	3.481*h ^{0.597}	116.01
D _g =	$1732 \times (t_w.w_{ply})^{0.773}$	778257861.56

Les valeurs de M en fonction de N pour quatre points :

Point	N (N)	M (N.mm)
A	7299363.9	-176382.1283
С	2973452.8	732014476.5
D	1486726.4	846142466.4
В	0	778257870.6

> Axe faible ZZ

 $M_{ZZ}\!\!=A_G\;.N^3+B_g\;.N2\;\!+\!\!C_g\:.N\;\;\!+\!\!D_g$

les valeurs des coefficients d'équation générale selon zz pour HEA360 sont :

Le coefficient	équation	valeur
$A_{\alpha} =$	$-323009.40 \times 10^{-12} \times (t_{\rm ev} w_{\rm obs})^{-0.79175}$	-1 73384×10 ⁻¹²
	S25009.10/10 //(w.wpiy)	1.75501/10
$B_g =$	$10.59 \times 10^{-5} \times w_{ply}^{-0.21}$	4.986×10 ⁻⁶
	0.5	
$C_g =$	$121.2 \times (w_{plz}/w_{ply}) - 111.9 \times (w_{plz}/w_{ply})^{0.5} + 23.89$	-3.8625

D _g =	$1324.32 \times w_{plz}^{0.93}$	410228807.5

Les valeurs de M en fonction de N pour quatre points :

point	N(N)	M(N.mm)
А	7299363.9	84803.2742
С	2973452.8	411101833
D	1486726.4	41710183
В	0	410228808

c) Selon la deuxième approche

Equation général

> Axe fort YY

1. pour : N € [0 ; Nc]

les valeurs des coefficients d'équation générale selon yy pour HEA360 sont :

Le coefficient	équation	valeur
$A_g =$	-71.846×10 ⁻⁵ wply ^{0.204}	-3.69E-05
B _g =	$2.351 \times h^{0.651}$	106.5223
C _g =	$640.3 \times w_{ply}^{0.963}$	780340177

Les valeurs de M en fonction de N pour trois points :

point	N (N)	M (N.mm)
С	2973452.8	770717868
D	1486726.4	857119429
В	0	780340177

2. pour : N \in] N_c N_{pl.rd}]

les valeurs des coefficients d'équation générale selon yy pour HEA360 sont :

Le coefficient	équation	Valeur

A1g=	$-3.104 \times (w_{ply} \times t_w/b)^{0.366}$	-183.8
B1g =	616.04×w _{ply} + 40894811.9	1327190508

Les valeurs de M en fonction de N pour deux points :

point	N1(N)	M1(N.mm)
А	7299363.9	-14432576.8
С	2973452.8	780521211

> Axe faible ZZ

1. pour : N € [0 Nc]

les valeurs des coefficients d'équation générale selon zz pour HEA360 sont :

Le coefficient	équation	valeur
A _g =	$-395424.7 \times 10^{-5} \times w_{ply}^{-1.15}$	-3.39E-06
B _g =	561.36×t _w ^{-1.8}	9.103220076
C _g =	570.61×w _{plz} -28864323.06	428936080

Les valeurs de M en fonction de N pour trois points :

point	N1(N)	M1(N.mm)
С	2973452.8	426036961
D	1486726.4	434978299
В	0	428936080

2. pour : $N \in [N_c N_{pl.rd}]$

les valeurs des coefficients d'équation générale selon zz pour HEA360 sont :

Le coefficient	équation	Valeur
----------------	----------	--------

$A1_g =$	$-1023.14 \times (w_{ply} \times t_w/b)^{-0.17}$	-99.817
B1g=	908.55×w _{ply} -334041.16	729263706.2

Les valeurs de M en fonction de N pour deux points :

point	N(N)	M (N.mm)
A	7299363.9	663099.754
С	2973452.8	432462568

d) Selon la troisième approche

* Equation général

> Axe fort YY

$$M_{yy}/M_{pl.rd} = A \cdot (N/N_{pl.rd})^3 + B \cdot (N/N_{pl.rd})^2 + C \cdot (N/N_{pl.rd}) + D$$

Les valeurs des coefficients d'équation générale selon yy pour HEA360 sont :

Le coefficient	valeur
$A_g =$	1.10
B _g =	-3.33
C _g =	1.22
$D_g =$	1

Les valeurs de M en fonction de N pour quatre points :

Point	N/N _{pl.rd}	M/M _{pl.rd}
А	1	0.01
С	0.40	1.02
D	0.20	1.11

Chapitre 5

В	0	1

➤ Axe faible ZZ

$$M_{zz}/M_{pl.rd} = A \cdot (N/N_{pl.rd})^3 + B \cdot (N/N_{pl.rd})^2 + C \cdot (N/N_{pl.rd}) + D$$

Les valeurs des coefficients d'équation générale selon zz pour HEA360 sont :

Le coefficient	valeur
A _g =	-1.58
B _g =	0.53
C _g =	0.06
D _g =	1

Les valeurs de M en fonction de N pour quatre points :

point	N/N _{pl.rd}	M/M _{pl.rd}
А	1	0.01
С	0.40	1.007
D	0.20	1.02
В	0	1

2. Comparaison les résultats

• Axe fort YY

point	N (KN)	M(KN. m)	M(KN. m)	M(KN. m)	M(KN. m)
		Eurocode 4	1 ^{er} aproche	2 ^{éme} aproche	3 ^{éme} aproche
A	7299.363	0	-0.17638	-14.432	7.7

Chapitre 5

С	2973.452	778.2	732.014	780.521	793.1
D	1486.726	858.027	846.142	857.119	836.80
В	0	778.2	778.257	780.340	778.2

Figure (5-36) comparions entre Eurocode 4 et les équations approchées selon l'axe yyAxe fort ZZ

		M(KN. m)	M(KN. m)	M(KN. m)	M(KN. m)
point	N (KN)	Eurocode 4	1 ^{er} aproche	2 ^{éme} aproche	3 ^{éme} aproche
А	7299.363	0	0.084	0.66	4.24
С	2973.452	424.96	411.10	432.462	427.93
D	1486.726	431.55	417.10	434.97	433.45
В	0	424.96	410.22	428.93	424.96

Figure (5-37) comparions entre Eurocode 4 et les équations approchées selon l'axe zz

5.6. Abaques de calcul de la résistance des poteaux mixtes :

L'étude paramétrique que nous avons fait sur la résistance des poteaux mixtes enrobés de béton ,de section **HEA**, nous permis à la fin de cette étude de résumer nos travaux sur les poteaux mixtes par des abaques de calcul, qui pourront être un aide à l'ingénieur de génie civil pour le calcul de la construction mixte, et plus précisément l'élément poteau mixte enrobés de béton de section **HEA**, comme il aura la possibilité d'utiliser le programme directement pour le calcul.

Le choix des caractéristiques géométriques, et des caractéristiques des matériaux a été fait pour obtenir un nombre limite d'abaques, mais contenant le maximum d'information sur le poteau mixte, pour cela, on a développé des abaques, on avarié les conditions de chargement : charge axiale centrée, et moment de flexion.

Le programme que nous avons développé nous a permis d'élaborer des abaques de calcul de la résistance du poteau mixte enrobés de béton de section **HEA** avec diffèrent type d'enrobage .On a pu également tracer des abaques à base de courbes d'interaction moment-effort normal.

Nous avons divisés nos sections d'étude en deux groupes pour voir une bonne précision

Groupe 1 : section1 jusqu'a. Section10.Groupe 2 : section11 jusqu'a. Section20.

Groupe 1	Groupe 2

courbe	section	courbe	section
1	HEA100	1	HEA300
2	HEA120	2	HEA 320
3	HEA 140	3	HEA 340
4	HEA 160	4	HEA 360
5	HEA180	5	HEA 400
6	HEA200	6	HEA 450
7	HEA220	7	HEA 500
8	HEA240	8	HEA550
9	HEA260	9	HEA 600
10	HEA280	10	HEA650

Abaque N⁰ 1

Abaque d'interaction M-N selon l'axe yy groupe 1

ABAQUE N⁰1

Abaque d'interaction M-N selon l'axe yy groupe 2

ABAQUE N⁰1

Abaque d'interaction M-N selon l'axe zz groupe 1

ABAQUE Nº 1

Abaque d'interaction M-N selon l'axe zz groupe 2

ABAQUE Nº 1

Abaque N⁰ 2

Abaque d'interaction M-N selon l'axe yy groupe 1

Abaque d'interaction M-N selon l'axe yy groupe 2

Abaque d'interaction M-N selon l'axe zz groupe 2

ABAQUE N⁰ 2

Abaque N⁰ 3

Abaque d'interaction M-N selon l'axe yy groupe 1

Abaque N⁰ 3

Abaque d'interaction M-N selon l'axe yy groupe 2

Abaque d'interaction M-N selon l'axe zz groupe 1

Abaque N⁰ 3

Abaque d'interaction M-N selon l'axe zz groupe 2

Abaque N⁰ 3

Abaque d'interaction M-N selon l'axe yy groupe 1

Abaque N⁰ 4

Abaque d'interaction M-N selon l'axe yy groupe 2

Abaque N⁰ 4

Abaque d'interaction M-N selon l'axe zz groupe 1

Abaque N⁰ 4

Abaque d'interaction M-N selon l'axe zz groupe 2

Abaque Nº4

CONCLUSION GÉNÉRALE

CONCLUSION GENERALE

L'étude présentée dans ce mémoire a été consacrée aux poteaux mixtes de section HEA enrobés de béton, et plus précisément sur le calcul de la résistance des poteaux mixtes sous chargement axial, et chargement combiné, et de déterminer la courbe d'interaction moment-effort normal.

L'utilisation de les équations que nous avons développé pour le calcul des poteaux mixtes à profile en HEA enrobés de béton est très avantageuse, c'est facile à utiliser, et permet à l'utilisateur de terminer les calculs en un temps réduit. Ces équations nous a permis de tracer les courbes d'interactions effort normal - moment.

Les programme que nous avons développé, nous à permis d'élaborer des abaques de calcul, facilitant à l'utilisateur la détermination de la résistance des poteaux mixtes à profile en HEA enrobés de béton de différents types d'enrobage, ainsi que les points d'interaction moment fléchissant effort normal de la section du poteau.

Ce programme doit s'étendre pour fournir l'aide à l'ingénieur pour le calcul à la résistance, se développer d'un simple programme de calcul, à un programme de recherche qui traite les lois d'écoulement des matériaux de la section mixte.

Au terme de ce travail, on peut dire que l'étude des poteaux mixtes doit être amélioré, et complétée par :

 un développement de modèle analytique, ou numérique qui servira de base à une mise au point de formulation capable de simuler le comportement des poteaux mixtes dans le cas général. RÉFÉRENCES BIBLIOGRAPHIQUE

BIBLIOGRAPHIE

- [1] Cristina Câmpian, "Comportement des poteaux mixtes Acier-Béton soumis aux sollicitations de type monotone : étude expérimentale", Buletinul Institutului Politehnic Din Iași, Secția Constructii Arhitectura, Publicat de Universitatea Tehnică, Gheorghe Asachi din Iași, Tomul LII (LVI), Fasc. 3-4, 2006, pp. 79-90.
- [2] N. Chira, Cristina Câmpian et Traian Oneț, "Quelques considérations sur l'évolution des normes de calcul des poteaux avec la section mixte acier-béton", Buletinul Institutului Politehnic Din Iași, Publicat de Universitatea Tehnică,,Gheorghe Asachi" din Iași, Secția Constructii Arhitectura, Tomul LVI (LX), Fasc. 1, 2010, pp. 75-84.
- [3] F Fellah, A Seridi, N Othmani, "Comportement Des Poteaux Composites En Profils Creux En Acier Remplis De Beton", Seminaire International, Innovation & Valorisation En Genie Civil & Materiaux De Construction (INVACO2), Rabat, Maroc, 23-25 Novembre, 2011.
- [4] A. Souici, J.F. Berthet, A. Li, N. Rahal, "Behaviour of both mechanically connected and bonded steel-concrete composite beams", Journal of Engineering Structures 49, 2013, pp. 11–23.
- [5] Belounis Radia, Mimoune Mustafa, "Etude de la résistance des poteaux mixtes de section circulaire remplis de béton chargés axialement", XXIX^{ème} Rencontres Universitaires de Génie Civil, Tlemcen, 29 au 31 Mai, 2011, pp. 295-305.
- [6] Shosuke Morino, Keigo Tsuda, "Design and Construction of Concrete-Filled Steel Tube Column System in Japan", Earthquake Engineering and Engineering Seismology, Vol. 4, No. 1.
- [7] N.E. Shanmugam, B. Lakshmi, "State of the art report on steel-concrete composite columns", Journal of Constructional Steel Research 57, 2001, pp. 1041–1080.
- [8] Taehyo Park, Won-Sup Hwang, Roberto T. Leon, and Jong Wan Hu, "Damage Evaluation of Composite-special Moment Frames with Concrete-filled Tube Columns under Strong Seismic Loads", KSCE Journal of Civil Engineering, 2011, 15(8), pp. 1381-1394.
- [9] Eurocode 4 Design of composite steel and concrete structures Part 1-2: General rules Structural fire design, English version, CEN European Committee for Standardization July, 2005.
- [10] Stephen Hicks, "Eurocode 4: Design of composite steel and concrete structures, the essential guide to Eurocodes transition", BSI British Standards Institution, pp. 105-122.

[12]	<i>"Recommandation sur la reference aux Eurocodes dans les marches publics relatifs Aux ouvrages de construction"</i> , groupe d'étude des marches ouvrages – travaux et maitrise doeuvre (gem otm), Ministère de l'économie de l'industrie et de l'emploi, Juillet, 2009.
[13]	Steven Schaerlaekens, La Constellation des Eurocodes, a quelles normes se vouer ?, GSTC magazine, été 1999, pp 53-58.
[14]	"Eurocodes structuraux: publication des Eurocodes et annexes nationales", AFNOR Normalisation, Mai, 2013.
[15]	"Guide sur les Eurocodes et les annexes nationales au Luxembourg", Ministère de l'économie et du commerce extérieur, le Gouvernement du Grand-Duché de Luxembourg, Octobre, 2011.
[16]	Didier Delincé, Benoit Parmentier, "La construction mixte acier-béton $2^{\grave{e}me}$ partie : vérification des états limites de service selon l'Eurocode 4", Les Dossiers du CSTC – Cahier n° 7 – 4 ^{ème} trimestre 2004, pp. 1-11.
[17]	Pierre Guillemont, "Aide-Memoire des Ouvrages en Béton Armé", 4 ^e édition, Dunod, Paris, 2013.
[18]	EN 1994-1-1 Eurocode 4: Design of steel and concrete composite structures, Part 1-1: General rules and rules for buildings, CEN: Brussels, 2008.
[19]	R. Bergmann, C. Matsiu, C. Meinsma, D. Dutta, "Design guide for concrete filled hollow section columns under static and seismic loading", Verlag TÜV Rheinland GmbH, Köln, Germany, 1995.
[20]	EN 1992-1-1 (2004) Eurocode 2 - Calcul des structures en béton - Partie 1-1 : Règles générales et règles pour les bâtiments.

[21] EN 1993-1-1 (2003) Eurocode 3 - Calcul des structures en acier - Partie 1-1: Règles générales et règles pour les bâtiments.