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Abstract 1. Gaussian process (GP) is a stochastic process that has been successfully

applied in finance, black-box modeling of biosystems, machine learning, geostatistics, multitask

learning or robotics and reinforcement learning. Effectively estimating the spectral density

function (SDF) and degree of memory (DOM) of a long-memory stationary GP (LMSGP)

is a significant hard problem investigators may face. This thesis gives some new sufficient

conditions (NSCs) for improving the lag window estimators (LWEs) of the SDF and DOM

for LMSGPs. A comparison study among the behavior of the LWEs under the NSCs,

the LWEs without the NSCs and the existing widely used periodogram estimators (PEs)

is given. The theoretical and computational justifications show that: the LWEs under the

NSCs are better than the LWEs without the NSCs; the LWEs under the NSCs are better

than the PEs; the LWEs under the NSCs are asymptotically unbiased and consistent; the

asymptotic distributions of the LWEs under the NSCs of the SDF and DOM under the NSCs

are chi-square and normal, respectively; the LWE of the DOM under the NSCs has a fast

vanishing variance under the regression method; and the LWEs under the NSCs improve

the finite sample properties for the regression and local Whittle estimation methods.

Key words: Gaussian process; spectral density; degree of memory; lag window;

periodogram; local Whittle method; regression method.
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Résumé 1. Le processus gaussien (GP) est un processus stochastique qui a été appliqué

avec succès dans le domaine de la finance, la modélisation en boîte noire des biosystèmes,

l’apprentissage automatique, la géostatistique, l’apprentissage multitâche ou de la robotique

et l’apprentissage par renforcement. L’estimation efficace de la fonction de densité spectrale

(SDF) et du degré de mémoire (DOM) d’un GP stationnaire à longue mémoire (LMSGP)

est un problème important et difficile auquel les chercheurs sont confrontés. Ce travail

donne quelques nouvelles conditions suffisantes (NSC) pour améliorer les estimateurs de

fenêtre de décalage (LWE) de la SDF et du DOM pour les LMSGP. Une étude comparative

entre le comportement des LWE sous et sans les NSC, et le périodogramme (PE), qui est

largement utilisé, est faite en détail. Les justifications théoriques et numériques montrent

que: les LWE sous NSC sont meilleurs que les LWE sans NSC et le PE; les LWE sous les

NSC sont asymptotiquement sans biais et consistants; les distributions asymptotiques des

LWE de la SDF et DOM sous les NSC sont respectivement du chi deux et de la normale;

le LWE du DOM sous les NSC a une variance à disparition rapide selon la méthode de

régression; et les LWE sous les NSC améliorent les propriétés de l’échantillon pour les

méthodes de régression et d’estimation de locale Whittle.

Mots clés: Processus Gaussien; densité spectrale; degré de mémoire; fenêtre de

décalage; periodogramme; méthode de locale Whittle ; méthode de régression.
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Introduction

The purpose of statistical studies is to make judgments about a population based on

observations drawn from it. Series of observations which are indexed by time and can be

observed continuously or discretely, they are called a time series. Financing models, for

example, are often based on a continuous assumption. Because, in the stock market, the

transactions appear very close to each other. Contrariwise, macroeconomic data is usually

observed at a discrete time, in a period of a month, a quarter or even a year. As a title

of an example in the economic and social world: inflation, unemployment, production,

exports, birth rate, immigration, education, housing, etc [37].

Time series, when it is not deterministic, are seen as the realization of a stochastic

process. Whereas, the stochastic process is a collection of random variables on a probability

space. That is, if we take any realization of such a process and divide it up into a number of

time intervals, the various section of realization look pretty much the same. We express this

type of behaviour more precisely by saying that, in such cases, the statistical properties of

the process do not change over time, they are the same at all time point. Processes which

have this property are called stationary process, the opposite case is the non stationary,

its main is to facilitate the extraction mathematical theories (see [42, 10]). Analysis of

stationary process is carried out in two complementary approaches (domains), temporal

and spectral (see [26, 30]). Spectral analysis reveals the correspondence between the

spectral domain and the temporal domains for a stochastic process, which includes the

spectral density function (SDF) and the autocovariance function(ACF) respectively. A

stationary process with slowly decaying ACF is therefore called a stationary process with

long memory or long-range dependence or strong dependence (in contrast to processes with

summable correlations which are also called processes with short memory or short-range

correlations or weak dependence). Briefly, we examine the dependence structure of these

time series by considering plots (in log-log coordinates) of the sample ACF against the
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lag, the variance of the sample against the length of series, or the sample SDF against the

frequencies. Yearly minimal water levels, of the Nile River, are the typical example how

displays the strong dependence structure.

Gaussian process (GP) is a useful stochastic process, it used in different fields and

contain less conditions. Therefore, it is necessary in the treatment of many real cases.

The main objective addressed in this thesis is the estimation of the SDF and the degree

of memory (DOM) of a stationary long-memory second-order Gaussian process (LMDSGP)

which has long remained an interesting and challenging problem to a long time, it posed

in the field of inferential statistics.

Therefore, for well explain the previous ideas, the thesis has been divided into: an

introduction, four chapters, a conclusion, an appendix and bibliographical references.

• Chapter 1 gives the basic statistical and analytical tools which are used to explain,

study, and develop statistical inferences from long memory discrete stationary Gaussian

processes (LMDSGPs). Moreover, to rigorously develop the asymptotic theory, we have

introduced definitions on a slowly evolving functions, summability techniques and estimation

methods.

• Chapter 2 contains an in-depth discussion of stationarity and its role in defining the

ACF and the SDF. Sequentially, we deal the DSGPs and their properties, as a processes

that is easy to interpret its parameters and essential in our studies (to be seen). We

end this chapter by distinguishing the type of process dependency, short memory discrete

stationary Gaussian process (SMDSGP) and LMDSGP in the time domain, ACF, and the

spectral domain, SDF. The SMDSGP is separated from the LMDSGP with a decay rate

of ACF towards zero, all this is illustrated by examples.

• Chapter 3 focuses on statistical inference of LMDSGPs in the spectral domain. We

start by introducing lag window estimator (LWE) and its characteristics, then we present

some theoretical justifications giving an overview of the behavior of estimation of the

spectral density function by lag window estimator (LWE-SDF) and the estimation of degree

of memory using the lag window estimator (LWE-DOM). Then, a clear improvement

is brought on the estimators in question and this by introducing sufficient conditions.

The chapter ends with a comparative study between the behaviors of LWE, under and

without these conditions and of periodogram (PE), to evaluate the beneficial effect of

these conditions on the estimators mentioned.

12



• Chapter 4 concretizes the theoretical results of the optimality of LWE, under established

conditions, by simulation. The programs used in the simulation are algorithms directly

implemented on the methods cited in the work in the MATALB language. The end of the

thesis contains an appendix where the demonstrations are detailed.
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Chapter 1

Preliminaries

1.1 Context

Optimal data collection and efficient data analysis are the two significant key issues to

understand the behavior of complex experiments for real-life phenomena, industrial applications

and scientific investigations [16, 17]. Efficient methods are able to capture maximum

valuable (accurate) information about the behavior of a given experiment and thus more

significant unknown parameters can be estimated without bias and with minimum variance,

whereas non-efficient methods cannot produce accurate information nor provide good

estimators for the unknown parameters [18, 19]. The practice demonstrated that effectively

estimating unknown parameters is a significant hard problem experimenters may face

in many real-life experiments. Even though there are several techniques provided to

estimate unknown parameters, the challenge faced by the experimenters is still daunting.

Gaussian process is a stochastic process that has been successfully used in finance, black-

box modelling of biosystems [3], machine learning [45], geostatistics [12], multitask learning

or robotics [2] and reinforcement learning [13].

In this work, it must define two concept, spectral analysis and dependence structure,

that they help us to meet the main objective of this thesis.

1.1.1 Spectral Analysis

The spectral analysis is a main components in the studied data, it reveals hidden periodicities,

which are to be associated with cyclic behavior or recurring processes. It considers the

problem of determining the spectral analysis (i.e., the distribution over frequency) of a
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process from a finite set of measurements, either nonparametric or parametric techniques.

Spectral analysis is divided into two major areas, a Fourier transform or a spectral density

function (SDF).

(1) When the data contains no random effects or noise, it is called deterministic. In this

case, one computes a Fourier transform.

(2) One computes a SDF when random effects obscure the desired underlying phenomenon.

The spectral analysis gives information and other characteristics of the process under study,

it finds in many divers fields:

• i) In economics, meteorology, astronomy and several other fields, the spectral analysis

may reveal "hidden periodicities" in the studied data, which are to be associated with

cyclic behavior or recurring processes.

• ii) In radar and sonar systems, the spectral contents of the received signals provide

information on the location of the sources (or targets) situated in the field of view.

• iii) In medicine, spectral analysis of various signals measured from a patient, such as

electrocardiogram (ECG) or electroencephalogram (EEG) signals, can provide useful

material for diagnosis.

• iv) In seismology, the spectral analysis of the signals recorded prior to and during a

seismic event (such as a volcano eruption or an earthquake) gives useful information

on the ground movement associated with such events and may help in predicting

them. Seismic spectral estimation is also used to predict subsurface geologic structure

in gas and oil exploration.

• v) In control systems, there is a resurging interest in spectral analysis methods as

a means of characterizing the dynamical behavior of a given system, and ultimately

synthesizing a controller for that system.

The history of spectral analysis as an established discipline started more than a century

ago with the work by Schuster on detecting cyclic behavior in time series. An interesting

historical perspective on the developments in this field can be found in Marple (1987) [38].

This reference notes that the word "spectrum" was apparently introduced by Newton in

relation to his studies of the decomposition of white light into a band of light colours,
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when passed through a glass prism. This word appears to be a variant of the Latin word

"spectre" which means "ghostly apparition". The contemporary English word that has

the same meaning as the original Latin word is "spectre".

1.1.2 Measure of Dependence Structure

A stochastic process is a sequence of random variables that are dependent in time. The

long memory (or long-range dependence) process has become a rapidly developing subject.

Because of the diversity of applications, the literature on the topic is broadly scattered in

a large number of works.A particular measure of dependence structure is the covariance

which specifies the linear part of the dependence. The variables X and Y are said to be

correlated if their covariance function:

cov(X,Y ) := E(XY )− E(X)E(Y ) ̸= 0,

and they are uncorrelated if their covariance function vanishes:

X and Y are uncorrelated =⇒ cov(X,Y ) = 0.

The opposite statement is not necessarily true, i.e.,

cov(X,Y ) = 0 ⇏ X and Y are uncorrelated.

Therefore, we showed as follows

cov(X,Y ) ̸= 0 =⇒ X and Y are correlated =⇒ dependent,

X and Y are independent =⇒ uncorrelated =⇒ cov(X,Y ) = 0.

Independent random variables (Xt)t∈T with identical distribution function are referred to

as independent and identically-distributed random variables (i.i.d). There exist various

characteristics describing the dependence structure of a stochastic process, which can be

placed between the two extreme scenarios.

• Scenario 1: The observations are dependent, due to the nature of the observed

phenomenon and/or the way observations are taken. It is a completely dependent

sequence {Xj ≡ X, j ∈ Z}, where X is a given random variable, which allows for

only trivial inference.
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• Scenario 2: The observations are expected to be (more or less) independent. It

corresponds to an i.i.d. sequence {εj} = {εj , j ∈ Z} with mean µ and variance σ2,

i.e., {εj} ∼ i.i.d(µ, σ2).

Between these two extremes are many other stochastic processes, there is a mixing process.

Definition 1. For stochastic processes, “mixing” means "asymptotically independent": that

is, the statistical dependence between X(t1) and X(t2) goes to zero as |t1 − t2| increases.

To make this precise, we need to specify how we measure the dependence between X(t1)

and X(t2).

In particular, α-mixing and m-dependent processes defined as follows. Let

α(k) := sup
{
|P (A ∩B)− P (A)P (B)| : A ∈ F−

0 (X), B ∈ F+
k(X)

}
,

where F−
k (X) and F+

k (X) are the σ-fields generated by the “past information” Xs, s ≤ k

and the "future information" Xs, s > k, respectively.

Definition 2. A stochastic process {Xj} is said to be α-mixing if

α(k) → 0, as k → ∞.

Given a positive integer m, a stationary process {Xj} is called m-dependent if

α(k) = 0, ∀k > m.

In many cases, α-mixing processes {Xj} have asymptotically similar properties as

autoregressive moving average (ARMA) process and Markov process, including the fast

decay of dependence and the correlation between observations Xj and Xk, as the distance

|j − k| in time increases.

Under m-dependence, the collections of variables {Xs, s ≤ k} and {Xs, s > k + m} are

independent for any k ∈ Z, i.e., independence of the times series up to time m.

• A simple example of an m-dependent process is a moving-average process (MA)

Xj = a0εj + · · ·+ amεj−m =

m∑
i=0

aiεj−i, where {εj} ∼ i.i.d(0, σ2).

• It is clear that, an i.i.d. sequence is 0-dependent.

The rate of decay of the mixing coefficients α(k), as k → ∞, characterizes the degree of

dependence between “past” and “future” and the distant observations in time. However, it
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does not impose any additional assumptions on the structure of the process {Xj}. Various

other measures of dependence and classes of mixing processes have been introduced in the

literature, for more details see[23]. As a rule, mixing conditions are not easy to verify and

for concrete classes of processes they may be too restrictive. The dependence structure of

the time series, by considering plots (in log-log coordinates), can be determined by:

(1) The variance of X̄γ against the γ, where X̄γ = γ−1
∑γ

t=1Xt,

(2) The estimator of ACF Â(h) against the lag h, or

(3) The estimator of SDF Ŝ(ηi) against at Fourier frequencies ηi = 2πi
γ .

The meaning of the relationship between these properties is explained as follows

var(X̄γ) = var

(
γ−1

γ∑
t=1

Xt

)
= γ−2

γ∑
t,k=1

cov(Xt, Xk). (1.1)

(a) If the series are independent (so it’s uncorrelated), i.e., cov(Xt, Xk) =


0 if t ̸= k,

var(Xt) for t = k.

Then for (1.1),

var(X̄γ) = γ−2
γ∑

t=1

var(Xt) = γ−1var(Xγ).

(b) In case of a dependent process X = {Xt, t ∈ Z}, if the series are correlated and the

ACF, cov(Xt, Xk), depend only on the lag, |t− k|, then (1.1) can be simplified by

var(X̄γ) = γ−2
γ−1∑
h=0

(γ − h) cov(X0, Xh) = γ−1

(
var(Xγ) + 2

γ−1∑
h=1

(
1− h

γ

)
Â(h)

)
.

(1.2)

These formulas will be well detailed in the following sections.

1.1.3 Empirical Example

Discrete stationary Gaussian processes (DSGPs) are widely used in many real-life applications,

including hydrology, geophysics, economics, econometrics, ecology and telecommunication

traffic (cf. [4, 22, 47, 48, 60]).

The famous example in this field is the yearly minimal water levels of the Nile River for

the years 622-1281, whose water level has been measured at the Roda Gauge near Cairo

in Egypt(Tousson, 1925, pp. 366-385), it is one of the real-life applications of the long
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memory DSGP (LMDSGP). This set of data describes the long periods of dryness which

followed by long periods of yearly returning floods.

Historically, The analysis of this and several similar time series led to the discovery

of the so-called Hurst effect (Hurst 1951). It exhibits a long-term behavior that might

give an explanation of the seven good years and seven bad years described in Genesis.

There were long periods where the maximal level tended to stay high. On the other hand,

there were long periods with low levels. Overall, the series looks stationary. When one

only looks at short time periods, then there seem to be cycles or local trends. However,

looking at the whole series, there is no apparent persisting cycle. It rather seems that

cycles of (almost) all frequencies occur, superimposed and in random sequence. Also,

there is no global trend. In reference to the biblical seven years of great abundance and

seven years of famine, Mandelbrot called this behavior the Joseph effect (Mandelbrot 1977,

1983a, Mandelbrot and Wallis 1968a,b, Mandelbrot and van Ness, 1968). Motivated by

Hurst’s empirical findings, Mandelbrot and co-workers later introduced fractional Gaussian

noise (FGN) as a statistical model with long memory (see, e.g., Mandelbrot and Wallis

1968 a, 1969 a, Mandelbrot and van Ness 1968).

The presence of long memory in this data set, it can be indicate that the variance of

X̄n converges to zero at a slower rate than n−1. Or, due to the slow decay of the ACF

against the lag which corresponds to the property (2.12). The slope of the ln(ACF) relative

to ln(lag) is represented by a single parameter which is the degree of memory (DOM) (cf.

Figure 1.4a in [6]). For more details and more real-world examples, the interested reader

can refer to [6] and [28].

1.2 Related Work and Problem

In this thesis, we are mainly interested in a class of LMDSGP whose ACF varies regularly

to infinity with the DOM parameter. We are particularly interested in the estimation

of the SDF, S(.), and the DOM, d. There are several methods to estimate them. The

estimation of the SDF and DOM of a LMDSGPs are the most significant hard problem

in this regard. The periodogram technique (PT) is the classical technique for estimating

the SDF. The practice demonstrated that, the PT has some defects, such as (cf. [6, 42])
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a satisfactory estimator is not guaranteed; the resultant periodogram estimator (PE) is

inconsistent; and the PE has an erratic and wild fluctuating form. Lag window technique

(LWT) consists of windowing the autocorrelation coefficients prior to estimating the SDF

that is shown to be a special case of smoothing a SDF estimator by giving decreasing

weight to the autocovariances as the lag increases. The weighting function is known as the

lag window (kernel) and leads to a smoothed SDF estimator (SDE). Some improvements

of the LWT for effectively estimating the SDF and DOM are investigated in this study (cf.

Section 3).

1.2.1 SDF Estimation

The goal of spectral estimation is to describe the distribution (over frequency) of the

power contained in a process, based on a finite set of data. Estimation of SDF (the power

spectra) is useful in a variety of applications, including the detection of signals buried in

wide-band noise. In nonparametric methods, concerning the SDF estimation, are based on

the discrete Fourier transform (DFT). In these methods no need to obtain the parameters

of the time series. All these methods have the advantage of possible implementation using

the DFT, but with the disadvantage in the case of short data lengths of limited frequency

resolution. Parametric methods on the other hand can provide high resolution in addition

to being computationally efficient. The most common parametric approach is to derive

the spectrum from the parameters of an autoregressive model of the process ([43]). The

most nonparametric methods include :

(1) The PE is the classical technique for estimating the SDF. The practice demonstrated

that, the PE has some defects, such as (cf. [6, 42]) a satisfactory estimator is not

guaranteed; the resultant PE is inconsistent; and it has an erratic and wild fluctuating

form.

(2) Bartlett method divide the signal into blocks, find their PEs and average to get

the SDE (The data segments are non-overlapping). The final effect is true SDF

convoluted with a window. Due to windowing (leakage frequency due to side lobes)

the frequency resolution is low [5, 51].

(3) Welch Method can be overlapping and window the data segments before computing

PE (we may use different windows for each segment). This method has better

precision but less frequency resolution than Bartlett method([52]).
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(4) Blackman-Tukey Method windowed the ACF and take Fourier transform to get SDF

estimator, in effect we smooth out the PE. It has better variance (even at large lags)

and better precision than above two methods, but frequency resolution is less than

the others. The estimates are based entirely on a finite record of data, the frequency

resolution is equal to the spectral width of rectangular window of length N, which is

approximately 1/N . The estimates are computed at discrete frequencies [51].

(5) The LWT consists of windowing the autocovariance coefficients prior to estimating

the SDF that is shown to be a special case of smoothing a SDE by giving decreasing

weight to the autocovariances as the lag increases. The weighting function is known

as the lag window (kernel) and leads to a smoothed SDF estimator. The LWT is the

same as the Blackman-Tukey Method, but for various windows[42, 51, 10].

1.2.2 DOM Estimation

The semi-parametric methods allow to estimate the DOM without completely specifying

the distribution of the process (and in particular, the SDF of the process). The idea is to

consider the estimation of the DOM as the estimation of a parameter of interest, in the

weight of a prior infinite-dimensional nuisance parameter, which is the spectrum of the

"short-memory" part of the process.

(1) The most classic and well-known method is that of the regression of the log-periodogram

introduced by [21], which consists in regressing the log-periodogram with respect to

the logarithm of the frequency normalized in a neighborhood of zero frequency. The

asymptotic normal and the consistency of this estimator were established by Robinson

(1995a) [47] for LMDSGP.

(2) Another commonly used estimator of the DOM is the local Whittle estimator proposed

by Künsch (1987)[34]. Instead of regressing the logarithm of the periodogram to

zero frequency, this method consists in using a local approximation of the Gaussian

likelihood. The consistency and asymptotic normality of this estimator were established

in [48] for LMDSGP.
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Bibliographical Notes

We summarize some research work concerning the SDF and DOM estimators applied in

LMDSGP and short memory DSGP (SMDSGP)

• Hunt et al. (2003) [31] are derived an approximation bias, in the lag window estimator

(LWE), of the DOM in ARFIMA models. By simulation, the expression obtained is

compared with the observed bias, for the various windows.

• For long memory process, the asymptotic behavior of the DFTs has received a good

amount of attention in recent years. Among other reasons, this may be attributed to

the important role played by the DFTs in the semiparametric estimation of the DOM

parameter d. See, for example, Geweke and Porter-Hudak (1983)[21], Robinson (1995)[50],

Hurvich, Deo and Brodsky (1998)[33] and the references therein.

• For processes {Xt} having the SDF defined by (2.13) with d ∈ (0, 1/2) and with

a bounded V(.), Yajima (1989) and Pham and Guégan (1994) established asymptotic

normality and asymptotic independence of the DFTs at a finite set of ordinates that

are asymptotically distant. In an important work, Robinson (1995)[50] proved that for

a stationary process {Xt} having SDF S of the form (2.11).

• For short memory process, Beran[6] and Priestly[42] have treated the the asymptotic

behavior of the SDF estimator using the LWT.

• In Hunt[31] made the simulation study for LWT for the long memory process and in

Hassler[28] has collected everything related to the long memory process

• Lahiri (2003)[35] provide a characterization of asymptotic independence of the DFTs

in terms of the distance between their arguments under both cases, SMDSGP and LMDSGP.

We represent the above works with a diagram to clearly the researches. Such as,η is the

frequency, the Fourier frequency defined by ηj = 2πj
γ , nγ the length of window and γ is the

sample size.

1.3 Basic Concept

1.3.1 Slowly Varying Functions

A slowly varying function is a function of a real variable whose behaviour at infinity is in

some sense similar to the behaviour of a function converging at infinity.
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LWE

d = 0
ηj Anderson (1994)

η Priestly(1983), var = O
(
nγ

γ

)

d ̸= 0
ηj Our work

η Hunt et al. (2003) study the bias approximation

PE

d = 0
ηj cov(, ) = O

(
1
γ

)
, Brockwell Peter (p. 348)

η cov(, ) = O
(

1
γ

)
, Brockwell Peter (p. 350)

d ̸= 0
ηj Beltrao et al. (1993) for j is fixed and Robinson (1995) for j → ∞

η Yajima (1989)

Figure 1.1: Illustrative diagram of previous works concerning spectral studies
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Definition 3. A measurable function L : R+ −→ R+ is called slowly varying (at infinity),

∀a > 0, lim
x→∞

L(ax)

L(x)
= 1.

Note

• A function L : (0,∞) −→ R+ is called a regularly varying if,

∀a > 0, lim
x→∞

L(ax)

L(x)
= g(a) <∞.

• Every regularly varying function f : R+ −→ R+ is of the form, f(x) = xβL(x) where,

β ∈ R and L is a slowly varying function.

• L is slowly varying at the origin and L̃ is slowly varying at infinity, if L̃(x) = L(x−1).

Examples

The constant function is trivially slowly varying. Moreover, any function with a strictly

positive finite limit is slowly varying, i.e., if L has a limit, limx→∞ L(x) = b ∈ R+, is a

slowly varying function. More interesting examples are:

∗ log x; ∗ log log x; ∗ exp(log x)b, b ∈ (0; 1).

The function L(x) = x is not slowly varying, neither is L(x) = xb for any real b ̸= 0.

However, these functions are regularly varying. Among its advantages. Let finally f(t) be

integrable in every finite interval and let

T (x) =

∫ ∞

0
f(t)L(xt)dt.

The study of the asymptotic behavior of T (x), or more precisely of the relation

T (x) ≃ L(x)

∫ ∞

0
f(t)dt, as x→ 0, or as x→ ∞.

For more informations, see (cf, [53]).

1.3.2 Periodic Function

A periodic function is a function that repeats its values at regular intervals. For example,

the trigonometric functions, which repeat at intervals of 2π, are periodic functions. Periodic

functions are used throughout science to describe oscillations, waves, and other phenomena

that exhibit periodicity.
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Definition 4. A function f is said to be periodic if, for some nonzero constant P , it is the

case that f(x+ P ) = f(x), for all values of x in the domain.

In parallel, the periodic cycles function are trigonometric functions like

f(t) = a cos(ηt) + b sin(ηt) = a cos(η(t+ P )) + b sin(η(t+ P )) = f(t+ ηP ),

where P stands for the period. The period P and the frequency η are inversely related.

By the properties of the sine and cosine, we have

ηP = 2π =⇒ P = 2π/η, as long as η ̸= 0. (1.3)

In particular, we will focus on the so-called harmonic frequencies, also called Fourier

frequencies η1 = 2π
γ , η2 = 2η1, . . . , ηj = jη1 =

2πj
γ , where γ is the sample length.

The first Fourier frequency, η1, is also called the fundamental with period P1 = 2π
η1

= γ.

Clearly, a cycle of a longer period (i.e. smaller frequency) cannot be observed from a sample

of length γ. Similarly, frequencies larger than π are not considered since they correspond

to periods 2π/η shorter than 2, which is not observable in discrete time with t = 1, 2, . . . .

[30] Hence, the set of Fourier frequencies typically consists of ηj = 2πj
γ , j = 1, 2, . . . ,M =[

γ−1
2

]
. In the case of an odd or even sample size, respectively, we hence have

M =


γ−1
2 , if γ is odd

γ/2− 1, if γ is even.

The main result, that we obtain, says that any given time series can be decomposed into

the sum of (weighted) trigonometric functions evaluated at ηjh, where h is the lag between

the successive value of the time series, which we will be explained in the spectral study.

1.3.3 Technical Results on Summability

In this part, we will collect some technical results on the summability of real sequences.

Let {cj}j∈N be a sequence of real numbers. Then the following holds:

• If {cj} is summable, then

∞∑
j=0

cj <∞ =⇒ lim
j→∞

cj = 0 =⇒ lim
N→∞

1

N

N∑
j=1

cj = 0,
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• If {|cj |} is summable, then {cj} is said to be absolutely summable. If {c2j} is

summable, then {cj} is said to be square summable. Hence, absolute summability

implies summability and square summability:

∞∑
j=0

|cj | <∞ =⇒


∑∞

j=0 cj <∞, (a)∑∞
j=0 c

2
j <∞. (b)

The opposite does not hold: (a) shows that summability is not sufficient for absolute

summability, and (b) shows a square summable sequence is not necessarily (absolutely)

summable. The most explicit example is cj = (−1)j

j . For these and further results,

see ([28], section 3.2).

1.3.4 Asymptotic Notation

Big O provides an upper bound on the rate of growth, however the little o means a loose

upper bound. An infinite sequence {an, n ∈ N∗} is O(1) if it is bounded, i.e.,

∃ c ∈ R∗
+, such that |an| ≤ c, ∀n ≥ 1.

And, the sequence {an, n ∈ N∗} is o(1) if an → 0 as n → ∞. The concept can be

generalized. Let {bn, n ∈ N∗} be a positive infinite sequence. We say

an = O(bn) if the sequence an/bn is bounded for n ∈ N∗.

And we say an = o(bn) if an/bn → 0 as n→ ∞.

The simple lemma below gives an alternative expression.

Lemma 1. an = O(bn) ⇐⇒ an = bnO(1) and an = o(bn) ⇐⇒ an = bno(1).

Properties: Below are some simple facts and rules of operation for O and o.

• (i) If an = o(bn) =⇒ an = O(bn).

• (ii) If an = O(bn) and bn = o(cn) =⇒ an = o(cn).

• (iii) If an = o(bn) and bn = O(cn) =⇒ an = o(cn).

• (iv) If an = o(bn) and bn = o(cn) =⇒ an = o(cn).

• (v) If an = o(bn) =⇒ ∀p > 0, |an|p = o(bpn).
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1.3.5 Estimation Methods

Parametric Method

Parametric methods are based on parametric models of a time series, such as autoregression

(AR) models, moving average (MA) models, and autoregressive-moving average (ARMA)

models. Therefore, parametric methods also are known as model-based methods. To

estimate the SDF or DOM of a time series with parametric methods, you need to obtain

the model parameters of the time series first.

Nonparametric Method

The nonparametric method does not require the population under study to meet particular

assumptions or specific parameters to characterize the observations, as is the case with

parametric methods. To illustrate, such as a case of probability density estimation using

a Histogram, the spectral density estimation using a PE.

Semiparametric Methods

A semiparametric model is a statistical model that has parametric and nonparametric

components. It is considered to be "smaller" than a completely nonparametric model

because we are often interested only in the finite-dimensional component of the parameter.

That is, the infinite-dimensional component ( the non-parametric component) is regarded

as a nuisance parameter. Sachs as a nuisance parameter is any parameter which is not of

immediate interest but which must be accounted for in the analysis of those parameters

which are of interest. Based to this, we define the semiparametric estimation.

Definition 5. Semiparametric estimation methods are used to obtain estimators of the

parameters of interest, typically the coefficients of an underlying regression function, without

a complete parametric specification of the conditional distribution of the dependent variable

given the explanatory variables.

As the name suggests, semiparametric method are models that are part parametric and

part nonparametric. An example is a partially linear regression model of the form

Y = bX + f(z) + ε,

where Y is a responce vector, X is a matrix which is known as explanatory variables and

ε is i.i.d. The function f is an arbitrary function of z, it is the nonparametric part and b
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is an unknown vector, it is the parametric part of the model. The theory of inference for

such models can become very complex. Under appropriate conditions and if f̂ is chosen

carefully, this will lead to good estimate of b.

1.3.6 Bias-Variance Tradeoff

Why the best estimator is selected via smallest a mean square error (MSE)?

The MSE is the trade-off between bias and variance and is the best approach to select the

preferable estimator via the smallest MSE.

Let f̂(x) be an estimate of a function f(x). The squared error (or L2) loss function is

L(f) =
(
f̂(x)− f(x)

)2
.

The average of this loss is called the Risk or MSE and is denoted by:

MSE = E (L(f)) = E

((
f̂(x)− f(x)

)2)
.

The random variable in this equation is the function f̂ which implicitly depends on the

observed data. We will use the terms risk or MSE, such as a simple calculation shows that

MSE := Bias2 + variance,

where, Bias(f(x)) = E
(
f̂(x)− f(x)

)
is the bias of f̂ and var(f̂) is the variance of f̂ . The

main challenge in smoothing is to determine how much smoothing to do. When the data are

over smoothed, the bias term is large and the variance is small. When the data are under

smoothed the opposite is true; see Figure 1.2. This is called the bias–variance tradeoff.

Minimizing risk corresponds to balancing bias and variance. The bias increases and the

variance decreases with the amount of smoothing. The optimal amount of smoothing,

indicated by the vertical line, minimizes the Risk=MSE ( graph 1.2).
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Figure 1.2: The bias - variance tradeoff.
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Chapter 2

Long Memory Gaussian Stationary

Process

2.1 Stationary Stochastic Process

2.1.1 Stochastic Process

Definition 6. (Stochastic) The word stochastic originates from the Greek stochazesthai

meaning “to aim at” or “to guess at”. It is used in the sense of random in contrast to

deterministic. While in a deterministic model the outcome is completely determined by

the equations and the input (initial conditions), in a stochastic model no exact values are

determined but probability distributions. In that sense, a stochastic model can be understood

as a means to guess at something.

The choice between a deterministic and a stochastic model is basically one of what

information is to be included in the equations describing the system. On the one hand

information can be limited simply by the lack of knowledge. On the other hand it might

not be benefiting the modelling objective to include certain information.

Definition 7. (Stochastic Process). A stochastic process is a family of random variables

{Xt, t ∈ T} defined on a probability space (Ω,F , P ).

Definition 8. (Realizations of Stochastic Process). The family {xt = Xt(ω), t ∈ T, ω ∈

Ω} is known as the realizations of the process {Xt, t ∈ T}.

Definition 9. (Time Series) A time series is a set of observations (realization of a

stochastic process) xt, each one being recorded at a specified time t. The time series
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{xt, t ∈ To} is then a realization of the family of random variables {Xt, t ∈ To}, where To

is a given set. These considerations suggest modelling the data as a realization (or part of

a realization) of a stochastic process {Xt, t ∈ T} where To ⊆ T .

• Time series is divided in two parts

1. A discrete-time series (the type to which this work is primarily devoted) is one in which

the set To of times at which observations are made is a discrete set, as is the case for

example when observations are made at fixed time intervals.

2. Continuous-time series are obtained when observations are recorded continuously over

some time interval, e.g. when To = [0, 1]. We shall use the notation x(t) rather than xt, if

we wish to indicate specifically that observations are recorded continuously.

• Objectives of the analysis and the study of time series can be divided into two main

components:

1- Describe and understand the chain production mechanism, which includes metadata

analysis and modelling, then

2- Forecasting future values and estimating maximum risks.

• General problem is to construct adequate mathematical models for the data (time series),

i.e., the selection of a suitable mathematical model (or class of models) for the data. To

allow for the possibly unpredictable nature of future observations it is natural to suppose

that each observation xt is a realized value of a certain random variable Xt.

2.1.2 Stationary Process

Stationary is an invariant property which means that statistical characteristics of the time

series do not change over time. For example, the yearly rainfall may vary year by year, but

the average rainfall in two equal length time intervals will be roughly the same as would

the number of times the rainfall exceeds a certain threshold. But, over long periods of time

this assumption may not be plausible, so it guides us to the non-stationary notion. Also,

for example, the climate change that we are currently experiencing is causing changes in

the overall weather patterns. However in many situations, including short time intervals,

the assumption of stationary is quite a plausible. Indeed often the statistical analysis of a

time series is done under the assumption that a time series is stationary.

There are two cases of stationary, the strict stationary and weak stationary. Whose the

weak stationary concerns only the covariance of a process and the strict stationary which
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is a much stronger condition and supposes the distributions are invariant over time.

Definition 10. (Strict Stationary) The time series {Xt} is said to be strictly stationary

if for any finite sequence of integers t1, ..., tk and shift h the distribution of (Xt1 , ..., Xtk)

and (Xt1+h, ..., Xtk+h) are the same.

The above assumption is often considered to be rather strong (and given a data it is

very hard to check). Often it is possible to work under a weaker assumption called weak

or second order stationary.

Definition 11. (Weak Stationary) The process {Xt} is said to be second order stationary

or weak stationary if:

• The mean is constant for all t,i.e., E(Xt) = m, ∀t ∈ R; and

• For any (t, k) ∈ R2, the covariance between Xt and Xt+k only depends on the lag

difference k. In other words there exists a function

A : Z2 −→ R

(t, h) → A(h, t) = cov(Xt, Xt+h),

such that for all t and k we have A(h) = cov(Xt, Xt+h).

A second-order (weak) stationary process is a process whose statistics of order less than

three, such as mean and covariance, do not change over time, however other statistics of

order greater than two, such as kth moments for k > 2, are free to change with the time.

To show that strict stationarity (with E(X2
t ) < ∞) implies second order stationarity,

suppose that {Xt} is a strictly stationary process, then

cov(Xt, Xt+k) = E(XtXt+k)− E(Xt)E(Xt+k)

=

∫
xy
(
PXt,Xt+k

(dx, dy)− PXt(dx)PXt+k
(dy)

)
=

∫
xy (PX0,Xk

(dx, dy)− PX0(dx)PXk
(dy)) = cov(X0, Xk),

where PXt,Xt+k
is the joint distribution and PXt , PXt+k

are the marginal distribution of

Xt, Xt+k respectively. The above shows that cov(Xt, Xt+k) does not depend on t and

{Xt} is second order stationary.

Remark 1. (i) If a process is strictly stationary and E(X2
t ) < ∞, then it is also second

order stationary. But the converse is not necessarily true.

strictly stationary
E(X2

t )<∞
−−−−−−→ second order stationary.
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(ii) If a process is strictly stationary but the second moment is not finite, E(X2
t ) = ∞,

then it is not second order stationary (Cauchy’s distribution).

strictly stationary
E(X2

t )=∞
↛ second order stationary.

Figure 2.1: The stationarity in the mean and variance.

2.1.3 Autocovariance Function

Stochastic process {Xt}t∈Z has the mean function E(Xt), his ACF is given by

A(t, s) := cov(Xt, Xs) = E(XtXs)− E(Xt)E(Xs), ∀(t, s) ∈ Z2.

In addition, let {Xt}t∈Z be a discrete (second-order) stationary process, so

A(h) = cov(Xt, Xt+h) = E(XtXt+h)− E(Xt)
2, ∀(t, h) ∈ Z2.

• From the stationarity process, the ACF has the following basic properties, ∀h ∈ Z:

(i) A(h) = A(−h); (ii) |A(h)| ≤ A(0) = var(Xt); (iii) |A(h)| <∞.

• The empirical ACF (i.e., the estimator of ACF) of an observed dataset {X1, . . . , Xγ}

from a stationary process {Xt}t∈Z is defined as follows

Âγ(h) =


1

γ

γ−|h|∑
j=1

(Xj − X̄)(Xj+|h| − X̄), if |h| ≤ γ − 1;

0, if |h| ≥ γ.

(2.1)

where X̄ is the sample mean, X̄ = γ−1
∑γ

t=1Xt.

34



2.1.4 Spectral Density Function

Spectral analysis breaks down a process into a periodic function that identifies cycles or

periodic. Moreover, it is convenient to map the correlation of stochastic processes from

the time domain to the so-called frequency domain. The following Theorem characterizes

that the ACF can be written in the form of integral by bounded distribution function F

with mass concentrated on [−π, π].

Theorem 1. Herglotz’s Theorem

A complex valued function A(.) defined on the integers is non-negative definite if and only

if

A(h) =

∫ π

−π
eihηdF (η), (2.2)

where F (.) is a bounded, increasing, continuous function over [−π, π] and F (−π) = 0. F

is called a spectral distribution function of A(.).

Herglotz’s theorem shows that the ACF of the stationary process, A(.), are Fourier

coefficients of a measure over the interval [−π, π].

Remark 2. If we put h = 0, in the previous reltion (2.2, we see that

A(0) = var(Xt) =

∫ π

−π
dF (η). (2.3)

Therefore, F () represents a distribution of the variance of Xt over the interval [−π, π]. We

can also deduce, from (2.2) and (2.3), a new presentation of the random process Xt called

spectral representation.

If there exists a function S : (−π, π] → R+ integrable such that for all η ∈ (−π, π],

F (η) =

∫ η

−π
S(θ)dθ, −π < η ≤ π,

then S is called spectrum or the SDF. In analogy to formula (2.2), we have: A(h) =∫ π
−π S(η)e

ihηdη. To evaluated the role of the SDF, S(η), and for (2.3), we get

var(Xγ) = A(0) =

∫ π

−π
S(η)dη.

Therefore, S(η) represents the variance value of Xt of the oscillation of the pulse η in the

interval [−π, π].
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Theorem 2. Wiener-Khinchin theorem

The spectral density function of a stationary stochastic process is the Fourier transform of

its autocorrelation function.

From the Wiener-Khinchin theorem, a necessary and sufficient condition that the

function A(h) be an ACF for a process DSGP , {Xt}t∈Z, is that there exists a SDF

defined on (−π, π] as follows

S(η) = 1

2π

∑
h∈Z

A(h)e−ihη, η ∈ (−π, π], (2.4)

where η is the frequency. It is obvious that:

(1) SDF is the Fourier transformation of the ACF;

(2) SDF is a non-negative function: S(η) ≥ 0;

(3) SDF is an even function: S(η) = S(−η);

(4) SDF is a periodic function of period P = 2π: S(η) = S(η + 2π); and

(5) We can calculate the variance of the process var(Xt) = A(0) = 2
∫ π
0 S(η)dη.

S(η) measures how strongly the frequency η or period P contributes to the variance of the

process. For the formula 1.3 , η → 0 it holds that P = 2π/η → ∞. This may be interpreted

the following way: A cycle with infinite period is no longer cyclic (periodic); it is rather a

trend. Hence, SDF at the origin, S(0), measures how strongly a trending behavior affects

the variance of the process. Examples of spectra given below will support this intuition

from Brockwell (1991)[10] ( Corollary 4.3.1,Theorem 5.7.2, and Theorem 5.8.1).

2.2 Gaussian Stationary Process

2.2.1 Definition

A GP is a stochastic process that is in general a collection of random variables indexed by

time or space. Its special property is that any finite collection of these variables follows a

multivariate Gaussian distribution (or jointly Gaussian). Thus, the GP is a distribution

over infinitely many variables and, therefore, a distribution over functions with a continuous

domain.
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Definition 12. (Gaussian Process). A real-valued stochastic process {Xt, t ∈ T}, where

T is an index set, is a GP if all the finite-dimensional distributions have a multivariate

normal distribution. That is, for any choice of distinct values t1, ..., tk ∈ T , the random

vector Xt = {Xt1 , ..., Xtk}′ has a multivariate normal distribution with:

• mean vector mt = E(Xt), and

• covariance matrix Σ(t, s) = cov(Xt, Xs),

which will be denoted by Xt ∼ N (mt,Σ(t, s)) .

2.2.2 Properties

i) For Gaussian Process

The popularity of GP stems primarily from two essential properties:

• First, a GP is completely determined by its mean and covariance functions. This property

facilitates model fitting as only the first and second order moments of the process require

specification.

• Second, solving the prediction problem is relatively straightforward. The best predictor

of a GP at an unobserved location is a linear function of the observed values and, in many

cases, these functions can be computed rather quickly using recursive formulas.

• Three, equivalence between independence and uncorrelated

X and Y are independent
GP⇐⇒ uncorrelated

GP⇐⇒ cov(X,Y ) = 0.

ii) For Stationary Gaussian Process

More of the above properties, for any stationary Gaussian process (SGP) X = {Xt}t∈T ,

we have

(1) E(Xt) = mt = m is independent of t;

(2) cov(Xt+h, Xt) = A(t + h, t) = A(h) is independent of t for all h. It is conventional

to express the ACF A as a function on T instead of on T × T ;

(3) X ∼ N (m,A(0)) for all t;

(4) (Xt+h, Xt)
′ has a bivariate normal distribution with covariance matrix

Σ(t, t+ h) = Σ(h) =

A(0) A(h)

A(h) A(0)

 ;
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(5) It should be noted that the first and second order moments (covariances) of a GP

determine its full probability structure. This implies that the probability structure

of a weakly stationary GP is invariant (does not change) with time shifts. A process

whose probability structure is invariant under time shifts is called a strictly stationary

process. Thus, for GP, a weakly stationary is also strictly stationary too, this is the

only case where weakly stationary implies strictly stationary;

weakly stationary
GP⇐⇒ strictly stationary

(6) We also remark that one can define some non Gaussian stationary processes in

terms of Gaussian stationary processes by taking a non-linear function of a Gaussian

stationary process and its shifts. If X = (Xn)n∈Z is a stationary Gaussian process,

a simple example of such a non Gaussian stationary process, Y(n,k), is given by

Y(n,k) = g(Xn, Xn−1, ...., Xn−k),

where g is a polynomial g(U0, ..., Uk) in the variables Un, ..., Uk.

2.3 Memory of Process

2.3.1 Definitions

For some statistical analysis, such as deriving an expression for the variance of an estimator,

the covariance is often sufficient as a measure, because it is considered a measure of a linear

dependence.

- What is the memory of the process?

Definition 13. The concept of memory refers to how strongly the past can influence the

future in a given process. Or, the degree of dependence between the values taken during a

given period.

- Is there a reason why long memory is such a widely observed phenomenon in a variety

of empirical applications?

For long memory process, analysing the past would be really useful because it can

provide information about what is going to happen in the future. long memory processes

have higher dependent than short memory processes. A series of different generating

mechanisms has been suggested to explain the feature of long memory theoretically, for
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the special case of realized volatility process (see, [28]). The major justification is the

ubiquity of long memory in empirical time series as a stylized fact from many different

fields of science and practice.

2.3.2 Types of the Memory

To distinguish the types of the memory of a process, one studies it in two domains, temporal

domain and spectral domain.

a) In Temporal Domain

Next, we want to address a stronger result than convergence of the sample mean X̄γ . It

is on the variance of the sample mean, var(X̄γ), under the more restrictive assumptions,

that the ACFs are absolutely summable. We label such processes as short memory. In

particular, the DSGPs can be divided into three types based on the behavior of the ACF

as follows (cf. [40, 25])

Definition 14. (Negative, Short and long memory) A stationary process {Xt} is said to

display long memory if the sequence of autocovariances A(.) dies out so slowly that it is

not absolutely summable:

• Short-memory DSGP (SMDSGP), if the ACF is absolutely summable with positive

sum, i.e., ∑
h∈Z

|A(h)| <∞ and
∑
h∈Z

A(h) > 0. (2.5)

• Negative-memory DSGP (NMDSGP), if the ACF is absolutely summable with zero

sum, i.e., ∑
h∈Z

|A(h)| <∞ and
∑
h∈Z

A(h) = 0. (2.6)

• Long-memory DSGP (LMDSGP), if the ACF is not absolutely summable, i.e.,

∑
h∈Z

|A(h)| = ∞. (2.7)

This definition of long memory coincides with the Definition 3.1.2 in Giraitis et al. [23].

While long memory is defined in terms of absolute ACFs, it will turn out in Proposition

2.3 ([23]), that it makes sense to consider the summation over {A(h)}.
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b) In Spectral Domain

Moreover, the memory behaviors of a process {Xt}t∈Z equivalently to (2.5), (2.6) and

(4.4) can be investigated via the SDF as follows

• SMDSGP, if the SDF is bounded and does not vanish at the zero, i.e.,

0 < S(0) = 1

2π

∑
h∈Z

A(h) <∞. (2.8)

• NMDSGP, if the SDF vanishes at zero, i.e.,

S(0) = 1

2π

∑
h∈Z

A(h) = 0. (2.9)

• LMDSGP, if the SDF is generally unbounded at the zero, i.e.,

S(0) = 1

2π

∑
h∈Z

A(h) = ∞. (2.10)

c) Relationship between ACF and SDF

A DSGP {Xt}t∈Z can be characterized by its degree of memory (DOM, d). The DOM

controls the shape of the SDF near to the zero frequency and the decay rate of its ACF. The

SDF of a DSGP {Xt}t∈Z can be approximated in the neighborhood of the zero frequency

in terms of the DOM as follows (cf. [63])

S(η)≃α |η|−2d, as η → 0, |d| < 1

2
, 0 < α <∞. (2.11)

The approximate behavior of the SDF of a DSGP {Xt}t∈Z is equivalent to the following

asymptotic behavior of the ACF in terms of the DOM

A(h)≃β|h|2d−1, as h→ ∞, |d| < 1

2
, 0 < β <∞. (2.12)

Further, S(η) is continuous on [0, π] if {Xt} has short memory

The memory behavior of a DSGP {Xt}t∈Z can be investigated via the DOM. For any

DSGP {Xt}t∈Z, the SDF in (2.11) can be generalized by including a non-negative function

slowly varying at infinity VS(.) as follows

S(η) = |η|−2dVS

(
1

|η|

)
, −π < η ≤ π. (2.13)

From [7], the ACF in (2.12) can be generalized by the same technique of the corresponding

SDF as follows

A(h) = |h|2d−1VA

(
1

|h|

)
, VA

(
1

|h|

)
= 2Γ(1− 2d) sin(πd)VS (|h|) , h ∈ Z, (2.14)
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where Γ denotes the Gamma function and VA(.) is a slowly varying function at the origin.

A DSGP {Xt}t∈Z is said to be NMDSGP, SMDSGP, or LMDSGP depending on whether

−1
2 < d < 0, d = 0, or 0 < d < 1

2 , respectively.

Autoregressive moving average (ARMA) processes (cf. [9, 10]) are a type of SMDSGPs,

while the autoregressive fractional integral moving average (ARFIMA) processes are LMDSGPs

(cf. [6]).

2.3.3 Examples of Long Memory Models

In this subsection, we exhibit the examples of long memory process according to its

properties. We shown successively a continuous non-stationary process, fractional Brownian

motion (FBM); a discrete stationary process, fractional Gaussian noise (FGN); and a linear

process, ARFIMA process which is the simplest long memory models.

a) Fractional Brownian Movement (FBM)

The Fractional Brownian Movement (FBM) denoted by BH(t) and defined over R is a non

stationary Gaussian process with continuous paths centred and with an ACF A(.)

A(t− s) = E [BH(t)BH(s)] =
σ2

2

(
|t|2H + |s|2H − |t− s|2H

)
, ∀t, s ∈ R,

where H ∈ (0, 1), is the Hurst parameter and σ2 the innovation variance. The value of H

determines the nature of the FBM. Thereby, if

• H = 1/2, the process is standard Brownian motion;

• H > 1/2, the increments of the process are positively correlated; and

• H < 1/2, the increments of the process are negatively correlated.

This process was introduced by Mandelbrot and Van Ness [1968] to explain the Hurst

phenomenon (persistence of periods of high and low flows of the Nile river) observed by

Hurst [1951] on Nile data.

b) Fractional Gaussian Noise (FGN)

A process X = {Xk, k ∈ Z} is an FGN if it is defined as the increments of an FBM at

integer times, namely

Xk = BH(k + 1)−BH(k), k ∈ Z,
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where (BH(t)) is a FBM with Hurst parameter H ∈ [0, 1). It is a stationary central

Gaussian process whose ACF A(h) = E(XkXk+h) is given by

A(h) =
σ2

2

(
|h+ 1|2H + |h− 1|2H − 2|h|2H

)
, ∀h ∈ Z,

where H and σ2 are defined as above. The asymptotic behavior of the auto-covariance

function A(.) of an FGN is given by the relation

A(h) ∼ σ2H(2H − 1)h2H−2, as h→ ∞,

when H ̸= 1/2. If we denote by d the memory parameter, then, d = H − 1/2; hence in the

case of the FGN, d ∈ (−1/2, 1/2) and in an equivalent way, the last formula is rewritten

A(h) ∼ σ2d(2d+ 1)|h|2d−1 as h→ ∞.

c) Autoregressive Fractionally Integrated Moving Average (ARFIMA)

Another example of a very widespread long memory process is the ARFIMA(p, d, q).

Where, ”p” represents the number of coefficients of the part AR, ”d” the memory parameter

and ”q” the number of coefficients of the part MA.

ARMA models integrated of order d are a standard tool for time series analysis, where

typically d ∈ {0, 1, 2}. The integrated ARMA (ARIMA) model of order d means that a

time series has to be differenced d times in order to obtain a stationary and invertible

ARMA representation. The papers by Granger and Joyeux (1980)[22] and Hosking (1981)

[29] extended the ARIMA model with integer d to the so-called fractionally integrated

model, where d takes on non integer values, often restricted to |d| < 1/2. In particular,

the case of 0 < d < 1/2 corresponds to a stationary model with long memory, where the

latter case means that the autocovariances die out slowly, that they are not absolutely

summable. This process has become very popular since its introduction at the beginning

of the 1980s, which remain the predominant model for the analysis of linear chronological

series.

If d > 1/2, the process is non-stationary and the process is not invertible if d < −1/2.

For a broader explanation without going into details, we have 1/2 ≤ d < 1, the fractionally

integrated model bridges the gap from stationarity to the so-called unit root behavior

(d = 1), where past shocks have a permanent effect on the present and values of d > 1

allow for even more extreme persistence [28].
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An ARFIMA process (p, d, q), Yt, can be defined by the (fractional) difference equation

ϕ(B)Yt = θ(B)(I −B)−dεt, (2.15)

with ϕ(B) = 1 + ϕ1B + + ϕpB
p and ϕ(B) = 1 + θ1B + + θqB

q are the autoregressive

and moving average operators, respectively; ϕ(B) and θ(B) have no common zeros and all

have their roots outside the unit circle. (I−B)−d is a fractional operator of differentiation

or of integration with d ∈ [0, 1/2), it defined by the binomial expansion

(I −B)−d =
∞∑
j=0

(j + d)

Γ(j + 1)Γ(d)
,

for d < 1/2, B is the backward shift operator, BXt = Xt−1 and (εt) is white noise of finite

variance. The term white is used because white light is thought of as composed equally of

light from the whole visible spectral range and all frequencies are equally represented, and

the “noise” is because there’s no pattern, just a random variation (cf, [51]).

Note that the ARMA or ARIMA processes can be considered as special cases of the

ARFIMA processes with d = 0 and d = 1, 2, ... respectively. Palma [2007] establishes

the existence and uniqueness of a stationary solution of the ARFIMA process defined by

(2.15), as well as its causality and its reversibility. For definitions of causal and invertible

process see ([10]).
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Chapter 3

Statistical Inference for Long

Memory Gaussian Stationary

Process

3.1 Main Contribution of the Work

For SMDSGPs, the theoretical justifications of the behavior of the LWE-SDF have been

studied by many researchers. For instance, Priestly[42] presented two sufficient conditions

(cf. SC1 and SC2 in Section 3) under which an asymptotically unbiased consistent LWE-

SDF is given and Rashid et al.[44] investigated the best lag window for the LWE-SDF of

a law order moving average process. For LMDSGP, the advantages of the LWE-DOM are

investigated via computational studies (simulations) only without realizing the theoretical

justifications of the findings (cf. [11, 41, 44]). For instance, Chen et al.[11] developed a

regression type of the LWE-DOM and Hunt et al.[31] derived an approximate bias of the

LWE-DOM in fractionally integrated time series models. It is a hard problem to get some

theoretical justifications for the advantages of the LWEs, especially for the LMDSGPs.

This paper provides some theoretical justifications for the powerful of the LWEs, which

give an in-depth look at the behavior of the LWE-SDF and LWE-DOM. This closer

look at the behavior of the LWE-SDF and LWE-DOM gives the sufficient conditions

under which the LWE-SDF and LWE-DOM can be improved. Based on theoretical and

computational justifications, the precision; the convergence rate of the bias and variance;

and the asymptotic distributions of the improved LWE-SDF and LWE-DOM under the
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new sufficient conditions are investigated. A comparison study (in the following section)

among the behaviors of the LWEs under the new conditions, the LWEs without the new

conditions and the PEs is given to investigate the significance of the new conditions.

The theoretical and computational justifications show the following main results:

• (i) the LWEs under the new conditions are better than the LWEs without the new

conditions;

• (ii) the LWEs under the new conditions are better than the PEs;

• (iii) the LWEs under the new conditions are asymptotically unbiased and consistent;

• (iv) the asymptotic distributions of the LWE-DSF and LWE-DOM under the new

conditions are chi-square and normal, respectively;

• (v) the LWE-DOM under the new conditions has a fast vanishing variance under the

regression estimation method (REM); and

• (vi) the LWEs under the new conditions improve the finite sample properties for the

REM and the local Whittle estimation method (WEM).

3.1.1 Disadvantage of the PE and the reliability of the LWE

The PE of the SDF (PE-SDF) is the widely used classical estimator of the SDF, which is

given based on the empirical ACF in (2.1) as follows

Ŝp(η) :=
1

2π

γ−1∑
h=−(γ−1)

Âγ(h)e
−ihη =

1

2πγ

∣∣∣ γ∑
t=1

Xte
−iηt

∣∣∣2, η ∈ (−π, π]. (3.1)

An analysis of the difficulty indicates the following:

• In addition, if Â(k) converges slowly to zero, then the PE will be biased. When the

argument |h| is large, i.e., near γ − 1 (|h| ≃ γ), the random variables Â(h) are averages of

a relatively small number of the products Xt+|h|Xt, see the formula 2.1 . Â(h) will be a

poor estimate of A(h) since Â(h) is the sum of only a few lag products that are divided

by γ (see 2.1). Thus, Â(h) will be much closer to zero than A(h):

E(Â(h)) =
(γ − |h|)

γ
A(h),

and the bias is significant for |h| ≃ γ if A(h) is not close to zero in this region.

• If Â(h) decays rapidly to zero, i.e., h be small. The bias, E(Â(h)) − A(h) = |h|
γ A(h),
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will be small and will not contribute significantly to the total error in PE.

This accounts for the fact that the PE has variance which never approaches zero with

increasing γ. This analysis indicates, the PE-SDF is not satisfactory for the following two

main reasons:

• (i) it is an inconsistent estimator which does not converge to the SDF S(η), i.e.,

var(Ŝp(η)) ↛ 0 (cf. [42]); and

• (ii) it has an erratic form, however the SDF S(η) is a smooth continuous function and

thus an estimator that shares the same property is expected to be a good estimator.

Moreover, the asymptotic behavior of the PE-SDF depends on the process and the type of

its frequency, fixed frequencies or Fourier frequencies. For example:

• (i) for any DSGP with a fixed frequency, the PE-SDF is an asymptotically unbiased

estimator (cf. [62]); and

• (ii) for any LMDSGP with Fourier frequency, the PE-SDF has an asymptotic relative

bias (cf. [33]) if the number of the frequencies is held fixed.

The above characteristics of the PE-SDF give us an indication that there is a significant

need to develop a more appropriate estimator. To overcome these defects of the PE-SDF,

omitting some ACF’s terms and introducing a smooth version in the sum (3.1), the formula

is written as a weighted sum are the expected form of a good estimator. Therefore, the

LWE-SDF is highly recommended for such situations. However,

(1) we know that the ACF A(h) → 0 as h→ ∞, and hence if we omit only those terms

with correspondent to the "tail" of the estimator of the ACF. These ideas suggest

that we might consider as an estimate of S(η) an expression of the form

Ŝw′(η) :=
1

2π

tγ∑
h=−tγ

Âγ(h)e
−iηh, η ∈ (−π, π]. (3.2)

(2) Due the formula 3.2, var(Ŝw′) → 0, but hopefully the bias will be affected too

seriously. A possible approach for eliminating the inconsistency of the PE-SDF is

to introduce a weight function W(.), called lag window function (LWF). Grenander

and Rosenblatt[24] were the first to use the notion of periodogram smoothing to

improve the estimator of the SDF. The term window was introduced by Blackman
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and Tucky[8] to give a view of the PE-SDF through a narrow window. This weighting

windows have an essential place in the spectral analysis methods. Their main role

is to better control the influence of the side lobes of these spectral estimators. This

weight function has the same properties as the ACF, i.e., it must be defined and

continuous over [−1, 1], such that

C1: W(x) = W(−x) ≤ W(0) = 1;

C2: ∀x ∈ (0, 1), W(x) is not an increasing function. It decreases to zero at an

appropriate rate according to the choice of a weight function with W(1) = 0;

C3: ∀ x1, x2 ∈ [−1, 1], ∃k > 0, such that |W(x1)−W(x2)| ≤ k |x1 − x2|.

Various Lag Window Function

Several types of lag window are available in the statistical literature, proposed by famous

statisticians (Bartlett, Parzen, Blackman-Tukey, Daniell, ...). The following table 3.1

contain the most important Lag window.

Windows The form of W(x)

Rectangular 1

Triangular 1− |x| |x| ≤ 1

Blackman 0.42− 0.5 cos(πx) + 0.08 cos(2πx) |x| ≤ 1

Hanning 0.5− 0.5 cos(πx) |x| ≤ 1

Hamming 0.54− 0.46 cos(πx) |x| ≤ 1

Bartlett
2x x ≤ 1

2

2(1− x) 1
2
≤ x ≤ 1

J. Parzen
1− 6x2 + 6|x|3 |x| ≤ 1

2

2(1− |x|)3 1
2
≤ |x| ≤ 1

Table 3.1: Some Common Window Functions

The Hamming, Hanning, Bartlet, Blachman by taking nγ = tγ = γ2/3 and different

values of sample size γ and DOM d in Table 4.2. For more detail of the LWFs and their

characteristics can be found in [42]. Based on the above conditions of the LWF, a truncation

point tγ and the formula (3.2), the LWE-SDF is given as follows:

Ŝw(η) :=
1

2π

tγ∑
h=−tγ

Âγ(h)e
−iηhW

(
h

tγ

)
, η ∈ (−π, π]. (3.3)

From (3.1) and the Fourier transformation, the empirical ACF of an observed dataset in
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(2.1) can be rewritten as follows:

Âγ(h) =

∫ π

−π
Ŝp(θ)e

ihθdθ, |h| ≤ γ − 1. (3.4)

From (3.4), the LWE-SDF in (3.3) can be rewritten as follows:

Ŝw(η) =
1

2π

tγ∑
h=−tγ

[∫ π

−π
Ŝp(θ)e

ihθdθ

]
e−iηhW

(
h

tγ

)
=

∫ π

−π
Ŝp(θ)Utγ (η − θ)dθ, (3.5)

where

Utγ (η) =
1

2π

tγ∑
h=−tγ

W
(
h

tγ

)
e−ihη (3.6)

is the Fourier transform of the LWF, called a spectral window function (SWF). Based on

the conditions (C1-C3) of the LWF, the SWF has the following properties

P1: Utγ (η) is a real valued even function, thus
∫ π
−π η Utγ (η)dη = 0. Therefore, for (3.6),

Utγ (−η) =
1

2π

tγ∑
h=−tγ

W
(
h

tγ

)
eihη = Utγ (η)

∫ π

−π
ηUtγ (η)dη

(3.6)
=

1

2π

tγ∑
h=−tγ

W
(
h

tγ

)∫ π

−π
ηe−ihηdη

=
1

2π

tγ∑
h=−tγ

W
(
h

tγ

)(∫ 0

−π
ηe−ihηdη +

∫ π

0
ηe−ihηdη

)

=
1

2π

tγ∑
h=−tγ

W
(
h

tγ

)(
−
∫ π

0
ηeihηdη +

∫ π

0
ηe−ihηdη

)
= 0.

P2: Utγ (η) becomes more concentrated around zero;

P3: Utγ (η) is a periodic function with period 2π, thus
∫ π
−π Utγ (η)dη

(3.6)
= 1.
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Therefore,∫ π

−π
Utγ (ζ)dζ

(3.6)
=

1

2π

tγ∑
h=−tγ

W
(
h

tγ

)∫ π

−π
e−ihζdζ

=
1

2π

∫ π

−π
dζ +

1

2π

tγ∑
h=1

W
(
h

tγ

)∫ π

−π
(e−ihζ + eihζ)dζ

= 1 +
1

2π

tγ∑
h=1

W
(
h

tγ

)∫ π

−π
(2 cos(hζ))dζ

= 1 +
1

π

tγ∑
h=1

W
(
h

tγ

)
1

h
(sin(hπ)− sin(−hπ))

= 1 +
1

π

tγ∑
h=1

W
(
h

tγ

)
2

h
sin(hπ)︸ ︷︷ ︸
=0, ∀h∈N

= 1.

3.1.2 New Sufficient Conditions for Improving the LWEs

From the above discussions, the accuracy of the LWE-SDF depends on the following three

main parameters: the truncation point tγ (called the lag number); the number of Fourier

frequencies nγ ; and the LWF W(x). To improve the accuracy of the LWE-SDF in (3.3)

or (3.5) at Fourier frequencies, the following four sufficient conditions are considered,

concerning the smooth behavior of the SDF in the neighborhood of the singularity located

at zero.

SC1: The lag number tγ is a sequence of integers satisfy tγ = c1γ
a, where c1 is a constant

and 0 < a < 1. That is, 1
tγ

+
tγ
γ → 0, when γ → ∞;

SC2: The number of frequencies nγ is a sequence of integers called a spectral bandwidth

parameter corresponding to the number of the Fourier frequencies ηj = 2πj
γ , j =

1, . . . , nγ , which satisfy nγ = c2γ
b, where c2 is a constant and 0 < b < 1;

SC3: The sequences tγ and nγ satisfy γ
tγnγ

→ 0 as γ → ∞;

SC4: For η ̸= 0, the SDF S(η) is twice differentiable with a bounded second derivative.

Precisely, in a neighborhood of the origin, S(η) is differentiable, i.e., ∀η ∈ (ϵ, π) with

ϵ > 0, d2

dη2
S(η) = O(η−2d−2).

Remark 3. It is worth mentioning that, the existing smoothed periodogram estimation

techniques, such as the averaged periodogram estimator (called also the Welch’s estimator)

(cf. Otis [39]), the Bartlett and Parzen estimator (BPE) (cf. Bartlett [5]) and the
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integrated periodogram estimator (IPE) (cf. Lang and Azais [36] and Rosenblatt [51]), have

the same principles as the LWE with the obvious changes in the SWF or/and the LWF.

Therefore, the discussions in this paper for improving the LWE can be simply extended to

improve the existing smoothed periodogram estimation techniques.

3.1.3 Working Mechanism of the New Sufficient Conditions

The above mentioned conditions SC1-SC4 are technical conditions concerning the smooth

behavior of the SDF in the neighborhood of the singularity located at zero to get asymptotically

unbiased consistent LWEs of the SDF and DOM. Each condition has the following reason

to be given:

(1) The first condition SC1, which is the main idea of the LWT, is given to minimize

the variance of the LWE-SDF and the variance of the LWE-DOM and make them

tends to zero as follows:

For any DSGP with zero mean and finite variance, the first two moments of the

empirical ACF in (2.1) are given by simple calculations as follows

E
(
Âγ(h)

)
=

1

γ

γ−|h|∑
j=1

E
(
XjXj+|h|

)
=

1

γ
(γ − |h|)A(h) =

(
1− |h|

γ

)
A(h). (3.7)

E
(
Âγ(h)

)2
=

1

γ2

γ−|h|∑
i,j=1

E
(
XjXj+|h|XiXi+|h|

)
. (3.8)

From (3.7) and (3.8), the variance of the empirical ACF can be given by the same

technique of [42] as follows

var
(
Âγ(h)

)
≃ 1

γ

∑
m∈Z

(
A2(m) +A(m+ h)A(m− h)

)
= O (1/γ) . (3.9)

Since ∀ |h| ≤ γ − 1, Âγ(h) are asymptotically uncorrelated, the variance of the PE-

SDF in (3.1) and the variance of the LWE-SDF in (3.3) can be given from (3.9) as

follows

var
(
Ŝp(η)

)
=

1

(2π)2

γ−1∑
h=−(γ−1)

eiηhvar(Âγ(h)) ≃ γ var
(
Âγ(h)

)
=O(1) ̸= 0. (3.10)

var
(
Ŝw(η)

)
(3.2)
=

1

(2π)2

tγ∑
h=−(tγ)

eiηhvar
(
Âγ(h)

)
≃ tγ var

(
Âγ(h)

)
=O

(
tγ
γ

)
.

(3.11)
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Under the first condition SC1, it is obvious from (3.11) that var
(
Ŝw(η)

)
SC1−−−→
γ→∞

0.

Therefore, under SC1 the variance of the LWE-SDF tends to zero unlike the variance

of the PE-SDF and the rate of decrease depends on the number of lags tγ . Thus, the

application of the window is to smooth the erratic and wild fluctuating form of the

PE (cf. [42]). This behavior of the LWE-SDF under SC1 helps to minimize the

variance of the LWE-DOM and make it tends to zero. For more details, see the

discussions in Sections 4.

(2) The second condition SC2 is designed to facilitate the calculations in the spectral

domain by using the Fourier frequencies, where the Fourier frequencies have the

following useful orthogonality property

γ∑
t=1

eit(ηj±ηk) = 0, for 1 ≤ j ̸= k ≤ nγ ;

γ∑
t=1

eit(ηj−ηk) = γ, for 1 ≤ j = k ≤ nγ .

Moreover, under SC2 we get ηj −−−→
γ→∞

0. This behavior is necessary for the following

two main reasons:

(2,1) Since the SDF has a pole at zero frequency, the necessary asymptotic behavior

of the LWE-SDF close to zero frequency (ηj −−−→
γ→∞

0) can be studied under SC2

as given in the next section .

(2,2) The second condition SC2 (ηj −−−→
γ→∞

0) helps to approximately rewritten the

LWE-SDF as a linear regression model and thus use the ordinary least squares

estimator (OLSE) of the DOM (OLSE-DOM) to simply study the LWE-DOM

as given in next section.

(3) The third condition SC3 is given for improving the LWE-SDF and the LWE-DOM

of a LMDSGP, where these estimators will be unbiased estimators under SC3 as

given in Sections 3.3. Moreover, the LWE-DOM is a better estimator compared to

the PE-DOM under SC3 for the simulation study as given in Chapter 4.

(4) The fourth condition SC4 is provided to find the bias of the normalized LWE-SDF

as given in the proof of Theorem 1 (cf. the appendix). Moreover, the behavior of

normalized LWE-SDF under SC4 will be used to study the behavior of the LWE-

DOM.
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3.2 Asymptotic Properties of LWE-SDF under the New Conditions

To obtain the semi-parametric spectral estimation of the DOM in the next section, the

asymptotic behavior of the normalized LWE-SDF for the frequencies ηj = 2πj
γ ̸= 0 and

any DSGP {Xt}t∈Z with 0 < |d| < 1
2 under the above sufficient conditions need to be

investigated. For this purpose, the LWE-SDF in (3.5) can be approximately given in terms

of the discrete sum over the Fourier frequencies θk = 2πk
γ as follows

Ŝw(η)≃
2π

γ

[ γ
2
]∑

k=−[ γ−1
2

]

Ŝp(θk)Utγ (η − θk). (3.12)

Based on the LWE-SDF in (3.12), the asymptotic behaviors of the bias, variance and

distribution of the normalized LWE-SDF are investigated as follows

3.2.1 Asymptotic Consistency

Theorem 3. For any DSGP {Xt}t∈Z with SDF S(η) and ACF A(h) given in terms of

a slowly varying function in (2.13) and (2.14), respectively. If the sufficient conditions

SC1-SC4 are fulfilled, the bias of the normalized LWE-SDF has the following asymptotic

behavior

Bias

(
Ŝw(ηj)

S(ηj)

)
≃


O
(

1
tγηj

)2
, if 0 < d < 1

2 , i.e., for LMDSGP;

O
(
1
j

)
, if − 1

2 < d < 0, i.e., for NMDSGP.

(3.13)

Theorem 4. For any LMDSGP or SMDSGP {Xt}t∈Z with SDF S(η) given in terms of a

slowly varying function at the infinity given by (2.13). If the conditions SC1 and SC2 are

fulfilled, the variance of the normalized LWE-SDF has the following asymptotic behavior

var

(
Ŝw(ηj)

S(ηj)

)
≃ O

(
tγ
γ

)
, 0 < |d| < 1

2
.

Corollary 1. From Theorems 1 and 2, the bias and variance of the normalized PE-SDF

have the following asymptotic behaviors

Bias

(
Ŝp(ηj)

S(ηj)

)
≃


O
(
ln j
j

)
, if 0 < d < 1

2 , i.e., for LMDSGP;

O
(
1
j

)
, if − 1

2 < d < 0, i.e., for NMDSGP.

var

(
ŜP (ηj)

S(ηj)

)
≃ O (1) , 0 < |d| < 1

2
.
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Corollary 2. From Theorems 1 and 2 and Corollary 1, we can show that

• The normalized LWE-SDF is an asymptotic unbiased and consistent estimator under

the above sufficient conditions, where

Bias

(
Ŝw(ηj)

S(ηj)

)
SC3−−−→
j→∞

0 and var

(
Ŝw(ηj)

S(ηj)

)
SC1−−−→
j→∞

0.

• The normalized PE-SDF is an asymptotic unbiased but non-consistent estimator,

where

Bias

(
Ŝp(ηj)

S(ηj)

)
−−−→
j→∞

0 and var

(
Ŝp(ηj)

S(ηj)

)
↛ 0.

• Therefore, the asymptotic behavior of the (normalized) LWE-SDF under the sufficient

conditions is much better than the asymptotic behavior of the (normalized) PE-SDF.

3.2.2 Asymptotic Distribution

The asymptotic distributions of the PE-SDF for SMDSGPs and LMDSGPs have been

studied in [42] and [35], respectively. In this paper, those results are extended to the

LWE-SDF as follows

Theorem 5. For any LMDSGP or SMDSGP {Xt}t∈Z with SDF S(η) given in terms of

a slowly varying function at the infinity given by (2.13), let {ηjγ}φ≥2
j=1 be a sequence of

asymptotically distant frequencies, i.e.,

|γ(ηjγ − ηiγ)| −−−−−−→
1≤i ̸=j≤φ

∞ with ηjγ −−−→
γ→∞

ηj .

If the sufficient conditions SC1-SC4 are fulfilled and γ|ηiγ | −−−→
γ→∞

∞, the asymptotic

distribution of the normalized LWE-SDF follows the following chi-square distribution

Ŝw(ηj)

S(ηj)

D−−−→
γ→∞

1

ν
χ2(ν), ν =

2γ

tγ
∫ 1
−1W2(x)dx

,

where X D−→ Y means that X and Y have the same distribution and ν is the degree of

freedom of χ2.

Corollary 3. From Theorem 5, the (1−α) confidence interval of the SDF S(ηj) for ηj ̸= 0

is given as follows
νŜw(ηj)

l2
≤ S(ηj) ≤

νŜw(ηj)

l1
,

where l1 and l2 are obtained from the table of the chi-square distribution satisfying

P (χ2(ν) ≤ l2) = P (χ2(ν) ≥ l1) = α/2.
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Remark 4. It is worth mentioning that the result in Theorem 5 is compatible with Theorems

1 and 2. For particular use, here are some special windows:

• (i) For the Bartlett window, we have

W(x) = (1− |x|)1[−1,1](x),
∫ 1
−1W

2(x)dx = 2
∫ 1
0 (1− x)2dx = 2

3 , and ν = 3γ
tγ
.

• (ii) For the Parzen window, we have

W(x) = (1− x2)1[−1,1](x),
∫ 1
−1W

2(x)dx = 2
∫ 1
0 (1− x2)2dx = 16

15 , and ν = 1.87 γ
tγ

.

Moreover, the results of the normalized PE-SDF can be obtained as special cases of Theorem

5 and Corollary 3 by taking ν = 2.

3.3 Asymptotic Properties of LWE-DOM under the New Conditions

The definition of LMSDGP, in the frequency domain, only specify the behavior of the SDF

close to the zero frequency, the case (2.11) or (2.13). Similarly, in the time domain, the

definitions only specify the behavior of the autocovariances at long lags, (2.12) and (2.14).

Hence, the relevant estimation procedures are those that employ sample information

only in a neighborhood of the zero frequency (2.11 or 2.13), or at long lags (2.12 and 2.14).

All these are called semiparametric procedures (Robinson, 1994a; 1994c; 1995)[47, 48, 49].

Semiparametric estimation of the DOM, in LMSDGP, is appealing in empirical work,

due to its dependence on the treatment of the short-memory component in the estimation.

Two common statistical procedures in this class, the regression method (REM) (cf, [47, 31])

and the Local Whittle method (WEM) (cf, [49, 56]. The WEM is known to be more efficient

than the REM in the stationary case (|d| < 1/2), although numerical optimization methods

are needed in the calculation (cf, [54]).

The main feature of the semiparametric approach is to employ a bandwidth number.

In the frequency domain, a spectral bandwidth number nγ , this number reflects the highest

frequency, ηnγ =
2πnγ

γ , where γ is the sample size, at which the statistics used to estimate

the SDF are evaluated. In the time domain, the bandwidth number, tγ , reflects the lowest

sample autocovariance employed (see Robinson, [48]). In order to develop the asymptotic

theory, nγ has to tend to infinity as γ tends to infinity, but in such a way that their ratio

tends to zero. The two procedures based on the estimation of the SDF.
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3.3.1 Regression Method

The most applied semiparametric one in the literature, it has been the REM, it is introduced

by Geweke and Porter- Hudak (1983) [21] and improved by Robinson (1995)[48]. This

estimate is easily computed (it just involves ordinary least squares). For any DSGP {Xt}t∈Z
with SDF given by (2.13), let d̂p and d̂w be the PE-DOM and LWE-DOM, respectively. The

REM provides a general method for estimating the DOM without assuming a parametric

model. The form of the SDF in (2.13) is asymptotically equivalent to the following form

S(η) ≃ |1− e−iη|−2dS∗(η), (3.14)

where

|1− e−iη|−2d = |η|−2d(1 + o(1)) as η → 0

and the function S∗(.) satisfies the same conditions as VS(.) in (2.13). After taking

logarithms and adding ln Ŝ(η) to both sides of (3.14), where Ŝ(η) is any estimator of

the SDF, and evaluating at Fourier frequencies ηj = 2πj
γ , j = 1, . . . , nγ , we get

ln Ŝ(ηj) = lnS∗(0)− d ln
(
4 sin2

(ηj
2

))
+ ln

(
Ŝ(ηj)
S(ηj)

)
+ ln

(
S∗(ηj)

S∗(0)

)
. (3.15)

If nγ satisfies the sufficient condition SC2, the last term in (3.15) can be negligible.

Therefore, (3.15) can be approximately rewritten as the following regression form

vj ≃ a+ b uj + ej , (3.16)

where vj = ln Ŝ(ηj), uj = ln
(
4 sin2

(ηj
2

))
, ej = ln

(
Ŝ(ηj)
S(ηj)

)
, a = lnS∗(0) and b = −d.

Then, the OLSE-DOM is given as follows

d̂o := −
∑nγ

j=1(uj − ū)(vj − v̄)∑nγ

j=1(uj − ū)2
. Then, we get, d̂o − d =

∑nγ

j=1(uj − ū)ej∑nγ

j=1(uj − ū)2
.

The bias and variance of the OLSE-DOM are given as follows

Bias(d̂o) = E(d̂o)− d =
∑nγ

j=1(uj−ū)E(ej)∑nγ
j=1(uj−ū)2

,

var(d̂o) =
∑nγ

j=1(uj−ū)2var(ej)(∑nγ
j=1(uj−ū)2

)2 .

(3.17)

Remark 5. It is worth mentioning that the OLSE-DOM in (3.17) depends on the estimator

of the SDF. If the PE-SDF is used, the OLSE-DOM will be the PE-DOM. If the LWE-SDF

is used, the OLSE-DOM will be the LWE-DOM.
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Geweke and Porter-Hudak [21] discussed the REM (i.e., the form in (3.16)) based on

the PE-SDF by taking

vj = ln Ŝp(ηj), a = lnS∗(0)− ζ and ej = ln

(
Ŝp(ηj)

S(ηj)

)
+ ζ,

where ζ = 0.5772 is the Euler constant. When γ → ∞, − ln
(
Ŝp(ηj)
S(ηj)

)
, j = 1, ..., nγ are

independent identically distributed (i.i.d) random variables (rvs) follow standard Gumbel

distribution (cf. Hassler[27, 28]). Therefore, we get

E

(
ln

(
Ŝp(ηj)

S(ηj)

))
−−−→
γ→∞

−ζ and var

(
ln

(
Ŝp(ηj)

S(ηj)

))
−−−→
γ→∞

π2

6
. (3.18)

From (29), the asymptotic mean and variance of the ej in the REM based on the PE-SDF

are given as follows

E(ej) = E

(
ln

(
Ŝp(ηj)

S(ηj)

)
+ ζ

)
−−−→
γ→∞

0 and var(ej) −−−→
γ→∞

π2

6
. (3.19)

From Geweke and Porter-Hudak [21], we get
nγ∑
j=1

(uj − ū)2 ≃ nγ . (3.20)

Since {ej}
nγ

j=1 are i.i.d rvs, we get the following asymptotic bias and variance of the PE-

DOM by combining (28), (30) and (31)

Bias(d̂p) −−−→
γ→∞

E(ej) = 0 and var(d̂p) −−−→
γ→∞

π2

6nγ
. (3.21)

From (3.21), the PE-DOM has the following asymptotic normal distribution (cf. Theorem

1 in Hassler[27])
√
nγ(d̂p − d)

D−−−→
γ→∞

N (0,
π2

6
). (3.22)

The estimator of the DOM via the REM proposed by Geweke and Porter-Hudak [21] is

asymptotically biased if nγ used in the REM is held fixed as γ → ∞ (cf. [33]) (i.e., the

absence of the condition SC2). Then, improving the estimator of the DOM via the REM

is needed. In this paper, the mean and variance of the LWE-DOM under the sufficient

conditions are investigated as follows

Theorem 6. For any LMDSGP {Xt}t∈Z satisfies the sufficient conditions SC1-SC4, the

asymptotic behavior of the bias and variance of the LWE-DOM for the REM are given from

the OLSE-DOM in (3.17) and from the Theorem 3 as follows

Bias(d̂w) −−−→
γ→∞

E

(
ln

(
Ŝw(ηj)

S(ηj)

))
and var(d̂w) ≃

tγ
γnγ

∫ 1

−1
W2(x)dx, as γ → ∞.
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Corollary 4. From Theorems 3 and 4, for any LMDSGP {Xt}t∈Z the LWE-DOM has

asymptotic normal distribution as follows√
γnγ
tγ

(d̂w − d)
D−−−→

γ→∞
N
(
0,

∫ 1

−1
W2(x)dx

)
.

Corollary 5. From the above discussions and results, it is obvious that

• The LWE-DOM is an asymptotic unbiased and consistent estimator under the above

sufficient conditions, where

Bias(d̂w)
SC3−−−→
γ→∞

0 and var(d̂w)
SC1,SC2−−−−−−→
γ→∞

0.

• The approximate value of the variance of the LWE-DOM is less than the approximate

value of the variance of the PE-DOM, i.e.,

var(d̂w) ≃
tγ
γnγ

∫ 1

−1
W2(x)dx < var(d̂p) ≃

π2

6nγ
.

• Therefore, the asymptotic behavior of the LWE-DOM under the sufficient conditions

is much better than the asymptotic behavior of the PE-DOM.

Remark 6. The REM has two main drawbacks:

• In order to derive a Gaussian asymptotic distribution, Robinson needed to assume the

Gaussianity (which is very restrictive and probably not valid for most of financial series)

and,

• furthermore, he needed to introduce an additional user-chosen number to trim out frequencies

very close to zero, it is the lnS∗(0) in 3.15.

3.3.2 Local Whittle Method

The Local Whittle name seems to be widely spread nowadays, although Robinson (1995b)[49]

called this estimator Gaussian semiparametric. In fact, Künsch (1987, p. 71)[34] was the

first to suggest this estimator, however, without establishing any statistical properties.

Unlike the Whittle estimator, the Local Whittle estimator is a semiparametric method, in

that only specifies the parametric form of the SDF when the frequency is close to zero,

which gives a model close to Model (2.13) and (2.11). To define Local Whittle estimator,

first consider the approximate log-likelihood of a Gaussian process with SDF S:

L(S) := 1

2π

∫ π

−π

(
logS(η) + Ŝ(η)

S(η)

)
dη,
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the above approximation of the quadratic form, Ŝ(η)
S(η) , in the exponent of Gaussian density

(see Beran [6]) is similar to Whittle’s estimate. Therefore, the SDF has a pole at zero

frequency when d > 0 for the LMDSGP. The Local Whittle estimator is based on the

SDE, using the PE Ŝp or the LWE Ŝw , and its computation involves the number of

Fourier frequencies, nγ , satisfying the SC2, i.e

1/nγ + nγ/γ → 0 as; γ → ∞.

The above estimator is further simplified by the following considerations:

i) Replacing S(η) by the approximate formula α|η|−2d defined in 2.11 , L(S) becomes

L(α; d) :=
1

2π

∫ π

−π

(
log(α|η|−2d) +

Ŝ(η)
α|η|−2d

)
dη.

ii) Since the behavior of S near η = 0 is only important (we want to estimate, asymptotic,

the parameters α and d only). Restricting the integral to low frequencies

|η| < ηnγ :=
2ηnγ
γ

, nγ → ∞, nγ/γ → 0,

so, we take the Fourier frequencier, ηj = 2πj
γ , j = 1, ..., nγ .

iii) Replacing integration by summation over 1 ≤ j < nγ . For a SDF satisfying (2.11), the

discrete analogue of the function L(, ) called objective function (see Künsch (1987) [34]) in

the Whittle estimator is

L(α; d) =
1

nγ

nγ∑
j=1

(
log(α|ηj |−2d) +

Ŝ(ηj)
α|ηj |−2d

)
. (3.23)

iv) The Local Whittle estimate minimizes the above objective function L(α; d), the resulting

approximate log-likelihood is

(α̂; d̂) := argmin
0<α, d∈(−1/2, 1/2)

L(α; d).

v) For fixed d, the minimum of L(α; d) is achieved by

α̂ :=
1

nγ

nγ∑
j=1

|ηj |2dŜ(ηj)

vi) Replacing in (3.23) the constant α by its estimate, one obtains

L(d) := L(α̂, d)− 1 = log

 1

nγ

nγ∑
j=1

|ηj |2dŜ(ηj)

− 2d
1

nγ

nγ∑
j=1

log(ηj), (3.24)

and the local Whittle estimator d̂LW of the fractional parameter d is defined by

d̂LW := argmin
d∈(−1/2,1/2)

L(d). (3.25)
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• Using the Periodogram

Under the relationship (3.25), we establisheb the following formula,

d̂LWP
:= argmin

d∈(−1/2,1/2)
LP (d), (3.26)

where

LP (d) := log

 1

nγ

nγ∑
j=1

|ηj |2dŜP (ηj)

− 2d
1

nγ

nγ∑
j=1

log(ηj).

Furthermore, the value of d̂LWP
that minimizes LP (d) converges in probability to the

actual value of d under certain assumptions. Robinson (1995b) [49] and Shimotsu

[54] were established the finite distribution theory, they have the following result

√
nγ (d̂LWP

− d)
D−→ N (0, 1/4), as γ → ∞.

The local Whittle estimator was developed by Robinson (1995b) [49] and was further

studied, along with the Whittle and Aggregated Whittle estimators, by Taqqu and

Teverovsky (1996)[56] and Shimotsu [54].

• Using the Lag Window

As the same of the regression method, we replace the PE Ŝp by the LWE Ŝw given

in (3.3), in the objective function (3.23) and (4.3). The resulting estimator for d is

d̂LWw := argmin
d∈(−1/2,1/2)

Lw(d), (3.27)

where

Lw(d) := log

 1

nγ

nγ∑
j=1

|ηj |2dŜw(ηj)

− 2d
1

nγ

nγ∑
j=1

log(ηj).

The asymptotic normality of the Local Whittle estimator of d ∈ (0, 1/2), the approximate

MSE and the corresponding optimal bandwidth, will be part of the future perspectives.
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Chapter 4

Simulation Study of the Accuuracy

of LWT

4.1 Description of Simulation

The above theoretical justifications demonstrated that the LWE-DOM is better than

the PE-DOM for the REM under the new sufficient conditions. Therefore, there are

the following three logical scenarios to check the significance of the new conditions for

improving the accuracy of the LWE over the PE:

• First logical scenario: Simulation (numerical) justifications are needed to support

the correctness of the proved theoretical justifications, i.e., the LWE-DOM is better

than the PE-DOM for the REM under the new sufficient conditions.

• Second logical scenario: Even though the theoretical justification of the efficiency

of the LWT under the new conditions is proved based on the REM only, the logical

question is that what is the performance of the LWT under the new conditions based

on other models, such as the WEM (cf. Frederiksen et al.[20]), i.e., can the new

sufficient conditions be used for improving the performance of the LWT for also

different models?

• Third logical scenario: After investigating the first two logical scenarios, the

logical third question to check the significance of the new sufficient conditions for

improving the performance of the LWT is that: what is the performance of the LWT

without the new sufficient conditions?
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The programs used in the simulation are algorithms directly implemented on the above

methods in the MATALB language. this language allows us to study the above mentioned

three scenarios, which are given in the following two preparation steps

Preparation step 1: Selecting the parameters to test the sufficient conditions:

The ARFIMA(p, d, q) models with a normally distributed N (0, 1) white noise process,

0 ≤ p, q ≤ 2 and DOM 0 ≤ d < 1
2 are used in the following simulation study.

It is obvious that, the SDFs of these models satisfy the fourth sufficient condition

SC4. The truncation points tγ is selected as tγ = γa, 0 < a < 1 to satisfy the

first sufficient condition SC1. The spectral bandwidth parameter nγ is selected as

nγ = γb, 0 < b < 1 to satisfy the second sufficient condition SC2. Therefore, the

three sufficient conditions SC1, SC2 and SC4 are satisfied in all of the following

simulation results. Thus, only the third condition SC3 need to be tested. It is

obvious that, under nγ = γb, 0 < b < 1 and tγ = γa, 0 < a < 1 the third condition

SC3 is satisfied if and only if a+ b > 1, otherwise it is not satisfied.

Preparation step 2: Selecting the optimal window for the LWT: The selection of

the optimal window (i.e., LWF) for the LWT is investigated in this step as follows.

The three widely used LWFs, Hamming LWF, Bartlett LWF and Blackman LWF, are

tested under the new sufficient conditions. The selection of the preferred window is

based on the smallest MSE over 1000 replications for the corresponding LWE-DOM.

The data are generated from long memory ARIMA(0, d, 0) models with DOM 0 <

d < 1
2 , sample size γ ∈ {700, 1000, 2000}, spectral bandwidth parameter nγ = γ0.65

and truncation points tγ ∈ {γ0.396, γ0.496}. It is obvious from the Preparation step

1 that, these selections of the parameters satisfy all of the four sufficient conditions

SC1-SC4. The MSE of an estimator is given as follows

MSE =
1

1000

1000∑
k=1

(
d̂(k)w − d

)2
, where d̂(k)w is the kth LWE of d.

The MSE values of the LWE-DOMs using the Hamming LWF, Bartlett LWF and

Blackman LWF are given in Table 4.2.

• Figure 4.2 gives a clear comparison study among the MSE values of the LWE-

DOMs under these three LWFs. From Table 4.2 and Figure 4.2, we can show that

the MSE values of the LWE-DOMs using the Hamming LWF are less than the MSE

values of the LWE-DOMs using Bartlett LWF and Blackman LWF. Therefore, the
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Hamming LWF is the optimal window that will be used to get the LWE-DOMs in

this study.

4.2 Numerical Results

Table 4.1: MSE of the LWE-DOMs under the new conditions via the different LWF

Via the Hamming LWF, Bartlett LWF and Blackman LWF using spectral bandwidth nγ = γ0.65 and

different values of sample size γ and DOM d

γ = 700 LWF d = 0.05 d = 0.10 d = 0.15 d = 0.20 d = 0.25 d = 0.30 d = 0.35 d = 0.4 d = 0.45

Hamming 0.0172 0.0359 0.0339 0.0614 0.0651 0.0286 0.0350 0.0315 0.0894

tγ = γ0.396 Bartlett 0.0172 0.0396 0.0344 0.0669 0.0730 0.0452 0.0508 0.0573 0.1101

Blackman 0.0194 0.0387 0.0361 0.0651 0.0700 0.0411 0.0525 0.0481 0.1071

Hamming 0.0460 0.0614 0.1112 0.1142 0.1395 0.1501 0.1833 0.1916 0.2324

tγ = γ0.496 Bartlett 0.0531 0.0633 0.1202 0.1170 0.1392 0.1459 0.1726 0.1952 0.2396

Blackman 0.0498 0.0660 0.1168 0.1221 0.1454 0.1643 0.1988 0.2193 0.2644

γ = 1000 LWF d = 0.05 d = 0.10 d = 0.15 d = 0.20 d = 0.25 d = 0.30 d = 0.35 d = 0.4 d = 0.45

Hamming 0.0289 0.0208 0.0423 0.0245 0.0320 0.0540 0.0258 0.0508 0.0553

tγ = γ0.396 Bartlett 0.0296 0.0224 0.0466 0.0268 0.0366 0.0654 0.0411 0.0489 0.0529

Blackman 0.0299 0.0213 0.0489 0.0257 0.0383 0.0648 0.0408 0.0651 0.0674

Hamming 0.0329 0.0178 0.0485 0.0275 0.0385 0.0363 0.0225 0.0252 0.0603

tγ = γ0.496 Bartlett 0.0330 0.0186 0.0494 0.0313 0.0411 0.0432 0.0298 0.0366 0.0687

Blackman 0.0330 0.0173 0.0480 0.0290 0.0406 0.0388 0.0218 0.0275 0.0658

γ = 2000 LWF d = 0.05 d = 0.1 d = 0.15 d = 0.20 d = 0.25 d = 0.30 d = 0.35 d = 0.40 d = 0.45

Hamming 0.0191 0.0152 0.0233 0.0292 0.0358 0.0307 0.0194 0.0484 0.0132

tγ = γ0.396 Bartlett 0.0200 0.0161 0.0271 0.0361 0.0371 0.0468 0.0368 0.0573 0.0102

Blackman 0.0208 0.0182 0.0278 0.0366 0.0432 0.0440 0.0330 0.0629 0.0209

Hamming 0.0 239 0.0406 0.0147 0.0246 0.0191 0.0248 0.0118 0.0316 0.0255

tγ = γ0.496 Bartlett 0.0246 0.0408 0.0157 0.0256 0.0235 0.0336 0.0116 0.0345 0.0259

Blackman 0.0245 0.0410 0.0150 0.0247 0.0200 0.264 0.0192 0.0350 0.0294
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Figure 4.1: Comparative graph of SDF for PE and LWE with SC3

A comparison study among the PE-SDF and the LWE-SDF for ARFIMA(0, d, 0) under

the new conditions by taking nγ = γ0.65, tγ = γ0.696 and different values of sample size γ

and DOM d
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Figure 4.2: Choise of LWF

A comparison study among the MSE values of the LWE-DOMs via the Hamming LWF,

Bartlett LWF and Blackman LWF in Table 4.2
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Table 4.2: MSE of DOM for ARFIMA (0,d,0) using the REM with SC3

MSE values of the PE-DOMs and LWE-DOMs for ARFIMA(0, d, 0) using the REM under the new

conditions by taking nγ = tγ = γ2/3 and different values of sample size γ and DOM d

γ estimators d values

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

500
PE 0.0590 0.0551 0.0760 0.1061 0.1379 0.1328 0.2139 0.2885 0.2623 0.2604

LWE 0.0436 0.0332 0.0454 0.0605 0.1006 0.0932 0.1524 0.1636 0.1897 0.1921

700
PE 0.0590 0.0809 0.1127 0.1165 0.1114 0.1357 0.1979 0.2315 0.2309 0.2585

LWE 0.0480 0.0549 0.0536 0.0634 0.0640 0.0863 0.1077 0.1030 0.1115 0.1474

1000
PE 0.0328 0.0351 0.0574 0.0921 0.1073 0.1462 0.1789 0.2106 0.2020 0.2828

LWE 0.0232 0.0357 0.0218 0.0380 0.0436 0.0685 0.0591 0.0795 0.0779 0.0926

1500
PE 0.0321 0.0498 0.0523 0.1013 0.1217 0.1345 0.1952 0.1894 0.2114 0.2594

LWE 0.0226 0.0219 0.0391 0.0494 0.0462 0.0328 0.0624 0.0479 0.0566 0.0470

2000
PE 0.0215 0.0178 0.0577 0.0835 0.1213 0.1324 0.1486 0.1940 0.2245 0.2474

LWE 0.0079 0.0057 0.0326 0.0205 0.0218 0.0415 0.0232 0.0547 0.0427 0.0692

2500
PE 0.0284 0.0257 0.0678 0.0913 0.1142 0.1635 0.1569 0.1836 0.2141 0.2186

LWE 0.0385 0.0116 0.0104 0.0157 0.0275 0.0255 0.0301 0.0173 0.0437 0.0398

3000
PE 0.0215 0.0382 0.0417 0.0753 0.1125 0.1165 0.1639 0.2101 0.2337 0.2427

LWE 0.0123 0.0259 0.0171 0.0228 0.0412 0.0189 0.0295 0.0229 0.0434 0.0327

3500
PE 0.0386 0.0363 0.0745 0.0924 0.1198 0.1511 0.1712 0.1948 0.2067 0.2500

LWE 0.0153 0.0100 0.0171 0.0422 0.0331 0.0318 0.0282 0.0468 0.0216 0.0296

4000
PE 0.0240 0.0392 0.0541 0.0724 0.0836 0.1169 0.1564 0.1737 0.1973 0.2273

LWE 0.0131 0.0170 0.0165 0.0260 0.0209 0.0356 0.0161 0.0234 0.0288 0.0378

4500
PE 0.0215 0.0275 0.0508 0.0845 0.1051 0.1249 0.1374 0.1895 0.2279 0.2418

LWE 0.0101 0.0078 0.0135 0.0201 0.0188 0.0175 0.0222 0.0222 0.0291 0.0248

5000
PE 0.0226 0.0360 0.0683 0.0882 0.1123 0.1274 0.1609 0.1986 0.2008 0.2216

LWE 0.0207 0.0174 0.0386 0.0201 0.0198 0.0399 0.0226 0.0197 0.0148 0.0443
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Figure 4.3: MSE of DOM for ARFIMA (0,d,0) using the REM with SC3

The differences among the MSE values of the PE-DOMs and the LWE-DOMs for ARFIMA

(0, d, 0) using the REM under the new conditions by taking nγ = tγ = γ2/3 and different

values of sample size γ and DOM d in Table 4.2
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Table 4.3: MSE of DOM for ARFIMA (1,d,1) using the REM with SC3

MSE values of the PE-DOMs and LWE-DOMs for ARFIMA(1, d, 1) using the REM under the new

conditions by taking nγ = tγ = γ2/3 and different values of sample size γ and DOM d

γ estimators d values

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

500
PE 0.0635 0.0720 0.1068 0.0612 0.1451 0.1717 0.1994 0.1912 0.2701 0.2848

LWE 0.0248 0.0535 0.0702 0.0588 0.1042 0.1101 0.1585 0.1479 0.1899 0.1962

700
PE 0.0477 0.0531 0.0593 0.0845 0.1379 0.1300 0.1549 0.2344 0.2273 0.2482

LWE 0.0228 0.0434 0.0459 0.0729 0.0923 0.0750 0.0888 0.1108 0.1214 0.1381

1000
PE 0.0373 0.0569 0.0683 0.1346 0.1131 0.1467 0.1611 0.1824 0.1907 0.2512

LWE 0.0111 0.0125 0.0235 0.0817 0.0536 0.0673 0.0553 0.0648 0.0628 0.0859

1500
PE 0.0210 0.0455 0.0534 0.0863 0.1220 0.1331 0.1665 0.1758 0.2362 0.2692

LWE 0.0157 0.0162 0.0199 0.0265 0.0370 0.0332 0.0487 0.0455 0.0665 0.0747

2000
PE 0.0250 0.0521 0.0777 0.0976 0.0754 0.1426 0.1611 0.1555 0.2167 0.2180

LWE 0.0086 0.0185 0.0417 0.0182 0.0315 0.0336 0.0365 0.0618 0.0585 0.0552

2500
PE 0.0191 0.0262 0.0581 0.0733 0.1081 0.1400 0.1720 0.2199 0.1966 0.2343

LWE 0.0078 0.0221 0.0259 0.0135 0.0435 0.0428 0.0440 0.0634 0.0323 0.0265

3000
PE 0.0304 0.0482 0.0433 0.0809 0.0877 0.1630 0.1333 0.1915 0.2138 0.2559

LWE 0.0274 0.0324 0.0130 0.0331 0.0166 0.0272 0.0199 0.0266 0.0361 0.0563

3500
PE 0.1022 0.1241 0.1262 0.1488 0.1710 0.1823 0.2178 0.2397 0.2549 0.2711

LWE 0.0193 0.0094 0.0282 0.0225 0.0111 0.0185 0.0152 0.0363 0.0288 0.0278

4000
PE 0.0240 0.0392 0.0541 0.0724 0.0836 0.1169 0.1564 0.1737 0.1973 0.2273

LWE 0.0815 0.0666 0.0555 0.0840 0.0977 0.0976 0.0997 0.1363 0.1281 0.1868

4500
PE 0.0215 0.0275 0.0508 0.0845 0.1051 0.1249 0.1374 0.1895 0.2279 0.2418

LWE 0.0101 0.0078 0.0135 0.0201 0.0188 0.0175 0.0222 0.0222 0.0291 0.0248

5000
PE 0.0226 0.0360 0.0683 0.0882 0.1123 0.1274 0.1609 0.1986 0.2008 0.2216

LWE 0.0207 0.0174 0.0386 0.0201 0.0198 0.0399 0.0226 0.0197 0.0148 0.0443
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Figure 4.4: MSE of DOM for ARFIMA (1,d,1) using the REM with SC3

The differences among the MSE values of the PE-DOMs and the LWE-DOMs for

ARFIMA(1, d, 1) using the REM under the new conditions by taking nγ = tγ = γ2/3

and different values of sample size γ and DOM d in Table 4.3
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Table 4.4: MSE of DOM for ARFIMA (2,d,2) using the REM with SC3

MSE values of the PE-DOMs and LWE-DOMs for ARFIMA(2, d, 2) using the REM under the new

conditions by taking nγ = tγ = γ2/3 and different values of sample size γ and DOM d

γ estimators d values

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

500
PE 0.0650 0.0827 0.1160 0.1758 0.1895 0.2567 0.2837 0.3652 0.3913 0.4535

LWE 0.0482 0.0775 0.1119 0.1611 0.2021 0.2490 0.2772 0.3516 0.3890 0.4449

700
PE 0.0807 0.0839 0.0697 0.1083 0.1390 0.1674 0.1858 0.2130 0.2220 0.2658

LWE 0.0509 0.0591 0.0551 0.0829 0.0975 0.1068 0.1407 0.1270 0.1303 0.1629

1000
PE 0.0412 0.0677 0.1014 0.1513 0.1965 0.2415 0.2920 0.3363 0.3797 0.4297

LWE 0.0178 0.0537 0.0959 0.1464 0.1943 0.2345 0.2846 0.3277 0.3763 0.4212

1500
PE 0.0405 0.0559 0.1072 0.1437 0.1895 0.2333 0.2836 0.3225 0.3701 0.4226

LWE 0.0170 0.0505 0.1009 0.1395 0.1884 0.2298 0.2764 0.3166 0.3657 0.4104

2000
PE 0.0313 0.0527 0.0897 0.1414 0.1818 0.2293 0.2807 0.3237 0.3696 0.4172

LWE 0.0180 0.0497 0.0893 0.1378 0.1789 0.2228 0.2711 0.3157 0.3566 0.4009

2500
PE 0.0274 0.0536 0.0906 0.1420 0.1788 0.2275 0.2784 0.3244 0.3680 0.4175

LWE 0.0206 0.0482 0.0896 0.1375 0.1764 0.2191 0.2637 0.3070 0.3512 0.3938

3000
PE 0.0266 0.0542 0.0922 0.1361 0.1822 0.2271 0.2719 0.3160 0.3635 0.4065

LWE 0.0170 0.0520 0.0899 0.1288 0.1753 0.2149 0.2590 0.3003 0.3444 0.3845

3500
PE 0.0235 0.0438 0.0897 0.1398 0.1833 0.2213 0.2696 0.3170 0.3642 0.4070

LWE 0.0182 0.0507 0.0879 0.1290 0.1733 0.2112 0.2565 0.2960 0.3419 0.3840

4000
PE 0.0233 0.0503 0.0878 0.1382 0.1851 0.2290 0.2678 0.3222 0.3630 0.4023

LWE 0.0192 0.0466 0.0876 0.1340 0.1731 0.2107 0.2549 0.2969 0.3364 0.3775

4500
PE 0.0269 0.0484 0.0867 0.1362 0.1760 0.2203 0.2657 0.3118 0.3495 0.3969

LWE 0.0255 0.0470 0.0829 0.1263 0.1637 0.2050 0.2466 0.2894 0.3272 0.3690

5000
PE 0.0424 0.0666 0.0807 0.1043 0.1333 0.1768 0.1661 0.2007 0.2197 0.2693

LWE 0.0555 0.0784 0.0723 0.0574 0.0673 0.0792 0.0592 0.0579 0.0639 0.0698
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Figure 4.5: MSE of DOM for ARFIMA (2,d,2) using the REM with SC3

The differences among the MSE values of the PE-DOMs and the LWE-DOMs for

ARFIMA(2, d, 2) using the REM under the new conditions by taking nγ = tγ = γ2/3

and different values of sample size γ and DOM d in Table 4.4
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Table 4.5: MSE of DOM for ARFIMA (0,d,0) using the WEM with SC3

MSE values of the PE-DOMs and LWE-DOMs for ARFIMA(0, d, 0) using the WEM under the new

conditions by taking nγ = tγ = γ2/3 and different values of sample size γ and DOM d

γ estimators d values

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

500
PE 0.0308 0.0437 0.0476 0.0259 0.0552 0.0432 0.0994 0.1135 0.1432 0.0377

LWE 0.0155 0.0424 0.0921 0.1383 0.1883 0.2358 0.2822 0.3240 0.3655 0.4195

700
PE 0.0590 0.0809 0.1127 0.1165 0.1114 0.1357 0.1979 0.2315 0.2309 0.2585

LWE 0.0480 0.0549 0.0536 0.0634 0.0640 0.0863 0.1077 0.1030 0.1115 0.1474

1000
PE 0.0814 0.0218 0.1123 0.0111 0.0557 0.0713 0.0205 0.0056 0.0494 0.0727

LWE 0.0079 0.0425 0.0915 0.1348 0.1823 0.2302 0.2766 0.3238 0.3697 0.4181

1500
PE 0.0078 0.0993 0.0243 0.0338 0.0294 0.1055 0.0621 0.0266 0.0833 0.0267

LWE 0.0001 0.0260 0.0178 0.0571 0.0245 0.0701 0.0464 0.0554 0.0582 0.0511

2000
PE 0.0468 0.0734 0.0019 0.0186 0.0228 0.0049 0.0083 0.0668 0.0081 0.0681

LWE 0.0269 0.0339 0.0163 0.0280 0.0379 0.0352 0.0350 0.0477 0.0344 0.0511

2500
PE 0.0119 0.0474 0.0473 0.0384 0.0191 0.0575 0.0288 0.0505 0.0173 0.0253

LWE 0.0023 0.0240 0.0216 0.0137 0.0179 0.0320 0.0321 0.0395 0.0294 0.0398

3000
PE 0.0334 0.0413 0.0125 0.0191 0.0118 0.0338 0.0182 0.0047 0.0247 0.0423

LWE 0.0099 0.0182 0.0209 0.0149 0.0309 0.0305 0.0143 0.0353 0.0279 0.0348

3500
PE 0.0252 0.0359 0.0279 0.0102 0.0032 0.0013 0.0924 0.0526 0.0374 0.0305

LWE 0.0011 0.0202 0.0276 0.0154 0.0175 0.0166 0.0381 0.0273 0.0458 0.0277

4000
PE 0.0157 0.0296 0.0387 0.0445 0.0193 0.0480 0.0663 0.0155 0.0538 0.1238

LWE 0.0001 0.0184 0.0281 0.0177 0.0225 0.0260 0.0327 0.0132 0.0503 0.0307

4500
PE 0.0146 0.0728 0.0372 0.0506 0.0196 0.0131 0.0482 0.0380 0.0126 0.0051

LWE 0.0071 0.0415 0.0270 0.0313 0.0185 0.0133 0.0325 0.0229 0.0154 0.0267

5000
PE 0.0306 0.0397 0.0144 0.0121 0.0228 0.0219 0.0621 0.0134 0.0681 0.0692

LWE 0.0022 0.0213 0.0110 0.0091 0.0163 0.0112 0.0340 0.0210 0.0428 0.0362
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Figure 4.6: MSE of DOM for ARFIMA (0,d,0) using the WEM with SC3

The differences among the MSE values of the PE-DOMs and the LWE-DOMs for

ARFIMA(0, d, 0) using the WEM under the new conditions by taking nγ = tγ = γ2/3

and different values of sample size γ and DOM d in Table 4.5
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Table 4.6: MSE of DOM for ARFIMA (0,d,0) using the REM without SC3

MSE values of the PE-DOMs and LWE-DOMs for ARFIMA(0, d, 0) using the REM without the new

conditions by taking nγ = tγ = γ1/3 and different values of sample size γ and DOM d

γ estimators d values

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

500
PE 0.2637 0.1675 0.1015 0.1496 0.2030 0.1994 0.1860 0.2402 0.2118 0.2876

LWE 0.0154 0.0429 0.0586 0.1076 0.1272 0.1410 0.1675 0.2134 0.2139 0.2422

700
PE 0.1529 0.1792 0.1933 0.0967 0.2328 0.1572 0.2089 0.2748 0.2202 0.2679

LWE 0.0038 0.0397 0.0568 0.1011 0.1231 0.1727 0.2116 0.2719 0.2732 0.3046

1000
PE 0.0577 0.1358 0.1034 0.1663 0.1644 0.2300 0.1299 0.1841 0.2697 0.2239

LWE 0.0131 0.0435 0.0782 0.1043 0.1432 0.2119 0.1817 0.2200 0.2633 0.2890

1500
PE 0.1431 0.1561 0.0835 0.0721 0.1428 0.1016 0.1763 0.2694 0.3405 0.2745

LWE 0.0150 0.0337 0.0798 0.1058 0.1582 0.1685 0.2137 0.2543 0.3093 0.3362

2000
PE 0.1831 0.1155 0.1262 0.1436 0.1535 0.1512 0.1943 0.2335 0.1980 0.3739

LWE 0.0123 0.0544 0.0873 0.1126 0.1798 0.1971 0.2334 0.2787 0.3168 0.3651

2500
PE 0.2040 0.0878 0.1379 0.2160 0.1244 0.1830 0.2236 0.1325 0.2197 0.2463

LWE 0.0025 0.0378 0.0782 0.1260 0.1614 0.1956 0.2403 0.2852 0.3210 0.3736

3000
PE 0.1000 0.1125 0.0765 0.1006 0.2055 0.1844 0.2133 0.2515 0.2415 0.2877

LWE 0.0139 0.0439 0.0760 0.1172 0.1672 0.2089 0.2429 0.2831 0.3389 0.3822

3500
PE 0.0943 0.0833 0.1713 0.0880 0.1177 0.2045 0.3022 0.2971 0.2206 0.2068

LWE 0.0058 0.0452 0.0902 0.1294 0.1671 0.2135 0.2602 0.3038 0.3395 0.3734

4000
PE 0.0962 0.1100 0.1659 0.1455 0.2405 0.1544 0.2423 0.2781 0.2952 0.2029

LWE 0.0043 0.0375 0.0968 0.1355 0.1772 0.2137 0.2588 0.3025 0.3498 0.3764

4500
PE 0.0010 0.0476 0.0863 0.1327 0.1729 0.2271 0.2624 0.2987 0.3491 0.3938

LWE 0.0165 0.0416 0.0897 0.1360 0.1732 0.2103 0.2588 0.3112 0.3455 0.3960

5000
PE 0.0910 0.1761 0.0832 0.1840 0.1625 0.2586 0.1391 0.1612 0.2091 0.2295

LWE 0.0010 0.0476 0.0863 0.1327 0.1729 0.2271 0.2624 0.2987 0.3491 0.3938
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Figure 4.7: MSE of DOM for ARFIMA (0,d,0) using the REM without SC3

The differences among the MSE values of the PE-DOMs and the LWE-DOMs for

ARFIMA(0, d, 0) using the WEM with the new conditions by taking nγ = tγ = γ2/3

and different values of sample size γ and DOM d in Table 4.6
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Table 4.7: MSE of DOM for ARFIMA (1,d,1) using the WEM with SC3

MSE values of the PE-DOMs and LWE-DOMs for ARFIMA(1, d, 1) using the WEM under the new

conditions by taking nγ = tγ = γ2/3 and different values of sample size γ and DOM d

γ estimators d values

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

500
PE 0.0590 0.0551 0.0760 0.1061 0.1379 0.1328 0.2139 0.2885 0.2623 0.2604

LWE 0.0436 0.0332 0.0454 0.0605 0.1006 0.0932 0.1524 0.1636 0.1897 0.1921

700
PE 0.0590 0.0809 0.1127 0.1165 0.1114 0.1357 0.1979 0.2315 0.2309 0.2585

LWE 0.0480 0.0549 0.0536 0.0634 0.0640 0.0863 0.1077 0.1030 0.1115 0.1474

1000
PE 0.0328 0.0351 0.0574 0.0921 0.1073 0.1462 0.1789 0.2106 0.2020 0.2828

LWE 0.0232 0.0357 0.0218 0.0380 0.0436 0.0685 0.0591 0.0795 0.0779 0.0926

1500
PE 0.0321 0.0498 0.0523 0.1013 0.1217 0.1345 0.1952 0.1894 0.2114 0.2594

LWE 0.0226 0.0219 0.0391 0.0494 0.0462 0.0328 0.0624 0.0479 0.0566 0.0470

2000
PE 0.0215 0.0178 0.0577 0.0835 0.1213 0.1324 0.1486 0.1940 0.2245 0.2474

LWE 0.0079 0.0057 0.0326 0.0205 0.0218 0.0415 0.0232 0.0547 0.0427 0.0692

2500
PE 0.0284 0.0257 0.0678 0.0913 0.1142 0.1635 0.1569 0.1836 0.2141 0.2186

LWE 0.0385 0.0116 0.0104 0.0157 0.0275 0.0255 0.0301 0.0173 0.0437 0.0398

3000
PE 0.0215 0.0382 0.0417 0.0753 0.1125 0.1165 0.1639 0.2101 0.2337 0.2427

LWE 0.0123 0.0259 0.0171 0.0228 0.0412 0.0189 0.0295 0.0229 0.0434 0.0327

3500
PE 0.0386 0.0363 0.0745 0.0924 0.1198 0.1511 0.1712 0.1948 0.2067 0.2500

LWE 0.0153 0.0100 0.0171 0.0422 0.0331 0.0318 0.0282 0.0468 0.0216 0.0296

4000
PE 0.0240 0.0392 0.0541 0.0724 0.0836 0.1169 0.1564 0.1737 0.1973 0.2273

LWE 0.0131 0.0170 0.0165 0.0260 0.0209 0.0356 0.0161 0.0234 0.0288 0.0378

4500
PE 0.0215 0.0275 0.0508 0.0845 0.1051 0.1249 0.1374 0.1895 0.2279 0.2418

LWE 0.0101 0.0078 0.0135 0.0201 0.0188 0.0175 0.0222 0.0222 0.0291 0.0248

5000
PE 0.0226 0.0360 0.0683 0.0882 0.1123 0.1274 0.1609 0.1986 0.2008 0.2216

LWE 0.0207 0.0174 0.0386 0.0201 0.0198 0.0399 0.0226 0.0197 0.0148 0.0443
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Figure 4.8: MSE of DOM for ARFIMA (1,d,1) using the WEM with SC3

The differences among the MSE values of the PE-DOMs and the LWE-DOMs for

ARFIMA(1, d, 1) using the WEM with the new conditions by taking nγ = tγ = γ2/3

and different values of sample size γ and DOM d in Table 4.7
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4.3 Interpretation of Results

Based on the Preparation step 1 and Preparation step 2, the above-mentioned three

scenarios are investigated as follows:

Scenario 1: The accuracy of the LWT for the REM under the new conditions:

The theoretical justifications prove that the LWE-DOM is better than the PE-

DOM for the REM under the new sufficient conditions. This scenario investigates

the numerical justifications for the given theoretical justifications. Tables 6.18,

4.4 and 4.5 give the MSE values of the LWE-DOMs by using the Hamming LWF

as given in the Preparation step 2 and the PE-DOMs based on the REM for

ARFIMA(0, d, 0), 0 ≤ d < 1
2 , ARFIMA(1, d, 1), 0 ≤ d < 1

2 and ARFIMA(2, d, 2), 0 ≤

d < 1
2 , respectively. The parameters are selected to satisfy the sufficient conditions

SC1-SC4 as given in the Preparation step 1 by taking tγ = nγ = γ
2
3 using the

following different sample sizes 500 ≤ γ ≤ 5000. The differences among the MSE

values of the PE-DOMs and the MSE values of the LWE-DOMs (i.e., MSEs of the

PEs - MSEs of the LWEs) in Table 2, 3 and 4 are given in Figures 6.18, 4.4 and 4.5,

respectively.

• From Tables 6.18-4.5 and Figures 6.18-4.5, we can show that for short memory

ARFIMA(p, 0, q) and long memory ARFIMA(p, 0 < d < 1
2 , q) the MSE values of the

LWE-DOMs under the new conditions are less than the MSE values of the PE-DOMs

for all the values of the DOMs 0 ≤ d < 1
2 . That is, the LWT is better than the PT

for the REM under the new sufficient conditions.

Scenario 2: The accuracy of the LWT for the WEM under the new conditions:

Even though the theoretical justification of the efficiency of the LWT is proved based

on the REM only, this scenario investigates the performance of the LWT using the

new conditions for other methods, such as the WEM. The WEM is a semi-parametric

method which estimates the DOM on a specific asymptotic form of the SDF in (2.11)

and it depends on the efficiency of the estimator of the SDF (cf. Künsch[34]) as

follows

d̂ := argmin
− 1

2
<d< 1

2

ln
 1

nγ

nγ∑
j=1

η2dj Ŝ(ηj)

− 2d
1

nγ

nγ∑
j=1

ln(ηj)

 .
Table 4.6 gives the MSE values of the LWE-DOMs by using the Hamming LWF

as given in the Preparation step 2 and the PE-DOMs based on the WEM for
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ARFIMA(0, d, 0), 0 ≤ d < 1
2 . The parameters are selected to satisfy the sufficient

conditions SC1-SC4 as given in the Preparation step 1 by taking tγ = nγ = γ
2
3

using the following different sample sizes 500 ≤ γ ≤ 5000. The differences among the

MSE values of the PE-DOMs and the MSE values of the LWE-DOMs (i.e., MSEs of

the PEs - MSEs of the LWEs) in Table4.6 are given in Figure 4.6.

• From Table 4.6 and Figure 4.6, we can show that for short memory ARFIMA(p, 0, q)

the MSE values of the LWE-DOMs under the new conditions are less than the MSE

values of the PE-DOMs for all the cases based on the WEM, i.e., the LWT is better

than the PT for the WEM under the sufficient conditions SC1-SC4 for short memory.

However, for long memory ARFIMA(p, 0 < d < 1
2 , q) the MSE values of the LWE-

DOMs under the new conditions are less than the MSE values of the PE-DOMs

for many cases, i.e., the LWT is better than the PT based on the REM under the

sufficient conditions SC1-SC4 for many cases of DOMs 0 < d < 1
2 and sample sizes

γ, especially for large DOMs and sample sizes.

Scenario 3: The accuracy of the LWT for the REM without the new conditions:

This scenario investigates the performance of the LWT without the new sufficient

conditions. Table 4.7 gives the MSE values of the LWE-DOMs by using the Hamming

LWF as given in the Preparation step 2 and the PE-DOMs based on the REM for

ARFIMA(0, d, 0), 0 ≤ d < 1
2 . The parameters are selected to satisfy the sufficient

conditions SC1, SC2 and SC4 and not satisfy the sufficient condition SC3 as given

in the Preparation step 1 by taking tγ = nγ = γ
1
3 using the following different

sample sizes 500 ≤ γ ≤ 5000. The differences among the MSE values of the PE-

DOMs and the MSE values of the LWE-DOMs (i.e., MSEs of the PEs - MSEs of the

LWEs) in Table 4.7 are given in Figure 4.7.

From Table 4.7 and Figure 4.7, we can show that for long memory ARFIMA(p, 0 <

d < 1
2 , q) the MSE values of the LWE-DOMs without the new condition SC3 are

larger than the MSE values of the PE-DOMs for many cases. That is, the PT is better

than the LWT based on the REM if any of the new sufficient conditions SC1-SC4

are not satisfied for many cases of DOMs 0 < d < 1
2 and sample sizes γ, especially

for large DOMs and sample sizes.

On the other hand, Figure 4.1 gives a comparison study between the shape of the

variation of the LWE-SDF under the new conditions and the shape of the variation
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of the PE-SDF for different sample sizes γ ∈ {700, 1000, 3000, 5000} and DOMs d ∈

{0.05, 0.1, 0.4, 0.45}. From Figure 4.1, we can show that:

• (i) the PE-SDF has many so sharply peaks and unsmoothed wild fluctuation form;

• (ii) the LWE-SDF under the new conditions is more smoothed than the PE-SDF and

it converges to zero for large sample sizes and DOMs.

Therefore, the LWE-SDF under the new conditions is a good representative of the SDF

according to its characteristics compared the PE-SDF.

Remark 7. From the above discussions and numerical results, it is obvious that the new

sufficient conditions that are given in this work are needed to improve the efficiency of the

LWT for estimating the SDFs and DOMs of SMDSGPs and LMDSGPs.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Estimating the SDF and the DOM of a Gaussian process is needed for many real-world

problems. This thesis gives sufficient conditions for improving the efficiency of the lag

window technique (LWT) that is one of the widely techniques for estimating the SDF and

the DOM. The asymptotic behaviors of the resulting estimators under the new conditions

are investigated. A comparison study between the LWT under the new conditions, the

LWT without the new conditions and periodogram technique (PT) that is the classical

widely used technique, is given theoretically and computationally. The main results show

that the LWT under the new conditions is better than the PT and the LWT without the

new conditions. Therefore, the new conditions are needed to improve the performance of

the LWT for many models.

5.2 Future Work

After reading this work, some interesting ideas for further study can arise. We are working

on these ideas and some interesting results are obtained. However, we cannot give any

conclusion at this stage and the results will be given in our future works.

• The results in this research work only concentrate on a specific type of stochastic

process, the stationary Gaussian process. Then, future research will concentrate on

generalizing these results for the case of a general stochastic process.

• Although good estimators for the SDF and the DOM are obtained in this work,
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the problem is still difficult due to the limited use of these estimators (due to the

sufficient conditions SC1-SC4). The future work will try to relax the sufficient

conditions SC1-SC4 to get good estimators in the general case.

• The theoretical justifications with sufficient conditions for obtaining good estimators

are investigated based on the REM only. Then, future research will concentrate on

generalizing the theoretical justifications and conditions for other methods, such as

the WEM.

• Machine learning and its techniques, such as neural networks, are widely used recently

for detecting outliers and estimating and forecasting parameters in time series and

stochastic processes (cf. [58, 59]). The future work will try to provide new efficient

estimation techniques using the power of the neural networks.

Long memory is still a very active field of time series research. There are many further

interesting and important issues, that it is far from complete.
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Chapter 6

Appendix

Proof of Theorem 3. From (2.4) and (3.3) evaluate at Fourier frequencies, we have

Bias(Ŝw(ηj)) = α1 + α2,

where

• α1 = E(Ŝw(ηj))− S1(ηj) the bias due the periodogram itself,

• α2 = S1(ηj)− S(ηj) the bias due to the smoothing,

• S1(ηj) =
1
2π

∑
|h|≤tγ

A(h)e−iηjhW
(

h
tγ

)
.

Therefore, we have the following cases based on the DOM values.

Case 1: For NMDSGP, −1
2 < d < 0. From (2.1) and autocovariance A(h) = E(Xj+hXj),

we have E(Â(h)) =
(
1− |h|

γ

)
A(h) and thus,

α1 =
1

2π

∑
|h|≤tγ

(
E(Â(h))−A(h)

)
e−iηjhW

(
h

tγ

)

= − 1

2π

∑
|h|≤tγ

|h|
γ
A(h)e−iηjhW

(
h

tγ

)

= − 1

πγ

tγ∑
h=1

hA(h) cos(ηjh)W
(
h

tγ

)
. (6.1)

For tγ → ∞, we have

A(h) ≃ β|h|2d−1 and W
(
h

tγ

)
→ 1. (6.2)
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From Zygmund [64], the sum of two consecutive products, with one decreasing (d is

negative) and the other trigonometric, is given as follows
∞∑
h=1

h2d cos(ηjh) ≃ −Γ(1 + 2d) sin(πd)η
−(2d+1)
j . (6.3)

Combining (6.1)-(6.3) and ηj = 2πj
γ for j ̸= 0

α1 ≃ O

(
1

γ
η
−(2d+1)
j

)
≃ O

(
γη−2d

j

jγ

)
≃ O

(
η−2d
j

j

)
. (6.4)

The form α2 can be written as follows

α2 =
1

2π

∑
|h|≤tγ

A(h)e−iηjhW
(
h

tγ

)
− 1

2π

∑
h∈Z

A(h)e−iηjh

=
1

2π

∑
|h|≤tγ

A(h)e−iηjhW
(
h

tγ

)
− 1

2π

 ∑
|h|>tγ

A(h)e−iηjh +
∑

|h|≤tγ

A(h)e−iηjh


=

1

2π

∑
|h|≤tγ

A(h)e−iηjh

(
W
(
h

tγ

)
− 1

)
− 1

2π

∑
|h|>tγ

A(h)e−iηjh. (6.5)

From (4.7) and Tikhonov[57], we get∑
|h|>tγ

A(h)e−iηjh ≤
∑

|h|>tγ

A(h) ≃ O
(
t2dγ

)
. (6.6)

From W(0)
C1
= 1 and (2.14), we have

1

2π

∑
|h|≤tγ

A(h)e−iηjh

(
1−W

(
h

tγ

))
≤ 1

π

∑
1≤h≤tγ

(
k
h

tγ

)
A(h) cos(ηjh)

≃ k

πtγ
VA

(
1

tγ

) ∑
1≤h≤tγ

h2d cos(ηjh).(6.7)

It is obvious that ∣∣∣∣∣∣
∑

1≤h≤tγ

h2d cos(ηjh)

∣∣∣∣∣∣ ≤
∑

1≤h≤tγ

h2d ≃
t2d+1
γ

2d+ 1
. (6.8)

Combining (6.7) and (6.8), we obtain that

1

2π

∑
|h|≤tγ

A(h)e−iηjh

(
1−W

(
h

tγ

))
≤

kt2dγ
2π(d+ 1)

VA

(
1

tγ

)
(2.12)
≃ O

(
t2dγ

)
. (6.9)

Combining (6.5), (6.6) and (6.9), we get

α2 ≃ O
(
t2dγ

)
. (6.10)

From (6.4) and (6.10), we have

Bias(Ŝw(ηj)) ≃ O
(
t2dγ

)
+O

(
η−2d
j

j

)
. (6.11)
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Case 2: From LMDSGP, 0 < d < 1
2 . Using the same arguments for Ŝw(η) to obtain

expression (3.5) and by its Riemann approximating sum (3.12), S1(η) can be rewritten

as follows

S1(η) =

∫ π

−π
S(θ)Uγ(η − θ) dθ ≃ 2π

γ

[ γ
2
]∑

k=−[ γ−1
2

]

S(ηk)Utγ (η − ηk), (6.12)

where [.] means the integer part. From (3.12) and (6.12), we get

α1 =
2π

γ

[ γ
2
]∑

k=−[ γ−1
2

]

(
E
(
Ŝp(ηk)

)
− S(ηk)

)
Utγ (ηj − ηk)

=
2π

γ

[ γ
2
]∑

k=−[ γ−1
2

]

[
E
(
Ŝp(ηj − ηk)

)
− S(ηj − ηk)

]
Utγ (ηk)

P1
≤ max

|k|≤[γ/2]

∣∣∣E (Ŝp(ηj − ηk)
)
− S(ηj − ηk)

∣∣∣
ηj=2πj/γ, ηk=2πk/γ

= max
|k|≤[γ/2]

∣∣∣E (Ŝp(ηj−k)
)
− S(ηj−k)

∣∣∣
= max

j−[γ/2]≤l≤j+[γ/2]

∣∣∣E (Ŝp(ηj)
)
− S(ηl)

∣∣∣. (6.13)

From (6.13) and the arguments developed in Beran[7] (cf. also proof of Theorem 2

in Robinson [49]), we have

α1 ≃ O

(
ln j

jη2dj

)
. (6.14)

From (6.12) and the fact that
∫ π
−π Utγ (θ)dθ = 1, the form α2 can be written as

follows

α2 =

∫ π

−π
S(ηj − θ)Utγ (θ)dθ − S(ηj)

∫ π

−π
Utγ (θ)dθ =

∫ π

−π

(
S(ηj − θ)− S(ηj)

)
Utγ (θ)dθ.

(6.15)

The second-order Taylor expansion of S(η) at the neighborhood of ηj ( ϵ
(SC4)
< ηj) is

S(η)≃S(ηj) + (η − ηj)S ′(ηj) +
(η − ηj)

2

2
S ′′(ηj) + o((η − ηj)

2).

By taking η = ηj − θ and intervening the spectral window in the preceding formula

with the properties P1 and P3, (6.15) can be written as follows

α2 ≤
∫ π

−π

[
− θS ′(ηj) +

θ2

2
S ′′(ηj) + o(θ2)

]
Utγ (θ)dθ ≃

S ′′(ηj)

2

∫ π

−π
θ2Utγ (θ)dθ. (6.16)
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From (3.6), we get

Utγ (θ) =
1

2π

∑
|h|≤tγ

W
( h
tγ

)
e−iθh

(x= h
tγ

)

≃ tγ
2π

∫ 1

−1
W(x)e−ixtγθdx = tγU(tγθ). (6.17)

Consequently,

U(tγθ) =
1

2π

∫ 1

−1
W(x)e−ix(tγθ)dx =⇒ U(θ) = 1

2π

∫ 1

−1
W(x)e−ixθdx

IFT⇐⇒ W(x) =

∫ ∞

−∞
U(θ)eixθdθ

=⇒ W ′′(x) = −
∫ ∞

−∞
θ2U(θ)eixθdθ

=⇒ W ′′(0) = −
∫ ∞

−∞
θ2U(θ)dθ <∞,(6.18)

where IFT is the inverse Fourier transformation. Combining (6.16)-(6.18), we get

α2 ≤
S ′′(ηj)

2

∫ π

−π
θ2Utγ (θ)dθ

(6.17)
=

S ′′(ηj)

2

∫ π

−π
θ2tγU(tγθ)dθ

(6.18), u=tγθ≃ −S ′′(ηj)

2t2γ

∫ ∞

−∞
u2U(u)du. (6.19)

From (6.18), (6.19) and (SC4), we get

α2 ≃ O

(
η−2d−2
j

t2γ

)
. (6.20)

Combining (6.14) and (6.20), we have

Bias(Ŝw(ηj)) ≃ O

(
ln j

jη2dj

)
+O

(
1

t2γη
2d+2
j

)
. (6.21)

From LMDSGP (6.21), α1 is smaller then α2 which is similar to SMDSGP (cf. Priestley

[42] section 6), but for NMDSGP (6.11) it’s the opposite. Then, we get

Bias
(
Ŝw(ηj)

) (6.11,6.21)
≃


O

(
1

tγη
d+1
j

)2

, if 0 < d < 1
2 , i.e., for LM-DSGP;

O

(
1√
jηdj

)2

, if − 1
2 < d < 0, i.e., for NM-DSGP.

For approximate formula (2.11) of SDF for LM and NM-DSGP, we have (3.13).■

Proof of Theorem 4. From the definition of variance, we have

var
(
Ŝw(η)

)
=

(
1

2π

)2 tγ∑
h=−tγ

tγ∑
g=−tγ

W
(
h

tγ

)
W
(
g

tγ

)
e−iη(h−g)Cov

(
Â(h), Â(g)

)
. (6.22)
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For any DSGP {Xt}t∈Z by using the relation (5.3.26) with the arguments developed in

Priestley[42] and for (2.13),

cov
(
Â(h), Â(g)

)
≃ 2π

γ

∫ π

−π

(
eiθ(g−h) + eiθ(h+g)

)
V2
S

(
1

|θ|

)
|θ|−4d dθ. (6.23)

Combining (6.22) and (6.23), we get

var
(
Ŝw(ηj)

)
≃ 1

2πγ

∫ π

−π
V2
S

(
1

|θ|

)
|θ|−4d

tγ∑
h,g=−tγ

W
(
h

tγ

)
W
(
g

tγ

)
e−iηj(h−g)

(
eiθ(g−h) + eiθ(h+g)

)
dθ

≃ 1

2πγ

∫ π

−π
V2
S

(
1

|θ|

)
|θ|−4d

tγ∑
h,g=−tγ

W
(
h

tγ

)
W
(
g

tγ

)
e−ig(ηj−θ)

(
eih(ηj−θ) + e−ih(ηj+θ)

)
dθ

P2≃ 2π

γ

∫ π

−π
V2
S

(
1

|θ|

)
|θ|−4dU2

tγ (ηj − θ)dθ ≃ 2π

γ
V2
S

(
1

|ηj |

)
|ηj |−4d

∫ π

−π
U2
tγ (θ)dθ. (6.24)

By Parseval’s theorem,

2π

∫ π

−π
U2
tγ (θ)dθ =

∑
|h|≤tγ

W2
( h
tγ

)
,

(6.24) will become

var
(
Ŝw(ηj)

)
≃ 1

γ
V2
S

(
1

|ηj |

)
|ηj |−4d

∑
|h|≤tγ

W2
( h
tγ

)
≃ tγ

γ
V2
S

(
1

|ηj |

)
|ηj |−4d

∫ 1

−1
W2(x) dx. (6.25)

Combining (2.13) and (6.25), we get

var
(
Ŝw(ηj)

)
≃ (S(ηj))2

tγ
γ

∫ 1

−1
W2(x) dx.

From C1-C3, we obtain ∫ 1

−1
W2(x) dx <∞.

Then for the above formula and ηj ̸= 0, it is obvious that

var

(
Ŝw(ηj)

S(ηj)

)
≃ tγ

γ

∫ 1

−1
W2(x) dx ≃ O

( tγ
γ

)
. (6.26)

The proof is completed.■

Proof of Corollary 1. For (6.21), (6.11) and (2.11)

Bias

(
Ŝw(ηj)

S(ηj)

)
≃


Bias

(
Ŝp(ηj)
S(ηj)

)
+O

(
1

tγηj

)2
, if 0 < d < 1

2 , i.e., for LM-DSGP;

Bias
(
Ŝp(ηj)
S(ηj)

)
≃ O

(
1
j

)
, if − 1

2 < d < 0, i.e., for NM-DSGP.
(6.27)
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As Ŝp(ηj) is a special case of Ŝw(ηj), W ≡ 1 and tγ = γ. Then, for (6.4) and (6.14),

Bias

(
Ŝp(ηj)

S(ηj)

)
(α2=0)
≃


O
(
ln j
j

)
, if 0 < d < 1

2 , i.e., for LMDSGP;

O
(
1
j

)
, if − 1

2 < d < 0, i.e., for NMDSGP.

For (6.26) with W ≡ 1 and tγ = γ, var
(
ŜP (ηj)
S(ηj)

)
≃ O (1) , 0 < |d| < 1

2 . ■

Proof of Corollary 2.

• For a LM-DSGP, 0 < d < 1
2 , j large enough and for (3.13)

Bias

(
Ŝw(ηj)

S(ηj)

)
≃ O

(
γ

tγj

)2

= O

(
γ

tγnγ

(
nγ
j

))2

≃ O

(
γ

tγnγ

)2

. (6.28)

From SC3, for j → ∞ as γ → ∞ we get

O

(
γ

tγnγ

)
SC3−−−→
j→∞

0. (6.29)

From (3.13), (6.28) and (6.29), for 0 < d < 1
2 we get

Bias

(
Ŝw(ηj)

S(ηj)

)
= E

(
Ŝw(ηj)

S(ηj)
− 1

)
SC3−−−→
j→∞

0,

and for (6.26),

var

(
Ŝw(ηj)

S(ηj)

)
SC1−−→
j ̸=0

0.

• The normalized PE-SDF is an asymptotic unbiased;

Bias

(
Ŝp(ηj)

S(ηj)

)
Corollary 1−−−−−−−→

j→∞
0,

but an inconsistent, ∀j ̸= 0;

var

(
Ŝp(ηj)

S(ηj)

)
≃ O (1) ↛ 0.

The proof can be completed. ■

Proof of Theorem 5. It is useful to rewrite the PE-SDF as following with E(Xt) = 0

Ŝp(η) :=
1

2πγ

(
C2
γ(η) +H2

γ(η)
)
, (6.30)

where

Cγ(η) =
γ∑

t=1

Xt cos(ηt), Hγ(η) =

γ∑
t=1

Xt sin(ηt)
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and

E (Cγ(η)) = E (Hγ(η)) = 0.

It is tempting to conclude from the results of [33, 49, 35] that the normalized LWE-SDF

are asymptotically independently and identically distributed (i.i.d.) for;

• (i) a stationary GP (independent is equivalent to uncorrelated);

• (ii) under the formula (2.11), of

• (iii) Fourier frequencies and

• (iv) 0 < d < 1/2.

Hurvich and Beltrao [33] showed that for nγ fixed (SC2 is not verified), the normalized

PE-SDF asymptotically, cannot be i.i.d. Robinson [49] established the asymptotically

independent of the normalized PE-SDF under SC2, for any such frequencies

ηj < ηk satisfying (ln k)/j −−−→
γ→∞

0.

Lahiri [35] defined a sequences of discrete frequencies {ηjγ}φj=1, ∀φ ≥ 2, converging to the

Fourier frequencies, i.e.,

ηjγ −−−→
γ→∞

ηj ∈ [0, π],

then treated the asymptotically i.i.d, by defining the class of admissible sequences of

discrete frequencies {ηjγ} converge to η,

• For η ∈ (0, π], Fη =

{
{ηjγ} : ηjγ ∈ Ωγ , ηjγ −−−→

γ→∞
η ∈ (0, π]

}
, where Ωγ =

{
2πj
γ : j = 1, . . . , γ/2

}
.

• For η = 0, we put F0 = F01 ∪ F02 ∪ F03 with

F01 =

{
{ηjγ} : ηjγ ∈ Ωγ , ηjγ + |γηjγ |−1 −−−→

γ→∞
0

}
,

F02 =

{
{ηjγ} : ηjγ ∈ Ωγ , ∀γ and γηγ −−−→

γ→∞
2πl, l ∈ Z

}
and

F03 = {{ηjγ} : ηjγ ≡ 0} .

Then, the converging class of the sequences {ηjγ} is F = ∪η∈[0,π]Fη. Define the variables

Yjγ =
Cγ(ηjγ)− E(Cγ(ηjγ))

ψγ(ηjγ)
and Zjγ =

Hγ(ηjγ)− E(Hγ(ηjγ))

ψγ(ηjγ)
, (6.31)
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where

ψ2
γ(η) = S(η)γ

(2.13)
≃ γ|η|−2dV

(
1

|η|

)
.

Combining (6.30) and (6.31), we have

Ŝp(ηjγ) =
1

2πγ

(
Y 2
jγ + Z2

jγ

)
ψ2
γ(ηjγ). (6.32)

Thus,

• (i) if |γ(ηjγ−ηiγ)| −−−−−−→
1≤i ̸=j≤φ

∞, Hγ(ηjγ) and Cγ(ηjγ) are asymptotically independent,

so Yjγ and Zjγ are also asymptotically independent.

• (ii) If γ|ηjγ | −−−→
γ→∞

∞, the components (Hγ(ηjγ), Cγ(ηjγ)) between them are asymptotically

independent and each one has an asymptotic normal distribution, as same as (Yjγ , Zjγ),

i.e., (cf. Theorem 2.2. of Lahiri[35]),
Yjγ

D−−−−−−→
γ|ηjγ |→∞

N (0, π),

Zjγ
D−−−−−−→

γ|ηjγ |→∞
N (0, π).

=⇒


Y ∗
jγ = 1√

π
Yjγ

D−→ N (0, 1),

Z∗
jγ = 1√

π
Zjγ

D−→ N (0, 1).

(6.33)

For (6.32), {Ŝp(ηjγ)} are asymptotically independent an immediate consequence of (i) and

(ii). Then for (3.12), {Ŝw(ηjγ)} are also asymptotically independent. Combining (6.31)-

(6.33),

2γ

ψ2
γ(ηjγ)

Ŝp(ηjγ) =
2

S(ηjγ)
Ŝp(ηjγ) =

1

π

(
Y 2
jγ + Z2

jγ

)
= Y ∗2

jγ + Z∗2
jγ

d−→ χ2(2). (6.34)

Combining (3.12) and (6.34), we get Ŝw(ηjγ)/S(ηjγ) approximated as a weighted linear

combination of independent χ2 variables. That is

Ŝw(ηjγ)

S(ηjγ)
−−−→
γ→∞

Ŝw(ηj)

S(ηj)
∼ δχ2(ν), (6.35)

X ∼ Y means that the X and Y have the same distribution. The constants δ and ν

in (6.35) determined that the mean and the variance of {δχ2(ν)} are the same as the

asymptotic mean and variance of {Ŝw(ηj)/S(ηj)}. From the Theorem 3 and 4, we get

E

(
Ŝw(ηj)

S(ηj)

)
−−−→
γ→∞

1, var

(
Ŝw(ηj)

S(ηj)

)
≃ tγ

γ

∫ 1

−1
W2(x) dx. (6.36)

Combining (6.26), (6.35) and (6.36), we get E(δχ2(ν)) = δν ≃ 1,

var
(
δχ2(ν)

)
= 2δ2ν ≃ tγ

γ

∫ 1
−1W

2(x) dx.
=⇒


δ ≃ 1

ν ,

ν ≃ 2γ

tγ
∫ 1
−1 W2(x)dx

.
(6.37)
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From (6.37), the proof is completed.■

Proof of Corollary 3.

P

(
l1 ≤

νŜw(ηj)

S(ηj)
≤ l2

)
≃ 1− α, i.e., P

(
νŜw(ηj)

l2
≤ S(ηj) ≤

νŜw(ηj)

l1

)
≃ 1− α,

where l1 and l2 are obtained from the table of the chi-square distribution satisfying

P (χ2(ν) ≤ l2) = P (χ2(ν) ≥ l1) = α/2.

Therefore, the (1− α) confidence interval of the SDF S(ηj) is given as follows

νŜw(ηj)

a
≤ S(ηj) ≤

νŜw(ηj)

b
and

Ŝp(ηj)

a
≤ S(ηj) ≤

Ŝp(ηj)

b
.

As we have already mentioned, Ŝp(ηj) find by W ≡ 1 and tγ = γ in formula (3.3). So

for (6.37) and (6.26), δ = ν = 1;

E

(
Ŝp(ηj)

S(ηj)

)
≃ E(δχ2(ν)) = 1

and

var

(
Ŝp(ηj)

S(ηj)

)
≃ var

(
δχ2(ν)

)
= 2.

■

Proof of Theorem 4.5. The mean and variance of the LWE-DOM d̂w for a LMDSGP

can be obtained by substituting the LWE-SDF Ŝw in (3.3) in the regression formula (3.16),

where

vj = ln Ŝw(ηj) and ẽj = ln

(
Ŝw(ηj)

S(ηj)

)
.

From Theorem 5 (cf. (6.36) and (6.26)),

E

(
Ŝw(ηj)

S(ηj)

)
−−−→
γ→∞

1 and var

(
Ŝw(ηj)

S(ηj)

)
≃ tγ

γ

∫ 1

−1
W2(x)dx, as γ → ∞.

From Theorem 3, the variable ẽj is i.i.d., formula (3.17) becomes

Bias(d̂w) = E(ẽj), var(d̂w) =
var(ẽj))∑nγ

j=1(uj − ū)2
≃ var(ẽj)

nγ
. (6.38)

For the transformed variable (6.35) and Lemma 4 in Hassler[27], we have
E (ẽj) = E

(
ln
(
Ŝw(ηj)
S(ηj)

))
= Ψ

(
γ

tγ
∫ 1
−1 W2(x)dx

)
− ln

(
γ

tγ
∫ 1
−1 W2(x)dx

)
,

var (ẽj) = var
(
ln
(
Ŝw(ηj)
S(ηj)

))
=
∑∞

nγ=0

(
γ

tγ
∫ 1
−1 W2(x)dx

+ nγ

)−2
.

(6.39)

91



Due to the difficulty of calculating, using the approximation in [42] as same as Lemma 1

in [41], with j → ∞

E (ẽj) = E
(
ln
(
Ŝw(ηj)
S(ηj)

))
≃ ln

(
E
(
Ŝw(ηj)
S(ηj)

))
Theorem 1−−−−−−→

γ→∞
0,

var (ẽj) = var
(
ln
(
Ŝw(ηj)
S(ηj)

))
≃

var

(
Ŝw(ηj)

S(ηj)

)
E

(
Ŝw(ηj)

S(ηj)

)2

Theorem 2≃ tγ
γ

∫ 1
−1W

2(x)dx.

(6.40)

Combining (6.38) and (6.40), we get the mean and variance of the LWE-DOM d̂w.■

Proof of Corollary 4. The proof is obvious from the sufficient conditions SC1-SC3 and

Theorem 4.5 with same reasoning as (3.22). ■

Proof of Corollary 4.6. The proof is obvious from Theorem4 and Corollary4. ■
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