
People’s Democratic Republic of Algeria

Algerian Ministry of Higher Education and Scientific Research

University of Frères Mentouri Constantine 1

Faculty of Science and Technology

Electronics Department

Submitted thesis, in partial fulfillment of the conditions
for the award of the 3rd cycle doctoral degree LMD.

Field: Automatic and signal processing

Presented by:

Oussama MESSAI

No-reference Stereoscopic Image Quality
Assessment

Date : 16 / 12 / 2021

Presented in front of jury:

Pr. Noura MANSOURI University of Frères Mentouri Constantine 1 President

Pr. Fella HACHOUF University of Frères Mentouri Constantine 1 Reporter

Dr. Z. AHMED SEGHIR University Abbès Laghrour Khenchela Co-Reporter

Pr. Toufik BOUDEN University of Jijel Examiner

Pr. Salim CHIKHI University Abdelhamid Mehri Constantine 2 Examiner

Pr. Atef FARROUKI University of Frères Mentouri Constantine 1 Examiner

Dr. Aladine CHETOUANI University of Orléans, PRISME laboratory Invited
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Abstract

English :

Stereoscopic imaging is becoming increasingly popular, and its use in photography, tele-

vision, and films is rapidly expanding. Obviously, access to this type of images often

includes necessary treatments (acquisition, processing, compression, transmission, etc.),

which may result in a variety of artifacts (blocking, blur, ringing, etc.). As a result, it is

critical to have adequate tools for measuring the quality of stereoscopic contents.

It is thus essential to establish efficient metrics that assess the impact of these treat-

ments on the perceived quality. To meet this critical need, significant efforts have been

made to study and evaluate the quality of stereoscopic images. In this thesis, we present

several contributions for quality assessment of stereoscopic contents. Five methods have

been proposed in total, with all of them are no-reference based metric. These metrics

were developed with Human Visual System (HVS) modeling and human visual attention

(saliency information) in mind. In addition, various advanced techniques, such as deep

learning, have been incorporated into our workflow designs.

Keywords: Stereoscopic Image Quality Assessment (SIQA), Human Visual System

(HVS), Saliency information, Deep learning.
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Français :

L’imagerie stéréoscopique est de plus en plus populaire et son utilisation dans la photogra-

phie, la télévision et les films se développent rapidement. Bien entendu, l’accès à ce type

d’image comporte souvent des traitements nécessaires (acquisition, traitement, compres-

sion, transmission, etc.), qui peuvent se traduire par une variété d’artefacts (blocage, flou,

bruit, etc.). En conséquence, il est essentiel de disposer d’outils adéquats pour mesurer

la qualité des contenus stéréoscopiques.

Il est donc essentiel d’établir des métriques efficaces qui évaluent l’impact de ces traite-

ments sur la qualité perçue. Pour répondre à ce besoin critique, des efforts importants

ont été faits pour étudier et évaluer la qualité des images stéréoscopiques. Dans cette

thèse, nous présentons plusieurs contributions pour l’évaluation de la qualité des contenus

stéréoscopiques. Cinq méthodes ont été proposées au total, toutes étant des métriques

sans référence. Ces mesures ont été développées en tenant compte de la modélisation du

système visuel humain (HVS) et de l’attention visuelle humaine (informations de sail-

lance). En outre, diverses techniques avancées, telles que l’apprentissage en profondeur,

ont été intégrées à nos conceptions de flux de travail.

Mots clés : Évaluation de la qualité d’image stéréoscopique (SIQA), système visuel

humain (HVS), informations de saillance, apprentissage en profondeur.
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0.1 General Introduction

Vision is one of the most important ways for people to get information from the outside

world. As humans see 3D scenes in nature, it has always been humans’ goal to recreate

accurate and natural 3D scenes on the screen.

In the beginning of the 10th century, several studies and remarkable work have been con-

ducted by great physicists in the field of optics and light such al-Hassan ibn al-Haytham.

The early scholar Ibn al-haytham had extensively affected the development of optics where

he developed geometric optics theories and explained the visual perception mechanism.

The scientist went deeper than anyone else in attempting to explain the fundamental

physics of refraction and the structure of the human eye. He also introduced a camera

pinhole box which further evolved into a 2D (Dimension) photographic camera in the

first half of the 19th century. These enormous theories and researches are resulted in this

series of books called Book of Optics [104]. After the evolution of photographic camera to

make 2D analog images, the 3D media has started with David Brewster in 1844 where he

created the stereoscope, the first portable 3D-viewing device. The pioneer in photogra-

phy has also invented the binocular camera to be used in the stereoscope to take pictures.

Years later, the stereoscopic camera became popular and changed the entertainment in-

dustry. The invention of semiconductor transistors in 1959 enabled the first appearance

of a digital camera that was launched few years later.

Nowadays, with the rapid development of digital multimedia, 3D technology is taking the

human’s viewing experience to the next level. It gives the viewers with a more immersive

and natural scene. This new wave of 3D media leads to an increase the expectation of the

quality services especially in industry entertainment. According to the latest theatrical

market statistics collected by the Motion Picture Association of America (MPAA), the

number of worldwide 3D screens continued to grow in 2016 at a faster pace (17%) than in

2015 (15%) [86]. In the long run, the wide application of stereoscopic 3DTV broadcasting

system is also expected. A pioneer for this was on 1 October 2010. The first High

Definition (HD) stereoscopic 3D channel called SKY 3D, started broadcasting nationwide
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in United Kingdom at resolution of 1920 x 1080 pixels. The channel provided stereoscopic

3D contents including education, animation, sport, documentary and performances.

However, the 3D content is not limited to the entertainment industry. 3D visualization

concerns different applications, such as remote education [123], medical body exportation

[122], robot navigation [8] and so forth. Therefore, it is reasonable to believe that the

amount of 3D content will continue growing throughout the next few years.

0.1.1 Motivation

With the rapid development of 3D applications, 3D media on the Internet is increasing,

and has been more and more widely used in peoples daily life and work. Therefore,

perceptual quality assessment is critical factor in order to have a good viewing experience.

In most of the 3D applications, the media quality could be affected by necessary treatments

going from capture, compression, storage, transmission, to display. Since the 3D viewing

provides immersive feeling, the contents quality needs to be assured in order to avoid any

visual discomfort to the users. As a result, the requirement for precise and dependable

objective image metrics has become even more important. However, compared to a 2D

image, a stereoscopic 3D image involves depth information and consists of two views,

which makes stereoscopic image quality assessment more challenging than 2D images.

0.1.2 Thesis aims and scope

The major objective of this thesis is to consider an industrial need for an objective stereo-

scopic image quality assessment, then, propose an accurate stereoscopic image quality

methods to fulfil this need. It is important to account for human visual system (HVS)

characteristics and properties (e.g., visual sensitivity, visual attention, and so forth).

Therefore, in our proposed methods, we follow the idea of using human visual system

modeling along with modern artificial intelligence techniques to judge the perceptual

quality accurately. However, our research also investigates the quality assessment based

on visual attention properties. Through this thesis, few questions are to be answered such

as:
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• What are the factors that affect the 3D viewing experience?

• How to objectively measure the perceptual quality of stereoscopic 3D images?

• What are the main aspects for designing stereoscopic image quality metric?

• Is the quality judgement in salient (human visual attention) regions?

The research topics covered several disciplines related to stereoscopic image quality assess-

ment such as: Human Visual System (HVS), stereoscopic imaging, and machine learning

algorithms. Overall, the thesis includes five chapters organized as follows:

Chapter One: introduces the concept of evaluating the quality of stereoscopic images.

The chapter provides an overview of stereoscopic vision, the common types of artefacts,

and general application of objective IQA metrics.

Chapter Two: introduces the most machine learning algorithms used for image quality

assessment problem, and provides a state-of-the-art study of stereoscopic image quality

metrics.

Chapter Three: introduces two proposed approaches for stereoscopic images, based on

handcrafted quality features and HVS modeling. The first method is for measuring qual-

ity, while the second is for recognizing distortion types.

Chapter Four: In this chapter, we look at how machine learning techniques may be

used to assess the quality of stereoscopic images and present two methods.

Chapter Five: This chapter investigates whether visual attention should be considered

when designing an objective SIQA metric. To that purpose, we provide a novel metric

that considers saliency information.



Chapter 1

Introduction to stereoscopic image

quality evaluation

1.1 Introduction

Communication networks and digital technology advancement allows easy access through

multiple devices (3D-TV, smartphones, tablets, etc.) for three-dimensional (3D) media

contents with numerous applications such as education with virtual reality (VR), 3D

navigation and 3D medical imaging analysis. This lead to rapid growth of 3D multimedia

where stereoscopic imaging is usually used to display the 3D contents. However, the

quality of these stereoscopic 3D contents can be affected at different necessary processing

stages. The quality artefacts may occur during the dataflow of stereoscopic images as

shown in Fig 1.1, from creation/capturing, compression/coding, transmission, decoding

to display. Briefly addressed as follows:

• Capturing stage: Special care should be taken when placing cameras to avoid such

blurry contents. The limitations of camera sensors can also cause noise to the cap-

tured pictures under particular circumstances. In stereoscopic imaging, disparities

between left and right images provide depth information. Therefore, inadequate

stereo camera configurations strongly influence the disparity and as a result, vari-

ous artefacts may take place [53].

4
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• Compression/Coding: Different 3D display systems rely on different 3D scene rep-

resentation formats. Effective coding schemes of these data formats is key to the

success of 3D displays and data storage. However, if the representation format is

different from the one the scene was originally captured, converting between the

formats is a source of quality degradations, where usually cause texture information

loss [105]. In order to minimize transmission cost, redundant information is min-

imized by compression algorithms. Such algorithms are often improperly applied

for stereoscopic contents, and binocular depth cues information may be lost in the

process.

• Transmission stage: Packet losses of digital data can occur during the transfer

through the network especially for wireless communications [49]. Resilience and

error dissimulation algorithms attempt to minimize the packet loss, but if not de-

signed for stereoscopic images, such algorithms might produce additional artefacts

on their own.

• Decoding/Visual optimization: Some visual optimizations are required to cover the

display limitations such screen resolution, aspect ratio, contrast range and so forth.

• Display: Several methods are established for 3D scene visualization, which offer

distinct degree of scene approximation. Each family of 3D displays has its own

characteristic quality degradations, in-which are often scene dependant [52].

Figure 1.1: Illustration of different phases in stereoscopic image processing.

The aforementioned scenarios that decrease the stereoscopic image quality may cause vi-

sual symptoms to viewers such as headache, nausea, and visual discomfort/fatigue [63].

Thus, and in order to satisfy customers expectations for high quality imply determining
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the quality of stereoscopic contents reliably and effectively. An accurate Objective and

subjective metrics are needed to evaluate the quality of stereoscopic contents. The sub-

jective metrics are based on opinion scores given by human observers. While objective

metrics are based on computer algorithms and numerical computations. However, in this

thesis we strongly focus on objective methods.

The rest of the chapter discusses the basic mechanisms in relation to the Human Visual

System (HVS) and the functional principles of simple stereoscopic systems, followed by a

description of objective and subjective quality assessment for stereoscopic images.

1.2 Stereoscopic vision importance in imaging

Stereoscopic vision represents the ability of the visual brain to create a sense of three-

dimensional structure and form from visual inputs. Therefore, using stereoscopic imaging

technology can potentially improve many aspects of applications such as remote education

[123], robot navigation [8] and so forth.

The stereoscopic imaging is also applied to medical body exportation [122]. For instance,

researchers in [34] explored the benefits of using Stereoscopic Digital Mammography (DM)

for breast cancer diagnoses. The authors have compared the standard 2D DM with the

stereoscopic DM, where this latter showed higher diagnoses accuracy from doctors up to

90.9% versus 87.4% of 2D DM images.

Given the value of stereoscopic vision and its advantages on various applications, it is

reasonable to assume that the amount of stereoscopic content will keep rising over the

next few years.

1.3 Stereoscopic visual perception

HVS is still not fully understood. However, it is the one responsible for judging the

perceived visual quality. This objective evaluation is reliable but not able to provide

assessment for wide variety of stereoscopic content. This section introduces the basics of

HVS and depth cues.
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1.3.1 Human Visual System (HVS)

The HVS is indeed a combination of related subsystems that work together in a single

process. Spatial, color and motion information is understood to be transmitted to the

brain using mostly separate neural pathways. This visual pathway consists of a large

number of nerve cells that transmit and receive electrical impulses. The visual system

pathway begins from the eyes and proceeds to other parts of the brain that end up to the

visual cortex cells. The wavelength of light is viewed and interpreted at various stages

of the visual system as shown in Fig. 1.2. This interpretation starts from the retina of

the eyes (Temporal/Nasal retina), going through the optic nerve, the optic chiasma to

the Lateral Geniculate Nucleus (LGN), and finally the primary visual cortex. Almost all

of the LGN connections go straight to the primary visual cortex. In this latter, elements

are organized into series of rows and columns of neurons. The first neurons to obtain the

signal are simple cortical cells. These cells detect lines at different angles, from horizontal

to vertical, which occupy a large part of the retina [113].

Figure 1.2: Human visual system pathway [88].

The HVS relies on various depth cues to reconstruct the 3D world from 2D images pro-
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jected onto the retinal cells. These cues can be classified into three main groups [44]: 1)

Oculomotor cues, based on the physical abilities of our eye muscles and lenses. 2) Monoc-

ular cues, where the HVS uses information from a single 2D view. 3) Binocular cues, that

extract information from both eyes. This latter in particular has been simulated for the

development of 3D imaging systems. The following section provides an overview of the

binocular cues.

1.3.2 Monocular and Binocular depth cues

Monocular cues depend only on information from one eye to estimate depth. It extracts

depth information from changes in retinal images over time (i.e. from movement). This

type of depth perception is concluded from static 2D images and movement-based cues

[44].

Binocular cues estimate depth information using the differences in the images received

by the two eyes. Typically, the human eyes see the world from places that are around 6

cm apart. This shift in the point of view of the two eyes produces the cue of binocular

disparity. Binocular vision derives to differences between left and right images projected

to the left and right eyes. Thanks to this disparities, the HVS can form 3D scene and

evaluate relative distances of objects. However, if the observer maintain his viewing

position. The projections of an objects onto the left and right retina rely on the distance

between the object and the viewer. Fig. 1.3 shows the observer fixates in a point F , which

projects to the corresponding points FL and FR in the left and right retina, respectively.

Meanwhile, another point P of an object, projects non corresponding points PL and PR

onto the left and right retinas, respectively. Absolute disparity is defined as the difference

in angular displacement between the projections of P and F . Noting respectively α and

β as the angles between the projections of P and F onto the left and right retina. So the

absolute disparity is given by the δ = α− β [92]. However if we maintain the fixation F ,

the absolute disparity varies with the position and distance of point P from the observer,

where the nearest object to the observer, the greater disparity δ and vice versa.
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Figure 1.3: Basic geometry of human binocular vision [92].

1.3.3 Visual Discomfort

Visual discomfort occurs when eyes experience abnormal visual effects such as illusions

of color, structure and motion. Given that the visual system has been adapted to the

processing of natural images, the presence of illusions creates inadequate brain processing,

which causes the viewer to experience pain, fatigue or exhaustion. However, in 3D visual

experience, the distance between the eyes and the perceived object is called the focal

length. Limited focal length would lead to visual pain, indicating symptoms such as eye

strain, headache, fatigue, leading to unpleasant vision experience [64]. Therefore, in 3D

stimuli such stereoscopic images, the amount of visual discomfort is primarily related to

the depth information.

Although most studies on visual discomfort is mainly based on non-distorted images. In-

deed, contents with degraded quality, provides nonuniform depth distribution that even-

tually may cause discomfort to the viewers. A good quality is then needed to prevent

serious visual discomfort. In case of distorted 3D stereoscopic images, the reasonable as-

sumption that can be made about the influence of visual quality has on visual discomfort.

Is that people might be incapable of obtaining a stereopsis and estimating the depth, so

the level of visual discomfort must be influenced. Besides this, studies in more details
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are required to investigate how strong is the relationship between visual discomfort and

stereoscopic image quality.

1.4 Stereoscopic 3D imaging

The current 3D systems are based on the concepts of human depth of perception. Ac-

cording to binocular depth cues from binocular vision system, the HVS can interpret the

world in 3D. This binocular depth perception is produced on the basis of slightly different

locations of the two retinal images seen from the left and the right eyes. Also called

binocular disparity which yields the perception of depth and inspires the development of

3D technology. In this section, we introduce the stereoscopic 3D vision for computers.

1.4.1 2D Images Acquisition System

Camera model called Pinhole in Fig. 1.4 is the simplest model considered to describe the

formation of images/videos. In this model where C is the camera centre (pinhole) and

f refers to the focal length. The images/videos are formed by projection on the image

plane with center of P . When an image of a scene is captured by a camera, we lose

depth information as objects and points in 3D space are mapped onto a 2D image plane

as : R3, (x, y, z) −→ R2, (x, y).

This 2D Image/video Acquisition is dependent on sensors inside of camera to form pic-

tures. These sensors are usually placed behind the center of the camera C with the same

distance f . They convert the light rays to electrical charges and typically presenting

them with RGB ( Red, Green, Blue) color model. Commonly, there are two different

technologies to represent each physical point M from the scene to pixel/image element:

CCD (charge coupled device) and CMOS (complementary metal oxide semiconductor).

However, each type has unique strengths and weaknesses giving advantages in different

applications [26]. A point in the 3D world M = [X, Y, Z]T is then mapped to m = [x, y]T

on the image plane according to the following relationship:
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x = f
X

Z
y = f

Y

Z
(1.1)

Figure 1.4: Basic geometry of Pinhole Camera model.

1.4.2 3D Stereoscopic Images Acquisition System

The process of capturing stereoscopic images is an effort to mimic what we see through

our two eyes. The basic concept for imitating the HVS is therefore to replace the left and

right eyes with two horizontally separated cameras. While in display, the concept uses a

screen that projects the left and right views to the respective eyes. Then the brain fuses

these images, resulting in a deep perception. Currently, the most widely used stereoscopic

camera system is seen in Fig. 1.5.

Figure 1.5: Pinhole model of stereoscopic camera systems.

Where C and C ′ are the camera centers, B refers to the baseline (distance between the

camera centers), and M is a 3D point projected to the left and right 2D plans giving m1,

and m2 respectively. It simulates the human binocular disparity. However, a calibration
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techniques are necessary to align pixel information between the cameras and extract

the lost depth information in the projection process. The calibration problem is often

considered solved, but recent research still focuses on the subject because it directly effect

the quality of 3D reconstruction from the stereoscopic images [43, 90]. It consists in finding

the internal and external geometry of the acquisition system such the focal length, the

optical center of the camera, the dimensions of the pixel, the angle of obliquity of the

pixel, and so forth.

1.4.3 Stereoscopic 3D displays

Stereoscopic 3D display is needed to visualize 3D images/videos. The technology behind

3D displays has strengths and limitations in the production of high quality 3D content.

The different display types also influence the viewer’s quality of experience. As listed in

table 1.1, there main categories are denoted to distinguish the 3D displays: (1) direct

view stereoscopic displays, which require eyewear and classified based on the multiplexing

method; (2) auto-stereoscopic direct-view displays; (3) binocular head-mounted displays,

which the stereoscopic projections are integrated into the eyewear device itself and thus

do not require glasses. [114].

Table 1.1: Stereoscopic 3D displays classification.

Categories Stereoscopic direct-view (require glasses) Auto-stereoscopic direct-view (no eyewear) Head-mounted and interactive (wearable)

Technology types

• Color multiplexed

• Polarization multiplexed

• Time multiplexed (shutter glasses)

• Two-view

• Multi-view

• Head tracked

• Light field

• Optical head-mounted projection

(e.g virtual reality applications)

• Stereoscopic direct-view visualisations require the observer to wear glasses to direct

the left and right images to the relevant eye.

• Auto-stereoscopic displays do not require any glasses to present two-view images,

but send them directly to the corresponding eyes using aligned optical elements on

the surface of the displays [30]. This type of displays simplifies the viewer’s 3D ex-

perience and can display multiple views, making 3D entertainment more applicable.

This displaying approach projects each view from a specific viewing angle along the
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horizontal direction and provide a comfortable viewing zone for each stereoscopic

image.

• Head-mounted monitors are binocular systems where it usually consists of two sep-

arate mini displays with connected relay optics. Since the gadget is carried on the

head, the user is not bound to a fixed viewing location and can perceive complete

immersion from the viewing scene [94].

As listed in Table 1.1, there are three types of 3D eyeglasses that correspond to the

three ways stereo frames are separated for 3D effects: anaglyph, polarized and Time

multiplexed. Samples are showed in Figure 1.6.

Figure 1.6: Pictures of the three different types of 3D glasses. Left: Color multiplexed
(anaglyph); Middle: Polarization multiplexed; Right: Time multiplexed (shutter glasses)

• Anaglyph: Based on color filters; Red/cyan, red/blue and red/green glasses are

available in paper and plastic frames. The glasses would allow one color to flow

through one eye while blocking the other. This ensured that both of our eyes

viewed the two distinct images that our brain recognized as 3D.

• Polarized: The most popular among the other two. It is based on the concept of

linear polarization. One lens carries a vertical linear polarizer and the other would

have a horizontal linear polarizer. This ensured that both the eyes had a different

image for the brain and that the original colour of the image is maintained unlike

Anaglyph glasses.

• Shutter Glasses: Modern glasses that works by only presenting the image intended

for the left eye while blocking the right eye’s view, then inverting this process for the

other eye, and repeating this in time of milliseconds. Unlike polarized glasses, where
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the horizontal spatial resolution is normally reduced, the active shutter system can

keep full resolution for both the left and right pictures.

In addition to other quality degradations inherent in the acquisition of stereoscopic images.

The technologies listed above are not exempt from the flaws that cause visualization

artefacts. However, when two mechanical projectors are used to present an image to each

eye, misalignment problems are common issues and potentially occur while displaying.

Another common artefact inherent to stereoscopic visualization is caused by poor image

luminance and contrast due to light losses in filter-based systems and glass systems.

However, the study in this thesis will not focus on stereoscopic 3D displays and their

artefacts on the perceived stereoscopic contents.

1.4.4 Stereoscopic disparity and depth map

The depth map denotes the distance between the objects of the scene and the viewer’s

point of view. Disparity map refers to an image containing the distance between two

respective pixels in the left and right views of the stereo pair. However, a depth map

can be estimated using a 2D image, while a disparity map can only be obtained using a

stereopair image. Note that the disparity value can be translated to a depth value based

on a particular formula and vice versa. Nowadays, disparity/depth maps are important

in many applications, such as augmented reality, 3D reconstruction and navigation.

The disparity information is proven to be a strong effective factor for stereoscopic images

and videos quality, where researchers first expanded 2D Image Quality Assessment (IQA)

metrics to Stereoscopic Image Quality Assessment metrics (SIQA) by adding the analysis

about the depth information (Benoit et al [12]). Since most of the artefacts directly

impact the disparity/depth information. Currently, this latter has become necessary for

assessing the quality of the stereoscopic content.

In a stereoscopic images, the depth of an object in the 3D space is related to the difference

of its appearance in the left and right view. This disparity is presented in the stereoscopic

image by shifted pixels horizontally or vertically between the left L(x, y) and right R(x′, y′)

pixels that correspond to the object. As demonstrated in Fig. 1.7, let L(x, y), the position
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of left pixel and its corresponding pixel on the right view beR(x, y′). The pixel that reflects

the same object is shifted horizontally on the right image by N number of pixels, where

N = y−y′. So for this horizontal disparity, we denote the disparity map as Di(x, y), where

values of this matrix represent the number of pixels referring to the distance between the

left pixels and its corresponding ones on the right. The map can then be computed as

follows:

Di(x, y) = y − y′ (1.2)

Measurement or assessment of depth and disparity is essentially the same concept. We

denote a matrix De(x, y) that refers to the number representing how far (depth) the object

is from the camera. The depth map is defined as follows:

De(x, y) =
f ×B
Di(x, y)

(1.3)

Where f is the focal length and B is the baseline (distance between the two cameras, see

Fig. 1.5). However, the estimation of depth/disparity maps has always been a challenging

task. The diversity and complexity of objects in the scenes makes the estimation difficult

to obtain accurate map as the ground-truth data. Most of disparity estimation schemes

follow the three steps to locate each pixel on the left view L(x, y), its corresponding pixel

on the right view R(x′, y′) is required to be:

• (1) On the same row: x′ = x;

• (2) To the left of (x, y) : y′ > y;

• (3) Most similar to the pixel L(x, y) among all candidates found after the previous

two steps. In order to determine the most relevant pixel, the most widely used

approaches are based mainly on a block matching strategy.

For instance, a method that compares the sum of absolute value (SAD) of the neighbors

of the pixel [60]. Another method called a semi-global block matching suggested in [51],

where the authors improved the accuracy similar using more neighboring blocks. More

recently in [21], the authors employed structural similarity (SSIM) [120] for this purpose
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and reported its superiority than SAD. Figure 1.8 shows the left (a) and right (b) images,

the depth map (ground-truth) (c) and disparity map (d). The disparity map is estimated

using the scheme from [21]. Overall, the disparity map is well estimated with some flaws

at some regions.

Figure 1.7: Left and right view pixels and its correspond disparity.

(a) Left view (b) Ground truth disparity

(c) Estimated disparity (d) Estimated depth

Figure 1.8: An example of disparity and depth map estimation from stereoscopic image
[82].

1.4.5 3D reconstruction

Due to the numerous applications, the 3D scene reconstruction, which aims to represent

a scene in three dimensions, is receiving a lot of interest recently. While the researchers

focus is on the acquisition of very high quality three-dimensional media.

Essentially, there are two approaches for 3D data acquisition. On the one hand, the

active methods, they acquire the depth of a scene from a controlled light source such

as laser beams. On the other hand, the passive methods which are based on computer
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vision algorithms. Where the 3D acquisition is based on a set of images of the scene.

The second method is mostly used for its simplicity and cost-free. Some approaches use

only one image such as the shape-from-shading [33]; others, such as stereophotometry,

exploit several images taken from the same angle and different illuminations [32]. For

that, stereoscopic imaging are commonly used for the reconstruction of a 3D scene. As

a result, it is reasonable to validate the quality of the stereoscopic media before the 3D

reconstruction.

However, there is another method that lies between the active and passive methods, the

structured-light 3D scanner that uses both of structured (active) light and images of

the scene: light patterns are projected on the scene at the moment of image acquisition

creating an additional texture on the surface. Despite of the high performance of this

system, it still requires the purchase of expensive equipment.

1.5 Common quality degradations

As discussed earlier in section 1.1, the quality of stereoscopic image general can be affected

by many factors due to the necessary treatments (acquisition, processing, compression,

transmission, etc). Quality estimation is therefore required and can be a key factor in

the design and optimization of stereoscopic image content delivery systems. The first

step towards objective quality estimation metric is to identify the artefacts which could

arise when dealing with stereoscopic content. In this section we denote the most common

degradation types of stereoscopic images which include: Blur, Blocking, noise, resizing,

and contrast.

1.5.1 Blur

Blur’s distortion affects the edges of an objects in the images. This distortion makes

the objects unrecognizable and difficult to perceive. Blurring is defined by the loss of

the high frequency information present in the images [5]. This phenomenon smooths the

image signal and with higher blurring the smoother signal is, which causes the reduction
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of signal edge points as described the example in Fig. 1.9. However, blur distortions can

be present in different forms denoted as follows:

• Defocus: Also known as out-of-focus and occurs during capture. To make sure that

an object is sharply mapped on the sensor, the focus of the camera must lie within

the depth of field. The size of this area depends on several parameters such focal

length, lens aperture, and the object distance. Therefore, objects outside this area

are defocused and appear blurred. The inappropriate focus on each object leads to

the blurring of the entire scene. Making attention to the shooting conditions and

changing the camera parameters correctly is the best way to prevent this kind of

distortion.

• Motion blur: Refers to the blur caused by the rapid movement of objects pho-

tographed during recording. Motion blur is formed either by the movement of the

object when the capture device is stationary, or by the scene to be filmed if the

camera follows the moving object. This type degrades specific directions in the

frequency domain.

• Blur due to Compression: The two well used compression algorithms called Joint

Photographic Experts Group (JPEG, and JPEG2000) [42] are an important source

of blur. In general, low pass filters are applied to the image, they operate at high

frequencies. This induces a loss of details and sharpness.

• Processing blur: During the processing phase, filters can be applied to the image,

and thus may develop quality degradation. Filtering is often responsible for blurry

distortions.

• Transmission blurring: The transmission of images in the channels often produces

loss of information, these losses result in blurred regions. The manner usually occur

in wireless communication Rayleigh channels.

Due to the blur distortion, the depth information may not be derived correctly from

the stereoscopic image. There are several approaches available to restore the focus of
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(a) Reference image

(b) Distorted image

Figure 1.9: Blur distortion effect on stereoscopic image [82]. (a) Reference image
without distortion, (b) image with Blur distortion.

a blurred picture via inverse filtering, but most of them cannot be used practically in

real-time applications [16].

1.5.2 Ringing effect

Ringing effect can be introduced to oversharpened images, images transmitted over ana-

log channel, or after image processing algorithms such compression. In compression al-

gorithms, this degradation is generally due to the step of quantization or decimating the

high frequency coefficients [37]. It manifests in the form of oscillations on high contrast

regions and is often defined as noise around these regions.

This phenomenon appeared as rippling artifact near sharp edges of the image. Indeed

this artefact is annoying to the observers especially for stereoscopic stimulus.

1.5.3 Blocking effect

Block-artifacts are a result of block transform coding. Where this transform is a common

process in JPEG/JPEG2000 compression. In 2D/3D stereoscopic images this distortion

is expressed at the boundaries between blocks and appears as vertical and horizontal

contours [98]. However, any lossy block-based coding scheme introduces visible artifacts in
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pixel blocks and at block boundaries. These boundaries can transform block boundaries,

prediction block boundaries, or both. The transform (for example the discrete cosine

transform) is applied to a block of pixels, and to achieve lossy compression, the transform

coefficients of each block are quantized. The lower the bit rate, the more coarsely the

coefficients are represented and the more coefficients are quantized to zero. Since this

quantization process is applied individually in each block, neighboring blocks quantize

coefficients differently, which causes discontinuities at the block boundaries.

In images that have more low-frequency than high-frequency content, the low-frequency

content remains after quantization, which results in blurry, low-resolution blocks. The

blocking effects are visible in the stereoscopic image shown in Fig.1.10. The stereo image

presents an imprecise contour which causes degradation of visual aesthetic quality. This

type of degradation usually occurs on blurred images, whose edges of objects are more

diffuse.

(a) Reference image

(b) Distorted image

Figure 1.10: Blocking effect from JPEG compression on stereoscopic image [82]. (a)
Reference image without distortion, (b) image with JPEG distortion.

1.5.4 Noise

Noise is a common degradation of images. Any parasitic information added to the picture

is described as noise [38]. Mostly characterized by the presence of visible grains which
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causes visual discomfort and annoys the viewers. Noise has different forms based on the

origins of this artefact such as temporal and spatial noise, these latter could be presented

to the stereoscopic images. Noise has relation with electronic components. The CCD

camera sensors introduce noise at some circumstances such as high temperature.

However, to mimic the effects of this artefact, an Additive white Gaussian noise (AWGN)

is a basic noise model denoted by specific characteristics. Stereoscopic contents are highly

exposed to noise, Fig. 1.11 shows stereoscopic image with AWGN. Additive because it

is added to any noise that might be intrinsic to the information system. White refers to

the idea that it has uniform power across the frequency band for the information system.

It is an analogy to the color white which has uniform emissions at all frequencies in the

visible spectrum. Gaussian because it has a normal distribution in the time domain with

an average time domain value of zero.

(a) Reference image

(b) Reference image

Figure 1.11: Stereoscopic image with white Gaussian noise distortion [82]. (a) Reference
image without distortion, (b) image with white Gaussian noise distortion.

1.5.5 Upscale/Downscale

Display monitors are available in different range of screen sizes, requiring up-scaling or

down-scaling of the content to match the screen resolution. Interpolation and decima-

tion algorithms have been designed to change the spatial resolution. However, a loss of
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information and spatial details is unavoidable in the case of decimation, and a trade-off

is always expected. Due to imperfect re-sampling algorithms, this issue causes blurring

artefact and reduce spatial information captured of the scene.

1.5.6 Contrast

Contrast is the variation in luminance or color that makes an object in the scene distin-

guishable. It is determined by the imbalance in color and brightness of the object and

other objects within the same field of view. However, the human visual system is more

sensitive to contrast than to absolute luminance. Regardless of the changes in illumination

over the day or from place to another, we can perceive the world similarly.

Contrast is a determining factor in the perception of visual quality [132]. A bad contrast is

often occurred during the acquisition phase. Hardware limitations acquisition conditions

and lighting conditions are the main causes of loss of contrast and visibility of scene

details. There are other sources of contrast distortion, among these sources include the

enhancement process that creates loss or over-contrast [16].

1.6 Distortions impact on the disparity/depth map

The distortions addressed earlier influence the 2D images and stereoscopic images quality

differently because the degradation will have direct impact on stereoscopic image disparity

that carries depth information. Since that the human brain uses disparity information to

see the world in 3D. The disparity information is proven to be a strong effective factor

for stereo images/videos quality judgment [18]. For instance, If depth or disparity is not

properly available, the viewer perceives wrong distances between objects in the scene.

Figure 1.12 illustrates how three types of distortion impact the estimated disparity map

using the same stereo matching algorithm. Taking color range from dark to white, the

closer object to the camera the lighter color is. As can be seen, each distortion impact

differently disparity map. Blur distortions tend to cause disparity losses in particular for

far objects, while JPEG/JPEG200 compression artifacts cause arbitrary loss related to
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blocking effect.

Figure 1.12: Disparity maps estimation from stereoscopic images under different
distortions [18].

1.7 Binocular rivalry

While the left and right images are consistent, they are fused in the visual system to a

single percept of the scene, known as binocular fusion. Binocular rivalry is a phenomenon

of visual perception in which perception alternates between different images presented

to each eye. This could be very annoying to observers and usually causes fatigue and

headaches. However, an asymmetric distortion (in section 1.7.1) in stereo contents is one

of the cases that causes this phenomenon.

To address the question of where in the brain rivalry occurs, Blake et al [14] have studied

Neural responses in the LGN and the visual cortex (as discussed earlier in section 1.3.1).

Where they conducted several electrophysiological experiments, in-which binocular rivalry

stimulus has been used. The authors concluded that in species with well-developed binoc-

ular vision such as Humans and monkeys, the retinal terminals from each eye project to

different layers in the LGN, so that they remain segregated. Each layer receives excita-

tory input from one eye and contains a detailed retinotopic map of the contralateral visual

field. The maps are in perfect register and receive feedback from primary visual cortex,

which can detect mismatches in visual attributes such as orientation, spatial frequency or

direction.
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Binocular fusion mechanism and binocular rivalry provide a potential theory to develop

3D quality prediction models. Although there is a rich literature on binocular fusion

and rivalry in neural vision science, simulating and applying the concept to stereo IQA

remains an active research area.

1.7.1 Asymmetric distortion problem

The stereoscopic contents are possible to be distorted in asymmetric way, it is particular

case of binocular rivalry where left and right views have distinct deformation. This makes

objective Stereoscopic IQA problem more challenging than 2D IQA. However, there are

three possibilities for asymmetric distortion case: 1) One view is distorted and the other

is not. 2) The two views are affected with different type of distortion. 3) Both views

are distorted by the same type of deformation, but with various degrees. Figure 1.13

illustrates examples of the first and second scenarios.

(a)

(b)

Figure 1.13: Asymmetric distorted stereoscopic images: (a) left-view is original and the
right-view is blurred [21]. (b) Left-view has white noise, right-view is blurred.
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1.8 Subjective quality assessment

Subjective quality assessment is relied on human ratings, where observers give their opin-

ion on perceived contents. There are various subjective quality evaluation methodologies,

and they are reliable to measure the quality of experience of any multimedia service for

a user. But this type of assessment are typically time consuming and require a large

number of users to produce accurate results. In subjective assessments, a group of human

observers is asked to evaluate the quality of stimuli that are presented according to a

specific procedure. The composition of the group can vary from one application area to

the other. It is mostly desirable for the panel to cover as wide range with respect to age,

gender, and cultural background as possible. In order to obtain accurate and reproducible

subjective results, it is important to identify and explain each of the following elements:

• Laboratory equipment, including details of monitors and their arrangement, screen

and viewing distance, illumination and characteristics of the room.

• Data set, including the original and after processing contents and their distribution

across different sessions.

• Test methodology, including the rating target (quality, comparison, or impairment),

the scale (categorical or continuous) and the type of stimuli.

• Score processing, including score normalization, outlier detection, mean score and

confidence intervals computation, and significance tests.

However, a subjective online QoE evaluation framework may be deployed. Recently after

the COVID-19 pandemic, engineers and dedicated laboratories prefer to deploy more of

this system, where it can be difficult for 3D stimuli due to the limitations of test equipment

from the online observers.

1.8.1 Subjective assessment protocols

Subjective methods are much dependent on the nature of the test and can be substantially

biased when not carefully planned, performed and interpreted. In order to maximize the
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reliability and reproducibility of the experiments, number of standards and recommen-

dations has been issued by the International Communication Union (ITU). A group of

experts described the conditions, procedures, processing of results [1, 3, 2].

The procedures for subjective tests can be divided into four scaling methods, we discuss

them as follows:

• Absolute category rating (ACR): Also known as single stimulus method, this rating

method is a category judgment where the test sequences are presented one at a time

and are rated independently on a category scale. The method specifies that after

each presentation the subjects are asked to evaluate the quality of the sequence

shown. The time pattern for the stimulus presentation can be illustrated by Fig.

1.14. In the case of using a constant voting time, then the voting time should be less

than or equal to 10 seconds. The presentation time may be reduced or increased

according to the content of the test material. After the stimuli is prepared, during

the presentation the observer has to judge it by selecting a discrete rating or giving

continues rating as shown in sub Fig. 1.14 (b) and (c).

(a) The structure of a trial assessment. (b) Discrete scale. (c) Continuous scale

Figure 1.14: (a) The structure of a trial assessment proposed for the evaluation of
stereoscopic images. (b) and (c) The labeled discrete and continues five-rating ITU scale

for the subjective assessment of stereoscopic image quality [1].

• Absolute category rating with hidden reference (ACR-HR): This rating a judgment

with hidden reference where the test sequences are presented one at a time and are

rated independently on a category scale. During the data analysis, a differential
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quality score (DMOS) will be computed between each test sequence and its corre-

sponding (hidden) reference. This procedure is known as ”hidden reference”. The

method specifies that, after each presentation, the subjects are asked to evaluate

the quality of the sequence shown. However, if a constant voting time is used, then

the voting time should be less than or equal to 10 seconds. As in the ACR rating,

the five-level scale for rating overall quality is used.

• Degradation category rating (DCR): Also called the double stimulus impairment

scale method. The degradation category rating implies that the test sequences are

presented in pairs: the first stimulus presented in each pair is always the source

reference, while the second stimulus is the same source presented through one of the

systems under test. As in the previous rating categories, the voting time should be

less than or equal to 10 seconds if a constant voting time is used.

• Pair comparison method (PC): This protocol, also referred to as the paired com-

parison (PC) method, consists of a series of trial assessments during which the

participants needs to compare two images displayed simultaneously, preceded and

followed by mid-gray displays, exactly as in Fig. 1.15. The two stimuli can be also

presented sequentially with 3 seconds mid-gray display between them. The number

of trial assessments needed in one experiment is the one that covers all the combi-

nations of any two such stimuli. Since the judgments in this protocol are in terms of

preference, they can be expressed either using a binary scale, or by giving a graded

preference on a scale as shown in sub Fig. 1.15 (b).

At the end of the experiment, the individual opinion scores can be concentrated into mean

opinion scores (MOS). However, if reference images are included in the test sessions, the

difference opinion scores between the scores of the distorted images and the scores of

their corresponding references can be calculated, then the difference mean opinion scores

(DMOS) obtained [2].
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(a) (b)

Figure 1.15: (a) The structure of a trial assessment with a sequential presentation of the
two stimuli for the SC method [1]. (b) The labeled ITU graded scale for the subjective

assessment of (stereoscopic) image quality with the SC method [1].

1.8.2 Stereoscopic image quality databases

Subjective assessments are an important tool for building IQA databases, which include

images with various forms of distortions and subjective opinions for all images, whether

in form of MOS or DMOS. The past twenty years, the quality management community

has known several publicly accessible stereoscopic 3D-IQA databases. In the following,

we cite six most popular stereoscopic IQA databases:

• IRCCyN/IVC 3D [12] : The IVC 3D Image Quality Database has been estab-

lished in 2008. It is the first public-domain database on stereoscopic image quality.

Test conditions include JPEG and JPEG2000 compression as well as Blur. This

dataset contains 96 stereoscopic images and their associated subjective scores. The

resolution of these images is 512 × 512 pixels. 6 different stereoscopic images are

used in this database which is composed of 6 reference images and 16 distorted

versions of each source generated from 3 different distortion types (JPEG, JP2K,

Blur) symmetrically to the stereopair images.

• LIVE 3D phase I [82] : The phase I consists of 365 distorted stereo images with

a resolution of 640 × 360 pixels. There are eighty stereo images for each JPEG,

JPEG2000 (JP2K), White Noise (WN), and Fast Fading (FF). The remaining 45
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stereo images represent Blur distortion. All distortions are symmetric in nature.

The subjective evaluation scores are given in the term of DMOS within the range

of [-10,70].

• LIVE 3D phase II [21] : Phase II consists of 360 distorted stereoscopic images.

This database includes asymmetric and symmetric distorted stereopairs over five

types of distortion as the phase I. Specifically, 120 stereopairs are symmetrically

distorted and the rest 240 stereopairs are asymmetrically distorted. The two phases

constitute the largest and most comprehensive stereoscopic image quality database

currently available. The three publicly available datasets have been used to test

the performance of the proposed model on several different types of distortion.

Subjective evaluation scores are given within the range of [20,80] in the DMOS

term.

• Waterloo IVC 3D Phase 1 [117]: It has 330 full HD (1920 x 1080 pixels)

distorted stereo images derived from six pristine stereo images collected from the

Middlebury Stereo 2005 data sets. Three forms of distortion are present in this

database: additive white Gaussian noise, Gaussian blur, and JPEG compression.

These distortions are performed symmetrically on 180 stereoscopic images and asym-

metrically on the rest 150 stereopairs. Subjective evaluation scores are given in term

of MOS and distributed in the interval of [10,100].

• Waterloo IVC 3D Phase 2 [116]: It contains 460 full HD stereo images created

from 10 pristine stereo image pairs. The stereo images carry the same distortion

types as Phase 1, and both of them include symmetric and asymmetric distortions.

In this database, 210 stereoscopic images are distorted symmetrically, and the rest

250 stereoscopic images are distorted asymmetrically. Subjective assessment scores

are in term of MOS and the range is the same of Waterloo-P1 ([10,100]).

• MCL-3D [106]: The called MCL-3D database has 693 stereoscopic image pairs,

where 1/3 of them are of resolution 1024x728 and 2/3 are of resolution 1920x1080.

Gaussian blur, additive white noise, down-sampling blur, JPEG and JPEG-2000
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(JP2K) compression and transmission error are the distortion forms added to either

the texture image or the depth image before stereoscopic image rendering. The pair-

wise comparison was adopted in the subjective test and the Mean Opinion Score

(MOS) was computed accordingly.

It is worth noting that the asymmetric degradations in the Waterloo phase 1 and 2

databases are different from those in the LIVE phase II database. This latter uses only

one type of distortion to perform the asymmetry, while the two Waterloo databases con-

sider the possibility of multiple types of degradation in which the left and the right images

are affected by different distortions. All six of the above databases are publicly accessi-

ble. The creation of an IQA database is expensive and time-consuming, thanks to the

researchers who provided these data sets. However, there are also non publicly available

SIQA databases such as: NBU 3D I [95], MICT 3D [126], and SVBL 3D [118]. Table 5.2

summaries the discussed SIQA databases.

Table 1.2: Summary of stereoscopic IQA databases. Sym and Asym denote separately
the symmetric and asymmetric distortion. R.S refers to reference scenes, while P.A

refers to Publicly Available database.

Database R.S Resolution P.A Sym./Asym. Depth map Distortions

IVC 3D [12] 90 512 x 512 YES YES/NO NO JP2K, JPEG, Blur, down/up scaling
3D LIVE P-I [82] 20 360 x 640 YES YES/NO YES JP2K, JPEG, WN, Blur, FF
3D LIVE P-II [21] 8 360 x 640 YES YES/YES YES JP2K, JPEG, WN, Blur, FF

Waterloo IVC 3D P-I [117] 6 1080 x 1920 YES YES/YES YES JPEG, WN, Blur
Waterloo IVC 3D P-II [116] 10 1080 x 1920 YES YES/YES NO JPEG, WN, Blur

MCL-3D [106] 9 1920 x 1080 / 1024 x 728 YES YES/YES YES JP2K, JPEG, WN, Blur, DB, TR, RE
NBU 3D I [95] N.A N.A NO YES/YES NO JP2K, JPEG, WN, Blur, FF

MICT 3D IQA [126] N.A N.A NO YES/NO NO JPEG
SVBL 3D IQA [118] N.A N.A NO NO/YES NO WN, JPEG, JP2K

1.9 Objective quality assessment

Subjective experiments can convincingly assess image quality but they are usually costly,

time-consuming, and thus unsuitable for real-time application. This led researchers to

consider proposing alternative methods of measurement that could be quantitative met-

rics. Where the estimation of perceptual quality is performed automatically on computers

using algorithms. This objective assessment concept takes digital contents as input and

performs quantitative computation in order to give quality ratings. Automatic evalua-
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tion (objective evaluation) metrics offer many advantages, such as rapid assessment, low

cost. They are easy to incorporate into image processing systems/applications. For these

reasons, a significant amount of research has been devoted to the development of objec-

tive evaluation metrics. However, objective 2D and 3D stereoscopic IQA methods can be

divided into three different groups, as follows:

• Full-Reference (FR) IQA: This group of methods utilize the reference signal, Such

metrics compare the pristine stereoscopic image with its distorted version. The main

disadvantage of this group is that in practical applications the reference is often not

accessible.

• Reduced-Reference (RR) IQA: This type of methods use only partial information

of the reference stereoscopic image. A compromise between the two groups can be

found by using the reduced reference (RR) metrics, which integrate certain features

extracted from the reference signal for comparison.

• No-Reference (NR) IQA: Also known as blind methods, it is the most difficult for

researchers to design, since this group considers the reference stereoscopic image to

be completely unavailable.

Comparing these groups, the optimal solution in practice will be the NR metrics that can

be deployed for any application. Therefore, this thesis focuses on the NR-SIQA, as the

initial stereoscopic images are not present in most realistic circumstances.

1.9.1 Performance evaluation indexes

All quality metrics aim at close approximation of the quality as perceived by the user.

Therefore, any proposed metric quality ratings are verified with human opinion scores us-

ing comparative indexes. The Video Quality Experts Group (VQEG) [17] ITU [1, 3] have

provided guidelines of evaluation procedures and shares criteria to evaluate performance

of metrics. A critical aspect from ITU recommendation for performance evaluation that

describes the importance of mapping the predicted scores by a metric to a common scale

with the MOS scores obtained from the subjective experiment. The recommendation
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allows a simple linear mapping as well as other monotonic mapping procedures such as

third order polynomial mapping or logistic mapping. However, the logistic function [100]

is the most common mapping used by researchers in IQA field. This function is based

on five parameters (θ1, θ2, θ3, θ4 and θ5). The used logistic mapping function for the

nonlinear regression is introduced by equation 1.4.

Qmap = θ1

(
1

2
− 1

exp (θ2 (Q− θ3))

)
+ θ4Q+ θ5 (1.4)

WhereQ andQmap are the objective quality scores before and after the nonlinear mapping,

and θi (i = 1 to 5) are selected for the most excellent fit.

In the following, We define the common performance indexes for IQA metrics:

• Root Mean Squared Error (RMSE): It is the simplest indicator used to mea-

sure metrics’ accuracy. The calculation is defined as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(Qobj −Qsub)2 (1.5)

With N refers to the number of images, Qobj and Qsub are objective and subjective

scores, respectively. The higher RMSE value corresponds to worse accuracy.

• Pearson Linear Correlation Coefficient (PLCC ): The similarity between data

sets is an indicator of how well they relate to each other. The most famous indicator

of correlation in statistics is the Pearson Correlation. The PLCC shows the linear

relationship between two sets of data, where a PLCC = 1 (usually +1) represents

absolute correlation and PLCC = 0 for totally uncorrelated series. This indicator

is defined as follows:

PLCC =

∑N
i=1(Qsub(i)−Qsub)× (Qmap(i)−Qmap)√∑N

i=1(Qsub(i)−Qsub)2 ×
√∑N

i=1(Qmap(i)−Qmap)2
(1.6)

where N is the total number of stimuli in the set, Qsub is the subjective scores and

Qmap is the mapped score obtained using the function 1.4. Qsub and Qmap are the
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correspond mean values of each set.

• Spearman’s Rank-Order Correlation Coefficient (SROCC ): It is the non-

parametric version of the Pearson correlation coefficient. It is typically used either

for ordinal variables or for continuous data. SROCC = 1 refers to perfect correlation

between sets, while SROCC = 0 indicates no correlation. The formula of SROCC

is fiven as follows:

SROCC = 1− 6×
∑N

i=1 d
2
i

N(N2 − 1)
(1.7)

where di is the difference between the rank of the i-th stimulus in subjective and

objective evaluation. For example, if the i-th stimulus has the third highest Qsub

but fifth highest Qobj, di = 5− 3 = 2.

• Kendall’s Rank Order Correlation Coefficient (KROCC ): Another measure

used to measure the ordinal association between two measured quantities. To com-

pute KROCC, the order of each pair of stimuli in the set N after both subjective

and objective evaluation is checked. If the order in terms of Qsub and Qobj agrees,

the pair is considered concordant. In the opposite case, the pair is discordant. The

following formula is used:

KROCC =
Nc −Nd

N

2
(N2 − 1)

(1.8)

where Nc and Nd are the numbers of concordant and discordant pairs in the set,

respectively.

Overall, the PLCC and RMSE assess the metric prediction accuracy while SROCC eval-

uates the prediction notability degree. Higher values for PLCC, SROCC (close to 1) and

lower values for RMSE (close to 0) indicate superior linear rank-order correlation and

better precision with respect to human quality judgments, respectively. For a perfect

match between the objective and subjective scores, PLCC = SROCC = KROCC = 1 and

RMSE = 0.

More recently, a statistic indicator called T-test is being utilized for statistical performance
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comparison between the IQA metrics [91]. It questions whether the difference between the

groups represents a true difference in the study or if it is likely a meaningless statistical

difference, where 1 indicates that the groups are statistically different and 0 indicates that

the groups are statistically similar.

The T-test analysis is based on calculating the Fisher z-transform value of the correlation

coefficient (e.i PLCC, SROCC) as:

Fz =
1

2
ln(

1 + C

1− C
) = arctan(C) (1.9)

With C is the correlation coefficient. For instance, when comparing two PLCC values with

their Fisher z-transform values Fz1 and Fz2, the hypothesis testing approach is employed

in order to determine the significance of the difference. Hypothesis H0 assumes that the

two coefficients are not different. The alternative hypothesis H1 assumes that there is a

significant difference between the PLCC values but does not discriminate which one is

better. Then, the T value is calculated as follows:

T =
Fz1 − Fz2 − σ(Fz1−Fz2)

µ(Fz1−Fz2)
(1.10)

Since H0 assumes no difference, µ(Fz1−Fz2) = 0 and σ(Fz1−Fz2) =
√
σ2
z1 + σ2

z2. The T value

is then compared to the 95% t-Student value for two-tailed test with N degrees of freedom.

If it is larger, the H0 can be rejected since the statistically significant difference between

the PLCC values has been found. In the opposite case, the hypothesis cannot be rejected.

1.9.2 Objective IQA metrics applications

The 2D/Stereoscopic IQA metrcis can be used to evaluate/optimize the efficiency of

2D/3D processing algorithms/systems (e.g., compression, enhancement). The aim of IQA

is to measure automatically the perceived content quality, which is likely to be degraded

in different ways. Therefore, a valid IQA approach can evaluate the perceived quality

that is highly associated with human quality assessments like the DMOS/MOS.

In many image processing systems/algorithms, there are certain parameters that need to
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be determined by users to yield the best results. This is often a difficult task for naive

users as the best values may be image dependent. A good 2D/stereo IQA measure could

be a useful tool to help decide on these parameters automatically. This is illustrated in

Fig. 1.16, where depending on the application, either NR, RR, or FR 2D/stereo IQA

measures could be employed to create the feedback control signal. For instance, in the

case of image enhancement, the NR approach may be used and only the image obtained

at the output end is allowed for quality computation. In image coding applications such

watermarking/compression, a FR 2D/stereo IQA approach could be used that requires

both decoded image from the output end and the original reference 2D/stereo image from

the input (referred by the dashed line).

Figure 1.16: Diagram of IQA metric based feedback-optimization.

A special feature of many 2D/stereo IQA metrics that are often ignored by researchers is

that they not only have quality ratings, but also produce quality maps that show local

quality differences across the picture space. These quality maps can help to identify where

in the image the enhancement yield the most improvement.

1.10 Conclusion

Estimation of the stereoscopic image quality is the key factor in design and optimization

of 3D visual content system/algorithm. For that, measuring the quality of such content

is crucial. Compared to subjective quality assessment, objective estimation is important

nowadays for the advantages that offers and for the continues increasing amount of stereo

images.
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In this chapter we gave an overview on human visual system as well as digital stereoscopic

imaging system. Afterward, we identified and described the most common artefacts which

could affect a 3D stereoscopic contents. We have also shown that the effect of these

distortions on 2D images and stereo-pair images is not the same due to the concealed

depth information in the stereoscopic image. In the next chapter, we will introduce a

state-of-the-art quality evaluation metrics designed for stereoscopic images.



Chapter 2

Background and Related work

2.1 Introduction

In stereoscopic 3D multimedia systems, visual quality is the main factor that affects the

overall quality of experience (QoE) of users. Therefore, the interest in objective SIQA has

been growing at an accelerated pace over the past decade. In order to view the attention

of stereoscopic image quality over the last twenty years. On Google scholar search engine,

we use two keywords to find the number of articles accessible online. Fig. 2.1 shows the

growth of scientific articles that mention stereoscopic image quality assessment.

The latest progress on developing automatic SIQA methods may involves multidisciplinary

topic. This new progress in both theoretical development and novel techniques appears to

be a converging point from a wide range of research directions: computer vision; machine

learning; visual system; neural physiology and so forth. While the field of objective SIQA

is still evolving rapidly, a novel and better SIQA metrics will continue to emerge in the

coming years.

The goal of this chapter is to introduce the different metrics available for stereoscopic

3D images analysis, and provide a framework that can be used as a starting point for

those who are interested in developing their own stereoscopic image quality metrics. In

particular, we discuss the basic principles of machine learning techniques deployed in IQA

domain. Then, we address the state-of-the art SIQA metrics. It is important to mention

that this chapter does not provide a complete overview of all the available stereoscopic im-

37



38 Chapter 2. Background and Related work

age quality assessment techniques, but instead focuses on the state-of-the-art techniques.

It also provides common guidelines on how image quality assessment metrics can be made.

Figure 2.1: Search results at specific periods using Google scholar for the keywords:
stereoscopic image, stereoscopic image quality assessment.

2.2 Principles of Machine learning algorithms

With the rise of machine learning algorithms, many of them have been adopted in IQA

field of research to propose new state-of-the-art metrics. Among several machine learning

techniques, we discuss the most deployed for 2D/Stereoscopic IQA approaches in the

following subsections.

2.2.1 Types of machine learning algorithms

The types of machine learning algorithms are mainly divided into four categories: Su-

pervised learning, Un-supervised learning, Semi-supervised learning, and Reinforcement

learning.

• Supervised: In machine learning supervised learning is the most common paradigm.

It is the simplest to grasp and the easiest to execute. It is designed to learn by ex-

amples. The data in supervised learning algorithm is composed of inputs combined
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with the right outputs. The algorithm can look for patterns in the data during

training and form a correspond model. The goal this model is to predict the cor-

rect label for newly presented input data. A supervised learning algorithm can be

written in its most simple form, simply as: y = f(x), where x is the input, y the

predicted output, and f the complex function of the model usually referred as black

box.

• Un-supervised: non-supervised learning algorithms can distinguish patterns in data

sets containing data points that are neither classified nor labeled. In other words,

allow the machine to self-identify patterns within data sets. The most common form

of unsupervised learning is clustering which is the process of organizing objects into

groups whose members are in some way identical.

• Semi-supervised: Semi-supervised learning falls between unsupervised learning and

supervised learning. It is a special instance of weak supervision. Generally, the

learning algorithms combines a small amount of labeled data with a large amount

of unlabeled data during training. This method can make predictions more accurate

than unsupervised and is the most commonly used method. For instance, if there

are 1000 photos, 100 of them which are labeled. Through the characteristics of these

100 photos, the machine identifies and classifies the remaining photos. Because there

is already a basis for identification.

• Reinforcement: This type is where the machine uses observations gathered from the

interaction with the environment to take actions that would maximize the reward

or minimize the risk. Reinforcement Learning focuses specifically on letting models

learn from mistakes. It is about learning what to do and how to map circumstances

to actions. The end goal is to optimize the importance of the incentive signal.

Among the four types mentioned above, when labeled data is available, supervised learning

is often the best solution for both classification and regression problems. Therefore it is the

common type for IQA metric designs. In particular for NR metrics, where learning-based

regression techniques are deployed (e.g., Support Vector Regression (SVR) [31], Gaussian
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Process Regression (GPR) [75], Artificial Neural Network (ANN) [107], and Random

Forest (RF) [67]). However, we discuss in the following subsections the most supervised

learning techniques that are being deployed for 2D/Stereoscopic IQA approaches.

2.2.2 Support vector machine

Support Vector Machine (SVM) is a supervised machine learning algorithm that mainly

used for classification problems [111]. But it can also solve regression tasks such image

quality evaluation (e.g. SVR). There are two forms of SVRs, depending on the data inputs

for the model: linear or non-linear model. However, the problem of regression is to find

a function f(x) that approximates mapping from an input xi domain to real numbers yi

on the basis of a training sample. Therefore during training, SVR algorithm tries to fit

the best line within a predefined threshold error value ε as shown in Fig. 2.2. Where any

error is permissible as long as it is less than ε.

Figure 2.2: Linear SVR example using random dataset.

SVR creates two boundary lines (represented by green line) with the help of best fit line,

the hyperplane (represented by doted green line) that has a maximum number of points.

Where both the boundary lines are at equal distance (epsilon) from the hyperplane. For

the hyperplane f(x) = W.x+ b, where W refers to weights vector and b is constant to be

defined. With C a deviation parameter of the error ε, do the following:
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MIN :
1

2
‖ W ‖2 +C

N∑
i=1

|ξi + ξ∗i | (2.1)

With constraints : yi −W.xi − b ≤ ε and W.xi + b− yi ≤ ε

For the nonlinear case, the model follows the same steps as in the linear case. However,

a change of space for the xi data is required. A kernel functions are used to transform

the data into a higher dimensional feature space to make it possible to perform the linear

separation.

2.2.3 Artificial Neural Networks

Artificial Neural Network (ANN) is biologically-inspired network of artificial neurons de-

signed to perform particular functions. It is based on a series of linked units or nodes

called neurons, each connection will send a signal to other neurons. These nodes are then

used to create layers which together form ANNs [129]. The ANN models have different

forms and sizes, but they often include three kind of layers (e.g input, hidden, and output

layer). However, ANNs can be deployed for both regression and classification problems,

where this form of model has been adopted by several 2D/Stereoscopic IQA metrics.

Figure 2.3: Single artificial neuron diagram.

Nearly all artificial neurons can be described by the diagram in Fig. 2.3. For each

neuron, the input is multiplied by a weight associated with the connection and then each

weighted input is summed before being passed into an activation function. Described by
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the following:

yj = ϕ(netj) where : netj =
n∑
1

(xn.wnj) + bj (2.2)

Where X = [x1...xn] is the input vector. Wj = [w1j...wnj] is a weight vector and bj refers

to a bias value. The activation function ϕ may changes from model to model. For the

simplest activation function, the output yj of jth neuron is set as one if the sum of the

weighted inputs netj is greater than an internal threshold θj or set to zero otherwise.

To use an artificial neural network, it must first be trained for a specific task. The weight

vector and bias value are adjusted during training process for each neuron in the network.

There are several training approaches for artificial neural networks found in the literature

and each has its own advantages and drawbacks for certain tasks. However, the most

popular training methods are Back Propagation [48], Restricted Boltzmann Machines

[65].

2.2.4 Convolutional Neural Networks

Convolutional neural networks also known as CNNs [6], are widely used for visual imaging

quality. They are a specific type of ANNs that are generally composed of the following

layers:

• Convolution layer: The convolution layer (CONV) uses filters that perform convo-

lution operations as it is scanning the input image with respect to its dimensions.

The parameters of this layer include: the number of filters, size of filters, stride.

The resulting output is called feature map or activation map.

• Pooling layer: The pooling layer (POOL) is a down-sampling operation, typically

applied after a convolution layer, which does some spatial invariance. After choos-

ing pooling kernel and stride, max or average pooling can be applied where the

maximum and average value is taken, respectively.

• Fully connected layer (FC): The fully connected layer (FC) operates on a flattened

input where each input is connected to all neurons. If present, FC layers are usually
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found towards the end of CNN architectures and can be used to optimize objectives

such as class scores.

Figure 2.4: Convolution neural network using single layer

An example of CNN model is shown in Fig. 2.4 using each of the layers above. However,

CNN architectures mostly include more layers that make the model deeper. With the help

of an input and output layers and training algorithm, providing labeled images allow the

filters of convolution layer to be learned during the training phase. After the training, the

CNN model is fitted on a specific task according to the data. The model is then deployed

for prediction on new data rather than the training one.

2.2.5 Convolutional Encoder-Decoder Networks

Encoder-Decoder is a machine learning technique that compresses the input into a feature

vector called latent-space representation, and then reconstructs the output from this rep-

resentation. A convolutional Encoder-Decoder network is a specific type of this technique,

where it aims to get latent-space vector from an input 2D image/map using encoder, then

using the latent-space vector as input for a decoder, it generates (same or different) im-

age/map. The convolutional Encoder-Decoder is used for various different applications

such as image segmentation, disparity map estimation, generative models and so forth.

Also, it has been utilized recently in IQA domain. However, as shown in Fig. 2.5 two

parts of this kind of network can be simply defined as:

• Encoder: This is the part of the network that compresses the input into a latent-

space representation. It can be represented by an encoding function h = f(x).
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• Decoder: This part aims to construct an image/map output from the input latent

space representation. It can be represented by a decoding function y = g(h).

Figure 2.5: Architecture of an Encoder-Decoder network

The model as a whole can thus be described by the function g(f(x)) = y. The training

process aims to define the weights of this model (e.g encoder and decoder convolution

network weights). However, this technique can be used in the IQA domain to extract

relative quality features, reduce feature dimensionality, generate distortion maps, and so

on [29].

2.3 Concept types of SIQA metrics

Most SIQA approaches, regardless of their core concept, have three major phases as

shown in Fig. 2.6. The first phase is to preprocess the stereoscopic image data in or-

der to extract valuable and efficient information as easily as possible. This phase may

include filtering, color conversion, domain transform, normalization, scaling and so on.

The second and most important phase is the feature extraction/learning process, which

involves either manual/handcrafted or automated feature extraction. The handcrafted

features are fitted using machine learning-based regression (e.g., SVR, ANN, KNN and so

forth) while the automatic features are extracted and controlled by an end-to-end (deep

learning) prediction models (e.g. CNN, Encoder-Decoder-CNN, ...etc). There are two

choices for quality features: global or local features. Global features describe the scene as

a whole (e.g Histogram Oriented Gradients (HOG) [27], contour representations, shape

descriptors, and texture features) to the generalize the entire scene while the local features

describe a patches from the scene (SIFT [70], SURF [11] features). The final phase is to
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compute the quality score based on the learned/regression model with or without the use

of human opinion ratings MOS or DMOS values (i.e., supervised or unsupervised models).

Figure 2.6: The most followed three phases of SIQA metrics.

Several concepts can be followed to design SIQA metric such as HVS models, Natural

Scene Statistics (NSS) computation models, and depth based models. The design of re-

cent 2D/Stereoscopic IQA metrics usually incorporate machine learning techniques as

discussed in previous section. While some of the proposed 2D/Stereoscopic IQA metrics,

mainly older ones did not deploy machine learning algorithms. Therefore, the SIQA de-

signs can be classified into two classes. The first design directly applies the 2D QA models

to the SIQA problem by simply calculating the mean quality predicted of left and right

views. The second class take disparity/depth information into account while designing

the metric. However, many researches support that the quality of 3D contents are not

deduced accurately from the average of the two views quality scores [97].

The human observer is the ultimate receiver of stereoscopic contents. Therefore, the

research focus is shifting towards developing SIQA methods which exploit knowledge

about the HVS rather than only using quality factors such as contrast, luminance, distor-

tions...etc. The use of deep learning techniques also seems to be as a promising direction

in the future. It can lead us toward a third class of SIQA metrics where they do not

necessarily rely on explicit models but on data-driven approaches that allow end-to-end

optimization. For instance, authors in [131] The authors defined the architecture of a

CNN model and tuned its parameters for 2D IQA before deploying it for SIQA, where

left view, right view, and difference were given as inputs. In the following subsections, we

address the state-of-the-art SIQA metrics by their type of concept.
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2.3.1 2D IQA metrics

Perceived stereoscopic image quality can be obtained by standard quality metrics for 2D

images. These metrics are extended to stereoscopic 3D imaging systems, without using

the additional advantage of stereoscopic depth. The earliest and most widely used FR

2D IQA metrics are the mean square error (MSE) and peak-signal-to-noise-ratio (PSNR),

which simply quantify the difference between the reference Ir and the distorted Id images,

respectively. PSNR and MSE are respectively defined as follows:

MSE =
1

N

N∑
n=1

‖ Ir − Id ‖2, (2.3)

PSNR = 10 · log10 ·
P 2
max

MSE
(2.4)

where N denotes the pixels number, and Pmax is the maximum pixel value of the reference

image. Although PSNR is still widely used, it has a poor correlation with the human

judgment of quality due to lack of consideration of the HVS properties. A number of

objective 2D IQA measures have come after and showed consistent performance that

outperforms MSE and PSNR in terms of correlations with subjective quality evaluations.

For example, Wang et al proposed the Universal Quality Index (UQI) metric that is

defined as:

UQI(Ir, Id) =
1

M

M∑
n=1

UQImap(Ir, Id),

= l(Ir, Id)× c(Ir, Id)× s(Ir, Id)

(2.5)

where M is the number of local windows with size 8 x 8 .While l(.), c(.), and s(.) refer

to luminance, contrast, and structural/correlation similarities between Ir and Id, respec-

tively, given as follows:

l(Ir, Id) =
2µrµd + C1

µ2
r + µ2

d + C1

,

c(Ir, Id) =
2σrσd + C2

σ2
r + σ2

d + C2

,

s(Ir, Id) =
σrd
σrσd

(2.6)
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Whereas µr and σr denote the average and variance of Ir respectively, and σrd is the

covariance of Ir and Id. While C1 and C2 are constants to avoid zero value in the de-

nominator. Wang et al [120] followed the idea of UQI [119] and developed a structural

similarity (SSIM) index, assuming that the HVS is sensitive to the structural information

of a scene. In fact, SSIM highlighted the importance of HVS properties for the design of

IQA metrics. Based on this finding, various accurate 2D IQA models have been proposed

over the last decade.

Generally, all 2D IQA metrics can be enhanced to stereoscopic images. These 2D-extended

metrics usually extract feature vectors separately for the left and right images. They

are weight-averaged to obtain the final feature vector for training. In the meanwhile,

other improved 2D IQA metrics tend to use the disparity/depth map either by adding

it in the feature extraction process or by incorporating it into the original design. For

instance, Gorley et al. [45] did not use or measure disparity/depth information. They

compute quality scores on matched feature points delivered by SIFT (Scale-Invariant

Feature Transform) [70] and RANSAC (RANdom Sample Consensus) [40] applied to the

left and right views. SIFT and RANSAC are considered the most efficient algorithms for

extracting and matching features. However, the overall results of these extended metrics

are not as good as for 2D images, which motivates to have metrics dealing with 3D

perception.

2.3.2 SIQA metrics based on depth perception

Depth information has direct influence on stereoscopic image quality as discussed in pre-

vious chapter (section 1.6). Therefore, several existing SIQA metrics are based on depth

map or have incorporated this information in the design of the model. Fig. 2.7 shows the

basic workflow of SIQA metrics that adopt disparity/depth information. The dashed line

in the figure refers to an additional inputs that the metrics may take.

For example, Akhter et al. [5] have designed a no-reference stereo IQA algorithm. Based

on the assumption that the visual distortion and disparity of any stereoscopic display is

highly reliant on local features, such as edge (non-plane) and non-edge (plane) regions.
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They extracted a combination of features from disparity map and stereo image pairs.

Benoit et al. [12] proposed a FR SIQA from 2D IQA enhanced metrics using dispar-

ity information. The proposed metric relies on SSIM and C4 [19] metrics. Where both

these 2D IQA methods are based on the comparison between the structural information

extracted from the distorted and the original images. The authors then added the Euclid-

ian distance between distorted and original disparity maps for comparison. A similar FR

SIQA has been suggested by You et al. [130]. They used a variety of 2D IQA models for

stereoscopic images and tried to combine the predicted quality scores from both disparity

map and stereo pair. The authors of [45, 50] proposed a PSNR-based stereo IQA metrics.

While Hewage et al. [50] computed the edges from the disparity map, then PSNR has

been used between the pristine and test edge maps to predict the quality.

Figure 2.7: The basic workflow of SIQA metrics based on disparity/depth map. The
dashed line denotes optional inputs.

Overall, the results obtained of the above-mentioned metrics and their ablation analysis

have showed the benefits of the disparity/depth map, where the workflow takes into

account the depth perception.

2.3.3 SIQA metrics based on naturalness

Higher level assessment concepts such as naturalness and viewing experience are pro-

posed that are sensitive to both image quality and stereoscopic depth. This high level
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3D quality evaluation models are constructed in which the quality is related to viewing

experience and naturalness terms. NSS model assumes that natural scenes possess certain

regular statistical properties and is widely used in NR SIQA metrics. Fig. 2.8 shows the

basic workflow of SIQA metrics that adopt naturalness information. The dashed line in

the figure refers to an additional inputs that the metrics may take. Several existing NR

SIQA metrics extract NSS-based features and then deploy machine learning technique for

quality score prediction. The NSS-based features are obtained from studying the varia-

tion of image statistics, which are characterized by the fitting parameters of NSS model,

across different distortions. However, distortions not only change the stereoscopic image

statistics, but also disturb the statistical regularity held by natural ones. The NSS-based

features is therefore closely associated to quality and even can be used to detect the type

of distortion. Furthermore, research has shown that the added benefit of stereoscopic

depth is integrated substantially more by naturalness.

This 3D image quality evaluation concept is therefore widely adopted and has proven

to be reliable in SIQA algorithms. For example, Moorthy et al in [83] improved their

blind 2D IQA method for stereoscopic images. Their design includes distortion detection,

followed by distortion-specific quality evaluation using NSS features. The performance

indicated superiority of the method compared to PSNR and statistically equivalent to the

popular SSIM. While Su et al. [109] built a NR SIQA framework. They synthesized a

HVS viewing model and then they extracted bivariate and generalized univariate NSS as

features. More NSS-based framework has been conducted by Appina et al [7]. Authors

utilized a bivariate generalized Gaussian distribution (BGGD) model to fit the distribution

of luminance and disparity coefficients. Then, a fitting parameters have been used as final

quality-aware features. Lv et al [71] also developed a NR stereo IQA metric. Their scheme

computes binocular self-similarity and binocular integration using NSS features. Overall

performance results of theses NR SIQA metrics classify naturalness as an appropriate

concept to evaluate the quality of stereoscopic images.
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Figure 2.8: The basic workflow of SIQA metrics based on NSS quality feature. The
dashed line denotes optional inputs.

2.3.4 SIQA metrics based on Human visual system modeling

The accurate measurement of visual quality as it is perceived by humans is crucial for any

visual communication or computing system in which humans are the ultimate receivers.

Traditional HVS approaches to visual quality estimation were based on characteristics

that human take the most for judgment such as scene structure, sharpness, luminane,

contrast and so forth. These former models consider HVS as black box and tend to op-

timize quality features related to HVS. While the recent HVS based SIQA models try to

simulate or mimic the binocular vision processing of human, they translate the HVS to

mathematical model that takes left and right view as inputs. Fig. 2.9 shows the basic

workflow of SIQA metrics that adopt HVS modeling. The dashed line in the figure refers

to an additional inputs that the metrics may take. However, the HVS is a complex visual

process and still an open question for researchers. For this challenging problem, many

researchers have used fusion hypothesizes of the perceived left and right eye signals called

cyclopean view.

A cyclopean image/view is a single mental representation of a scene generated by the

brain after integrating two images obtained by both eyes. The conceptual mechanism
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that generates the cyclopean image is critical for stereo vision. It is logical way to solve

the problem of HVS simulation for SIQA designs. Where, hypothetically the quality esti-

mation is done over the merged single view created in the human brain (e.g the cyclopean

image). The majority of the cyclopean image used in SIQA designs are constructed based

on endowing weights inspired from Levelt et .al [66]. In fact, Levelt et .al have avoided

computing cyclopean image. But they were the first researchers to come up with the idea

of assigning weights to left and right views of stereoscopic scenes in order to account for

binocular rivalry. Where the model is given as follows:

Q = WLQL +WRQR (2.7)

where QL and QR are the quality of the left and right views, and Q is the quality score

of the stereoscopic image. The weights are usually normalized, it is ensured that:

WL +WR = 1 (2.8)

This simple model, however, is still in use because it shows not only simplicity, but also

the possibilities that can be taken. For example, several SIQA metrics have replaced the

quality scores QL and QR with left IL and right IR, respectively, to construct a cyclo-

pean image. While the weights also depends on the ideas of algorithm designers, but

most of them are based on filtering (e.g., Gaussian, Gabor, Laplacian of Gaussian,...etc),

local/global energy estimation, information entropy models, and so on. In which these

weights are accomplished under the guidance of binocular fusion that considers binocular

rivalry phenomenon.

A significant amount of articles have been published into how the visual system receives

the signals perceived by the two eyes, and these studies are currently being used to solve

the SIQA problem. For instance, a novel FR SIQA metric called binocular energy quality

metric (BEQM) has been proposed by Bensalma et al [13]. It estimates the quality by

computing the binocular energy difference between the original and distorted stereopairs
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taking into account the fusion process of the human perception. The basic idea is to con-

struct a model that can replicate the binocular signal produced by simple and complex

cells, as well as estimate the related binocular energy. However, the method has shown

high correlation with the human judgement. Chen et al. [21] proposed a FR quality

assessment model that utilized the linear expression of cyclopean view [66] influenced by

binocular suppression/rivalry between left and right views. An extended version of this

framework has been used to create a NR model using natural scene statistics features

extracted from stereoscopic image pairs [22].

In [24], the author has also used the cyclopean image hypothesis and proposed an FR

SIQA metric using a 2D FR-IQA fusion. In [46], another FR metric has adopted HVS

modeling for stereoscopic images. Where they used Binocular Just Noticeable Difference

(BJND) [133] approach to model the binocular rivalry theory. Fang et al. [35]. proposed

an unsupervised blind model for stereoscopic images. From the monocular and cyclo-

pean view patches, they extracted various quality-aware features in spatial and frequency

domains. Then, Bhattacharyya-like distance has been used to produce a quality score.

Furthermore, another referenceless SIQA method proposed in [135] that simulated the

main functional structure of binocular vision. Then, a dictionary learning based on log-

Gabor filter is used to extract features and k-nearest-neighbors (KNN) has been deployed

to map the quality score.
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Figure 2.9: The basic workflow of SIQA metrics based on HVS modeling. The dashed
line denotes optional inputs.

2.4 Recent SIQA metrics: State-of-the-art

Nowadays, researchers who work on stereoscopic IQA are increasingly relying on NR

metrics due to the advantages they offer. It is worth noting that, regardless of their

concept, the previously mentioned SIQA methods differ in their approach of extracting

quality-aware features, but they all use learning algorithms to create a nonlinear mapping

from automated or handcrafted quality features to subjective quality scores. The learning

mechanisms also may differ from metric to another, but the success is heavily reliant on

the extracted quality features. Another success factor is simulating the quality assessment

behavior of the HVS during binocular vision. Whereas the latter is still in its early stages.

However, in the following, we briefly address the recent suggested FR, RR, and NR SIQA

metrics:

• FR-SIQA metrics: A full-reference metric based on binocular receptive field prop-

erties has been proposed in [99]. During the training process, the scheme tends to

learn a multi-scale dictionary from the training database. In the quality estimation

phase, they calculate a sparse feature similarity index based on the estimated sparse

coefficient vectors. This latter (e.g coefficient vectors) is built with phase and am-
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plitude differences in mind, as well as a global luminance similarity index that takes

luminance changes into account. A similar FR SIQA method was proposed in [72].

This metric is also inspired by human binocular perception, where the binocular

perceptual properties of simple and complex cells are simulated. For simple cells

simulation, which is assumed to represent a monocular cue, the authors have used a

push–pull combination of receptive fields response. While complex cells, which are

used to represent a binocular cue, are simulated by using binocular energy response

and binocular rivalry response. Following the simulation phase, quality-aware char-

acteristics are extracted from the responses using a self-weighted histogram, and

similarity measurement is used to determine the quality score. Furthermore, an-

other recent metric based on monocular and binocular visual features is presented

in [102]. First, the authors suggested a segmentation strategy to find occluded and

non-occluded areas in the scene by using disparity information and Euclidean dis-

tance between stereo pairs. The occluded regions are considered to represent the

monocular vision while non-occluded regions to reveal the binocular vision of the

HVS. Global and local features are then extracted from the regions and used to

predict the visual quality.

• RR-SIQA metrics: A metric is presented in [89] by using binocular perceptual in-

formation. This latter is represented by the distribution statistics of visual primitives

in left and right images, which are extracted by sparse coding and representation.

Authors in [74] have characterized the statistical properties of stereoscopic images

in the reorganized Discrete Cosine Transform (RDCT) domain to perform an RR-

SIQA. In [73], an RR-SIQA method based on NSS and structural degradation has

been also proposed.

• NR-SIQA metrics: Researchers are becoming more interested in reference-less/blind

SIQA metrics. In [25], the authors proposed a new NR SIQA framework based on

a degradation identification and fusion steps of features. A similar NR-SIQA was

proposed in [38] where the metric scheme first classifies the distortion type before

measuring the quality, including symmetrically or asymmetrically distortion cases.
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In [68], the authors have explored Singular value decomposition (SVD) computa-

tion tool for NR-SIQA metric. Whereas the findings demonstrated the impact of

different distortions to the scene’s structure, which are expressed by variations in

singular values. They first use SVD on the left and right views to obtain singular

values and singular vectors, and then extract energy and structure distributions as

quality features from the singular values and singular vectors. More recently, an

advanced NSS-based features and complex combination were used to develop mod-

ern NR SIQA metrics. For example, Karimi et al. [57] combined statistical features

derived from a synthesized phase/shift and contrast images.

While Deep convolutional network predictors also have being used. For example

in [87], a local patches are extracted and then combined to obtain global features

using an aggregation layer in the network. In [128], the authors have considered the

deep perception map and binocular weight model to predict the perceived stereo

image quality. Meanwhile, Zhou et al. have suggested a NR-SIQA metric called

StereoQA-Net [134] using a novel end-to-end dual convolutional network. Another

recent NR-SIQA metrics have been proposed that utilize deep learning technique.

For instance, authors in [101] have used deep sub-networks in a single model to

extract primary, local, and global features from the input left and right image.

These features are eventually concatenated for quality score regression. Another

end-to-end deep learning based NR-SIQA metric proposed in [85], the authors have

used Siamese architecture, where the model consists of two CNN models in parallel

to each other, which have the same structure and share the weights. As previously

stated, the encoder-decoder technique could also be used for SIQA metrics. For

instance, authors in [127] have modeled the human visual cortex using the deep

auto-encoder. Xu et al. [124] have simulated our human brain cognition process to

propose NR-SIQA metric using the deep encoder-decoder network. Meanwhile in

[56], the authors have optimized feature evolution and nonlinear feature mapping

by using encoder-decoder model, where NSS-based features were extracted from a

synthesised cyclopean image, left and right views.
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Meanwhile, authors in [110], deployed saliency information to determine salient

and non-salient patches for local features extraction. The authors used reference

stereoscopic images to compute local quality maps. These maps are then used as

labels to train deep networks. Another work that takes onto account this type

of information in [20], where visual saliency, local magnitude, and local phase are

extracted from the stereo image as basic feature vectors, which is then utilized

for learning the quality assessment. Image segmentation technique also has been

deployed for NR-SIQA methods. Where in [69] a superpixel segmentation is used

based on K-mean clustering approach [4]. Then, from these superpixel regions,

a spatial entropy and NSS features are extracted to obtain quality ratings using

regression model.

In the literature, the popularity of NR-SIQA metrics is growing in comparison to the

number of FR and RR SIQA metrics, we also notice that only a few RR-SIQA metrics

have been proposed. The performance of some of the above metrics is inconsistent with

asymmetric distortions. Whereas the design of these metrics does not consider binocular

rivalry/suppression nor HVS modeling. However, the current scope of SIQA metrics is

toward HVS design concept as well as using deep learning techniques. Where this ML

techniques known for its ease of use and provides promising results, while the metrics

that adopt HVS modeling perform better on asymmetric distortion. Despite the fact

that many deep learning based SIQA models have achieved outstanding performance

on particular SIQA datasets, there are several limitations and problems with real-world

implementations, such as: involves heavy computation, is sensitive to pixel attacks, has

fixed parameters (e.g image input size), and so on. In addition, in most of the suggested

SIQA approaches the human visual attention (e.g saliency information) is not explored.

The NR-SIQA is still in its early development phase. In the following chapters, we aim

to suggest NR SIQA metrics that address the stated drawbacks.
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2.5 Conclusion

Since stereoscopic artifacts yield not only visually unpleasant results, but also visual

fatigue or pain, the growing amount of stereoscopic 3D content calls for the development

of novel reliable stereoscopic IQA metrics to assure good experience for the users. The

majority of SIQA metrics in the literature have been developed using machine learning

techniques (e.i SVR, CNN ...etc) since they provide good outcomes and ease of use.

However, an ideal quality metric should have the following properties:

• 1) Perceptual : mimics the HVS perceptual mechanism.

• 2) Objective accuracy : provide a numerical representation of the quality as per-

ceived by the observers.

• 3) Reliability : provide perceptual quality prediction for wide variety of content, as

perceived by a large amount of observers.



Chapter 3

Contributions based on handcrafted

quality feature extraction and HVS

modeling

3.1 Introduction

The 2D IQA has progressed significantly in recent years, while stereoscopic IQA is still

in its early stage. One of the main aspects in stereoscopic images is assuring a good 3D

viewing experience for users. Therefore, an accurate and dependable IQA metrics for

stereoscopic content must be created. To accomplish this, we present two approaches

for stereoscopic images in this chapter, based on handcrafted quality features and HVS

modeling. The first method is for measuring quality [78, 81], while the second is for

recognizing distortion types [80].

58
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3.2 1st approach: NR-SIQA based on AdaBoost neu-

ral network and cyclopean view

3.2.1 Approach overview

In order to design a model that can assess the quality of stereoscopic images, research on

human binocular perception is required. The hypothesis of cyclopean image is therefore

used with consideration of binocular suppression. Metrics that use this hypothesis, such

as the FR stereo IQA model in [21], have achieved good performance.

The artificial neural network models are widely used for regression and classification [61]

along with Back-Propagation (BP) algorithm for training. The proposed model includes

an Adaptive Boosting (AdaBoost) technique using with ANN as learners. This techniques

has showed robustness and good generalization performances in various applications.

Motivated by these ideas we develop a new NR quality predictor model for stereoscopic im-

ages. In summary, the model involves three steps: first, a cyclopean image is constructed

using Gabor filter responses and disparity map. In a second step, gradient characteristics

of the cyclopean image and the disparity map are extracted. Finally, to predict a quality

score based on feature learning, the AdaBoost algorithm combined to artificial neural

network has been used.

3.2.2 Disparity map computation

The disparity information has proven to be a strong effective factor for stereo images

and videos quality. Therefore, it is a necessary information for assessing the quality of

the stereo content. Intensive research has been conducted on the design of stereo match-

ing algorithms (disparity estimation). However, there is no agreement, on the type of

stereo matching algorithm to be used in stereo IQA, except for those with low complex-

ity. Therefore, a stereo matching model with balanced complexity and performance is

deployed.
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The chosen algorithm is called SSIM-based stereo. It is an improved version of Sum of

Absolute Differences SAD stereo matching algorithm [84]. The modification consists in

replacing SAD by SSIM in computing disparities. SSIM [120] scores are used to select

the best matches. This is done by maximizing the SSIM scores between the current block

from left image and right image blocks along the horizontal direction. The maximum

number of pixels to be searched for is the maximum disparity. After all, the disparity

map values are the difference between the current pixel and the best SSIM location. A

7 by 7 block size has been used, while the maximum disparity distance has been set to

25. Fig. 3.1 shows an estimated disparity versus the ground-truth disparity using the

SSIM-based stereo matching algorithm.

(a) Left view (b) Right view

(c) Truth disparity (d) Estimated disparity

Figure 3.1: Top: left and right views of the stereo image. Bottom: Estimated disparity
versus the ground truth disparity.

3.2.3 Gabor filter responses

Various theories have been proposed to explain binocular rivalry. This visual phenomenon

has recently been investigated by many researchers. Binocular rivalry or suppression is

known as failure of the brain in fusing the left and right views causing fatigue or discomfort

to the viewers.

The binocular rivalry as mentioned before (first chapter) is when the two images of a
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stereo pair present different kinds or degrees of distortion. Therefore, the objective qual-

ity of the mostly viewed stereo image cannot be predicted from the average quality of the

left and right views. Levelt et al have conducted a series of experiments which clearly

demonstrate that binocular suppression or rivalry is strongly governed by low-level sensory

factors. They concluded that visual stimuli which have more contours or high contrast,

tend to dominate the rivalry. Motivated by this result, the energy of Gabor filter bank

responses on the left and right images is therefore used to simulate suppression selection

(binocular rivalry) of the cyclopean image when it is computed.

The Gabor filter bank is a band-pass filter. It extracts luminance and chromatic channels

features. The filter is related to the function of primary visual cortex cells in primates [28].

It models the frequency-oriented decomposition in primary visual cortex, and captures

energy in both space and frequency in a high localized way [39].

The used Gabor filter is as follows:

GF (x, y) =
1

2πσxσy
e
−

1

2
[(x′/σx)2+(y′/σy)2]

ei(xζx+yζy)

with

x′ = (x−mx).cos(θ) + (y −my).sin(θ)

y′ = −(x−mx).sin(θ) + (y −my).cos(θ)

(3.1)

where mx and my define center of the Gabor receptive field (mx and my are the x and y

locations of the center with respect to the original coordinate system). σx and σy are the

standard deviations of an elliptical Gaussian envelope along x′ and y′ directions, ζx and

ζy are spatial frequencies, and θ orients the filter. The design of the Gabor filter bank is

based on the work conducted by Chun et al. [108].

In visual perception study, a spatial frequency is expressed as the number of cycles per

degree of visual angle. However, in theory, the spatial frequency is that the visual cortex

operates not only on the lines and straight edges code but also on a spatial frequency

code. To support this theory, a series of experiments have been conducted by P. Issa et
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al. [55]. They studied the effect of spatial frequency on primary visual cortex reaction us-

ing cats. The authors concluded that the visual cortex neurons react even more robustly

to sine-wave gratings in their receptive fields at specific angles than they do to edges or

bars. Therefore, using a band-pass filter over multiple orientations is favorable to extract

features which the visual cortex responds to. The choice of the spatial center frequency

is inspired by the result of Schor et al. [96] who found that the stereoscopic acuity of

human vision normally falls off quickly when seeing stimuli dominated by spatial frequen-

cies lower than 2.4 cycles/degree. Based on their findings, this means that using filters

having spatial center frequencies in the range from 2.4 to 4 cycles/degree should produce

responses to which a human observer would be more sensitive. Therefore, the local energy

is estimated by summing Gabor filter magnitude responses over eight orientations at a

spatial frequency of 3.67 cycles/degree (ζx = ζy = 3.67). The standard deviations σx and

σy are set to 0.01 (σx = σy = 0.01). As an example, Fig. 3.2 shows the filter outputs on

the left and right views.

(a) Left view (b) Right view

Figure 3.2: Gabor filter responses from the left and right views.

3.2.4 Cyclopean image construction

The cyclopean image synthesis differs from the usual 2D images for the depth information

it contains. The first objective of the proposed stereo IQA algorithm is to estimate the

actual cyclopean view formed within the observer’s mind while a stereo image is supplied.

The HVS processes and combines visual signals from both eyes into a single combined

perception [15]. It is worth noting that the HVS has not been completely understood.

Therefore, the cyclopean image that is actually processed in our minds is still unclear.
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The visual signals from the two eyes are added by HVS, a process called binocular summa-

tion which enhances vision and increases the ability to detect weak objects [15]. However,

current knowledge of HVS is very modest to guide the development of a mathematical

model that perfectly simulates the process in the human brain. Therefore, a popular

choice is to replace the complex simulation by simplified mathematical models. In our

study, we use a linear model of a cyclopean image has been in order to consider the

phenomenon of binocular rivalry.

The model is as follows:

C = wlIl + wrIr (3.2)

where Il and Ir are respectively the left and right images, both wl and wr are the weighting

coefficients for the left and right eyes in which wl + wr = 1.

The energy of Gabor filter bank responses is used to compute the weights, while the

SSIM-based stereo matching algorithm is employed to create the disparity map.

The used model is:

C(x, y) = wl(x, y)× Il(x, y) + wr(x+m, y)× Ir(x+m, y) (3.3)

where the weights wl and wr are given by:

wl(x, y) =
GIl(x, y)

GIl(x, y) +GIr(x+m, y)
(3.4)

wr(x+m, y) =
GIr(x+m, y)

GIl(x, y) +GIr(x+m, y)
(3.5)

where GIl and GIr are the summation of Gabor filter magnitude responses from left and

right views respectively, and m is the disparity index that corresponds to pixels from left

image Il to those in right image Ir. The filter of the form (3.1) is used to compute the

magnitude responses over eight orientations for better accuracy. In the equation (3.1), θ

refers to the filter’s orientation degree. Table 3.1 shows the used orientation degrees.
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Table 3.1: Magnitude responses orientation degrees.

Orientation number 1 2 3 4 5 6 7 8

Orientation degree 0 22.5 45 67.5 90 112.5 135 157.5

Figure 3.3 summarizes the construction steps of the cyclopean image. While Fig. 3.4

shows an example of cyclopean image. In this example, a stereo image without distortion

has been used. (Figure 3.1, left view (a) and right view (b)).

Figure 3.3: The flowchart of the formed cyclopean image.

(a) (b) (c)

Figure 3.4: (a) Left view, (b) Right view, and (c) the synthesized cyclopean image by
the proposed framework.

Another example of cyclopean image obtained from asymmetric distorted stereoscopic

view in Fig. 3.5. The outcome cyclopean image computed from the undistorted left

image and right image that is distorted. The red boxes in figure zoom into the same

location of each view. It can be noted from the figure that the asymmetric distortion is

clearly stated in the formed cyclopean image.
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(a) (b) (c)

Figure 3.5: (a) Left image without distortion, (b) Right image JPEG distortion, (c)
cyclopean image of both images. For each view, red box is zoomed to the left for better

visualization.

3.2.5 Feature extraction

In addition to screen height and number of displayed pixels, the viewing conditions,

namely: visual angle and viewing distance also influence the stereo image quality for the

observer. However, the visual angle and viewing range are not taken into consideration

in this study. But we simulate the HVS and then focus on local pixel distortions that can

occur from necessary stereoscopic image processing.

The primary visual cortex receives visual information coming from the eyes. After reaching

the visual cortex, the human mind processes that sensory inputs and uses it to realize

the scene. Image gradients provide important visual information which are essential for

understanding the scene. Therefore, we believe that such information is important for

the human visual system to understand the scene and judge its quality. This theory is

supported by numerous FR IQA schemes based on the concept of gradient similarity.

In relation to our problem, we use gradient magnitude and orientation as quality-aware

features to evaluate the quality of stereoscopic images.

3.2.6 Gradient magnitude and orientation

Three gradient maps are produced from the cyclopean image, and disparity map using

horizontal and vertical direction derivatives, dx and dy respectively. Gaussian distribution

function is used as a kernel in a 5 by 5 mask to compute the directional gradient com-

ponents [dx(i, j), and dy(i, j)]. The mask weights are samples from 2D Gaussian function



66 Chapter 3. Handcrafted quality feature extraction and HVS modeling

which is defined as follows:

G(x, y, σ) =
1

2πσ2
e
−
x2 + y2

2σ2 (3.6)

where σ controls the amount of smoothing. If σ increases, more samples must be obtained

to represent the Gaussian function accurately. The derivatives have been computed using

central difference. In our implementation, we used a limited smoothing mask as it tends

to extract more edge information which makes the gradients more sensitive to distortions.

Thus, σ is fixed to 0.5 (σ = 0.5).

We compute for the obtained cyclopean image and disparity map, a Gradient magnitude

(GM), Relative gradient Orientation (RO), and Relative gradient Magnitude (RM) Where

the gradient magnitude is defined as:

|∇I(i, j)|GM =
√
dx(i, j)2 + dy(i, j)2 (3.7)

while the gradient orientation is given by:

6 ∇I(i, j) = arctan
dy(i, j)

dx(i, j)
(3.8)

the relative gradient orientation is defined as follows:

6 ∇I(i, j)RO = 6 ∇I(i, j)− 6 ∇I(i, j)AV (3.9)

where the local average orientation is:

6 ∇I(i, j)AV = arctan
dy(i, j)AV
dx(i, j)AV

(3.10)

while the average directional derivative over x and y is defined by:

Iγ(i, j)AV =
1

MN

∑
m,n

Iγ(i−m, j − n) (3.11)

where M and N describe the size of the patches, 3 × 3 square neighborhood has been
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chosen (M=N=3), γ refers either to the horizontal x or the vertical y direction. Finally

the relative gradient magnitude is defined by:

|∇I(i, j)|RM

=
√

(dx(i, j)− dx(i, j)AV )2 + (dy(i, j)− dy(i, j)AV )2
(3.12)

Standard deviation of each gradient histogram GM, RO, RM is computed as a final

features extraction SGM , SRO and SRM , respectively. The standard deviation is known as

the square root of variance and defined by:

S(h) =

√√√√ 1

N − 1

N∑
x=1

(h(x)− h̄)2 (3.13)

where h̄ is the sample mean of the histogram h(x) (normalized to unit sum), and N is

the number of observations in the sample.

Display resolution is important factor for judging the quality. The subjective evalua-

tion of a given stereo image varies when this factor changes. Therefore for objective

evaluation, multi-scale method is a convenient way to incorporate image details at differ-

ent resolutions. Wang et al [121] proposed a multi-scale quality assessment metric that

outperforms the single-scale SSlM [120] model. The authors compared different down-

sampling parameters results, and noted that down-sampling with a factor of 0.5 gives the

best performance. Consequently, the cyclopean image is down-sampled with a factor of

0.5 (divided by 2), considering the changes in stereo image resolution and visual condi-

tions. For example, distance from the viewer to the screen can change the size of the

formed cyclopean view in his brain. The features SGM , SRO and SRM are computed for

each scale, yielding 6 features element from the cyclopean image. The final feature vector

(F) has nine elements as follows:

F = [SGM1, SRO1, SRM1, SGM2, SRO2, SRM2,

SGMd, SROd, SRMd]

(3.14)

Figure 3.6 illustrates the computed maps GR, RM, and RO from the cyclopean image
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over five well-known distortions. It can be observed that the distortions have affected

differently the computed gradient maps GR, RM, and RO.

Figure 3.6: Examples of the constructed cyclopean image, GM, RM, and RO maps for
different type of distortions.

Figure 3.7 displays the overview process to measure the quality of stereoscopic images,

while Fig. 4.8 exhibits a 3D-plot of the extracted features over three databases. The

represented features have been extracted from the cyclopean image in scale 1. The colored

dots in the figure represent the extracted indicators in 3-dimensions. This 3D view shows

that the features dots follow the same pattern on all databases which contain stereo images

of different quality. Consequently, the extracted gradient indicators can be deployed for

assessing the quality of stereoscopic images.
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Figure 3.7: Flowchart of the proposed measure.

Figure 3.8: 3D-plot of the extracted features SGM1, SRO1, and SRM1 from the cyclopean
image using LIVE 3D phase I, phase II and IVC 3D databases.

3.2.7 Learning for image quality evaluation: AdaBoost neural

networks

Machine Learning (ML) plays an important role in the development of modern picture

quality models. Although a limited number of IQA models have used advanced ML tech-

niques such as AdaBoost [41]. The AdaBoost is an algorithm that consists in sequentially

training a new simple model based on the errors of the previous model. A weight is

assigned to each model. In the end, the whole set is combined to become an overall
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predictor. AdaBoost is one of the most useful ensemble method [10]. It can be used

in conjunction with many other types of learning algorithm usually called Weak Learn-

ers (WL). The structure of the boosting ensemble generally outperforms a single feature

learning model [93]. The boosting procedure tends to discover the examples and data

points that are hard to predict and focuses on the next model predicting these examples

better, by sequentially building a new simple model based on the errors of the previous

model.

The use of Back-Propagation neural network is powerful for good prediction. Further-

more, to improve the performance of this neural network regression model, the AdaBoost

idea has been implemented, and ANN with two hidden layers as WL has been deployed.

However, the AdaBoost neural network can be less susceptible to the over-fitting problem

than other learning algorithms. To solve this problem, 15% from training dataset has

been dedicated validation for each neural network model.

The overall flow of the AdaBoost BP neural network model that computes the predicted

output Q on a test set F is characterized as follows: First, set the quantity L of the Weak

Learners (the BP artificial neural network models). Second, train the ith ANN on the

sets Xj and Yj, and estimate the predicted output of the testing set Y pred
i,j . Afterward,

a distribution Di for the ith ANN is used for computing the evaluation error which is

defined as (initial values of D1 are set to 1):

Di+1,j = Di,j × (1 + δ.I(Yj − Y pred
i,j )) with


i = 1, .., L

j = 1, ..,M

(3.15)

The ith ANN evaluation error Erri with the corresponding distribution Di is defined as:

Erri =
M∑
j=1

| Di,j × I(Yj − Y pred
i,j ) | (3.16)
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where the function I is a binary function in which

I(x) =


1 if x > 0.2,

0 otherwise.

(3.17)

Third, assign a weight wi for the ith ANN using its error Erri. Finally, the ith ANN

predicts the quality Pi for the input F . For each ANN model, the adjusted weights and

biases are randomly initialized. Hence, it produces varied L number of WL models with

different prediction scores. Error threshold for the binary function I is set to 0.2. M is

set to the vector size dedicated for testing. j indexes the jth element in a vector whose

range is the integers between 1 and M . For instance, D1,j stands for the jth element in

the vector D1. δ is a constant multiplication factor, both of threshold and δ values are

fixed to 0.2.

A convex function is used to convert the error of each ANN into its weight, in order to

give the ANN models with a low error a high weight, and models with a high error a small

weight. ωi is the ith ANN weight, given as:

ωi =
1

eErri
(3.18)

The overall predicted measure is given by the weighted sum of the collection as:

Q =
L∑
i=1

ωi × Pi (3.19)

For the training dataset output, human scores are normalized in the form of DMOS to

min-max normalization [0,1]. Hence, the range of the predicted measure values is from 0

to 1. The closer to 0 the better quality of the stereo image is. Algorithm 1 describes the

developed AdaBoost regression algorithm.
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Algorithm 1: Adaptive Boosting (AdaBoost) regression.

1 L, F // L : the number of Weak learners (WL), F : stereo image features

vector.

2 Q // Q : the predicted quality.

Data: dataset for training and testing.

3 n←− 1; i←− 1; // Initialization.

4 Tr ← random(Data, 80%)

Te← random(Data, 20%) // Divide data randomly for training and

testing.

5 M ← size(Te) // Get the testing vectors size.

6 D1(1 : M)←− 1 // Initialize the first distributions.

7 for n = 1 : L do

8 Ttr ← random(Tr, 85%)

V tr ← random(Tr, 15%) // Holdout 15% from train set for validation.

9 WLn ← random(weights, biases)

10 Train(WLn, T tr) // Train and validate the WL.

11 Terr(1 : M)←− 0

Err ←− 0 // Reset the testing and evaluation error for each WL.

12 Terr ← Test(WLn, T e) // Compute the testing error.

13 for i = 1 : M do

14 if (Terr(i) > 0.2) then

15 Err ← Err +Dn(i) // update the distribution Dn+1(i) for next

WL and compute the evaluation error of the nth WL.

16 Dn+1(i)← Dn(i)× (1 + δ)

17 else

18 Dn+1(i)← Dn(i)

19 wn ←
1

eErr

20 Pn ← WLn(F )) // Get the prediction of the nth WL.

21 Q←−
∑L

n=1wn ∗ Pn // Compute the final quality score.



3.2. 1st approach: NR-SIQA based on AdaBoost neural network and cyclopean view 73

The AdaBoost neural network has been used to predict the stereo image quality. Taking

the handcrafted features from the disparity and cyclopean image as inputs. In the BP

neural network, nine inputs cells have been deployed as the size of the final features vector

(F) described in equation (3.14). Elements of the F vector are also mentioned in figure 6

as input elements for the ANN. Two hidden layers have been employed with nine neurons

each. The applied transfer functions are tangent sigmoid and ReLU for the first and

second hidden layers, respectively as shown in figure 3.9. A pure linear transfer function

f(x) = x has been used for a single node output layer. In hidden layers, a number of tests

have been carried out using various activation functions. The tangent sigmoid and ReLU

functions have been selected, for their best performance.

Figure 3.9: Structure of the used BP neural network.

3.2.8 Experiment protocols

The proposed approach has been tested on different databases. The obtained results have

been compared to several FR and NR stereo IQA metrics, including six FR and eight

NR stereo schemes. The standard performance assessment used in the Video Quality

Experts Group (VQEG) has been considered. Objective scores are fitted to the subjective

ones using logistic function in 1.4 previously discussed. Three widely-used performance

indicators have been chosen to benchmark the proposed metric against the relevant state-

of-the-art techniques: LCC, SROCC and RMSE. It is worth remembering that LCC and
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RMSE assess the prediction accuracy while SROCC evaluates the prediction notability

degree. Higher values for LCC and SROCC (close to 1) and lower values for RMSE (close

to 0) indicate superior linear rank-order correlation and better precision with respect to

human quality judgments, respectively. For a perfect match between the objective and

subjective scores, LCC = SROCC = 1 and RMSE = 0.

Cross-validation training and testing provides a more accurate estimate of a model per-

formance. However, several cross-validation techniques have been proposed, such as:

LOOCV- Leave one out cross-validation and K-Fold cross-validation. The K-fold tech-

nique uses all data points to contribute to an understanding of how well the model per-

forms the task of learning from some data and predicting some new data.

In order to ensure that the proposed approach is robust across content and it is governed

by quality-aware indicators, the 5-fold cross validation over the three databases has been

used. For every database, the dataset has been divided into 5 folds, where each fold

contains a 80%-train set and 20%-test set randomly selected. The overlap between the

test and the train set has been avoided to ensure that the reported results do not depend

on features derived from known spatial information, which can artificially improve the

performance. To demonstrate the generalization of the proposed metric against databases,

a cross-database tests have been conducted. For further statistical performance analysis,

a T-test scores have been computed over the correlation coefficients LCC and SROCC. In

the different tests, the correlation of the feature vector with subjective human judgment

has been studied. Complexity and time consuming of the proposed approach have been

computed as well. Finally, influence of the formed cyclopean image and disparity map

have been studied.

3.2.9 Feature vector correlation with human score

In this section, the feature vector F correlation with DMOS is evaluated. It is worth

recalling that the regression model input is a vector of nine elements, and because of

the restriction of human spatial awareness, it is hard to demonstrate the discriminative
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capacity of the characteristics in a graphical manner, such as a four-dimensional scatter

plot. Three plots are used to describe the correlation of the adopted three indicators

SGM , SRO, SRM with the human opinion score.

Three-dimensional plots are used to visually depict the relationship between stereoscopic

image quality and the three features. The extracted features are used as axes and each

stereo image corresponds to a coordinate system scatter point. All the stereoscopic images

from the LIVE 3D-I and LIVE 3D-II database are used for this demonstration. As shown

in Fig. 3.10, the plots refer to features from cyclopean image scale 1, scale 2, and disparity

map respectively from top to bottom. To differentiate the five types of distortion, we use

distinct labels and map the DMOS rating of each stereo image to the preset color-map.

The ideal scenario is that the points are well separated with distinct kinds of distortion.

It can be seen from Figure 9 that the scatter points of the five distortions are generally

distinguished. The used stereo images are distorted increasingly from low to high factor.

This can also be observed in the plots, where the adopted features vary smoothly in space

with quality correspondence. Although there is some correlation between the extracted

features, in particular SGM and SRM , where the coefficient correlation in terms of LCC is

equal to 0.751. The deployed features provide good performance, this topic is discussed

furthermore in section 3.2.13.
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Figure 3.10: Illustration of the discriminatory power of the extracted features.
Respectively from top to bottom: elements in the axis are from cyclopean image scale 1,

scale 2, and disparity. (zoom in to get the markers more discriminative).
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3.2.10 Comparison with other stereo IQA methods

The overall performance of the proposed scheme has shown good efficiency and con-

sistency. The obtained results have been compared with several full-reference and no-

reference stereo IQA metrics, including six FR, and eight NR metrics.

For the comparison purpose, two models have been created. The first model called 3D-

nnet, is a normal neural network regression model. It is equivalent to L = 1 in the

AdaBoost algorithm (Algorithm 1). The second model named 3D-AdaBoost, is a neural

network combined with the AdaBoost technique as previously demonstrated, where 20

neural network models have been employed (L = 20). We find that the performance

of the proposed measure is improved by using additional neural network models (Weak

Learners) with saturation at a certain number and decreasing in the other case. Note

that both models have the same network architecture. Also during the training, 15% is

taken out from training set for validation. A Box plot in term of SROCC of the two

models results is displayed in Fig. 3.11. Comparing the proposed models indicates that

the performance can be improved by the adopted Adaptive Boosting technique.

Figure 3.11: Comparison Box plots of SROCC of the proposed models. The SROCC
results are split into four groups (quartiles). Each group has 25% of the results. The red
line in the rectangle refers to the median value. Upper and lower ends of the rectangle
limit the first and third quartiles, respectively. The length of the dashed line means the

range of the mild outliers, and the symbol ”+” refers to the extreme outlier.

Tables 3.2, 3.3 and 3.4 show the results against DMOS of all stereo IQA algorithms on
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LIVE 3D phase-I and phase-II. Furthermore, plots in the Figures 3.12 and 3.13 have been

added to visualize the score responses on distortions separately.

Table 3.2: SROCC against DMOS on the LIVE 3D phase I II datasets.

LIVE I LIVE II

Method Type WN JP2K JPEG Blur FF All WN JP2K JPEG Blur FF All

Benoit [12] 0.930 0.910 0.603 0.931 0.699 0.899 0.923 0.751 0.867 0.455 0.773 0.728

You [130] 0.940 0.860 0.439 0.882 0.588 0.878 0.909 0.894 0.795 0.813 0.891 0.786

Gorley [45] FR 0.741 0.015 0.569 0.750 0.366 0.142 0.875 0.110 0.027 0.770 0.601 0.146

Chen [21] 0.948 0.888 0.530 0.925 0.707 0.916 0.940 0.814 0.843 0.908 0.884 0.889

Hewage [50] 0.940 0.856 0.500 0.690 0.545 0.814 0.880 0.598 0.736 0.028 0.684 0.501

Bensalma [13] 0.905 0.817 0.328 0.915 0.915 0.874 0.938 0.803 0.846 0.846 0.846 0.751

DIIVINE [83] - - - - - 0.882 - - - - - 0.346

Akhter [5] 0.914 0.866 0.675 0.555 0.640 0.383 0.714 0.724 0.649 0.682 0.559 0.543

Chen [22] 0.919 0.863 0.617 0.878 0.652 0.891 0.950 0.867 0.867 0.900 0.933 0.880

Lv [71] NR - - - - - 0.897 - - - - - 0.862

Appina [7] 0.910 0.917 0.782 0.865 0.666 0.911 0.932 0.864 0.839 0.846 0.860 0.888

Zhou [135] 0.921 0.856 0.562 0.897 0.771 0.901 0.936 0.647 0.737 0.911 0.798 0.819

Fang [35] 0.883 0.880 0.523 0.523 0.650 0.877 0.955 0.714 0.709 0.807 0.872 0.838

3D-nnet 0.938 0.874 0.569 0.866 0.685 0.916 0.939 0.812 0.745 0.900 0.934 0.891

Proposed 3D-AdaBoost 0.941 0.899 0.625 0.887 0.777 0.930 0.943 0.842 0.837 0.913 0.925 0.913

Table 3.3: LCC against DMOS on the LIVE 3D phase I & II datasets.

LIVE I LIVE II

Method Type WN JP2K JPEG Blur FF All WN JP2K JPEG Blur FF All

Benoit [12] 0.925 0.939 0.640 0.948 0.747 0.902 0.926 0.784 0.853 0.535 0.807 0.784

You [130] 0.941 0.877 0.487 0.919 0.730 0.881 0.912 0.905 0.830 0.784 0.915 0.800

Gorley [45] FR 0.796 0.485 0.312 0.852 0.364 0.451 0.874 0.372 0.322 0.934 0.706 0.515

Chen [21] 0.942 0.912 0.603 0.942 0.776 0.917 0.957 0.834 0.862 0.963 0.901 0.907

Hewage [50] 0.895 0.904 0.530 0.798 0.669 0.830 0.891 0.664 0.734 0.450 0.746 0.558

Bensalma [13] 0.914 0.838 0.838 0.838 0.733 0.887 0.943 0.666 0.857 0.907 0.909 0.769

DIIVINE [83] - - - - - 0.893 - - - - - 0.442

Akhter [5] 0.904 0.905 0.729 0.617 0.503 0.626 0.772 0.776 0.786 0.795 0.674 0.568

Chen [22] 0.917 0.907 0.695 0.917 0.735 0.895 0.947 0.899 0.901 0.941 0.932 0.895

Lv [71] NR - - - - - 0.901 - - - - - 0.870

Appina [7] 0.919 0.938 0.806 0.881 0.758 0.917 0.920 0.867 0.829 0.878 0.836 0.845

Zhou [135] - - - - - 0.929 - - - - - 0.856

Fang [35] 0.900 0.911 0.547 0.903 0.718 0.880 0.961 0.740 0.764 0.968 0.867 0.860

3D-nnet 0.941 0.919 0.625 0.908 0.777 0.923 0.948 0.821 0.758 0.960 0.921 0.900

Proposed 3D-AdaBoost 0.941 0.926 0.668 0.935 0.845 0.939 0.953 0.835 0.859 0.978 0.925 0.922
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Table 3.4: RMSE against DMOS on the LIVE 3D phase I II datasets.

LIVE I LIVE II

Method Type WN JP2K JPEG Blur FF All WN JP2K JPEG Blur FF All

Benoit [12] 6.307 4.426 5.022 4.571 8.257 7.061 4.028 6.096 3.787 11.763 6.894 7.490

You [130] 5.621 6.206 5.709 5.679 8.492 7.746 4.396 4.186 4.086 8.649 4.649 6.772

Gorley [45] FR 10.197 11.323 6.211 7.562 11.569 14.635 5.202 9.113 6.940 4.988 8.155 9.675

Chen [21] 5.581 5.320 5.216 4.822 7.837 6.533 3.368 5.562 3.865 3.747 4.966 4.987

Hewage [50] 7.405 5.530 5.543 8.748 9.226 9.139 10.713 7.343 4.976 12.436 7.667 9.364

Bensalma [13] - - - - - 7.558 - - - - - 7.203

DIIVINE [83] - - - - - 7.301 - - - - - 10.012

Akhter [5] 7.092 5.483 4.273 11.387 9.332 14.827 7.416 6.189 4.535 8.450 8.505 9.294

Chen [22] 6.433 5.402 4.523 5.898 8.322 7.247 3.513 4.298 3.342 4.725 4.180 5.102

Appina [7] NR 6.664 4.943 4.391 6.938 9.317 6.598 4.325 5.087 4.756 6.662 6.519 7.279

Zhou [135] - - - - - 6.010 - - - - - 6.041

Fang [35] - - - - - 7.191 - - - - - 5.767

3D-nnet 5.622 5.083 5.104 6.059 7.819 6.277 3.394 5.598 4.780 3.889 4.481 4.905

Proposed 3D-AdaBoost 5.593 4.867 4.862 5.104 6.633 5.605 3.226 5.396 3.752 2.859 4.352 4.352
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Figure 3.12: Scatter plot of the five distortions scores from LIVE 3D phase I IQA
database using 3D-AdaBoost method.
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Figure 3.13: Scatter plot of the five distortions scores from LIVE 3D phase II IQA
database using 3D-AdaBoost method.

Moreover, the performance on symmetrically and asymmetrically distorted stimuli are

shown separately in Table 3.5, while Table 3.6 provides detailed results over the five

distortions. The 3D-nnet model has exhibited a good performance. Among all the com-

parison metrics, the model has obtained the best SROCC score on the two LIVE 3D

databases, (SROCC=0.916 on LIVE 3D-I and SROCC=0891 on LIVE 3D-II). Finally,

Table 3.7 shows the results on IVC 3D database. In these tables, the top NR methods

results are highlighted in bold.
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Table 3.5: SROCC result on Symmetric and Asymmetric distortion from LIVE 3D
phase II dataset.

Method Type Symmetric Asymmetric

Benoit [12] 0.860 0.671

You [130] 0.914 0.701

Gorley [45] FR 0.383 0.056

Chen [21] 0.923 0.842

Hewage [50] 0.656 0.496

Bensalma [13] 0.841 0.721

DIIVINE [83] − −

Akhter [5] 0.420 0.517

Chen [22] 0.918 0.834

Lv [71] NR − −

Appina [7] 0.857 0.872

Zhou [135] − −

Fang [35] − −

3D-nnet 0.861 0.902

Proposed 3D-AdaBoost 0.898 0.917

Table 3.6: Detailed results of SROCC, LCC, and RMSE on symmetric / asymmetric
distortion from LIVE 3D-II.

Method Indicator WN JP2K JPEG Blur FF All

Proposed 3D-AdaBoost SROCC 0.923 0.829 0.933 0.848 0.889 0.898
Symmetric LCC 0.938 0.922 0.946 0.913 0.903 0.903

RMSE 3.701 3.709 3.819 3.425 4.876 4.609

Proposed 3D-AdaBoost SROCC 0.897 0.926 0.897 0.921 0.945 0.917
Asymmetric LCC 0.930 0.947 0.917 0.932 0.953 0.930

RMSE 4.191 4.006 4.747 3.450 3.387 4.216
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Table 3.7: SROCC, LCC, and RMSE against DMOS on the IVC 3D database.

Method Type SROCC LCC RMSE

Benoit [12] − − −

You [130] − − −

Gorley [45] FR − − −

Chen [21] 0.676 0.683 17.100

Hewage [50] − − −

Bensalma [13] − − −

DIIVINE [83] 0.422 0.486 18.259

Akhter [5] − − −

Chen [22] 0.851 0.835 12.088

Lv [71] NR − − −

Appina [7] − − −

Zhou [135] − − −

Fang [35] − − −

3D-nnet 0.780 0.779 13.830

Proposed 3D-AdaBoost 0.831 0.845 11.776

The proposed model 3D-AdaBoost has given the best performance among all compared

no-reference algorithms, while the full-reference method of Chen [21] yields better perfor-

mance compared to other FR methods. Fig. 3.14 exhibits the prediction responses against

human score DMOS on the three databases. Even though the proposed model is not de-

signed for a specific distortion type. The comparison results on each individual distortion

type indicate superiority of the proposed method over the three databases. More specif-

ically, notice that the most of existing stereo IQA methods remain limited in capability

and efficiency on asymmetric degradations. These metrics are more appropriate for sym-

metric distortion, but insufficient for asymmetric one. On the other hand, results show

that the proposed framework delivers efficient performance over asymmetric/symmetric

distortion. The method achieved LCC scores of 0.930 and 0.903 respectively on asymmet-

ric/symmetric degradation. For better visualization, a scatter plots in Fig. 3.15 show the
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predicted quality on these two types of distortion separately (asymmetric/symmetric).

Figure 3.14: Scatter plots of subjective scores versus scores from the proposed scheme
on the three stereopair IQA databases.

Figure 3.15: Scatter plot of asymmetric and symmetric distortions scores from LIVE 3D
phase II IQA database using 3D-AdaBoost method.

It should be noticed that the used neural network model presents better performance

than the most commonly used (SVR) Support Vector Regression. The same evaluation

process is followed for SVR with 5-fold cross validation. A radial basis function (RBF)

kernel has been selected. The other parameters such as the number of support vectors and

iterations are adjusted automatically during training for the best fit. Table 3.8 shows the

superiority of the implemented neural network architecture over SVR. The mean scores of

each learning method over three databases (LIVE 3D-I, LIVE 3D-II, and IVC 3D) have

been calculated.
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Table 3.8: Mean of SROCC, LCC, and RMSE results from the three databases using
different regressors.

Method SROCC LCC RMSE

SVR 0.8223 0.8406 9.0530

3D-nnet 0.8623 0.8673 8.3373

Proposed 3D-AdaBoost 0.8913 0.9020 7.2443

3.2.11 Performance using T-test

T-test is one of several types of statistical tests [91]. It questions whether the difference

between the groups represents a true difference in the study or if it is likely a meaningless

statistical difference, where 1 indicates that the groups are statistically different and 0

indicates that the groups are statistically similar. In order to investigate the statistical

performance of the proposed metric, it is compared with the state-of-the-art methods. We

conducted a left-tail T-test with confidence at 90% applied over 100 trials for PLCC and

SROCC. The results provided in Table 5.14 show the superiority of the proposed method

over the existing ones.

Table 3.9: T-test results with confidence of 90% of the proposed metric against the
others using PLCC, SROCC from LIVE I and II

Method Akhter Chen Appina Zhou Fang 3D-nnet

LIVE I LCC 1 1 1 1 1 0

SROCC 1 1 0 1 1 1

LIVE II LCC 1 1 1 1 1 1

SROCC 1 1 1 1 1 1

3.2.12 Cross-database performance

The above tests are useful for assessing robustness and generalization of the proposed

metric, since all the results are obtained by training and testing using 5-fold cross valida-

tion. We extend cross-database experiments to demonstrate the performance capability

of the proposed metric. The LIVE 3D phase I and phase II databases have been selected
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for these experiments because of the similarity in the number of stereo images. The model

is trained on one database and tested on another one.

The Weak Learners (WL) in the 3D-AdaBoost algorithm 1 are trained, validated, and

tested on the LIVE 3D phase I database to obtain a model which will be tested on the

LIVE 3D phase II database. Images in the LIVE 3D phase I database have been used

for training, validating and testing, and images from the LIVE 3D phase II database are

used as a final test set. The obtained results on LIVE 3D-1 are shown in Table 3.10 using

LIVE 3D-II for training and LIVE 3D-I for test and vice versa. While Tables 3.11 presents

detailed results over the five distortions. The SROCC has been used as a performance

index. The best results are highlighted in bold.

Table 3.10: cross database SROCC, LCC, and RMSE results, Trained/Tested.

L-II/L-I L-I/L-II

Method Type SROCC LCC RMSE SROCC LCC RMSE

DIIVINE [83] 0.882 0.893 7.301 0.346 0.442 10.012

Akhter [5] 0.383 0.626 14.827 0.543 0.568 9.294

Chen [22] 0.891 0.626 7.247 0.543 0.895 5.102

Lv [71] NR 0.897 0.901 - 0.862 0.870 -

Appina [7] 0.911 0.917 6.598 0.888 0.845 7.279

Zhou [135] 0.901 0.929 6.010 0.819 0.856 6.041

Fang [35] 0.877 0.880 7.191 0.838 0.860 5.767

3D-nnet 0.880 0.888 7.514 0.798 0.813 6.561

Proposed 3D-AdaBoost 0.887 0.897 7.224 0.823 0.832 6.253
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Table 3.11: cross database SROCC results on the five distortions, Trained/Tested.

L-II/L-I L-I/L-II

Method WN JP2K JPEG Blur FF All WN JP2K JPEG Blur FF All

DIIVINE [83] - - - - - 0.882 - - - - - 0.346

Akhter [5] 0.914 0.866 0.675 0.555 0.640 0.383 0.714 0.724 0.649 0.682 0.559 0.543

Chen [22] 0.919 0.863 0.617 0.878 0.652 0.891 0.950 0.867 0.867 0.900 0.933 0.880

Lv [71] - - - - - 0.897 - - - - - 0.862

Appina [7] 0.910 0.917 0.782 0.865 0.666 0.911 0.932 0.864 0.839 0.846 0.860 0.888

Zhou [135] 0.921 0.856 0.562 0.897 0.771 0.901 0.936 0.647 0.737 0.911 0.798 0.819

Fang [35] 0.883 0.880 0.523 0.523 0.650 0.877 0.955 0.714 0.709 0.807 0.872 0.838

3D-nnet 0.955 0.873 0.588 0.808 0.527 0.880 0.882 0.803 0.772 0.925 0.936 0.798

Proposed 3D-AdaBoost 0.956 0.889 0.556 0.875 0.530 0.892 0.932 0.826 0.737 0.881 0.924 0.824

It can be noticed that 3D-AdaBoost trained on the LIVE 3D phase I database achieved

lower performance compared to the model trained on phase II. This is due to the lack

of asymmetric distortion in the LIVE 3D phase I database. However, it is interesting to

observe that the 3D-AdaBoost method produces good results on the LIVE 3D phase I

database. Compared to other methods, although their results are not performed using

cross-dataset test, the proposed metric ensures competitive performance on any type of

distortion commonly encountered. Scatter plots in Fig. 3.16 show the 3D-AdaBoost

metric responses of cross-dataset test.

The overall experimental results have shown that the proposed method has good consis-

tency among five distortion types with human subjective evaluation. The cross-database

test showed the proposed metric reliability for measuring the quality of the stereoscopic

image. Among the five distortions, JPEG distortion has the lowest accuracy. We believe

this is due to the complexity of the compression distortion. Thus, it should be addressed

separately for the stereo image quality assessment.
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Figure 3.16: Scatter plot of cross-dataset scores on LIVE 3D phase I II databases using
3D-AdaBoost method.

3.2.13 Influence of cyclopean view and disparity map

In order to demonstrate the efficiency of the proposed approach for measuring the stereo

image quality, numerous tests have been conducted that cover the possibilities of feature

extraction part. Also a simple feature extraction has been used for comparison. Pixel

sum and pixel average have been used. The proposed learning part remains the same as

described, using the 5-fold cross validation. The 3D-AdaBoost model receives different

input at each combination, and the mean performance of each combination is calculated

over the three databases. The results of the tests are shown in Table 3.12. The pixel sum

PS is defined as follows:

PS =
m∑
i=1

n∑
j=1

I(i, j) (3.20)

where I is the left or right image. The pixel average PA is defined by:

PA =
1

m.n

m∑
i=1

n∑
j=1

I(i, j) (3.21)
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Table 3.12: Mean of SROCC, LCC, and RMSE results from the three databases using
various features and combinations.

The used material Features N SROCC LCC RMSE

Stereopair Image PS 2 0.107 0.196 16.182

Stereopair Image PA 2 0.255 0.208 16.097

Stereopair Image PS, PA 4 0.244 0.245 15.995

Stereopair Image SGM , SRO, SRM 3 0.740 0.769 10.386

Stereopair Image, disparity SGM , SRO, SRM 6 0.858 0.869 8.203

Stereopair Image, disparity SGM , SRO, SRM , PS, PA 12 0.716 0.741 9.803

Cyclopean view (scale 1) SGM , SRO, SRM 3 0.776 0.801 9.802

Cyclopean view (scale 1) SGM , SRO, SRM , PS, PA 5 0.676 0.705 10.552

Cyclopean view (scale 1, and 2) SGM , SRO, SRM 6 0.798 0.818 9.444

Cyclopean view (scale 1, and 2) SGM , SRO, SRM , PS, PA 10 0.688 0.715 10.298

Cyclopean view (scale 1, and 2), disparity SGM , SRO, SRM 9 0.891 0.902 7.244

Cyclopean view (scale 1, and 2), disparity SGM , SRO, SRM , PS, PA 15 0.628 0.635 12.445

From the results it can be observed that the pixel sum and average indicators give a bad

performance, because these features do not correlate with the image quality. Meanwhile,

the used features give good performance due to their relationship with distortion types

and quality degradation as shown previously in Fig. 3.10. It is also noticeable that when

using disparity map features, the performance improves which supports the study con-

ducted in [9]. The authors used different measures to illustrated the relationship between

the perceptual quality of stereo views and the quality of the disparity map. They con-

cluded that the quality of the depth map is highly correlated with the overall 3D quality.

As discussed earlier, the 2D IQA metrics may not be applied to the stereo IQA problem,

since either by averaging the score or the features obtained from left and right image will

not consider asymmetrical distortions. The improved 2D IQA metric DIIVINE [83] for

stereo images provides good performance on the LIVE 3D-I database and low performance

on the LIVE 3D-II database. This is because the LIVE 3D-II database mainly contains

asymmetric distorted stereo images. However, due to the fact that stereo images typically

contain redundant information, a feature extraction from the left and right image may
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result in a redundant features. Therefore, the extracted features (SGM , SRO, and SRM)

from left and right images are averaged. Afterward, the 3D-AdaBoost model has been

used to map these features to predict the quality. It is also noticed that the use of 2-scale

cyclopean image increases the accuracy of quality prediction. We assume that the space

distance between cyclopean scale 1 features and cyclopean scale 2 features is learned while

training, helping the model for better prediction. Additionally, the use of pixel sum PS

and pixel average PA as features decreases the performance as shown in Table 3.12.

Even though the features are somewhat correlated, the model has given good results.

Some tests have been carried out to support the use of all gradient extracted features

(SGM , SRO, and SRM). The performance deteriorates if one or two features among the

three are neglected; as shown in Table 3.13. Therefore, it is important to utilize the three

features for better quality assessment accuracy.

Table 3.13: Mean of SROCC, LCC, and RMSE results from the three databases using
different gradient features and combinations.

The used material Features N SROCC LCC RMSE

Cyclopean view (scale 1, and 2), disparity SRO 3 0.725 0.748 10.698

Cyclopean view (scale 1, and 2), disparity SGM 3 0.724 0.751 10.722

Cyclopean view (scale 1, and 2), disparity SRM 3 0.751 0.709 10.995

Cyclopean view (scale 1, and 2), disparity SRO, SRM 6 0.809 0.817 9.401

Cyclopean view (scale 1, and 2), disparity SGM , SRM 6 0.844 0.849 8.768

Cyclopean view (scale 1, and 2), disparity SRO, SGM 6 0.838 0.847 8.823

Cyclopean view (scale 1, and 2), disparity SGM , SRO, SRM 9 0.891 0.902 7.244

Results given by Table 3.14 indicate that the cyclopean model using Gabor weights is

better than the simple cyclopean model, in particular on the LIVE II. Compared to

the stereo image model, the simple cyclopean model is also competitive, but the model

may not be accurate on the asymmetric distortion situation as discussed earlier. The

results of Table 3.15 also support the idea of using cyclopean view rather than using the

stereo image for quality assessment problem. The superiority of the cyclopean image on
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symmetric and asymmetric degradations is also shown in Table 3.16. Notice that the

performance of the stereopair image method in Table 3.15 drops significantly on LIVE

3D-II over all distortions. Consequently, for asymmetric distortions, extracting features

directly from stereo images is not reliable. Also, the performance of cyclopean image

method maintains consistency. In the Tables, N refers to the number of input features to

the regression model 3D-AdaBoost. Overall, we can conclude that the adopted cyclopean

model and quality indicators (SGM , SRO, and SRM) and the used combination are effective

for assessing the quality of stereopair images.

Table 3.14: Cyclopean view versus Stereopair image method results over the three
databases.

The used material Features N Indicator Live 3D-I Live 3D-II IVC 3D

Stereopair Image SGM , SRO, SRM 3 SROCC 0.905 0.725 0.590

LCC 0.913 0.791 0.602

RMSE 6.657 6.896 17.606

Cyclopean Image (scale 1) SGM , SRO, SRM 3 SROCC 0.908 0.797 0.622

LCC 0.920 0.850 0.634

RMSE 6.417 5.944 17.046

Cyclopean Image Simple (scale 1) SGM , SRO, SRM 3 SROCC 0.904 0.780 0.607

LCC 0.914 0.828 0.622

RMSE 6.644 6.323 17.263
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Table 3.15: SROCC results of Cyclopean view versus Stereopair image method over
LIVE 3D-I and LIVE 3D-II databases.

The used material Database WN JP2K JPEG Blur FF All

Stereopair Image LIVE 3D-I 0.943 0.867 0.597 0.816 0.615 0.905

LIVE 3D-II 0.497 0.684 0.606 0.870 0.732 0.725

Cyclopean Image (scale 1) LIVE 3D-I 0.943 0.869 0.589 0.867 0.680 0.908

LIVE 3D-II 0.924 0.676 0.678 0.858 0.735 0.797

Cyclopean Image Simple (scale 1) LIVE 3D-I 0.942 0.872 0.595 0.821 0.678 0.904

LIVE 3D-II 0.911 0.706 0.674 0.844 0.727 0.780

Table 3.16: Cyclopean view versus Stereopair image method results on Symmetric and
Asymmetric distortion from LIVE 3D-II dataset.

The used material Features N Indicator Symmetric Asymmetric

Stereopair Image SGM , SRO, SRM 3 SROCC 0.672 0.745

LCC 0.779 0.802

RMSE 6.746 6.851

Cyclopean Image (scale 1) SGM , SRO, SRM 3 SROCC 0.733 0.822

LCC 0.840 0.855

RMSE 5.832 5.954

Cyclopean Image Simple (scale 1) SGM , SRO, SRM 3 SROCC 0.734 0.796

LCC 0.814 0.834

RMSE 6.249 6.337

3.2.14 Computational Complexity

Computational complexity of the proposed algorithm is discussed in this section. The

most computationally expensive stage is the cyclopean image construction, since it in-

volves weights computation of the left and right views by performing a multi-scale Gabor

filter. The complexity of the proposed measure depends on the size of the testing vectors
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(M) and the number of the Weak Learners (L). Therefore, the overall complexity of the

proposed algorithm is O(M . L). Furthermore, the computation time of the proposed

model has been computed using a laptop computer with intel i5-2410M CPU, 2.30 GHz

and 8 GB RAM, hence the run time in second is 72.5238 (including training time). There

are no details on the complexity of the other NR methods. So, state-of-the-art metrics

complexities have not been compared.

The stereoscopic image’s pixel resolution may increase or decrease the run time, as well as

the hardware computing power. The test has been conducted on the stereoscopic image

shown in Fig. 3.1 of 640 x 360 pixels resolution. The more neural network models used,

the higher the run time is. Clearly, the run time increases with the number of neurons.

Note that the run time can be reduced via parallel computing (GPU cards) since the

proposed method is based on neural networks.

3.2.15 Conclusion

A new blind stereoscopic IQA metric has been proposed. The model is based on hu-

man binocular perception and advanced machine-learning algorithm. Efficient perceptual

features have been extracted from the gradient magnitude (GM) map, relative gradient

orientation (RO) map and the relative gradient magnitude (RM) map. In the following,

few points are concluded:

• Experimental results showed that the extracted features are sensitive to the five com-

mon distortions. Considering the variations of stereo image resolution and viewing

conditions, a multi-scale gradient maps of the cyclopean image have been employed.

• AdaBoost neural network is used to map the stereo image features to quality score.

The overall obtained results have indicated that the metric correlates well with

subjective scores DMOS over symmetric and asymmetric distortions.

• The proposed metric performs better in terms of both accuracy and efficiency on

the three publicly available stereoscopic IQA databases, LIVE 3D-I, LIVE 3D-II,

and IRCCyN/IVC 3D than the state-of-the-art methods.
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The use of the extracted features can also be useful for the development of no-reference

stereoscopic video quality models. Furthermore, the proposed workflow allows to de-

velop the idea of AdaBoost by incorporating other feature-learning algorithms. However,

despite the good performance that AdaBoost technique offers, it significantly increases

the runtime, but this latter can be compensated using parallel computing (e.i deploying

GPU).

3.3 2nd approach: Automatic Distortion Type Recog-

nition for Stereoscopic Images

3.3.1 Introduction

In the last decade, great efforts have been dedicated to the development of quality as-

sessment and enhancement algorithms. But only few stereoscopic IQA metrics that use

distortion classification have been proposed. For instance, authors in [59] have proposed

ParaBoost (parallel-boosting) stereoscopic image quality assessment (PBSIQA) system.

Their method firstly classifies the distortion type of the stereo image, and then multiple

quality models are used to evaluate the stereo image quality. As discussed earlier, the

SIQA metric in [38] uses strategy of distortion type identification. Where it determines

whether the distortion is symmetric or asymmetric to account for the binocular fusion

properties. However, despite the fact that distortion detection is useful for enhancing IQA

metrics, it has received little consideration. For instance, it can be employed to select the

image enhancement algorithm according to the distortion type as demonstrated in Fig.

3.17.



3.3. 2nd approach: Automatic Distortion Type Recognition for Stereoscopic Images 95

Figure 3.17: An application example of the proposed recognition system.

The aim of our approach is to design a no-reference classifier for stereoscopic image dis-

tortions, the model can then be used to develop important image processing algorithms,

such as image quality assessment and restoration. The problem of distortion recognition

in stereoscopic images is interesting and straight forward task. Since this classification

model is the first of its kind that primarily addresses the problem, the recognition model

has not been compared with related work.

3.3.2 Approach overview

In order to design a model that can assess or enhance the quality of stereoscopic images,

the first step is to identify the distortions which could arise when dealing with stereo-

scopic content. In this work, the model involves three steps as idicated in Fig.3.18: first

is construction of disparity map (as done in our previous approach). Second, gradient

features are extracted from each view (left and right views) and disparity map. Third,

predicting the quality based on feature learning, using SVM fitted model.

We handcrafted the same features as done in the proposed metric discussed earlier.

Whereas three Gradient maps are computed over horizontal and vertical derivatives from

each left, right image, and disparity. Afterwards, three indicators are extracted from these

gradient maps: the gradient magnitude (GM), relative gradient orientation (RO), and the

relative gradient magnitude (RM) as shown in Fig.3.18.
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Figure 3.18: The proposed distortion type classification scheme.

3.3.3 Learning for distortion type recognition using SVM

The objective of the learning-based classifier is to learn how to map inputs X to out-put

classes N. For our classification problem, a multi-class vector support (SVM) algorithm is

used to predict stereo image distortion among other classifiers due to its good performance.

It is applied on the extracted features dataset obtained from the previous steps. For the

best fit, a Radial Basis Function (RBF) has been used as a kernel function in the SVM

model. Fig. 3.19 shows the adopted simple workflow for quality prediction.

Figure 3.19: Prediction scheme using the extracted feature vector.

Where GM1, RO1, and RM1 are features retrieved from the left image. The retrieved

features from the right image are GM2, RO2, and RM2. The retrieved features from the

disparity map are GM3, RO3, and RM3.

3.3.4 Experimental results and analysis

To assess the efficiency of the suggested algorithm, the two databases were used. The well-

known LIVE 3D phase I and phase II databases are used to show the performance of the



3.3. 2nd approach: Automatic Distortion Type Recognition for Stereoscopic Images 97

proposed model. The two phases together combine the biggest and most comprehensive

stereoscopic image quality database presently available.

In this work, 5-fold cross validation technique is used to evaluate the performance of

the proposed method. The two stereoscopic image databases have been used to collect

training and test set dataset, where the data set contains a total of 725 stereo images.

Each fold is divided into 80% train set, and a 20% test set. The training and testing

are conducted five times, this process guarantees that each data point ends up in the

20% test set exactly once. The model has achieved good performance among the five

distortions. The best classification result has obtained on the WN degradation. That

is because proposed classification scheme relies on gradient as features. Meanwhile, the

JP2K degradation has worse classification performance due to the complexity of JP2K

compression algorithm. Confusion matrices have been computed as shown in Fig. 3.20 to

find out how the classifier performed in each class. Table 3.17 shows numbers associated

with distortion types. Note that this study is the first work dealing with distortion types

recognition in stereo images. Therefore, no comparisons with standards or related works

are made.

Figure 3.20: Confusion matrix plot using accuracy/number of observations of the
proposed model.
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Table 3.17: Distortions with their referring numbers.

Distortion type Referring Number

White Noise (WN) 1

JPEG2000 (JP2K) 2

JPEG 3

Blur 4

Fast Fading (FF) 5

Furthermore, Receiver Operating Characteristic (ROC) curves in Fig. 3.21 show the per-

formance at all classification thresholds. The ROC curve is created by plotting the true

positive rate (TPR) against the false positive rate (FPR) at various threshold parame-

ters. The area under the ROC curve, or AUC (Area Under Curve) varies from 0 to 1,

AUC = 1 corresponds to a perfect classifier. Larger AUC values indicate a good classi-

fier performance. The experimental results demonstrate that the proposed classifier has

obtained significant classification consistency and accuracy over five types of distortion

(WN, JP2K, FF, Blur).
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(a) 1. White Noise (WN) (b) 2. JPEG2000 (JP2K)

(c) 3. JPEG (d) 4. Blur

(e) 5. Fast Fading (FF)

Figure 3.21: ROC curves of the proposed classifier over the five type of distortion.
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3.3.5 Conclusion

Inspired by our 3D-Adaboost metric, a new NR distortion classification algorithm dedi-

cated for stereoscopic images. The method enables each distortion to be addressed sepa-

rately. Therefore, it can be used to improve algorithms for quality evaluation / restora-

tion. The models are based on gradient information and machine learning. Magnitude

and oriented gradient features are used to classify the distortion of stereoscopic image.

SVM (learning based) model has been used to map the features to distortion type. The

results obtained have shown that the system is reliable over the most common types of

distortion. Furthermore, this scheme can be extended to determine whether a stereopair

image is symmetrically or asymmetrically distorted and even measuring the degree of

degradation.



Chapter 4

Contributions based on automatic

quality feature extraction and HVS

modeling

4.1 Introduction

Recently, the SIQA metrics have incorporated new machine learning techniques. Among

these techniques, Deep Learning (DL) is the popular one being used for its ease of use

and high performance, as mentioned in previous chapters. As a result, in this chapter,

we explore DL algorithms for SIQA metrics. We present two DL-based SIQA approaches.

One approach is built on an end-to-end CNN model [79], while the second approach is

based on deep features bank, extracted automatically by the model [77]. In addition, we

investigate the behavior and performance of the DL-based metrics.

101
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4.2 1st model: NR-SIQA based on Deep learning and

cyclopean view

4.2.1 Approach overview

In order to design a DL based SIQA model, we follow the previously used mathematical

human binocular perception simulation. Therefore, the hypothesis of a cyclopean image

is maintained while designing our metric. The model in this work involves three steps:

the first step, Gabor filter responses, and disparity map have been used to construct the

cyclopean image (see Fig. 3.4). Secondly, the cyclopean image has been divided into four

patches to train four CNN models. Thirdly, the quality scores are predicted from the

CNN models, and the scores average is computed.

4.2.2 Quality assessment: Deep Learning

In recent years, deep learning has been deployed to solve difficult problems such as image

classification and speech recognition. The end-to-end network allows to extract automat-

ically relative features from the raw data showing significant accuracy improvement in

the IQA domain. The handcraft quality-aware features extraction is sometimes difficult,

time-consuming, and requires expert knowledge, especially in quality evaluation. There-

fore, using deep learning algorithm may solve these difficulties. A convolutional neural

network is one of the most popular algorithms for deep learning. To build our SIQA

model, four CNNs have been implanted in order to estimate the quality at each corner of

the scene.

In previous work (presented in chapter 3), relative gradient features have been extracted

from the cyclopean image, then an AdaBoost (Adaptive Boosting) neural network model

has been created. The model that can predict the quality from the input features. How-

ever, in this work using deep learning will skip the step of manual features extraction.

The cyclopean image is fed directly to the CNN models, which then predict the quality.
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4.2.3 Network architecture

The architecture of the used CNN consists of 10 layers, four patches from the cyclopean

image are all have a size of 180 × 320 pixels. Every CNN is trained and used to predict

the quality score for each patch. After-all, the average score is computed from the four

CNNs as shown in Fig. 4.1.

Figure 4.1: The flowchart of the proposed measure using four Convolutional Neural
Networks. The cyclopean image divided into four patches, equally have a size of 180 ×

320 pixels.

After each convolution layer, a ReLU layer is applied, followed by Max-pooling Layer.

The used two convolutional layers have 10 filters each, with a size 3 × 3 and a stride of

1 pixel. The Max-pooling layer reduces the size of each feature map. It is achieved by

applying a max filter. The max filter takes the maximum pixel value of a region. The first

used Max-pooling layer has a size of 3 × 3 and a stride of 1 pixel. The second Max-pooling

layer has a size of 8 × 8 and a stride of 8 pixels. A fully connected layer and regression

layer with 1 node respectively come after the second Max-pooling. The architecture of

the CNN is illustrated in Fig. 4.2.

Figure 4.2: The proposed Convolutional Neural Network Architecture.

For the training dataset output, the human scores are normalized in the form of DMOS

to min-max normalization [0,1]. Hence, the range of predicted score values is from 0 to
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1. The closer to 0 the better quality of the stereo image is.

The four networks are trained for 100 epochs each and to prevent over-fitting, 15% from

the dataset has been selected randomly as a validation set. In each epoch during the

training, the RMSE is computed for both the validation and the whole dataset. The

Back-Propagation algorithm updates the network parameters (filter weights) to minimize

the RMSE. It is worth to remember that the RMSE is defined as follows:

RMSE = [
1

N

N∑
n=1

(Pn −Qn)2]

1

2 (4.1)

where N is the number of image-patches input. P is the predicted score and Q is the

normalized human objective score.

4.2.4 Experimental results and analysis

The popular LIVE 3D phase I and phase II databases are used to train and test the

performance of the proposed metric. The performance has been evaluated via the three

common indexes: The RMSE, SROCC, and the LCC. Higher values for LCC and SROCC

(closer to 1) and lower values for RMSE (closer to 0) indicate superior linear rank-order

correlation and better precision with respect to human quality judgments, respectively.

We examine the generalization capability and robustness of our metric by cross-dataset

training and testing. The model is trained on such database and tested on another

database. We have generated three 3D-CNN models: first model (3D-CNNall) is trained

and tested on both phase I and phase II. The second model (3D-CNNlive I ) is trained on

phase I and then tested on phase II. The third model (3D-CNNlive II ) is a reverse of the

2nd model, it is trained on phase II and tested on phase I. In these cross-dataset tests, we

train each one using 80% of database images, which are randomly selected. The remaining

20% of images are used as the validation set.

Tables 4.1, 4.2 and 4.3 exhibit the results against DMOS of all stereo IQA algorithms on

LIVE 3D phase I and phase II. In the following, Table 4.4 contains the performance on

symmetric and asymmetric distorted stimuli. The proposed model has given the better

performance compared to most other metrics. In all tables, the top three methods result
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are highlighted in bold. A scatter plots of objective scores against subjective scores on

LIVE 3D phase I and phase II are given in Fig. 4.3.

Table 4.1: SROCC against DMOS on the 3D LIVE Phase-I and Phase-II datasets.

LIVE I LIVE II

Method WN JP2K JPEG Blur FF All WN JP2K JPEG Blur FF All

Benoit [12] 0.923 0.751 0.867 0.455 0.773 0.728 0.923 0.751 0.867 0.455 0.773 0.728

You [130] 0.909 0.894 0.795 0.813 0.891 0.786 0.909 0.894 0.795 0.813 0.891 0.786

Gorley [45] 0.875 0.110 0.027 0.770 0.601 0.146 0.875 0.110 0.027 0.770 0.601 0.146

Chen [21] 0.940 0.814 0.843 0.908 0.884 0.889 0.940 0.814 0.843 0.908 0.884 0.889

Hewage [50] 0.880 0.598 0.736 0.028 0.684 0.501 0.880 0.598 0.736 0.028 0.684 0.501

Bensalma [13] 0.905 0.817 0.328 0.915 0.915 0.874 0.938 0.803 0.846 0.846 0.846 0.751

Akhter [5] 0.714 0.724 0.649 0.682 0.559 0.543 0.714 0.724 0.649 0.682 0.559 0.543

Zhou [135] 0.921 0.856 0.562 0.897 0.771 0.901 0.936 0.647 0.737 0.911 0.798 0.819

Proposed 3D-CNNall 0.976 0.927 0.852 0.951 0.973 0.964 0.970 0.955 0.871 0.909 0.927 0.944

Proposed 3D-CNNlive II and 3D-CNNlive I 0.905 0.760 0.318 0.885 0.801 0.866 0.924 0.920 0.720 0.850 0.889 0.878

Table 4.2: LCC against DMOS on the 3D LIVE Phase-I and Phase-II datasets.

LIVE I LIVE II

Method WN JP2K JPEG Blur FF All WN JP2K JPEG Blur FF All

Benoit [12] 0.926 0.784 0.853 0.535 0.807 0.784 0.926 0.784 0.853 0.535 0.807 0.784

You [130] 0.912 0.905 0.830 0.784 0.915 0.800 0.912 0.905 0.830 0.784 0.915 0.800

Gorley [45] 0.874 0.372 0.322 0.934 0.706 0.515 0.874 0.372 0.322 0.934 0.706 0.515

Chen [21] 0.957 0.834 0.862 0.963 0.901 0.907 0.957 0.834 0.862 0.963 0.901 0.907

Hewage [50] 0.891 0.664 0.734 0.450 0.746 0.558 0.891 0.664 0.734 0.450 0.746 0.558

Bensalma [13] 0.914 0.838 0.838 0.838 0.733 0.887 0.943 0.666 0.857 0.907 0.909 0.769

Zhou [135] - - - - - 0.929 - - - - - 0.856

Akhter [5] 0.772 0.776 0.786 0.795 0.674 0.568 0.772 0.776 0.786 0.795 0.674 0.568

Proposed 3D-CNNall 0.981 0.967 0.879 0.974 0.968 0.974 0.969 0.959 0.902 0.976 0.950 0.948

Proposed 3D-CNNlive II and 3D-CNNlive I 0.911 0.855 0.433 0.910 0.818 0.885 0.919 0.924 0.720 0.957 0.903 0.887

Table 4.3: RMSE against DMOS on the 3D Live Phase-I and Phase-II datasets.

LIVE I LIVE II

Method WN JP2K JPEG Blur FF All WN JP2K JPEG Blur FF All

Benoit [12] 4.028 6.096 3.787 11.763 6.894 7.490 4.028 6.096 3.787 11.763 6.894 7.490

You [130] 4.396 4.186 4.086 8.649 4.649 6.772 4.396 4.186 4.086 8.649 4.649 6.772

Gorley [45] 5.202 9.113 6.940 4.988 8.155 9.675 5.202 9.113 6.940 4.988 8.155 9.675

Chen [21] 3.368 5.562 3.865 3.747 4.966 4.987 3.368 5.562 3.865 3.747 4.966 4.987

Hewage [50] 10.713 7.343 4.976 12.436 7.667 9.364 10.713 7.343 4.976 12.436 7.667 9.364

Bensalma [13] - - - - - 7.558 - - - - - 7.203

Akhter [5] 7.416 6.189 4.535 8.450 8.505 9.294 7.416 6.189 4.535 8.450 8.505 9.294

Zhou [135] - - - - - 6.010 - - - - - 6.041

Proposed 3D-CNNall 3.198 3.274 3.109 3.280 3.073 3.700 2.608 2.758 3.159 3.024 3.560 3.568

Proposed 3D-CNNlive II and 3D-CNNlive I 6.852 6.701 5.893 5.648 7.136 7.303 4.202 3.735 5.086 3.547 4.929 4.974
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Table 4.4: Asymmetric/symmetric SROCC scores using the 3D LIVE Phase-II dataset.

Method Symmetric Asymmetric

Benoit [12] 0.860 0.671

You [130] 0.914 0.701

Gorley [45] 0.383 0.056

Chen [21] 0.923 0.842

Hewage [50] 0.656 0.496

Bensalma [13] 0.841 0.721

Akhter [5] 0.420 0.517

Proposed 3D-CNNall 0.939 0.947

Proposed 3D-CNNlive I 0.883 0.875

Figure 4.3: Scatter plot of DMOS (subjective scores) versus scores from the proposed
metric (3D-CNNall) on both LIVE 3D Phase I and Phase II databases.

Notice that italicized methods are no-reference metrics, the others are full-reference met-

rics. The experimental results show that the proposed scheme has good consistency

among four distortion types with human subjective evaluation. Since that the 3D-CNNall

model has been trained on larger datasets, including the two databases, allowing a better

fit model. However, the 3D live phase I database shares four scenes with the phase II

database, which might increase the overall model’s performance.
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4.2.5 Conclusion

A new no-reference IQA metric is proposed for stereoscopic images. That outperforms

most of the existing stereo IQA methods. The measure is based on human binocular

perception and learning structure evaluation. The handcrafted features have been re-

placed by deep learning. Four CNN models have been used to map the cyclopean view

to quality score. The obtained results indicate that the metric correlates with subjective

scores DMOS over symmetric and asymmetric distortions. The performance also indi-

cates that the synthesized Cyclopean image is reliable for perceptual quality evaluation.

In the following work, we explore other CNN architectures to assess the stereo-pair image

quality.

4.3 2nd model: NR-SIQA based on Deep Features

from Cyclopean Image

4.3.1 Approach overview

Most of the proposed SIQA approaches use handcrafted quality features that are derived

manually from the stereoscopic picture. With the use of Deep Learning, the suggested

approach allows learning quality features from the input data automatically. However,

a work has been done in [58] that explore this concept and propose NR SIQA metric.

The authors pursued a two steps of training. They first trained the CNN model to

extract features from small stereo-pair image patches. The model is then followed by

feature concatenation layer and regression layer for second training to predict the quality.

Another blind CNN-based metric has been proposed by [125]. The authors have used

end-to-end dual stream CNN with multi-level feature concatenation through the network.

The proposed metric as shown in Fig. 4.4 involves three simple steps: in the first step, the

cyclopean image is computed. Second, divide the cyclopean image into four equivalent

parts and train four CNN models that generate a feature bank. Third, the quality score

is predicted from the extracted features using a SVR.
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Figure 4.4: Flowchart of the proposed method.

4.3.2 Deep Feature extraction

Generally, at each region corner of the cyclopean image, the structure differs e.g. textures,

color and pixel intensities. As we want to derive various quality features, we simply divide

the input cyclopean image into four equivalent patches. This partition covers the four

corners and deals with different structures individually. Four CNNs are then needed to

extract quality feature sets from each structure. In the case of using just one CNN, the

model will tend to extract the general characteristics since the network weights remain

the same. The four trained CNNs have similar architecture but different weights, thus

they enrich the features bank as shown in Fig. 4.4. Meanwhile, we assume that using

two models will provide fewer quality indicators than four. For the feature extraction, we

design a light-weight CNN model from scratch and compare its performance with most

common pre-trained models: AlexNet [62], VGG-16 and VGG-19 [103], Resnet18 [47],

Inception-v1 [112].

The cyclopean image is thus fed to the CNN models to to extract quality-aware indicators.

Each CNN expects an input of size 180 × 320 pixels. For each patch, one CNN model is

trained and used to extract a vector of size 1×16. The suggested CNN architecture consists

of 12 layers as shown on Fig. 4.5, after each convolution layer, a batch normalization layer

is applied to speed up the learning [54], followed by a ReLU layer as activation function

and Max-pooling layer to reduce dimensionality. The network includes three convolutional

layers. The first and second convolution layers produce 64 filters of size [11 × 11]. While

the third convolution layer has 32 filters of size [5 × 5]. All convolution layers have 4
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pixels stride in both horizontal and vertical directions. The first used Max-pooling layer

has a size of [7 × 7] and a stride of [2×2] pixels. The second Max-pooling layer has a size

of [5 × 5] and a stride of [1×1] pixel. After all, a fully connected 1 ×16 layer is used to

provide 16 elements quality indicators. The four networks are trained for 150 epochs with

a learning rate of 0.01. Stochastic Gradient Descent (SGD) with momentum has been

applied to update the network weights. The extracted feature vectors [4×16] is then fed

to a SVR model with a Gaussian kernel function to predict the quality scores.

Figure 4.5: The proposed Convolutional Neural Network architecture for feature
extraction.

4.3.3 Datasets and training protocol

As used in earlier suggested metrics. The two databases LIVE 3D phase I and phase II

were used to test the efficiency of our metric. We normalize the train set outputs (DMOS)

to min-max normalization [0 to 1], where the closest to zero the better quality is. The

5-fold cross validation technique has been adopted. The dataset is split into 5 folds, where

each fold is divided to 80% train set and 20% test set chosen randomly. The protocol has

been repeated for 10 iterations to show the generalization ability of our method and the

mean performance values are reported. The performance has been measured across three

metrics as in previous metrics: The RMSE, the PLCC, and SROCC.
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4.3.4 Experimental results: Quality evaluation

We first evaluated the relevance to use SVR as regressor instead of FC layers, usually

done. To this end, the SVR has been replaced by a FC regression layer. Table 4.5

indicates the comparison PLCC correlation results of the designed network model on

LIVE 3D II database. The combination of CNN and SVR has increased the quality

prediction accuracy compared to CNN model alone. In addition, the use of four different

CNN models enrich the quality features bank to improve the overall quality prediction.

Although the proposed CNN architecture ends up with PLCC of 0.932 over LIVE-II

dataset, we furthermore test and investigate the performance of six common pre-trained

CNN models. Where the same training protocol and configurations of our designed model

were used. Each pre-trained model has been adjusted and then used to extract [1 x 16]

feature vector from each patch.

Table 4.5: PLCC correlation results of our CNN regression model vs. CNN + SVR
combination over the four patches from LIVE 3D II database.

Number of patch 1 2 3 4 All

CNN + FC regressor 0.918 0.920 0.922 0.905 0.910

CNN + SVR regressor 0.927 0.928 0.932 0.907 0.932

Table 4.6 presents these experiments using the LIVE-II database and the best ranked

extractor was found to be vgg-16. Overall, the pre-trained models except alexnet out-

perform our CNN design which was expected since the pre-trained CNNs are large and

deeper networks. For instance, vgg-16 has about 138 million (approx) parameters while

alexnet has around 62 millions. Alexnet gives the lowest correlation performance among

all models. The vgg-16 and vgg-19 yield similar correlation performance with little dif-

ferences since they have nearly the same architecture. These models contain more series

of convolutional layers than our architecture and thus extract higher and better quality

indicators for prediction. In the meantime, going deeper than vgg-16 model, resnet and

inception extractors appear to slightly diverge from the path toward the best indicators.

However, our built CNN is almost two times faster than vgg-16. The run-time indicates
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108 ms (milliseconds) for vgg-16, and 56 ms for our CNN using the same hardware and

stereoscopic image. With the provided competitive performance, this will be beneficial

in case of limited resources. Otherwise, the implementation of vgg-16 would be better

choice.

Table 4.6: Performance of different pre-trained feature extractors on LIVE-II database.

Model PLCC SROCC RMSE

AlexNet 0.922 0.921 4.355

VGG-16 Gray 0.948 0.941 3.817

VGG-19 0.946 0.938 3.888

Resnet18 0.930 0.930 4.122

Resnet50 0.940 0.939 3.894

Inception-v1 0.938 0.939 3.897

Our method has been then compared with several FR and NR SIQA metrics, including

six FR and seven NR SIQA metrics. Tables 4.7, 4.8 and 4.9 show the results of all SIQA

algorithms on LIVE 3D phase I and phase II databases. The best outcome of NR category

is highlighted in bold. We reported the outcomes of using the scratched CNN and the

pre-trained vgg-16. The results obtained on LIVE 3D Phase I show the efficiency of our

method, since it outperforms all the compared metrics in terms of SROCC and RMSE,

including FR ones. For FF distortions, Karimi et al. [57] metric obtained better results,

but our method remains the best on the rest type of distortions. Meanwhile in term of

PLCC, our method has the best correlation on the five distortions.
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Table 4.7: SROCC results on the 3D LIVE Phase-I and Phase-II databases.

LIVE I LIVE II

Method Type WN JP2K JPEG Blur FF All WN JP2K JPEG Blur FF All

Benoit [12] 0.923 0.751 0.867 0.455 0.773 0.728 0.923 0.751 0.867 0.455 0.773 0.728

You [130] 0.909 0.894 0.795 0.813 0.891 0.786 0.909 0.894 0.795 0.813 0.891 0.786

Gorley [45] 0.875 0.110 0.027 0.770 0.601 0.146 0.875 0.110 0.027 0.770 0.601 0.146

Chen [21] FR 0.940 0.814 0.843 0.908 0.884 0.889 0.940 0.814 0.843 0.908 0.884 0.889

Hewage [50] 0.880 0.598 0.736 0.028 0.684 0.501 0.880 0.598 0.736 0.028 0.684 0.501

Bensalma [13] 0.905 0.817 0.328 0.915 0.915 0.874 0.938 0.803 0.846 0.846 0.846 0.751

Akhter [5] 0.714 0.724 0.649 0.682 0.559 0.543 0.714 0.724 0.649 0.682 0.559 0.543

Zhou [135] 0.921 0.856 0.562 0.897 0.771 0.901 0.936 0.647 0.737 0.911 0.798 0.819

Fang [35] 0.883 0.880 0.523 0.523 0.650 0.877 0.955 0.714 0.709 0.807 0.872 0.838

Chen [20] NR 0.926 0.839 0.832 0.951 0.918 0.920 0.910 0.825 0.843 0.929 0.896 0.852

Kim [58] - - - - - - 0.922 0.885 0.763 0.932 0.945 0.938

Karimi [57] 0.945 0.917 0.750 0.919 0.837 0.947 0.953 0.875 0.832 0.874 0.907 0.913

Liu [69] 0.951 0.888 0.785 0.917 0.821 0.928 0.946 0.909 0.825 0.936 0.938 0.901

Proposed Gray 0.925 0.921 0.666 0.924 0.799 0.928 0.928 0.897 0.809 0.900 0.880 0.909

Proposed vgg-16 Gray 0.964 0.943 0.834 0.953 0.803 0.956 0.959 0.888 0.875 0.935 0.945 0.948

Table 4.8: PLCC results on the 3D LIVE Phase-I and Phase-II databases.

LIVE I LIVE II

Method Type WN JP2K JPEG Blur FF All WN JP2K JPEG Blur FF All

Benoit [12] 0.926 0.784 0.853 0.535 0.807 0.784 0.926 0.784 0.853 0.535 0.807 0.784

You [130] 0.912 0.905 0.830 0.784 0.915 0.800 0.912 0.905 0.830 0.784 0.915 0.800

Gorley [45] 0.796 0.485 0.312 0.852 0.364 0.451 0.322 0.372 0.874 0.934 0.706 0.515

Chen [21] FR 0.957 0.834 0.862 0.963 0.901 0.907 0.957 0.834 0.862 0.963 0.901 0.907

Hewage [50] 0.891 0.664 0.734 0.450 0.746 0.558 0.891 0.664 0.734 0.450 0.746 0.558

Bensalma [13] 0.914 0.838 0.838 0.838 0.733 0.887 0.943 0.666 0.857 0.907 0.909 0.769

Akhter [5] 0.772 0.776 0.786 0.795 0.674 0.568 0.929 0.772 0.776 0.786 0.795 0.674

Zhou [135] - - - - - 0.929 - - - - - 0.856

Fang [35] 0.900 0.911 0.547 0.903 0.718 0.880 0.961 0.740 0.764 0.968 0.867 0.860

Chen [20] NR - - - - - 0.937 - - - - - 0.937

Kim [58] - - - - - - 0.910 0.910 0.768 0.951 0.957 0.941

Karimi [57] 0.955 0.939 0.771 0.959 0.882 0.956 0.966 0.897 0.866 0.957 0.918 0.923

Liu [69] 0.966 0.938 0.810 0.956 0.855 0.945 0.969 0.936 0.867 0.987 0.959 0.913

Proposed Gray 0.936 0.905 0.811 0.967 0.887 0.911 0.931 0.944 0.689 0.951 0.851 0.932

Proposed vgg-16 Gray 0.970 0.960 0.845 0.962 0.865 0.955 0.959 0.887 0.888 0.981 0.931 0.941
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Table 4.9: RMSE results on the 3D LIVE Phase-I and Phase-II databases.

LIVE I LIVE II

Method Type WN JP2K JPEG Blur FF All WN JP2K JPEG Blur FF All

Benoit [12] 4.028 6.096 3.787 11.763 6.894 7.490 4.028 6.096 3.787 11.763 6.894 7.490

You [130] 4.396 4.186 4.086 8.649 4.649 6.772 4.396 4.186 4.086 8.649 4.649 6.772

Gorley [45] 5.202 9.113 6.940 4.988 8.155 9.675 5.202 9.113 6.940 4.988 8.155 9.675

Chen [21] FR 3.368 5.562 3.865 3.747 4.966 4.987 3.368 5.562 3.865 3.747 4.966 4.987

Hewage [50] 10.713 7.343 4.976 12.436 7.667 9.364 10.713 7.343 4.976 12.436 7.667 9.364

Bensalma [13] - - - - - 7.558 - - - - - 7.203

Akhter [5] 7.416 6.189 4.535 8.450 8.505 9.294 7.416 6.189 4.535 8.450 8.505 9.294

Zhou [135] NR - - - - - 6.010 - - - - - 6.041

Fang [35] - - - - - 7.191 - - - - - 5.767

Karimi [57] 5.017 4.644 4.290 4.458 5.997 4.998 2.936 5.083 4.071 4.581 4.974 4.436

Liu [69] - - - - - 5.268 - - - - - 7.658

Proposed Gray 6.046 4.246 4.725 4.419 6.502 5.905 3.770 4.160 4.280 3.506 5.288 4.629

Proposed vgg-16 Gray 4.013 3.597 3.488 3.943 6.223 4.865 3.002 4.526 3.366 2.685 4.176 3.817

For LIVE 3D phase II, the same behaviour has been noticed with the best overall per-

formance and competitive results on the degradation types. Compared to the results on

LIVE 3D Phase I, we obtained higher Spearman’s correlations for WN, JPEG and FF,

but still not high as other degradation types.

Table 4.10 shows the performance on symmetric and asymmetric distorted stimuli. As

can be seen, performances of all method are often higher for symmetric distribution.

Our method outperforms most of the compared FR and NR metrics with 0.936 and

0.953 as SROCC for symmetric and asymmetric distributions, respectively. Hence, the

proposed scheme has good correlation with human subjective evaluation across four types

of distortion as well as symmetric/asymmetric distributions.

Table 4.10: Asymmetric versus Symmetric SROCC results on 3D LIVE Phase II
database.

Distortion Type Benoit [12] You [130] Gorley [45] Chen [21] Hewage [50] Bensalma [13] Akhter [5] Proposed Proposed vgg-16

Symmetric 0.860 0.914 0.383 0.923 0.656 0.841 0.420 0.921 0.936

Asymmetric 0.671 0.701 0.056 0.842 0.496 0.721 0.517 0.909 0.953

Scatter plots that exhibit the prediction responses against human score (DMOS) on LIVE
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3D phase I and phase II are given in Fig. 4.6. As can be seen, the distribution of the

predicted scores well fit the DMOS with low dispersion. According to the different degrees

of deformations/distortions. Each distortion type scores are well spread according to

human predictions. This can show a consistency performance for all types distortion.

Figure 4.6: Scatter plot of subjective scores DMOS against scores from the proposed
metric using the designed CNN on LIVE 3D Phase I and Phase II databases.

4.3.5 Quality indicators visualization

In this section, we investigate the extracted features by the designed networks (shown in

Fig. 4.5), and examine which parts of the cyclopean image are most important for our

CNN models. A patch was chosen from the cyclopean which formed using distorted stereo

images. These latter are fed to a trained CNN model as test patches and then inspect

the outputs of activation functions (ReLU) after the first and second convolutional layers.

The convolution layer produces 64 channels. Among the 64 channels output from ReLU

layer, their mean values are computed and the strongest channel has been selected by

indexing the maximum. Fig. 4.7 despite the first and second ReLU layer responses for

the input cyclopean patch that were constructed under three types of distortions: WN,

JPEG, and Blur. As can be seen, where the warmer (closer to 1) regions activate the

ReLU function and thus influence the decision of the network. It is remarkable that the

first activation function reflect the presence of pixel deformation. The JPEG compression

is well known artifact that causes undesirable blocks in the image due to the quantization.
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This issue is stated in ReLU 1 activation map of JPEG patch that shows the selection of

these blocks as a highly important information to pass through the network. As well as

for WN and Blur cyclopean patches, the ReLU 1 activation function have succeeded to

focus on noise and blur artifacts. However, additionally, with the help of this activation

function, we can form a distortion map. The latter can then be used by enhancement

algorithms to concentrate on the most damaged regions instead of analyzing the while

scene.

Figure 4.7: The first and second ReLU activation layer outputs from a test cyclopean
patch for three degradation types.

While the second activation function (ReLU layer) is controlled by a deeper representation

that makes it harder to fully comprehend the outputs. However, for JPEG cyclopean

patch, most deformed regions are placed above and by the edge of a pillar in the scene.

Meanwhile for Blur, the deformed regions are located around everywhere the pillar. From

the second ReLU output maps, the warmer regions are somewhat distributed according to

the most infected regions in the scene. For further analysis, Fig. 4.8 provides visualisation

of the extracted features from each patch. For comparison, three of the same scene

cyclopean images of different distortion types and degrees were used. A quality score
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has been computed via the proposed scheme for each patch. As can be seen, the feature

values are within range of 0 to 1 appear diversity as the degree of degradation varies.

Note that the blue dots refer to features from non distorted stereoscopic image input.

The distribution of blue dots are similar in all patches. The orange and red feature

distributions refer to distorted stereoscopic image inputs. Here we notice non similar

distribution at each patch because the approach tends to extract quality features relevant

to the spatial information at each corner of the scene (as discussed earlier in section deep

feature extraction). Consequently, each model derives distinct features and enrich the

feature bank which is utilized to measure the quality. With regard to these observations,

we can conclude that the trained networks focus on the pixel deformations to extract a

complex quality indicators. The decision that defines these indicators is then guided by

the type and degree of distortions.
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Figure 4.8: Extracted features bank from three cyclopean images of the same scene.
Each plot represents the sixteen extracted quality indicators from a different patch. The

first to the fourth patch from above to below, respectively.

4.3.6 Conclusion

In this work, a new deep feature extraction approach has been explored for NR SIQA.

The simplicity of proposed scheme is an advantage for implementation in the multimedia

software. As in previous work, the proposed metric uses cyclopean image hypothesis that

considers binocular rivalry phenomenon. Then, four CNN models are used to extract

bank of features from the cyclopean image. This bank is then mapped to a quality score

using a SVR. The obtained results have corroborated the correspondence between the
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proposed metric and the subjective DMOS over asymmetric and symmetric distributions.

Based on the performance achieved, the followed workflow that combines multi-extractors

with SVR could be useful for future works.



Chapter 5

Contributions based on HVS

modeling and Saliency information

5.1 Introduction

In the majority of NR-SIQA model designs, quality indicators of image structure, play

essential roles as discussed in chapter 2. However, the distortions added to images gener-

ate changes in structural features which can be captured by structural feature statistics.

Based on how these quality-aware features are calculated, NR models can be further cate-

gorized into machine learning-based methods and training-free based methods. Training-

free approaches have an internal generalization potential, and yet, their performances are

currently inferior to machine learning-based methods. Instead, using machine learning

techniques such as SVR and Random Forest (RF), image feature values can be simply

mapped to the image quality index, assisting machine learning-based NR-IQA models to

obtain comparatively higher evaluation performance. Furthermore in latest years, deep-

learning-based algorithms that directly map an image or image structure to a quality index

have achieved promising results. But, there are several flaws to this latter, such as fixed

input pixel resolution, pixel attack sensitivity, and large scale training data requirement.

Regardless of the learning approach employed in the SIQA system, modeling HVS is

important to simulate the visual judgment. However, because the HVS is a complex

119
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visual process and still an open question for researchers. In SIQA design, many researchers

have used fusion hypothesizes of the perceived left and right eye signals called cyclopean

view [21, 13]. Meanwhile, in most of the suggested SIQA approaches the human visual

attention is not explored.

This chapter explores whether visual attention should be taken into account when devel-

oping an objective SIQA metric. To that end, we present a new metric that takes saliency

information into account [76]. Several tests, including an ablation test, are used to verify

the results of this experiment. Furthermore, we investigate the effect of distortions on the

3D saliency map.

5.2 NR-SIQA using Deep Quality evaluator guided

by 3D Saliency

5.2.1 Approach overview

The general framework of the proposed method is summarized in Fig. 5.1. From a given

stereo image, the cyclopean image is first calculated, allowing to consider the binocular

rivalry phenomenon as mentioned above [15]. Then, the 3D saliency map of the stereo

image is computed. It aims to focus on regions that attract more our perception. After

having thresholded the obtained 3D saliency map, small patches are extracted and fed

into a CNN model in order to predict the overall quality of the stereo image. Each of

these steps is described in coming subsection. As seen in previous works, the disparity

map is here computed using an SSIM-based method (discussed in Chapter 3).

5.2.2 RGB Cyclopean image

Followed by the study conducted in Chapter 3 that exhibits the benefit of using cyclopean

image for SIQA. Where the use and non-use of cyclopean hypothesis has been analyzed.

The comparison results indicated better accuracy when cyclopean image is being deployed.

Inspired by the model used in previous work, we construct a cyclopean image over three
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Figure 5.1: Flowchart of the proposed metric.

channels Red, Green, and Blue (RGB) rather than one gray channel to maintain the

distortion effects on the stereo image. The formula used is as follows:

C(x, y)n = wl(x, y)n × Il(x, y)n + wr(x+ d, y)n × Ir(x+ d, y)n (5.1)

where C refers to the cyclopean image and n for the color channel number in-which

n ∈ {R,G,B}. Left and right views are represented by Il and Ir, respectively. d is the

disparity index that matches pixels from left image Il with those in right image Ir. While

wl and wr are the weights of the left and right eyes, respectively. The weights wl and wr

are defined in 3.4 and 3.5, respectively.

As an example presented in Fig. 5.2, sub-Fig. (a) shows RGB cyclopean image formed

from the left image in sub-fig (b) that is not distorted and the right image in sub-fig (c)

that suffers from WN distortion. It is worth noticed that this asymmetric distortion is

stated clearly onto the cyclopean image (the red boxes).

5.2.3 3D Saliency map

Visual attention/saliency is an important characteristic of our HVS since it represents the

regions of the image in which the observer focus the most. Hence, salient regions impact

more the subjective scores given by the observers and thus the quality of a given image

is highly related to these regions. While the use of the 3D saliency map is a further move

in HVS simulation, it remains unconsidered in the most current NR-SIQA metrics.

According to this observation, 3D saliency map has been used in this study to extract
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perceptual relevant patches instead of all patches. The 3D saliency method suggested in

[115] has been here used. This method is based on the integration of the depth information

and 2D saliency maps. The saliency map of the luminance, color and texture from one

view are first computed [36]. Then, the depth map is calculated through the left and right

views as shown in Fig.5.2.d. After a normalization step, the 3D saliency map is finally

given by averaging the achieved maps. For comparison example, we compute non-depth

saliency map (i.e. 2D saliency) and depth saliency map (i.e. 3D saliency) displayed in

Fig. 5.2.e and Fig. 5.2.f, respectively. We can see that the 3D saliency map gives more

importance to near objects than the 2D one because the algorithm incorporates the depth

map.

The 3D saliency map is then normalized (using min-max normalization) and thresholded

to extract patches of size 32x32x3 from the cyclopean image allowing thus to focus only on

the most salient regions. The extracted patches are then fed to a CNN model to predict

the quality. After several tests, the threshold has been fixed to 0.3. The impact of the

threshold value on the performance is presented in Section 5.2.6.

(a) (b) (c)

(d) (e) (f)

Figure 5.2: Saliency of a stereo image: (a) Left view without distortion, (b) Right view
with White Noise (WN) distortion, (c) Synthesized RGB cyclopean image, (d) estimated

depth using disparity map, (e) 2D saliency map and (f) the used 3D saliency map.
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5.2.4 Quality prediction model

As discussed earlier (in Chapter 4), several CNN models with different architectures have

been proposed in the literature. In this work, performances of five pre-trained models

widely used have been compared, briefly described above:

• AlexNet [62]: Developed in 2012, the AlexNet model is one of the pioneering

models proposed by Alex Krizhevsky. This model highlighted the relevance of using

CNN models for classification tasks. Composed of 5 convolutional layers and 3

FC layers, the authors stressed three main points: the use of the Relu (Rectified

Linear Units) function, the exploitation of the dropout to prevent the over-fitting

and overlap during the pooling step.

• VGG16 and VGG19 [103]: have been proposed in 2014. VGG models were

developed by the Oxford Visual Geometry Group. To increase the ability of the

model to discriminate between objects, the authors integrated more non-linearities

by using convolutional layers with 3x3 filters instead of 7x7 filters. Several versions

were proposed with 11 (VGG11), 13 (VGG13), 16 (VGG16) and 19 (VGG19) layers.

Here, VGG16 and VGG19 are used and compared.

• ResNet18 and ResNet50 [47]: In 2015, a Residual Neural Network (ResNet)

model was proposed. This model stands out by its integration of a residual mod-

ule. The idea developed by the authors is to reformulate the output (H(x)=F(x))

of each series of Conv-ReLu-Conv by adding the input x as information (H(x) =

F(x)+x ). Different versions are available: ResNet18 (18 layers), ResNet34 (34

layers), ResNet50 (50 layers), ResNet152 (152 layers) and so on. ResNet18 and

ResNet50 are used in this study.

The use of these models allows to compare different depths (from a shallow model i.e.

AlexNet to deeper models i.e. the other models), different architectures (ResNet and

VGG) as well as same architecture with different depths (VGG16 against VGG19 and

ResNet18 against ResNet50).
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Each of these models has its specificities as shown in Table 5.1 that compares the used

pre-trained models in terms of memory size and amount of learned parameters. The

network depth refers to the largest number of sequential convolution or fully connected

layers on the path from the input layer to the output layer. They have a distinct number

of learnable parameters and different depth sizes. This diversity will drive us to the best

architectures that are suited for quality assessment. It is worth noticed that these models

were modified and fine-tuned to adapt their learnable parameters to our context.

Table 5.1: Pre-trained models descriptions.

Model Size Learnable parameters (Millions) Depth

AlexNet 227 MB 61.0 8

VGG-16 528 MB 138 16

VGG-19 549 MB 144 19

ResNet18 44 MB 11.7 18

ResNet50 98 MB 25.6 50

During the learning, each pre-trained CNN model is fine-tuned for 50 epochs using a

learning rate of 0.01. Stochastic Gradient Descent (SGD) with a momentum equals to

0.9 is used as optimization function. The human scores are normalized in the form of

DMOS/MOS to min-max normalization [0,1]. The closer to 0 the better quality of the

stereo image is for DMOS and the opposite for MOS. After-all, the quality index of a given

stereo image is computed by averaging the predicted scores over the extracted saliency

patches.

5.2.5 Datasets and Training Protocol

To examine the consistency and effectiveness of our method, four databases have been

used to evaluate the performance of our metric. These datasets are listed briefly in Table

5.2.
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Table 5.2: Summary of the four databases.

Database # of Reference scenes Resolution # of images (Sym., Asym.) Distortions

3D LIVE P-I 20 360 x 640 365 (365, 0) JP2K, JPEG, WN, Blur, FF

3D LIVE P-II 8 360 x 640 360 (120, 240) JP2K, JPEG, WN, Blur, FF

Waterloo IVC 3D P-I 6 1080 x 1920 330 (180, 150) JPEG, WN, Blur

Waterloo IVC 3D P-II 10 1080 x 1920 460 (210, 250) JPEG, WN, Blur

It is worth to remember that the asymmetric degradations in the Waterloo P-1 and P-2

databases are different from those in the LIVE-II database. LIVE-II uses only one type

of distortion to perform the asymmetry, while the two Waterloo databases consider the

possibility of multiple types of degradation in which the left and the right images are

affected by different distortions.

Generally, the above-described SIQA databases have small-limited labelled images. To

increase the amount of data, data augmentation is often applied. The available data

augmentation techniques except horizontal flipping, affects the subjective quality ratings.

The rotation and re-sizing approaches often applied change the observers perception of

spatial details and are thus not appropriate for SIQA methods. Therefore in this work,

neither rotation nor translation or re-sizing were applied. Instead of, we allow a maximum

of 80% overlapping between patches. The expected quality rating for each scene is the

average of quality scores obtained from patches, described as follows:

Q =
1

N

N∑
n=1

Pn (5.2)

Where Pn is the predicted score for the nth patch, N is the number of patches, and Q is

the final quality score. We have carried out 10-fold validation test by randomly splitting

the dataset into training (80%) and test (20%) at each time. The average result is then

used as evaluation criterion. We also evaluate the generalization ability of our method

by applying a cross-dataset evaluation. The performance has been measured across the

usual three indexes: The RMSE, SROCC, and the PLCC. Note that objective scores are

fitted to the subjective ones using logistic function [100].
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5.2.6 Different Saliency thresholds and predictors analysis

In this section, many tests have been conducted to define the best network architecture

and to identify suitable saliency threshold. Saliency-based patches are extracted with

regard to threshold value. The five pre-trained models are adjusted and tested using the

same train configurations as discussed in section 5.2.4. Starting with value of 0.1, we

update the threshold and notice the performance using the LIVE P-2 database in Table

5.3. The Table also includes the number of patches extracted at each threshold.

Table 5.3: PLCC results of different deep models versus saliency threshold on LIVE-P2.

Saliency threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Number of patches 82277 68900 46300 23968 12276 5466 1692 557 369

AlexNet 0.960 0.968 0.970 0.969 0.959 0.906 0.870 0.832 0.801

VGG-16 0.977 0.984 0.985 0.983 0.981 0.945 0.907 0.891 0.881

VGG-19 0.977 0.983 0.984 0.982 0.980 0.943 0.907 0.890 0.881

ResNet18 0.970 0.976 0.975 0.974 0.968 0.926 0.889 0.794 0.500

ResNet50 0.966 0.974 0.976 0.975 0.972 0.931 0.882 0.823 0.675

Obtained PLCC results show that the VGG-16 and VGG-19 architectures are better for

mapping the extracted patches to quality scores. From plots in Fig. 5.3, we notice that

using different saliency-based cropping thresholds influence the quality prediction with

best threshold value of 0.3. As we increase the starting value, we get better results for all

models. After threshold of 0.3, the coefficient correlations decrease while saliency thresh-

olds cropping increase. The fact that higher saliency threshold gives smaller datasets,

it may limit the model to learn best quality prediction from the salient regions. For in-

stance, 0.3 gives 46 300 patches for training, while only 12 276 patches for 0.5. This is

a trade-off between the saliency threshold and the training dataset size that need to be

balanced. For example, although using a threshold of 0.1 that yields more training sets

(i.e. 82277 patches), the better precision results are still obtained with a threshold equal

to 0.3. Based on these results, the saliency-guided cropping step allows to considerably

improve the performance. Notice that the performance drops for thresholds which offer
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small train datasets, such as the 0.6 threshold.

Figure 5.3: PLCC, SROCC and RSME comparison results of pre-trained models versus
different thresholds on LIVE-P2.

Moreover, AlexNet gives the lowest correlation performance among all models. VGG-16

and VGG-19 yield similar correlation performance with little differences since they have
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nearly the same architecture. These models contain more series of convolutional layers

and thus extract higher and better quality indicators for prediction. In the meantime,

going deeper than VGG-16 model, ResNet18 and ResNet50 regressors appear to slightly

diverge from the path toward the best quality predictions. For instance, using the best

saliency threshold of value 0.3, AlexNet model with performance of RMSE = 2.491 comes

in the last place compared to the the other four networks.

VGG-16 and ResNet18 behave slightly better compared to deeper ones; VGG-19 and

ResNet50, respectively. The RMSE is 1.938 for VGG-16 and 2.416 for ResNet18, while

the error values for VGG-19 and ResNet50 are 1.957 and 2.459, respectively. Mean-

while, analyzing the same architectures and different depths, VGG-16 performs better

than VGG-19. Also ResNet18 provides better results than ResNet50. Despite that going

deeper with convolutions improves the accuracy in object recognition/classification tasks,

for regression problems it might not perform well. Allowing the network to perform more

convolutions does not necessary imply extraction of more precision quality-features.

After the selection of the best pre-trained model and saliency threshold, we evaluated

the impact of the saliency-based patch selection and the RGB cyclopean image. For the

no saliency test, all possible patches of the cyclopean image were sequentially extracted

by sliding over the whole scene from left to right with a stride of 32 pixel (i.e. without

overlap). This creates 220 patches for every scene in the LIVE P-2 database, while 128

patches are approximately cropped for the saliency-guided extraction. Table 5.4 shows

PLCC, SROCC and RSME results over LIVE P-2 database with and without saliency-

guided patches as well as the grayscale cyclopean versus RGB cyclopean as inputs. As can

be seen, the saliency-guided patch selection considerably improves the performance with

a quality prediction error decrease of 49% in term of RMSE. The use of RGB cyclopean

image allows also to increase quality prediction efficiency in both cases (i.e. with and

without the saliency-guided patch selection). During subjective assessments, the ratings

are given based on RGB stimulus. The RGB cyclopean is therefore closer to reflect the
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distorted spatial information experienced by the observer. The best result is reached

when both are considered. This experiment supports the use of the saliency map and

the RGB cyclopean image for the SIQA. Moreover besides accuracy improvement, the

saliency guidance approach may also decrease the cost and run-time, since the approach

uses recommended patches rather than using all patches of the scene.

Table 5.4: Impact of the saliency-guided patch selection and the RGB cyclopean image
on the performance using VGG-16 and a saliency threshold of 0.3. The tests were

carried-out on LIVE-P2 dataset.

LIVE-P2

Method Input Stereoscopic image SROCC PLCC RMSE

Saliency guided RGB 0.984 0.985 1.938

Gray 0.953 0.960 3.829

Without saliency RGB 0.958 0.961 3.814

Gray 0.931 0.942 4.011

5.2.7 Patch-size effect on quality evaluation

The metric implementation needs a fixed size patch for the deep CNN regression stage.

The stereo images have different aspects and resolutions. Such change would have an

impact on the salient selection regions, and the 32 x 32 patch might not be ideal in this

situation. In particular, LIVE-P1 and P2 stereo images have 360 x 640 pixels size, while

Waterloo-P1 and P2 stereo images have higher resolution with size of 1920 x 1080 pixels.

Tests have been conducted for this manner using the VGG-16 and 0.3 saliency threshold

for their best fit. We increase the patch size by 32 x 32 pixels each time and notice the

effect on quality prediction performance using the three indexes; PLCC, SROCC, and

RSME. Table 5.5 show the results of these tests.
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Table 5.5: Performance versus patch size on Waterloo-P1 and LIVE-P2 databases.

Waterloo-P1 LIVE-P2

Patch size (in pixels) SROCC PLCC RMSE SROCC PLCC RMSE

32 x 32 0.946 0.960 4.376 0.984 0.985 1.938

64 x 64 0.967 0.973 3.592 0.975 0.978 2.342

96 x 96 0.964 0.971 3.757 0.975 0.977 2.389

128 x 128 0.956 0.967 4.009 0.969 0.972 2.628

Performance results demonstrate that increasing patch size can improve the performance

for higher resolution stereo images such in Waterloo-P1 and P2 databases. The best

patch size for LIVE-P2 is 32 x 32 and 64 x 64 for Waterloo-P1. Typically higher resolution

images give the viewer a larger salient region, and increase the number of extracted patches

for 32 x 32 pixels cropping.

The number of patches extracted must be balanced by the resolution of the stereo image.

Therefore, the patches size relies on the resolution of salient region seen by the observer.

5.2.8 Comparison with the State-of-the-Art

Obtained results have been compared with several FR, RR and NR SIQA. Among them,

there are recent blind metrics based on the use of CNN models, namely PAD-Net [128],

Chen [23] and Sun [110].

Table 5.6 shows the results of these methods on both LIVE-P1 and P2 datasets. Best

metric of each category (FR, RR and NR) is represented on bold and the best one whatever

the category is with a gray background. As can be seen, our metric outperforms all the

compared NR metrics on both databases. The best FR metric is the one proposed by

Chen et al [21], while the method proposed by Ma et al [73] achieved the best performance

among the compared RR methods. On LIVE-P1, compared to the best metrics in each

category (i.e. Chen for FR and Ma for RR) the improvements in term of PLCC are 7%

for FR and 5.6% for RR. While on LIVE-P2, the improvements are 8.8% for FR and 6.3%

for RR.
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Table 5.6: Overall performance comparison on LIVE-P1 and LIVE-P2.

LIVE-P1 LIVE-P2

Type Metrics SROCC PLCC RMSE SROCC PLCC RMSE

Benoit [12] 0.899 0.902 7.061 0.728 0.748 7.490

You [130] 0.878 0.881 7.746 0.786 0.800 6.772

Gorley [45] 0.142 0.451 14.635 0.146 0.515 9.675

FR Chen [21] 0.916 0.917 6.533 0.889 0.900 4.987

Hewage [50] 0.501 0.558 9.364 0.501 0.558 9.364

Bensalma [13] 0.874 0.887 7.558 7.558 0.769 7.203

RR-BPI [89] - - - 0.867 0.915 4.409

RR RR-RDCT [74] 0.905 0.906 6.954 0.809 0.843 6.069

Ma [73] 0.929 0.930 6.024 0.918 0.921 4.390

Akhter [5] 0.383 0.626 14.827 0.543 0.568 9.294

Zhou [135] 0.901 0.929 6.010 0.819 0.856 6.041

Fang [35] 0.877 0.880 7.191 0.838 0.860 5.767

DNR-S3DIQE [87] 0.935 0.943 - 0.871 0.863 -

Fezza [38] - - - 0.925 0.908 3.018

NR 3D-AdaBoost [81] 0.930 0.939 5.605 0.913 0.922 4.352

DBN [128] 0.944 0.956 4.917 0.921 0.934 4.005

Chen [23] 0.943 0.959 4.838 0.922 0.936 3.667

Sun [110] 0.959 0.951 4.573 0.918 0.938 3.809

DECOSINE [127] 0.953 0.962 - 0.941 0.950 -

StereoQA-Net [134] 0.965 0.973 4.711 0.947 0.957 3.270

PAD-Net [124] 0.973 0.975 3.514 0.967 0.975 2.446

Gray Proposed 0.981 0.982 3.086 0.984 0.985 1.938

Overall, the performance of our method from both LIVE datasets is somewhat equivalent

with slight advantage for LIVE-P2. Indeed, the PLCC and SROCC values obtained for

LIVE-P1 are respectively 0.982 and 0.981, while those obtained for LIVE-P2 are 0.984

and 0.985, respectively. Furthermore, we report the performance of our method according
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to the size of the training set. Table 5.7 shows the correlations achieved for a training

set of size 50%, 70% and 80% using LIVE databases. The partition ratio has a slight

impact on the performance. And it does not suffer from an over-fitting problem. The

diminution is similar for both datasets. Meanwhile, performance evaluation on Waterloo

datasets are not reported in several metrics papers. Table 5.8 shows the state-of-the-art

comparison using Waterloo-P1 and Waterloo-P2 databases. In comparison with two FR

metrics and four NR metrics including two recently published methods (i.e. Chen [23]

and Sun [110]),the proposed approach again outperforms both NR and FR metrics on

both Waterloo datasets.

Table 5.7: Performance of the proposed metric using VGG-16 under different train-test
partitions on LIVE-P1 and LIVE-P2.

LIVE-P1 LIVE-P2

Partition SROCC PLCC RMSE SROCC PLCC RMSE

80%-20% 0.981 0.982 3.086 0.984 0.985 1.938

70%-30% 0.980 0.980 3.189 0.982 0.983 2.061

50%-50% 0.976 0.977 3.432 0.977 0.978 2.327

Table 5.8: Overall performance comparison on Waterloo-P1 and Waterloo-P2.

Waterloo-P1 Waterloo-P2

Type Metrics SROCC PLCC RMSE SROCC PLCC RMSE

FR Benoit [12] 0.332 0.332 - 0.165 0.320 -

Chen [21] 0.457 0.631 - 0.272 0.442 -

Fezza [38] 0.904 0.898 - 0.890 0.866 -

NR DECOSINE [127] 0.924 0.943 - 0.914 0.933 -

Chen [23] 0.923 0.931 5.989 0.922 0.925 7.119

Sun [110] - - - 0.835 0.840 -

Gray Proposed 0.967 0.973 3.592 0.977 0.981 3.617

To exhibit the prediction responses against human score (objective scores predicted by

our method vs. subjective scores), we show in Fig. 5.4 the scatter plots obtained on the

four databases. For all datasets, the distribution of the predicted scores is in accordance

with the MOS/DMOS for all the considered degradation types.
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Figure 5.4: Scatter plot of subjective scores against objective scores from the proposed
metric on the used four databases.

5.2.9 Performance on individual distortions

The overall performance on the four databases has shown good performance and remark-

able consistency. Furthermore, the proposed scheme has been examined on individual

distortion types. The performance indexes are computed for each distortion individually.

Performance in Tables 5.9, 5.10 and 5.11 indicates that the proposed metric predicts per-

ceptual quality well regardless of types of distortion. Overall, the proposed metric delivers

stable performance. On FF subsets, the best accuracy in term of PLCC is achieved by

PAD-net metric. In term of SROCC on LIVE-P2, the performance of our metric has

achieved the state-of-the-art on all distortion subsets. For Waterloo databases, both the

PLCC and SROCC indexes are observed to be above 0.9 on the three distortions JPEG,

WN, and BLUR. The highest score has been reached on BLUR distortion. From the used

Waterloo and LIVE databases, the metric has reached it highest performance on BLUR.

This is also observed in other metrics scores. Usually, the BLUR distortions are easy to
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detect and they are compared to other forms of distortion such as JPEG one. In the

proposed model, the well tuned convolutional layers have given a step further to capture

this distortion. On BLUR’s distortion over the four datasets, the accuracy of quality

assessment was found to be 98% in terms of PLCC.

Table 5.9: PLCC results over five types of Distortions using LIVE-P1 and LIVE-P2.

LIVE-P1 LIVE-P2

Type Metrics JP2K JPEG WN BLUR FF JP2K JPEG WN BLUR FF

Benoit [12] 0.939 0.640 0.925 0.948 0.747 0.784 0.853 0.926 0.535 0.807

You [130] 0.877 0.487 0.941 0.919 0.730 0.905 0.830 0.912 0.784 0.915

Gorley [45] 0.485 0.312 0.796 0.852 0.364 0.372 0.322 0.874 0.934 0.706

FR Chen [21] 0.912 0.603 0.942 0.942 0.776 0.834 0.862 0.957 0.963 0.901

Hewage [50] 0.904 0.530 0.895 0.798 0.669 0.664 0.734 0.891 0.450 0.746

Bensalma [13] 0.838 0.838 0.914 0.838 0.733 0.666 0.857 0.943 0.907 0.909

RR-BPI [89] - - - - - 0.858 0.871 0.891 0.981 0.925

RR RR-RDCT [74] 0.918 0.722 0.913 0.925 0.807 0.897 0.748 0.810 0.969 0.910

Ma [73] 0.940 0.720 0.935 0.936 0.843 0.880 0.765 0.932 0.913 0.906

Akhter [5] 0.905 0.729 0.904 0.617 0.503 0.776 0.786 0.722 0.795 0.674

Fang [35] 0.911 0.547 0.900 0.903 0.718 0.740 0.764 0.961 0.968 0.867

DNR-S3DIQE [87] 0.913 0.767 0.910 0.950 0.954 0.865 0.821 0.836 0.934 0.915

Fezza [38] - - - - - 0.936 0.905 0.953 0.974 0.957

NR 3D-AdaBoost [81] 0.926 0.668 0.941 0.935 0.845 0.835 0.859 0.953 0.978 0.925

DBN [128] 0.942 0.824 0.954 0.963 0.789 0.886 0.867 0.887 0.988 0.916

PAD-Net [124] 0.982 0.919 0.978 0.985 0.994 0.981 0.898 0.973 0.997 0.986

Gray Proposed 0.986 0.906 0.979 0.986 0.963 0.969 0.964 0.992 0.997 0.982
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Table 5.10: SROCC results over five types of distortions using LIVE-P1 and LIVE-P2.

LIVE-P1 LIVE-P2

Type Metrics JP2K JPEG WN BLUR FF JP2K JPEG WN BLUR FF

Benoit [12] 0.910 0.603 0.930 0.931 0.699 0.751 0.867 0.923 0.455 0.773

You [130] 0.860 0.439 0.940 0.882 0.588 0.894 0.795 0.909 0.813 0.891

Gorley [45] 0.015 0.569 0.741 0.750 0.366 0.110 0.027 0.875 0.770 0.601

FR Chen [21] 0.888 0.530 0.948 0.925 0.707 0.814 0.843 0.940 0.908 0.884

Hewage [50] 0.856 0.500 0.940 0.690 0.545 0.598 0.736 0.880 0.028 0.684

Bensalma [13] 0.817 0.328 0.905 0.915 0.915 0.803 0.846 0.938 0.846 0.846

RR-BPI [89] - - - - - 0.776 0.736 0.904 0.871 0.854

RR RR-RDCT [74] 0.887 0.616 0.912 0.879 0.696 0.879 0.737 0.732 0.876 0.895

Ma [73] 0.907 0.660 0.928 0.921 0.792 0.868 0.791 0.954 0.923 0.944

Akhter [5] 0.866 0.675 0.914 0.555 0.640 0.724 0.649 0.714 0.682 0.559

Zhou [135] 0.856 0.562 0.921 0.897 0.771 0.647 0.737 0.936 0.911 0.798

Fang [35] 0.880 0.523 0.883 0.523 0.650 0.714 0.709 0.955 0.807 0.872

DNR-S3DIQE [87] 0.885 0.765 0.921 0.930 0.944 0.853 0.822 0.833 0.889 0.878

Fezza [38] - - - - - 0.927 0.886 0.947 0.928 0.952

NR 3D-AdaBoost [81] 0.899 0.625 0.941 0.887 0.777 0.842 0.837 0.943 0.913 0.925

DBN [128] 0.897 0.768 0.929 0.917 0.685 0.859 0.806 0.864 0.834 0.877

PAD-Net [124] 0.969 0.889 0.968 0.917 0.996 0.959 0.882 0.962 0.867 0.945

Gray Proposed 0.975 0.906 0.978 0.967 0.950 0.963 0.957 0.988 0.983 0.972

Table 5.11: Performance comparison of the proposed metric on individual distortions
using Waterloo-P1 and Waterloo-P2 database.

Waterloo-P1 Waterloo-P2

Distortion type SROCC PLCC RMSE SROCC PLCC RMSE

JPEG 0.951 0.954 4.084 0.968 0.970 4.075

WN 0.915 0.916 3.756 0.940 0.941 4.178

BLUR 0.985 0.987 2.715 0.988 0.995 2.017

Table 5.12 shows the performance of our metric on symmetric and asymmetric distorted

stimuli. As can be seen, some metrics totally fail to predict the quality for asymmetric

distorted images. They give high correlations for symmetric distorted images (Benoit, You

and Bensalma). PAD-Net yields the best performance for symmetric distorted images.

The first and the second best correlations for symmetric and asymmetric distorted images

have been produced by the proposed approach. According to the Table 5.6; our metric

achieves the best global results. Moreover, high accuracy on asymmetric distortions is
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more challenging, since most of the existing methods fail.

Table 5.12: SROCC performance for symmetric and asymmetric distorted images on
LIVE-P2. Best result of each category is highlighted in bold.

LIVE-P2 Waterloo-P1 Waterloo-P2

Method Type Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric

Benoit [12] 0.860 0.671 - - - -

You [130] 0.914 0.701 0.752 0.571 - -

Gorley [45] 0.383 0.056 0.566 0.475 - -

Chen [21] FR 0.923 0.842 0.924 0.643 - -

Hewage [50] 0.656 0.496 - - - -

Bensalma [13] 0.841 0.721 - - - -

Akhter [5] 0.420 0.517 - - - -

Fezza [38] 0.928 0.882 0.902 0.869 0.915 0.804

3D-AdaBoost [81] NR 0.898 0.917 - - - -

PAD-Net [124] 0.982 0.954 0.985 0.978 - -

Proposed 0.973 0.987 0.987 0.967 0.987 0.976

Figure 5.5: Asymmetric and symmetric distortion plots from the four databases using
the proposed method.

5.2.10 Cross database performance

Cross-database experiments have been conducted in order to verify the generalization

ability of the proposed approach. The implemented tests are shown in Table 5.13. Metrics
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shown are all NR methods. They have been trained in the former database and tested on

the latter.

Table 5.13: PLCC Performance of cross database tests using the four databases.
(Expressed as: Train database/Test database.)

Metrics L-P2/L-P1 L-P1/L-P2 W-P1/W-P2 W-P2/W-P1

DBN [128] 0.869 0.852 - -

DECOSINE [127] 0.916 0.846 0.842 0.873

3D-AdaBoost [81] 0.892 0.824 - -

Chen [23] 0.827 0.812 0.806 0.846

Sun [110] 0.899 0.919 - -

PAD-Net [124] 0.915 0.854 - -

Proposed 0.911 0.851 0.826 0.848

Comparing with the NR metrics, our method has competitive prediction about the quality

of stereo pairs despite cross-database tests. DECOSINE, Sun and PAD-net algorithms

deliver decent performance in the four cross-database tests, but Sun is the only algorithm

which gives performance over 0.9 in term of PLCC in the L1/L2 test. From LIVE datasets,

the performance of the other NR algorithms is not as good as the performance of the

individual database tests. For instance, Chen and DBN metrics showed good results on

the individual database tests where Pearson correlations (PLCCs) of 0.959 and 0.956 have

been achieved on LIVE P-1 for Chen and DBN, respectively. They gave low performance

scores in the L1/L2 test. PLCC of 0.869 and 0.827 are reported for Chen and DBN

respectively. Waterloo datasets have shown lower correlations than LIVE datasets. It is

important to notice that which makes Waterloo databases more challenging than LIVE

is that they not only include both symmetric and asymmetric distorted pairs like LIVE

phase-II. Also, the left and right views of a stereo pair may be distorted by different

distortion types. The cross-database tests revealed that the proposed approach ranks

third after the two metrics DECOSINE and PAD-net. However on LIVE datasets, the

correlation gaps are not profound, 0.003 and 0.005 are the difference values of our metric

with PAD-net and DECOSINE respectively.
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5.2.11 Influence of distortions on the 3D saliency map

To investigate the impact of the distortions on the computed 3D saliency map from the

cyclopean image, we observe the 3D saliency map generated over two different types of

distortion, namely JP2K and FF. The cyclopean image is also being spotted on these

distortions. Fig. 5.6 displays the computation outputs.

Figure 5.6: Examples of synthesized cyclopean image and 3D saliency map on two
different types of distortion.

As can be seen, in each of the synthesized cyclopean image, the quality deformation is

clearly stated. It depends on the type of distortion. Meanwhile, the computed 3D saliency

maps are very similar despite the variation of distortion. This latter indicates consistency

against the degradations that occur in the stereoscopic images. Furthermore, relationship

of the saliency value and the error quality prediction are studied. Six patches of the same

locations have been selected from each cyclopean and 3D saliency maps as shown in Fig.

5.6. Quality prediction error of each patch Pe and its saliency average Ps computations

are as follows:

Pe = abs(y − ŷ) (5.3)

where y is the ground truth quality and ŷ is the predicted quality using the proposed
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metric. The patch saliency average Sa is defined by:

Sa =
1

m.n

m∑
i=1

n∑
j=1

M(i, j) (5.4)

where M is the computed 3D saliency map from previous steps.

Fig. 5.7 shows the obtained curves. On both distortions, it is remarkable to observe

the changes of prediction error derived by the saliency. Curves show that the prediction

error drops when the saliency patch average increases and vice-versa. In the case of JP2K

distortion, patch number three shows that the highest saliency (0.63) is visible at lowest

quality prediction error of values (0.004). For FF distortion with the same patch, we

note the lowest error (0.068) at the highest saliency value (0.42). Generally, for saliency

values above the 0.3 threshold, we find consistency quality prediction errors below 0.15.

From these findings, we conclude that the human visual selectivity influences the quality

evaluation. This quality evaluation can be improved by saliency information for objective

methods.

Figure 5.7: Saliency patch average versus quality prediction error for patches from 1 to 6
under JP2K, and FF distortion shown in Fig. 5.6.

5.2.12 Statistical test performance

In order to verify whether our proposed model is statistically better than other metrics.

We conducted the T-test against the state-of-the-art metrics with confidence at 90%

applied over 10 trials for PLCC and SROCC. This test is one of numerous statistical

tests [91] as discussed in chapter 1. The results is statistically superior or worse than

the competitive metric in the column, respectively. It is important to remember that the
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Table 5.14: T-test results with confidence of 90% of the proposed metric against the
others using PLCC, SROCC on LIVE I and II

Database Index 3D-AdaBoost [81] Chen [23] Shen [101] PAD-Net [124]

LIVE I PLCC 1 1 1 1
SROCC 1 1 1 1

LIVE II PLCC 1 1 1 1
SROCC 1 1 1 1

value of 1 indicates the superiority of the proposed method, and -1 indicates the opposite.

While 0 means that the two metrics are statistically similar. From the tabulated results,

we notice that our metric performs statistically better than other NR-SIQA metrics both

on LIVE Phase I and II.

5.2.13 Computational complexity

We compare here computational time with the most recent NR-SIQA metrics that incor-

porate deep learning into their designs. The working platform uses the MATLAB2020a

on a computer equipped with Intel(R) Xeon(R) CPU E5-2620 v4 processor at 2.10GHz,

64GB of memory and a NVIDIA Quadro P5000 GPU - 16GB of memory. It should be

noted that the other approaches have been tested on various hardware. The test was

performed on a stereo image from the LIVE phase II database with a resolution of 640 x

360 pixels.

The run time (in seconds) tests are listed in Table 5.15. It is worth noting that for our

model we record the time around 17 seconds for predicting quality score. The results show

that PAD-Net [124] only needs around 1 second per image which is significantly lower than

other metrics, while metrics in [101, 134] require around 9 and 3 seconds, respectively, to

deliver quality ratings. In our approach, the most computationally expensive stage is the

cyclopean image construction, since it involves weights computation of the left and right

views by performing a multi-scale Gabor filter. Note that the metric in [?] also includes

a cyclopean image computation, where this metric records higher run time, around 20

seconds. Therefore, we can observe that metrics which do not require considerable pre-

processing, such as cyclopean image computation, are more likely to be faster than others
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because they mostly use the stereoscopic image directly as input.

Table 5.15: The computation time comparison using NVIDIA Quadro P5000 GPU -
16GB for the proposed method.

Metrics Shen [101] StereoQA-Net [134] PAD-Net [124] Yang [?] Proposed

Time (sec.) 8.822 2.377 0.906 19.882 16.335

5.2.14 Deep network visualization

In this section, we take a look at what deep convolutional neural network sees from de-

graded images. We also analyzed the learned convolutional filters and their activation

functions. Where we examine which parts of the cyclopean image are most important for

our CNN models. To ensure independence output, we have preferred the model trained

on LIVE-P2 to observe its behavior on new cyclopean images from LIVE-P1. The test

cyclopean images are shown in Fig. 5.6, where only the patch number six is fed to the

network. The synthesized cylopean views were formed under different types of distortion:

JP2K, WN and FF. The patches are fed to the CNN and then inspect the outputs of

activation functions (ReLU) after the first and second convolutional layers. The first two

convolution layers produce 64 channels each. Among the 64 channels output from ReLU

layer, their mean values are computed and the strongest channel has been selected by

indexing the maximum. Fig. 5.8 despite the first and second ReLU layer responses for

the input cyclopean patch. As can be seen, where the warmer (closer to 1) regions acti-

vate the ReLU function and thus influence the decision of the network. It is remarkable

that the first activation function reflects the presence of pixel deformation. The JP2K

compression is well known artifact that causes undesirable blocks in the image due to the

quantization. This issue is stated in ReLU 1 activation map of JP2K patch that shows

the selection of these blocks as a highly important information to pass through the net-

work. As well as for WN and FF cyclopean patches, the ReLU 1 activation function has

succeeded to focus on noise and blur artifacts.

While the second activation function (ReLU layer) is controlled by a deeper representa-
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tion that makes it harder to fully comprehend the outputs. However, for JP2K cyclopean

patch, deformed regions cover most of the patch that captures peace of house wall on the

scene. For WN, the deformed regions are located around everywhere the wall. From the

second ReLU output maps, the warmer regions are somewhat distributed according to

the most infected regions in the scene. Meanwhile for FF patch, the spatial information of

the wall is less effected since FF is considered as high frequency distortion. Interestingly,

the ReLU 2 responses show that the degradation covers the entire wall, which is often

the case for FF degradation. Notice that for each patch the activation functions appear

diversity as the type of degradation varies. However, the predicted scores for the four

patches are similar and follow the human judgments (DMOS).

Overall, we observe the model learns to focus on the pixel deformations to extract a

complex quality indicators. Thus, the model can also distinguish between different types

of distortion. Based on these findings, we conclude that the deep network extracts high-

quality features, which are controlled by the shape and degree of distortion.

Figure 5.8: The first and second ReLU activation layer outputs (feature map) from a
test cyclopean patch for three degradation types.
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5.2.15 Conclusion

A new no-reference stereoscopic IQA based on the use of cyclopean image and saliency

map has been proposed. The simplicity of the proposed scheme is a benefit for an easy

implementation in the multimedia software. Cyclopean image has been introduced to

consider asymmetrical distortion, while the saliency aims to focus on the most perceptual

relevant regions by selecting relevant patches from the cyclopean image. These patches are

then fed as input to a modified version of a pre-trained CNN model to estimate the quality.

We compared five pre-trained models (i.e. AlexNet, VGG16, VGG19, ResNet18 and

resent50) and we also show the impact of the saliency selection. The best performance

has been obtained with VGG16 for a saliency threshold equals to 0.3. Experimental

results have demonstrate the efficiency of the proposed metric since it outperforms all

the compared FR and NR SIQA of the state-of-the-art on LIVE and Waterloo databases.

Also, the capacity of our method to predict the quality of unknown stereo images has

been evaluated.



Chapter 6

General Conclusion and perspectives

6.1 General Conclusion

As demonstrated in the state-of-the-art chapter of this thesis, significant improvements

in stereoscopic image quality assessment have been made to date. Human binocular per-

ception research are increasingly being explored for the design of metrics, and promising

human simulation algorithms are being implemented and tested. In general, considerable

research efforts are being dedicated on enhancing every aspect of stereoscopic content

quality. Nevertheless, it is certain that clearly understanding the mechanisms of per-

ceived stereoscopic quality remains a significant difficulty, as does determining the best

approach for an accurate quality evaluation that is applicable in a variety of situations.

In this context, the proposed work is an attempt to gain new insights into the properties

of human perception and judgment of stereoscopic image quality, as well as to suggest a

method for assessing it. Through the chapters of this manuscript, we were therefore able

to first analyze the complexity of stereoscopic vision and study the various assessment

system types available in the literature. Then, we focused our efforts on better under-

standing what effects stereoscopic image quality and an observer’s judgment criteria. In

this concept, we suggest several quality evaluation frameworks. The proposed metrics have

been validated after series of tests, where the results show good performance compared

to literature. As visual algorithms, we used cyclopean view synthesis and visual saliency

to imitate perceptual human characteristics in our quality assessment models. We also

144
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employed the most recent deep learning networks/architectures to map perceptual inputs

to quality evaluation ratings. This method avoids the time-consuming computation of a

stereoscopic quality score.

During our experiments, we discovered that the 2D-IQA metrics are relatively unreliable

for stereoscopic images since these approaches do not account for the disparity/depth

information of a 3D scene. Another conclusion that could be drawn is that the SIQA

metric’s primary purpose is HVS simulation, and the better the simulation, the more

accurate the metric will be. Finally, we consider our contributions as a step forward in

the metrics development for stereoscopic stimulus.

It should be noted that all metrics described in this manuscript were tested on natural

scene images, and their effectiveness may vary depending on the type of the content,

including different types of capturing, such as two-view or multi-view content.

6.2 Perspectives

The first perspective work that we envisage is a study analysis on the utility of proposed

framework for visual discomfort assessment/detection. We believe that the methods sug-

gested in this thesis have room for improvement. On this basis, many different HVS

mathematical models might be explored and merged into our concept designs for assess-

ing stereoscopic image quality. Such a mathematical models should be validated by a

series of test experiments on different datasets and compared to other existing models.

Finally, we believe that our approaches are not restricted to stereoscopic imagery, but

also to stereoscopic videos and live 3D streaming broadcasts.
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