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Abstract

English :

Stereoscopic imaging is becoming increasingly popular, and its use in photography, tele-

vision, and films is rapidly expanding. Obviously, access to this type of images often

includes necessary treatments (acquisition, processing, compression, transmission, etc.),

which may result in a variety of artifacts (blocking, blur, ringing, etc.). As a result, it is

critical to have adequate tools for measuring the quality of stereoscopic contents.

It is thus essential to establish efficient metrics that assess the impact of these treat-

ments on the perceived quality. To meet this critical need, significant efforts have been

made to study and evaluate the quality of stereoscopic images. In this thesis, we present

several contributions for quality assessment of stereoscopic contents. Five methods have

been proposed in total, with all of them are no-reference based metric. These metrics

were developed with Human Visual System (HVS) modeling and human visual attention

(saliency information) in mind. In addition, various advanced techniques, such as deep

learning, have been incorporated into our workflow designs.

Keywords: Stereoscopic Image Quality Assessment (SIQA), Human Visual System

(HVS), Saliency information, Deep learning.
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Fran�cais :

L’imagerie stéréoscopique est de plus en plus populaire et son utilisation dans la photogra-

phie, la télévision et les films se développent rapidement. Bien entendu, l’accès à ce type

d’image comporte souvent des traitements nécessaires (acquisition, traitement, compres-

sion, transmission, etc.), qui peuvent se traduire par une variété d’artefacts (blocage, flou,

bruit, etc.). En conséquence, il est essentiel de disposer d’outils adéquats pour mesurer

la qualité des contenus stéréoscopiques.

Il est donc essentiel d’établir des métriques efficaces qui évaluent l’impact de ces traite-

ments sur la qualité perçue. Pour répondre à ce besoin critique, des efforts importants

ont été faits pour étudier et évaluer la qualité des images stéréoscopiques. Dans cette

thèse, nous présentons plusieurs contributions pour l’évaluation de la qualité des contenus

stéréoscopiques. Cinq méthodes ont été proposées au total, toutes étant des métriques

sans référence. Ces mesures ont été développées en tenant compte de la modélisation du

système visuel humain (HVS) et de l’attention visuelle humaine (informations de sail-

lance). En outre, diverses techniques avancées, telles que l’apprentissage en profondeur,

ont été intégrées à nos conceptions de flux de travail.

Mots clés : Évaluation de la qualité d’image stéréoscopique (SIQA), système visuel

humain (HVS), informations de saillance, apprentissage en profondeur.
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0.1 General Introduction

Vision is one of the most important ways for people to get information from the outside

world. As humans see 3D scenes in nature, it has always been humans’ goal to recreate

accurate and natural 3D scenes on the screen.

In the beginning of the 10th century, several studies and remarkable work have been con-

ducted by great physicists in the field of optics and light such al-Hassan ibn al-Haytham.

The early scholar Ibn al-haytham had extensively affected the development of optics where

he developed geometric optics theories and explained the visual perception mechanism.

The scientist went deeper than anyone else in attempting to explain the fundamental

physics of refraction and the structure of the human eye. He also introduced a camera

pinhole box which further evolved into a 2D (Dimension) photographic camera in the

first half of the 19th century. These enormous theories and researches are resulted in this

series of books called Book of Optics [104]. After the evolution of photographic camera to

make 2D analog images, the 3D media has started with David Brewster in 1844 where he

created the stereoscope, the first portable 3D-viewing device. The pioneer in photogra-

phy has also invented the binocular camera to be used in the stereoscope to take pictures.

Years later, the stereoscopic camera became popular and changed the entertainment in-

dustry. The invention of semiconductor transistors in 1959 enabled the first appearance

of a digital camera that was launched few years later.

Nowadays, with the rapid development of digital multimedia, 3D technology is taking the

human’s viewing experience to the next level. It gives the viewers with a more immersive

and natural scene. This new wave of 3D media leads to an increase the expectation of the

quality services especially in industry entertainment. According to the latest theatrical

market statistics collected by the Motion Picture Association of America (MPAA), the

number of worldwide 3D screens continued to grow in 2016 at a faster pace (17%) than in

2015 (15%) [86]. In the long run, the wide application of stereoscopic 3DTV broadcasting

system is also expected. A pioneer for this was on 1 October 2010. The first High

Definition (HD) stereoscopic 3D channel called SKY 3D, started broadcasting nationwide
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in United Kingdom at resolution of 1920 x 1080 pixels. The channel provided stereoscopic

3D contents including education, animation, sport, documentary and performances.

However, the 3D content is not limited to the entertainment industry. 3D visualization

concerns different applications, such as remote education [123], medical body exportation

[122], robot navigation [8] and so forth. Therefore, it is reasonable to believe that the

amount of 3D content will continue growing throughout the next few years.

0.1.1 Motivation

With the rapid development of 3D applications, 3D media on the Internet is increasing,

and has been more and more widely used in peoples daily life and work. Therefore,

perceptual quality assessment is critical factor in order to have a good viewing experience.

In most of the 3D applications, the media quality could be affected by necessary treatments

going from capture, compression, storage, transmission, to display. Since the 3D viewing

provides immersive feeling, the contents quality needs to be assured in order to avoid any

visual discomfort to the users. As a result, the requirement for precise and dependable

objective image metrics has become even more important. However, compared to a 2D

image, a stereoscopic 3D image involves depth information and consists of two views,

which makes stereoscopic image quality assessment more challenging than 2D images.

0.1.2 Thesis aims and scope

The major objective of this thesis is to consider an industrial need for an objective stereo-

scopic image quality assessment, then, propose an accurate stereoscopic image quality

methods to fulfil this need. It is important to account for human visual system (HVS)

characteristics and properties (e.g., visual sensitivity, visual attention, and so forth).

Therefore, in our proposed methods, we follow the idea of using human visual system

modeling along with modern artificial intelligence techniques to judge the perceptual

quality accurately. However, our research also investigates the quality assessment based

on visual attention properties. Through this thesis, few questions are to be answered such

as:
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� What are the factors that affect the 3D viewing experience?

� How to objectively measure the perceptual quality of stereoscopic 3D images?

� What are the main aspects for designing stereoscopic image quality metric?

� Is the quality judgement in salient (human visual attention) regions?

The research topics covered several disciplines related to stereoscopic image quality assess-

ment such as: Human Visual System (HVS), stereoscopic imaging, and machine learning

algorithms. Overall, the thesis includes five chapters organized as follows:

Chapter One: introduces the concept of evaluating the quality of stereoscopic images.

The chapter provides an overview of stereoscopic vision, the common types of artefacts,

and general application of objective IQA metrics.

Chapter Two: introduces the most machine learning algorithms used for image quality

assessment problem, and provides a state-of-the-art study of stereoscopic image quality

metrics.

Chapter Three: introduces two proposed approaches for stereoscopic images, based on

handcrafted quality features and HVS modeling. The first method is for measuring qual-

ity, while the second is for recognizing distortion types.

Chapter Four: In this chapter, we look at how machine learning techniques may be

used to assess the quality of stereoscopic images and present two methods.

Chapter Five: This chapter investigates whether visual attention should be considered

when designing an objective SIQA metric. To that purpose, we provide a novel metric

that considers saliency information.



Chapter 1

Introduction to stereoscopic image

quality evaluation

1.1 Introduction

Communication networks and digital technology advancement allows easy access through

multiple devices (3D-TV, smartphones, tablets, etc.) for three-dimensional (3D) media

contents with numerous applications such as education with virtual reality (VR), 3D

navigation and 3D medical imaging analysis. This lead to rapid growth of 3D multimedia

where stereoscopic imaging is usually used to display the 3D contents. However, the

quality of these stereoscopic 3D contents can be affected at different necessary processing

stages. The quality artefacts may occur during the dataflow of stereoscopic images as

shown in Fig 1.1, from creation/capturing, compression/coding, transmission, decoding

to display. Briefly addressed as follows:

� Capturing stage: Special care should be taken when placing cameras to avoid such

blurry contents. The limitations of camera sensors can also cause noise to the cap-

tured pictures under particular circumstances. In stereoscopic imaging, disparities

between left and right images provide depth information. Therefore, inadequate

stereo camera configurations strongly influence the disparity and as a result, vari-

ous artefacts may take place [53].

4
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� Compression/Coding: Different 3D display systems rely on different 3D scene rep-

resentation formats. Effective coding schemes of these data formats is key to the

success of 3D displays and data storage. However, if the representation format is

different from the one the scene was originally captured, converting between the

formats is a source of quality degradations, where usually cause texture information

loss [105]. In order to minimize transmission cost, redundant information is min-

imized by compression algorithms. Such algorithms are often improperly applied

for stereoscopic contents, and binocular depth cues information may be lost in the

process.

� Transmission stage: Packet losses of digital data can occur during the transfer

through the network especially for wireless communications [49]. Resilience and

error dissimulation algorithms attempt to minimize the packet loss, but if not de-

signed for stereoscopic images, such algorithms might produce additional artefacts

on their own.

� Decoding/Visual optimization: Some visual optimizations are required to cover the

display limitations such screen resolution, aspect ratio, contrast range and so forth.

� Display: Several methods are established for 3D scene visualization, which offer

distinct degree of scene approximation. Each family of 3D displays has its own

characteristic quality degradations, in-which are often scene dependant [52].

Figure 1.1: Illustration of different phases in stereoscopic image processing.

The aforementioned scenarios that decrease the stereoscopic image quality may cause vi-

sual symptoms to viewers such as headache, nausea, and visual discomfort/fatigue [63].

Thus, and in order to satisfy customers expectations for high quality imply determining
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the quality of stereoscopic contents reliably and effectively. An accurate Objective and

subjective metrics are needed to evaluate the quality of stereoscopic contents. The sub-

jective metrics are based on opinion scores given by human observers. While objective

metrics are based on computer algorithms and numerical computations. However, in this

thesis we strongly focus on objective methods.

The rest of the chapter discusses the basic mechanisms in relation to the Human Visual

System (HVS) and the functional principles of simple stereoscopic systems, followed by a

description of objective and subjective quality assessment for stereoscopic images.

1.2 Stereoscopic vision importance in imaging

Stereoscopic vision represents the ability of the visual brain to create a sense of three-

dimensional structure and form from visual inputs. Therefore, using stereoscopic imaging

technology can potentially improve many aspects of applications such as remote education

[123], robot navigation [8] and so forth.

The stereoscopic imaging is also applied to medical body exportation [122]. For instance,

researchers in [34] explored the benefits of using Stereoscopic Digital Mammography (DM)

for breast cancer diagnoses. The authors have compared the standard 2D DM with the

stereoscopic DM, where this latter showed higher diagnoses accuracy from doctors up to

90.9% versus 87.4% of 2D DM images.

Given the value of stereoscopic vision and its advantages on various applications, it is

reasonable to assume that the amount of stereoscopic content will keep rising over the

next few years.

1.3 Stereoscopic visual perception

HVS is still not fully understood. However, it is the one responsible for judging the

perceived visual quality. This objective evaluation is reliable but not able to provide

assessment for wide variety of stereoscopic content. This section introduces the basics of

HVS and depth cues.
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1.3.1 Human Visual System (HVS)

The HVS is indeed a combination of related subsystems that work together in a single

process. Spatial, color and motion information is understood to be transmitted to the

brain using mostly separate neural pathways. This visual pathway consists of a large

number of nerve cells that transmit and receive electrical impulses. The visual system

pathway begins from the eyes and proceeds to other parts of the brain that end up to the

visual cortex cells. The wavelength of light is viewed and interpreted at various stages

of the visual system as shown in Fig. 1.2. This interpretation starts from the retina of

the eyes (Temporal/Nasal retina), going through the optic nerve, the optic chiasma to

the Lateral Geniculate Nucleus (LGN), and finally the primary visual cortex. Almost all

of the LGN connections go straight to the primary visual cortex. In this latter, elements

are organized into series of rows and columns of neurons. The first neurons to obtain the

signal are simple cortical cells. These cells detect lines at different angles, from horizontal

to vertical, which occupy a large part of the retina [113].

Figure 1.2: Human visual system pathway [88].

The HVS relies on various depth cues to reconstruct the 3D world from 2D images pro-
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jected onto the retinal cells. These cues can be classified into three main groups [44]: 1)

Oculomotor cues, based on the physical abilities of our eye muscles and lenses. 2) Monoc-

ular cues, where the HVS uses information from a single 2D view. 3) Binocular cues, that

extract information from both eyes. This latter in particular has been simulated for the

development of 3D imaging systems. The following section provides an overview of the

binocular cues.

1.3.2 Monocular and Binocular depth cues

Monocular cues depend only on information from one eye to estimate depth. It extracts

depth information from changes in retinal images over time (i.e. from movement). This

type of depth perception is concluded from static 2D images and movement-based cues

[44].

Binocular cues estimate depth information using the differences in the images received

by the two eyes. Typically, the human eyes see the world from places that are around 6

cm apart. This shift in the point of view of the two eyes produces the cue of binocular

disparity. Binocular vision derives to differences between left and right images projected

to the left and right eyes. Thanks to this disparities, the HVS can form 3D scene and

evaluate relative distances of objects. However, if the observer maintain his viewing

position. The projections of an objects onto the left and right retina rely on the distance

between the object and the viewer. Fig. 1.3 shows the observer fixates in a point F , which

projects to the corresponding points FL and FR in the left and right retina, respectively.

Meanwhile, another point P of an object, projects non corresponding points PL and PR

onto the left and right retinas, respectively. Absolute disparity is defined as the difference

in angular displacement between the projections of P and F . Noting respectively � and

� as the angles between the projections of P and F onto the left and right retina. So the

absolute disparity is given by the � = �� � [92]. However if we maintain the fixation F ,

the absolute disparity varies with the position and distance of point P from the observer,

where the nearest object to the observer, the greater disparity � and vice versa.
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Figure 1.3: Basic geometry of human binocular vision [92].

1.3.3 Visual Discomfort

Visual discomfort occurs when eyes experience abnormal visual effects such as illusions

of color, structure and motion. Given that the visual system has been adapted to the

processing of natural images, the presence of illusions creates inadequate brain processing,

which causes the viewer to experience pain, fatigue or exhaustion. However, in 3D visual

experience, the distance between the eyes and the perceived object is called the focal

length. Limited focal length would lead to visual pain, indicating symptoms such as eye

strain, headache, fatigue, leading to unpleasant vision experience [64]. Therefore, in 3D

stimuli such stereoscopic images, the amount of visual discomfort is primarily related to

the depth information.

Although most studies on visual discomfort is mainly based on non-distorted images. In-

deed, contents with degraded quality, provides nonuniform depth distribution that even-

tually may cause discomfort to the viewers. A good quality is then needed to prevent

serious visual discomfort. In case of distorted 3D stereoscopic images, the reasonable as-

sumption that can be made about the influence of visual quality has on visual discomfort.

Is that people might be incapable of obtaining a stereopsis and estimating the depth, so

the level of visual discomfort must be influenced. Besides this, studies in more details
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are required to investigate how strong is the relationship between visual discomfort and

stereoscopic image quality.

1.4 Stereoscopic 3D imaging

The current 3D systems are based on the concepts of human depth of perception. Ac-

cording to binocular depth cues from binocular vision system, the HVS can interpret the

world in 3D. This binocular depth perception is produced on the basis of slightly different

locations of the two retinal images seen from the left and the right eyes. Also called

binocular disparity which yields the perception of depth and inspires the development of

3D technology. In this section, we introduce the stereoscopic 3D vision for computers.

1.4.1 2D Images Acquisition System

Camera model called Pinhole in Fig. 1.4 is the simplest model considered to describe the

formation of images/videos. In this model where C is the camera centre (pinhole) and

f refers to the focal length. The images/videos are formed by projection on the image

plane with center of P . When an image of a scene is captured by a camera, we lose

depth information as objects and points in 3D space are mapped onto a 2D image plane

as : R3; (x; y; z) �! R2; (x; y).

This 2D Image/video Acquisition is dependent on sensors inside of camera to form pic-

tures. These sensors are usually placed behind the center of the camera C with the same

distance f . They convert the light rays to electrical charges and typically presenting

them with RGB ( Red, Green, Blue) color model. Commonly, there are two different

technologies to represent each physical point M from the scene to pixel/image element:

CCD (charge coupled device) and CMOS (complementary metal oxide semiconductor).

However, each type has unique strengths and weaknesses giving advantages in different

applications [26]. A point in the 3D world M = [X; Y; Z]T is then mapped to m = [x; y]T

on the image plane according to the following relationship:
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x = f
X

Z
y = f

Y

Z
(1.1)

Figure 1.4: Basic geometry of Pinhole Camera model.

1.4.2 3D Stereoscopic Images Acquisition System

The process of capturing stereoscopic images is an effort to mimic what we see through

our two eyes. The basic concept for imitating the HVS is therefore to replace the left and

right eyes with two horizontally separated cameras. While in display, the concept uses a

screen that projects the left and right views to the respective eyes. Then the brain fuses

these images, resulting in a deep perception. Currently, the most widely used stereoscopic

camera system is seen in Fig. 1.5.

Figure 1.5: Pinhole model of stereoscopic camera systems.

Where C and C 0 are the camera centers, B refers to the baseline (distance between the

camera centers), and M is a 3D point projected to the left and right 2D plans giving m1,

and m2 respectively. It simulates the human binocular disparity. However, a calibration
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techniques are necessary to align pixel information between the cameras and extract

the lost depth information in the projection process. The calibration problem is often

considered solved, but recent research still focuses on the subject because it directly effect

the quality of 3D reconstruction from the stereoscopic images [43, 90]. It consists in finding

the internal and external geometry of the acquisition system such the focal length, the

optical center of the camera, the dimensions of the pixel, the angle of obliquity of the

pixel, and so forth.

1.4.3 Stereoscopic 3D displays

Stereoscopic 3D display is needed to visualize 3D images/videos. The technology behind

3D displays has strengths and limitations in the production of high quality 3D content.

The different display types also influence the viewer’s quality of experience. As listed in

table 1.1, there main categories are denoted to distinguish the 3D displays: (1) direct

view stereoscopic displays, which require eyewear and classified based on the multiplexing

method; (2) auto-stereoscopic direct-view displays; (3) binocular head-mounted displays,

which the stereoscopic projections are integrated into the eyewear device itself and thus

do not require glasses. [114].

Table 1.1: Stereoscopic 3D displays classification.

Categories Stereoscopic direct-view (require glasses) Auto-stereoscopic direct-view (no eyewear) Head-mounted and interactive (wearable)

Technology types

� Color multiplexed

� Polarization multiplexed

� Time multiplexed (shutter glasses)

� Two-view

� Multi-view

� Head tracked

� Light field

� Optical head-mounted projection

(e.g virtual reality applications)

� Stereoscopic direct-view visualisations require the observer to wear glasses to direct

the left and right images to the relevant eye.

� Auto-stereoscopic displays do not require any glasses to present two-view images,

but send them directly to the corresponding eyes using aligned optical elements on

the surface of the displays [30]. This type of displays simplifies the viewer’s 3D ex-

perience and can display multiple views, making 3D entertainment more applicable.

This displaying approach projects each view from a specific viewing angle along the
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horizontal direction and provide a comfortable viewing zone for each stereoscopic

image.

� Head-mounted monitors are binocular systems where it usually consists of two sep-

arate mini displays with connected relay optics. Since the gadget is carried on the

head, the user is not bound to a fixed viewing location and can perceive complete

immersion from the viewing scene [94].

As listed in Table 1.1, there are three types of 3D eyeglasses that correspond to the

three ways stereo frames are separated for 3D effects: anaglyph, polarized and Time

multiplexed. Samples are showed in Figure 1.6.

Figure 1.6: Pictures of the three different types of 3D glasses. Left: Color multiplexed
(anaglyph); Middle: Polarization multiplexed; Right: Time multiplexed (shutter glasses)

� Anaglyph: Based on color filters; Red/cyan, red/blue and red/green glasses are

available in paper and plastic frames. The glasses would allow one color to flow

through one eye while blocking the other. This ensured that both of our eyes

viewed the two distinct images that our brain recognized as 3D.

� Polarized: The most popular among the other two. It is based on the concept of

linear polarization. One lens carries a vertical linear polarizer and the other would

have a horizontal linear polarizer. This ensured that both the eyes had a different

image for the brain and that the original colour of the image is maintained unlike

Anaglyph glasses.

� Shutter Glasses: Modern glasses that works by only presenting the image intended

for the left eye while blocking the right eye’s view, then inverting this process for the

other eye, and repeating this in time of milliseconds. Unlike polarized glasses, where
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the horizontal spatial resolution is normally reduced, the active shutter system can

keep full resolution for both the left and right pictures.

In addition to other quality degradations inherent in the acquisition of stereoscopic images.

The technologies listed above are not exempt from the flaws that cause visualization

artefacts. However, when two mechanical projectors are used to present an image to each

eye, misalignment problems are common issues and potentially occur while displaying.

Another common artefact inherent to stereoscopic visualization is caused by poor image

luminance and contrast due to light losses in filter-based systems and glass systems.

However, the study in this thesis will not focus on stereoscopic 3D displays and their

artefacts on the perceived stereoscopic contents.

1.4.4 Stereoscopic disparity and depth map

The depth map denotes the distance between the objects of the scene and the viewer’s

point of view. Disparity map refers to an image containing the distance between two

respective pixels in the left and right views of the stereo pair. However, a depth map

can be estimated using a 2D image, while a disparity map can only be obtained using a

stereopair image. Note that the disparity value can be translated to a depth value based

on a particular formula and vice versa. Nowadays, disparity/depth maps are important

in many applications, such as augmented reality, 3D reconstruction and navigation.

The disparity information is proven to be a strong effective factor for stereoscopic images

and videos quality, where researchers first expanded 2D Image Quality Assessment (IQA)

metrics to Stereoscopic Image Quality Assessment metrics (SIQA) by adding the analysis

about the depth information (Benoit et al [12]). Since most of the artefacts directly

impact the disparity/depth information. Currently, this latter has become necessary for

assessing the quality of the stereoscopic content.

In a stereoscopic images, the depth of an object in the 3D space is related to the difference

of its appearance in the left and right view. This disparity is presented in the stereoscopic

image by shifted pixels horizontally or vertically between the left L(x; y) and right R(x0; y0)

pixels that correspond to the object. As demonstrated in Fig. 1.7, let L(x; y), the position
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of left pixel and its corresponding pixel on the right view beR(x; y0). The pixel that reflects

the same object is shifted horizontally on the right image by N number of pixels, where

N = y�y0. So for this horizontal disparity, we denote the disparity map as Di(x; y), where

values of this matrix represent the number of pixels referring to the distance between the

left pixels and its corresponding ones on the right. The map can then be computed as

follows:

Di(x; y) = y � y0 (1.2)

Measurement or assessment of depth and disparity is essentially the same concept. We

denote a matrix De(x; y) that refers to the number representing how far (depth) the object

is from the camera. The depth map is defined as follows:

De(x; y) =
f �B
Di(x; y)

(1.3)

Where f is the focal length and B is the baseline (distance between the two cameras, see

Fig. 1.5). However, the estimation of depth/disparity maps has always been a challenging

task. The diversity and complexity of objects in the scenes makes the estimation difficult

to obtain accurate map as the ground-truth data. Most of disparity estimation schemes

follow the three steps to locate each pixel on the left view L(x; y), its corresponding pixel

on the right view R(x0; y0) is required to be:

� (1) On the same row: x0 = x;

� (2) To the left of (x; y) : y0 > y;

� (3) Most similar to the pixel L(x; y) among all candidates found after the previous

two steps. In order to determine the most relevant pixel, the most widely used

approaches are based mainly on a block matching strategy.

For instance, a method that compares the sum of absolute value (SAD) of the neighbors

of the pixel [60]. Another method called a semi-global block matching suggested in [51],

where the authors improved the accuracy similar using more neighboring blocks. More

recently in [21], the authors employed structural similarity (SSIM) [120] for this purpose
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and reported its superiority than SAD. Figure 1.8 shows the left (a) and right (b) images,

the depth map (ground-truth) (c) and disparity map (d). The disparity map is estimated

using the scheme from [21]. Overall, the disparity map is well estimated with some flaws

at some regions.

Figure 1.7: Left and right view pixels and its correspond disparity.

(a) Left view (b) Ground truth disparity

(c) Estimated disparity (d) Estimated depth

Figure 1.8: An example of disparity and depth map estimation from stereoscopic image
[82].

1.4.5 3D reconstruction

Due to the numerous applications, the 3D scene reconstruction, which aims to represent

a scene in three dimensions, is receiving a lot of interest recently. While the researchers

focus is on the acquisition of very high quality three-dimensional media.

Essentially, there are two approaches for 3D data acquisition. On the one hand, the

active methods, they acquire the depth of a scene from a controlled light source such

as laser beams. On the other hand, the passive methods which are based on computer
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vision algorithms. Where the 3D acquisition is based on a set of images of the scene.

The second method is mostly used for its simplicity and cost-free. Some approaches use

only one image such as the shape-from-shading [33]; others, such as stereophotometry,

exploit several images taken from the same angle and different illuminations [32]. For

that, stereoscopic imaging are commonly used for the reconstruction of a 3D scene. As

a result, it is reasonable to validate the quality of the stereoscopic media before the 3D

reconstruction.

However, there is another method that lies between the active and passive methods, the

structured-light 3D scanner that uses both of structured (active) light and images of

the scene: light patterns are projected on the scene at the moment of image acquisition

creating an additional texture on the surface. Despite of the high performance of this

system, it still requires the purchase of expensive equipment.

1.5 Common quality degradations

As discussed earlier in section 1.1, the quality of stereoscopic image general can be affected

by many factors due to the necessary treatments (acquisition, processing, compression,

transmission, etc). Quality estimation is therefore required and can be a key factor in

the design and optimization of stereoscopic image content delivery systems. The first

step towards objective quality estimation metric is to identify the artefacts which could

arise when dealing with stereoscopic content. In this section we denote the most common

degradation types of stereoscopic images which include: Blur, Blocking, noise, resizing,

and contrast.

1.5.1 Blur

Blur’s distortion affects the edges of an objects in the images. This distortion makes

the objects unrecognizable and difficult to perceive. Blurring is defined by the loss of

the high frequency information present in the images [5]. This phenomenon smooths the

image signal and with higher blurring the smoother signal is, which causes the reduction
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of signal edge points as described the example in Fig. 1.9. However, blur distortions can

be present in different forms denoted as follows:

� Defocus: Also known as out-of-focus and occurs during capture. To make sure that

an object is sharply mapped on the sensor, the focus of the camera must lie within

the depth of field. The size of this area depends on several parameters such focal

length, lens aperture, and the object distance. Therefore, objects outside this area

are defocused and appear blurred. The inappropriate focus on each object leads to

the blurring of the entire scene. Making attention to the shooting conditions and

changing the camera parameters correctly is the best way to prevent this kind of

distortion.

� Motion blur: Refers to the blur caused by the rapid movement of objects pho-

tographed during recording. Motion blur is formed either by the movement of the

object when the capture device is stationary, or by the scene to be filmed if the

camera follows the moving object. This type degrades specific directions in the

frequency domain.

� Blur due to Compression: The two well used compression algorithms called Joint

Photographic Experts Group (JPEG, and JPEG2000) [42] are an important source

of blur. In general, low pass filters are applied to the image, they operate at high

frequencies. This induces a loss of details and sharpness.

� Processing blur: During the processing phase, filters can be applied to the image,

and thus may develop quality degradation. Filtering is often responsible for blurry

distortions.

� Transmission blurring: The transmission of images in the channels often produces

loss of information, these losses result in blurred regions. The manner usually occur

in wireless communication Rayleigh channels.

Due to the blur distortion, the depth information may not be derived correctly from

the stereoscopic image. There are several approaches available to restore the focus of




