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General Introduction

Functional data analysis

Functional data analysis is a branch of statistics that has been the subject of
many studies and developments in the recent years. It deals with the analysis
and theory of data that are in the form of functions, images and shapes, or
more general objects. While the term functional data analysis" was coined
by Ramsay (1982) and Ramsay and Dalzell (1991), the history of this area
is much older and dates back to Grenander (1950) and Rao (1958).
Functional data are intrinsically infinite dimensional. The high intrinsic di-
mensionality of these data poses challenges both for theory and computation,
where these challenges vary with how the functional data were sampled. On
the other hand, the high or infinite dimensional structure of the data is a
rich source of information, which brings many opportunities for research and
data analysis.

Functional variables can be only observed on a finite grid of discretization
points, the estimation can then be viewed as a multidimensional problem.
This technic fails because of the great number of discretization points which
leads to the well-known problem of curse of dimensionality, linked to the
sparseness of the data. This motivates the extension of the finite dimensional
statistical technics to the infinite dimensional data setting. The nonparamet-

ric methods are then reasonable ways to deal with this type of data sets.



There is nowadays a large number of fields where functional data are col-
lected such as environmetrics, medicine, finance and pattern recognition. To
illustrate, here are two real data examples :

The first one, deals with spectrometric data, which can be found at http
://lib.stat. cmu.edu/datasets/tecator, and concerns the food industry. More
precisely, a food sample has been considered, which contains finely chopped
pure meat with a different fat content. The aim is to predict the fat content of
a meat sample based on the near-infrared absorbance spectrum, each spec-
trum being recorded on a Tecator Infratec Food and Feed Analyzer. The
data consist of a 100-channel spectrum of absorbances in the wavelength
range 850 — 1050 nm. Here, the response is the corresponding fat content
obtained by an analytical chemical process.

The second example deals with the US monthly electricity consumption ob-
served during 338 months (from January 1973 up to February 2001) which
can be found at http://www.economagic.com. As pointed out in Ferraty and
Vieu (2006), this time series can be viewed as dependent functional data.
The consumption of a year is the explanatory variable and the consumption
of each month of the following year is the response one. We eliminate the 337
and 338 months and we retain the remaining 28 years. Fix s € {1,2,...,12},
in order to predict the electricity consumption of the s month of the last
year (the 28") by each cited method, we use the 27 first years to define
the training sample (X;, YZ-S)(Z»:LM%) used to build the estimators under in-
vestigation, where X; stands for the consumption of the whole i*" year and
Y;® is the consumption of the s month of the (i + 1) year. Then, for all
s €{1,2,...,12}, we predict Yy, which is the consumption of the s month
of the 28" year, given Xy;.

Studying the link between a scalar response variable Y given a new value
for the explanatory variable X is an important subject in nonparametric

statistics, and there are several ways to explain this link. For example, the



conditional expectation, the conditional distribution, the conditional den-
sityand the conditional hazard function.

Note that the modelization of functional variable is becoming more and more
popular since the publication of the monograph of Ramsay and Silverman
(1997) on functional data analysis. However, the first results concerning
the nonparametric models (mainly the regression function) were obtained
by Ferraty and Vieu (2000) who established the almost complete pointwise
consistency of kernel regression estimators when the observations are inde-
pendent and identically distributed (i.i.d.). These results have been extended
in Ferraty et al. (2002) by treating the time series prediction. Dabo and
Rhomari (2003) stated the convergence in L norm of the kernel estimator
of this model and Delsol (2007) states the asymptotic expression for the L?
errors. The reader can found in Ferraty and Vieu (2006) more discussions
on nonparametric methods for functional data. The asymptotic results in-
cluding the mean squared convergence, with rates, as well as the asymptotic
normality of kernel estimators of regression function have been obtained by
Ferraty et al. (2007); Many other recent related references about the non-
parametric functional data analysis include Amiri et al. (2014), Ezzahrioui
and Ould-Said (2008) , Rachdi and Vieu (2007) and so on.

Nonparametric Estimation of the regression func-
tion

This thesis focuses on the nonparametric estimation of the regression opera-
tor defined by:
Y =m(z) +e,



where the explanatory variable x is valued in some infinite dimensional space
F equipped with a semi-metric d and Y is a scalar response.

Let (X1;Y1), ..., (X,;Y,,) be a random sample of bivariate data that we have
available to estimate the unknown regression function m(z) = E(Y/X = x).
In finite dimension, and more precisely when X; is a real-valued random
variable, we can approximate m(x) by using the Taylor Series, around xg, as
follows :

m(2 (o)
2!

m® (z)

o (x —xo)”

m(x) = m(zo)+mM (z) (x — z0)+ (x — 20)°+..+

provided that all the required derivatives exist. This is a polynomial of degree
p. We can then use this in a minimization problem with the data on z and
Y. This is the local polynomial regression problem in which we use the data
to estimate that polynomial of degree p which best approximates m(z) in a

small neighborhood around the point zy. ie. we minimize with respect to a,

by, ..., b, the function
D V= a—bi(X; = ag) — . = by(X; — o) K (W7 (Xi — m0)) -
i=1

This is a weighted least squares problem where the weights are given by the
kernel functions. Here K is a kernel and h = h,, the bandwidth indexed by
the sample size. Then a, one of the two solutions of the display above is the
estimate of m(zg).

It is convenient to define the following vectors and matrices :

! I 1
(Xl — l’o) (XQ — 33'0) (Xn — .fL'o) a
n b
Ct= ‘ ' ' ' ,Y=|..|. B=|"
. . . . b,
_(Xl — l’o)p (XQ — xo)p (Xn — .To)p—




and

K (h|(X1 — o) 0 '
0 K(h™'|(Xy — x0))
W—
_ 0 0 K(h—ly(}(n — 20))|

However, the notation used here emphasizes the fact that the local poly-
nomial regression is a weighted regression using data centered around x.
The least squares problem is then to minimize the weighted sum-of-squares

function

(Y —=CB)W (Y — CB) (1)

with respect to the parameters b. The solution is
m = el (C'WCO) 1C'WY, (2)

where e; = (1,0,...,0) € RPTL.
When x belongs to a functional space, the principle remains the same. The
function m is now approximated by the solution for a of the following mini-

mization problem with respect to a, by, ..., b,

n

D Yi—a—bB(X, ) = .. = byB(X;, x0)")* K (h™1d(X;, x0))

i=1
where ((.,.) is a known operator from F x F into R such that, Vax €
F,B(x,z) =0.
When p = 0 (local constant), the estimator of m(x) is equivalent to the
Nadaraya-Watson estimator
_ i YiK(hd(z, X5))
XL K(h (e, X))

mo(x)
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When p =1 (local linear), we can express the estimator as

2 i1 Wi ()Y (0 - 0) ,

= w0

where
Wii(z) = B(X;, x) (B(X;, x) — B(Xj, ) K(hild(Xl-,:c))K(hfld(Xj,x)).

Notice that for I € {0,1}, we have

2 Wi(@)¥! = Y {I8(X ) = B0G, @) [B(Xe )Y} — B(X,0)Y]]

i,7=1 1<j

K(h™'d(X;, 2)) K (h™1d(X;, )},

so, if the denominator of the estimator m(z) is zero, it is the same for its
numerator.

Remark that the expression of m allows fast computational issue and that
the choices of § and d will be crucial.

The local linear smoothing in the functional data setting has been considered
by many authors in several versions. The first one was considered by Baillo
and Grane (2009) who studied the consistency in mean square of the con-
structed local linear estimator when the covariates are of Hilbertian nature
(see also the paper by El Methni and Rachdi (2011)). Another version of
a functional local linear regression estimator was given by Barrientos et al.
(2010) in the case where the explanatory variable is valued in a functional
semi metric space. Then, Berlinet et al. (2011) stated the asymptotic mean
square error of a functional local linear estimator of the regression operator
which is constructed by inverting the local covariance operator of the func-
tional explanatory variable. The mean-square convergences of the locally
modelled regression estimation for conditional density function and condi-
tional cumulative distribution function have also been established in Rachdi

et al. (2014) and Demongeot et al. (2014), respectively for independent



functional data. Zhiyong and Zhengyan (2016) established the mean-square
convergence as well as the asymptotic normality for the regression function,
they also adapt the empirical likelihood method to construct the pointwise
confidence intervals for the regression function and derived the Wilk’s phe-
nomenon for the empirical likelihood inference. Attaoui et al. (2017) con-
sidered the problem of the local linear estimation of the regression operator
when the regressor is functional, they constructed an estimator by the kNN

method and established its almost complete consistency with rate.

Kolmogorov’s entropy

In practice, the uniform consistency has great importance because it is used
to improve the efficiency of the estimation and to solve some problems such
as data-driven bandwidth choise (see Benhenni et al. (2007)), or bootstrap-
ping (see Ferraty et al. (2008)).

Noting that, unlike in the multivariate case, the uniform consistency is not
a standard extension of the pointwise one. So, suitable additional tools and
topological conditions are needed.

For the uniform consistency, where the main tool is to cover a subset Sr with

a finite number of balls,one introduces a topological concept defined asfollows

Definition 0.1. Let S be a subset of a semi-metric space F, and let € > 0
be given. A finite set of points x1, o, ...,xN in F is called an e-net for S
if S C Uiy B(ax,€). The quantity ¢s(c) = In(N.(S)), where N.(S) is the
minimal number of open balls in F of radius € which s necessary to cover

S, is called Kolmogorov’s e-entropy of the set S.

It is known that the entropy of a set measures its complexity. We refer

to Kolmogorov and Tikhomirov (1959) and Ferraty et al. (2010) for more



details and examples on this topic.

Uniform convergence of other local linear nonparametric estimators has been
investigated in some papers as Demongeot et al. (2010) and Demongeot et
al. (2011) for the conditional density and Messaci et al. (2015) for the con-
ditional quantile. Leulmi and Messaci (2019) established the uniform almost
complete convergence of the local linear estimator of a generalized regression
function which generalizes the regression estimator studied in Barrientos et
al. (2010) and to focus on a robust tool of prediction (a conditional quantile

estimator).

The strong mixing condition

The field of mixing conditions is of great interest in statistics. This comes
mainly from the fact that it opens the door for application involving time
series. Notice that, there are many ways of modelling the dependence of a
sequence of random variables in the case of mixing. But, In this section we
focus on the a-mixing (or strong mixing) notion, which is one of the most
general among the different mixing structures introduced in the literature
(see for instance Roussas and loannides (1987) or Chapter 1 in Yoshihara
(1994) for definitions of various other mixing structures and links between
them). For the strong mixing in the functional context, we refer to Ferraty
and Vieu (2006), especially sections 10.3 and 10.4.

All that can be done here is to give a narrow snapshot of part of the strong
mixing in the functional context which applied in the theoretical advances in
Chapters 1 and 3.

To start with, some notations are introduced. Let (Z,)ncz be a sequence
of random variables on the probability space (2, A, P), which takes values
in the measurable space (€2, A’). Denote Jf, —00 < J < k < 4oo, the
o-algebra, which is generated by the random variables {Z;, ..., Z; }.

10



Definition 0.2. The strong mizing coefficient of a sequence (Z,)nez of ran-

dom wvariables is defined as

a(n) = sup |P(AN B) — P(A)P(B)]|.

{kezZ,Acc* ,Beo 5}

The sequence (Zy,)nez 15 called a-mizing (or strong mizing), if
a(n) — 0 as n — oo.

Depending on the rate of convergence of «(n) one considers two cases.

e arithmetic (or algebraic) a-mixing.
e geometric a-mixing..

Definition 0.3. The sequence (Z,)nez is said to be arithmetically a-mizing

with rate a > 0 if
a(n) < Cn™".
It is called geometrically a-mizing if
3C e Ry, 3t €]0,1], a(n) < Ct™.

To study the nonparametric kernel functional statistical methods (see our

chapters 1 and 3), we need the following proposition

Proposition 0.1. Assume that Q' is a semi-metric space with semi-metric
d, and that A is the o-algebra spanned by the open balls for this semi-metric.
Let x be a fized element of Q. Then we have

i) (Zy)ner s a-mizing then (d(Zy, x))nez is a-mizing.

i) In addition, if the coefficients of (Z,)nez are geometric (resp. arithmetic)
then those of (d(Z,, x))nez are also geometric (resp. arithmetic with the same

order).

11



Many works etablished the dependence condition, we cite Laksaci et al.
(2011) and Attaoui et al. (2014) for papers dealing with such functional de-
pendent data. In the last works, the pointwise almost complete convergence
has been studied, while Laib and Louani (2010), and Ling et al. (2015)
obtained the asymptotic properties of the nonparametric kernel estimator for
functional stationary ergodic data, Benhenni et al. (2008) for the long mem-
ory dependent case. In 2005, Masry (2005) investigated the asymptotic nor-
mality of the nonparametric kernel estimator for a-mixing functional data.
Demongeot et al. (2013) established the pointwise almost-complete consis-
tency of a fast functional local linear estimator of the conditional density
when the explanatory variable is functional and the observations are depen-
dent and Ferraty et al. (2012b) treated the case when the response variable
is also functional for the (-mixing observations. Furthermore, Leulmi and
Messaci (2018) used the local linear approach to estimate the regression
function and established its pointwise and uniforme almost-complete conver-

gences, in the functional a-mixing case.

Censored Data

In survival and reliability analysis, survival or failure time is the duration
that an event of intrest takes to occur. It is a positive random variable and
often assumed to be bounded. It can be the lifespan of a patient after treat-
ment, the duration of unemployment, the downtime of a device, the age at
which a child learns to accomplish a given task, etc. It often happens, for
various reasons, that the duration of interest cannot be observed. This may
be due to the loss of sight of some subjects, at the beginning or at the end
of the study period, or may occur when some subjects have not experienced

the event of interest at the end of the study or time of analysis. For exam-
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ple, some patients may still be alive or disease-free at the end of the study
period. The exact survival times of these subjects are unknown. These are
called censored observations or censored times. We should take them in con-
sideration to obtain correct estimations and presise conclusions. There are
three types of censoring :

Right censoring occurs when a subject leaves the study before an event
occurs, or the study ends before the event has occurred. In other words,
there is right censoring when we observe the censoring variable C' instead
of the lifetime of interest Y and that we know that Y > . This model is
the most frequent in practice, it is for example adapted to the case where
the event of interest is the time of survival to a disease and where the
duration of the study is previously fixed; patients alive at the end of the
study provide right-censored data. The observations are replicas of the pair
(Z = min(Y,C);0 = ly<¢) where ¢ is equal to 1 when the observation is
complete, which means that it corresponds to a true value of the variable of
interest and is equal to 0 otherwise (censored data).

Left censoring is when the event of interest has already occurred be-
fore enrolment. This is very rarely encountered. In other words, there
is left censoring when we observe (' censoring instead of the lifetime Y
and that we know that ¥ < . The observations are replicas of the pair
(Z = maz(Y,C);6 = ly>c). A symmetrical phenomenon at the previous
(right censor) occurs when an epidemiologist wishes to know the age at di-
agnosis in a follow-up study of diabetic retinopathy. At the time of the
examination, a 50-year-old participant was found to have already developed
retinopathy, but there is no record of the exact time at which initial evidence
was found. Thus the age at examination (i.e., 50) is a left-censored observa-
tion. It means that the age of diagnosis for this patient is at most 50 years.
Notice that the left censorship is generally accompanied by right censoring,

this is the case in the twice, double and interval censoring models.
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Many researchers consider survival data analysis to be merely the appli-
cation of two conventional statistical methods to a special type of problem:
parametric and nonparametric. This assumption would be true if the survival
times of all the subjects were exact and known; however, some survival times
are not. Whereas, in the nonfunctional case, the nonparametric estimation
based on censored data has been considered by Ould Said, E (2006). They
obtained the rate of strong uniform convergence of a kernel estimator of the
conditional quantile under an i.i.d. case and El Ghouch and Van Keilegom
(2009) studied the asymptotic properties of a local linear estimator of the
regression function under the a-mixing assumption. Gannouni et al. (2018)
constructed a local linear estimator of the quantile regression and obtained
its rate of the almost sure consistency as well as its asymptotic normality
in the i.i.d. case. For nonparametric estimation of the regression function
under random censorship model we cite Guessoum and Ould Said (2008).
Recently, many topics concerning the analysis of functional and censored
data have been developed. We refer to Ait Hennania et al. (2018), where
the authors gave a family of robust nonparametric estimators for which con-
sistency and asymptotic normality results are established under independent
data. For the same data, Leulmi (2019) and Leulmi (2020) investigated
the rates of the pointwise and the uniform almost-complete convergence of a
local linear estimator of the conditional quantile and the regression function.
She improved that the local linear method outperforms the kernel method
even for censored data.

Concerning the dependence data case, we can cite the results on strong con-
sistency and asymptotic normality of the kernel estimator of the conditional
quantile function, when the response random variable is subject to random
censorship by Horrigue and Ould Said (2011) and Horrigue and Ould Said
(2015) for the a-mixing data and Chaouch and Khardani (2014) for the

stationary ergodic data. For the kernel estimator of nonparametric regres-
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sion function, Ling (2016) obtained its asymptotic properties for the same
data. Mechab et al. (2019) examined the almost-complete consistency and
the asymptotic normality of the estimator of the relative error regression for
the strictly stationary data. Furthermore, Benkhaled et al. (2020) used the
local linear approach to estimate the conditional density and established its
pointwise almost sure convergence, in the censored and functional a-mixing
case.

Whereas, In the single functional index model for a-mixing functional data
under random censorship, the pointwise and the uniform almost-complete
convergence (with rates), are investigated by Kadiri et al. (2018) for the
conditional quantile estimator an citeBouchentouf for the conditional hazard

estimator.

Some probabilistic tools

The almost Complete Convergence

The concept of the almost complete convergence was introduced by Hsu and
Robbins (1947), this convergence is in some sense easier to state than the
almost sure one. Moreover, this mode of convergence implies other stan-
dard modes of convergence, such that the almost sure convergence and the

convergence in probability.

Definition 0.4. Let (Z,)nen+ be a sequence of real random variables (r.r.v.).
We say that (Z,)nen+ converges almost completely to some r.r.v. Z, and we

note Z, =% 7 if and only if

Ve >0, Y P(|Z,—Z|>¢) < .

n=1
Moreover, let (u,)nen+ be a sequence of positive real numbers going to zero;

we say that the rate of the almost complete convergence of (Zy)nen+ to Z is

15



of order (u,) and we note Z, — Z = Og.co.(uy), if and only if

Jeo >0, Y P(|Z,— Z| > oty < 0.

n=1
In the following proposition, we recall some results extensively used in
this thesis. For more details, the reader can see Bosq and Lecoutre (1987)
and Ferraty and Vieu (2006).

Proposition 0.2. Let I, and [, be two deterministic real numbers and let
(Un)nen+ be a sequence of real numbers going to zero.

i). If limy_ 0o Xy = Uy, a.co. and limy,_ oY, =1, a.co., we have

a) limy_ioo( Xy +Y,) =1 + 1, a.co.,

b) limy—i00( Xy X Yy) =1, X 1, a.co.,

c) limnﬁﬁo% = i a.co. as long l, # 0.

i). If X, —ly = Ogco.(Uy,) and Y, — l; = O c0.(Uy,), we have
a) (Xp +Yn) = (Lo +1y) = Ouco.(Un),
b) (X X Yy) = 1o X 1y = Oco.(Uy),
c) Yin — i = Oy.co.(Uy) as long 1, # 0.

Exponential Inequalities

The literature contains various versions of exponential inequalities. These
inequalities differ according to the various hypotheses checked by the ran-
dom variables.

This section instructs the exponential inequality taking into account two sit-
uations: the case of independent observations (Bernstein’s inequality) and
the case of dependent observations (Rio’s inequality or the Fuk-Nagaev in-
equality), for more detail see Ferraty and Vieu (2006). It is the main tool

for proving our asymptotic results that are examined in chapters 1, 2 and 3.
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Independent case

In all this subsection, let (Z,,),ez be a sequence of centered random variables.

Proposition 0.3. (See Corollary A.8 in Ferraty and Vieu (2006))
i). if Vm > 2, 3C,, > 0; E|Z"| < Crpa®™ Y, we have Ve > 0

- e’n
P 7 <2 - ).
(’Z |>m> - emp( 2a2(1+e))

=1

ii). Assume that the variables depend on n (that is, assume that Z; = Z; .
if Ym > 2, 3C,, > 0; E|Z™| < Crpa2™ Y et siu, = n~'a2logn verifies

lim,, — oou,, = 0, we have

15, 12
n ; Zz - Oa.co. ((un) ) .

Mixing case

There is a wide literature concerning covariance inequalities for mixing vari-
ables. For this, we us first start with some covariance inequality.

Let (T,,)nez be a stationary sequence of real random variables

Proposition 0.4. (See Proposition A.10 in Ferraty and Vieu (2006)) As-

sume that (T,)nez is a-mizing. Let us, for some k € Z, consider a real

k +o00

: , o
variable T (resp. T') which is o® TR

i). If T and 7' are bounded, then

-measurable (resp. o5 -measurable).

3AC,0 < C < 400, Cov(r,7") < Ca(n).

ii). If, for some positive numbers p, q and r such that p~* + ¢t +r~t =1,
we have E(T)P < 0o and E(7')9 < oo, then

3C,0 < C < 400, Cov(r,7) < C(E(T)")Y? (B (c(n))V/".

17



Secondly, we present two Rio’s exponential inequalities for partial sums
of a sequence (Z,)nez of stationary and centered arithmetically mixing real
random variables. Assume that (Z,),en+ are identically distributed and are

arithmetically a-mixing with rate a > 1 and let us introduce the notation

S =211 2 leov(Zi, Z))|

Proposition 0.5. (See Proposition A.11 in Ferraty and Vieu (2006))
i). If 3p > 2 and M > 0 such that Vt > M; P(|Z;| > t) < 7P, then we have
foranyr > 1, € >0 and for some C' < +o0

- 2\ "2 r\ (e+1)p/(a+p)
=1 n

ii). If AM < oo such that |Z,| < M, then we have for any r > 1, € > 0 and
for some C' < +00

n 2 —r/2 A (a+1)
P<|;Zi|>e)gc{(1+@> +(E> }

Organization of the thesis

After a general introduction which we briefly recall, in it, some basic defini-
tions and probabilistic tools needed in this thesis, our thesis is organized as

follows.

Chapter 1 : In this chapter, we study a local modelling approach when
one regresses a scalar response on an explanatory functional variable
via a regression estimator nder a-mixing condition. This dependence
complicates considerably the theoretical study. Then, we establish, the
pointwise and the uniform almost complete convergences (see Sections

1.2 and 1.3) of the local linear estimator of the regression function.
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Chapter 2 : It consists to introduce a local linear nonparametric estima-
tion of the regression function for a censored scalar response random
variable, given a functional random covariate, when the data are in-
dependent and identically distributed. Under standard conditions, we
establish the pointwise and the uniform almost-complete convergences,

with rates, of the proposed estimator (see Sections 2.2 and 2.3).

Chapter 3 : In this chapter, we are concerned with local linear nonparamet-
ric estimation of the regression function in the censorship model when
the covariates take values in a semimetric space, when the sample is
a strong mixing sequence. Then, we establish the pointwise almost-
complete convergences, with rate, of the proposed estimator (see sec-
tions 3.2 and 3.3).

Chapter 4 : To lend further support to our theoretical results, a simula-
tion study is carried out to illustrate the good accuracy of the studied
method. More precisely, we conducted a comparison between kernel
and local linear estimators, in the tree cases : Functional and complete
case under dependant condition (see 4.1), Functional and censored case
under independant condition (see 4.2) and Functional and censored case

under dependant condition (see 4.3).
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Chapter 1

Nonparametric local linear
estimation of the functional
regression based on complete data

under strong mixing condition

The nonparametric methods are practical ways to deal with the functional
data sets. There are nowadays a large number of fields where functional
data are collected such as environmetrics, medicine and finance. A classical
statistical problem is that of the regression which consists in the study of
the relationship between two observed variables with the aim of predicting
the value of the response variable when a new value of the explanatory one
is observed. The estimation of the regression function arouses a growing
interest on both theoretical and practical terms and has been extensively
studied for independent data. However, in practice, observed data can exhibit
a dependence form. The a-mixing dependence, which is under investigation
in this chapter, is not only reasonably weak but it is also fulfilled by many

stochastic processes including some time series models. We refer to Leulmi
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and Messaci (2018) which established the both pontwise and uniforme almost
complete convergences of the local linear estimator of generalized regression
function my(z) = E(e(Y)/X = x) in the case of a scalar response variable
Y given a random variable X taking values in a semimetric space. In this

chapter, we stady the partical case when (t) =t (the regression function).

1.1 Model

Let us draw n pairs (X;, Y;);=1..., of random variables identically distributed

from the pair (X,Y) which is valued in F x R, where F is a infinite-
dimensional space equipped with a semi-metric d.

In the complete functional case, Barrientos et al. (2010) proposed the local
linear estimator of regression function m(x) = F(Y|X = z) as the solution

for a of the following minimization problem

n

min_ Y [Vi —a— bB(X;, )2 K (h'd(X;, 2))]

(a,b)€R? <

where ((.,.) is a known operator from F x F into R such that, Vax €
F,B(x,x) = 0, the function K is a kernel and h := h, is a sequence of
strictly positive real numbers which plays a smoothing parameter role. Then
Leulmi and Messaci (2018)) extended their results to a-mixing depented
case.
This approach assumes that a 4+ b3(.,x) is a good approximation of m(.)
around x. As f(x,z) = 0, a will be a suitable estimate for m(x).
We can easilly derive the following explicit estimator

i) - Syt (0 )

Zi,j:l Wij(x)

0

where
Wij(x) = B(X;, 2) (B(Xi, 2) — B(X;, @) K(h™1d(X;, 2)) K (b1 d(X;, x)).
(1.1)
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1.2 Pointwise almost-complete convergence

Let = be a fixed point in F, for any positive real h, B(x,h) := {y €
F/ d(xz,y) < h} denotes a closed ball in F of center z and radius h. We
also define @, (r1,79) := P(r1 < d(X,x) < ry), where r; and 7y are two real
numbers.

Leulmi and Messaci (2018) studied the asymptotic behavior of the local

linear estimator 7, under the following assumptions.
(H1) For any h > 0, @,(h) := @,(0,h) > 0.

(H2) 3 b > 0 such that: Vay, x5 € B(x, h), | m(zy) — m(xs)| < Codb(z1, 72),

where C,, is a positive constant depending on .
(H3) The function 3(.,.) is such that: 30 < M; < M,,Va' € F,

Myd(z,2") < |B(z,2")| < Mad(z, 2").

(H4) The kernel K is a positive and differentiable function on its support
[0,1] and 3 C, C" such that 0 < Clyy)(t) < K(t) < C'ljpq(t) < oo.

(H5) The sequence (X;,Y;) is an a-mixing sequence with coefficient a(n),

moreover (Hba) and (H5b) are satisfied, where
(Hba) 3 C > 0,3a > sup(3, T—d“),Vn € N;a(n) < Cn™¢,
(H5b) 30 <d<1,3C,C" > 0 such that:
C 1@ ()] < u(h) < C 2 (R)],

where

and
w:c(hhh@) =P (hl S d(Xl,.ﬁE) § hQ,O S d(XQ,iIZ’) S hg) .
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(H6) Vm > 2:6,, : o — E(|Y|™/X = z) is a continuous operator at x and

30 > 0, sup E (|Y;Y;]/(X,, X)) < C < .
i#]

(H7) The bandwidth h satisfies

1 ! d ,
Ing € N,Vn > ny, ¢x—(h)/o wm(zh,h)a (2’°K(2))dz>C >0

and
h2/ / B(u,z)B(t, x)dPx, x,)(u, t) = 0 </ / BQ(u,x)52(t,x)dP(XhXZ)(u,t)
B(z,h) J B(z,h) B(z,h) J B(,h)

where dPx, x,) is the joint distribution of (Xi, X5).

H8) lim, sooh =0and 30 <1y < 22, I0<u < 1,3 Cy,Cy > 0 such
a+1

that Cmifcﬁno <@, (h) < Con™™.

Hypotheses (H1)-(H3) are standard and have been assumed in the indepen-
dent case (see Barrientos et al. (2010)). (H4) is a technical condition. (Hba)
means that (X;,Y;) is arithmetically mixing which is a standard choice of the
mixing coefficient in the time series as well as in the context of functional
data. (H6) is obviously satisfied whenever m is the conditional distribution
function and assumes the boundedness of the response variable (when ¢ is the
identity) which is a reasonable hypothesis in several practical cases. (HT7) is
of the same kind as (H7) together with (H8) in Barrientos et al. (2010). The
choice of bandwidth is given by (H8) which implies that n®,(h)/lnn — oo
as n — 00.

Now, let us present the pointwise almost-complete convergence of m(x).

Theorem 1.1. Under the assumptions (H1)-(H8), we have

_ Inn
m(z) — m(x) = O(h®) + Og.co. ( B, (1) > )
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In what follows, let C' be some strictly positive generic constant and for

any v € F,and foralli=1,...,n
Ki(r) := K(h 'd(X;,2)) and Bi(x) := B(X;, 7).

Proof. Firstly, to treat the pointwise almost-complete convergence of m(x) ,
we need the following preliminary technical lemma 1.1.
Secondly, the proof of the theorem 1.1 is based on the following standard
decomposition, for all x € F,

1 m(z)
m(z) — — - E _ _E _
() = mla) = s (i) = B () — () — Bma(@))] = 105

where, for [ € {0,1}

Then, the following lemmas are applied (see Lemmas 1.3-1.5). ]

Lemma 1.1. Under assumptions (H1), (H3), (H4), (H5b) and (H7), we
obtain

i) Y(p.0) € N* x N, B (K7(2)|}(2)]) < O (h).

i) V(p1,po,l1,0l2) € N* x N* x N x N,

B [0 () K2 (@)% ()18 ()] < OO (@, ()]

iii) E K (2)Ky(x)52(x)] > Ch2 [B,(R)]" for n sufficiently large.

Proof. i)(see Lemma A.1-i in (Barrientos et al. (2010)).

ii) In view of hypotheses (H3) and (H4), we get

B (K () K3 ()| B2 ()15 (0)]) < ChOH B [0, (b (X, )y (B (X, 2))]
< Ch*) P (X, X,) € B(z, h) x B(z, h)],

so, we derive the claimed result by using (H5b).
iii) Applying (H3), it is easy to see that

E [Ki(2)Ky(x)5i ()] > CE [Ki(2)d* (X1, 2)Ka ()] .

24



Then by (H4) and Fubini’s theorem, we can write
E [Ki(2)d* (X, #) Ky(z)] = h® / / K () K (W) dPg-1a(x, ), h-1d(X,2) (£ 1)

> Ch? / / 2K (1) dPg1a(x, 2).h1d(x0) (1, 1)

> Ch?/ / (/ ( ))dZ) dP —1d(X1,z),h~ 1d(X2,:lS)<t7u)
d
> ChQ/ (/ / 1[2,1](t)dp(h—ld(xl:x)vh_ld(X%x)<t7u)> a: 7 K@)z
0 0 JO :

Moreover, it is easy to check that

1 1

/ / 1[371] (t)dp(hfld(Xl733)ah71d(X2793)(t7U) =P (Zh < d(Xh CL’) < hv 0< d(X27 I) < h) = %(Zh, h)
o Jo

We end the proof by applying hypothesis (H7). O

As the dependence assumption reveals covariance terms, let us define for

k€ {0,2} and [ € {0,1}

ZZwov AP (@), A ()], (1.4)

i=1 j=1

where, for i € {1,...,n}

A (@) = K@)t @)Y~ B @B} (1)

We deal with these covariance terms in the following result.

Lemma 1.2. Under assumptions (H1)-(H7) Then, we have:
Sin(@) = O(n®y(h)). (1.6)

Proof. for k € {0,2}and 1 € {0,1}, we set

=" [Cov (A (@), AV ()] = Jin(@)+ o (@)+nVar (A (2))

i=1 j=1

(1.7)
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where

Jin(x Z\cov ), A @) St ={(0,5) s 1< Ji— j < mab
and
o Z\Cov ), AP @) Sy ={(i,5) :ma +1< Ji—j| <n—1},

where the sequence (m,,) will be specified below.
Since for all 7 in {1, ...,n}, E(A(k’l)(x)) =0, we get

e Z|E A (@)]]
< Z{E K () B (2) BV Y] (X2, X))

+[E] i(ﬂf)ﬁf(éf) (V| X)|B[E(x) 8} (2) E(Y]1X;)]]}-
Under (H6) and because E[Y|X] = m(X) = m(z) + o(1) in view of
hypothesis (H2), together with the application of Lemma 1.1, we obtain
Jin() < Cnmy, [(€4(h))' 4 + (Pu(h))?]
< Cnmy, (B4 (h))' .
To apply a covariance inequality for no bounded mixing sequences , we must

(k,l)(

calculate the absolute moments of the r.r.v. A" ().

q
BN (@)|7 < hm™ N € BIK] ()87 ()Y || EK(2) B ()Y} |7

J=0

q
<hTN " C BIK] ()8 (2) E(Yi| Y [X))[B (K () B () B(| Y] X))
=0
the last inequality is obtained by conditionning on X;. In addition,(H6)
implies that E(|Y)/|X) = 6,;(X) = §;(x) + o(1) and using Lemma 1.1, we get
BN ()| = O (mazojeg(@a(h)F177)
=0 (P,(h)).
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Now, we can use Rio inequality (see Proposition A.10.(ii) in Ferraty and Vieu
(2006)) together with hypothesis (H5a) to obtain

Ton(@) =Y |Cov(AM) (), AV ()]
Sa

<c [ @r] " S lali - i)

Sa

2 ) —a(1—2
< C [ (h)]a Y |i— 4707
So

2 —a(1-2)

< C[@ ()] n*my, 7.
Choosing m,, = (¥,(h))~¢ , we obtain
Jin(z) = O(nd,(h)) (1.8)

and

(¢=2)(ad—1)
q

Jonl@) < C (n@,(h)) [0 (@,(1))
< C (e, (h))n' T
the last result comming from the condition (H8). Now, in view of (Hba) we

can choose ¢ such that u% > 1. So, we obtain

Jon(2) = O(nd, () (L9)

For the variance term, Lemma 1.1 and hypothesis (H6) permit to write

Var(A (2)) < C [@,(h) + (@,(h))?]

—Con (1.10)

We readily derive the claimed result from (1.7), (1.8), (1.9) and (1.10). O

Lemma 1.3. Assume that hypotheses (H1)—-(H5) and (H7) satisfied, then
m(x) — Emy(x) = O(RY).
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Proof. The proof works exactly as that of Lemma 4.3 in Barrientos et al.
(2010), because the dependence condition does not affect the bias terms.
Remark that EW;o(z) > 0 under the assumed hypotheses (see relation
(1.11)). O

Lemma 1.4. Under assumptions of Theorem 1.1, we obtain

Inn
ml(m) - Em1($) = Oa.co. ( n@m(h) ) .

Proof. Using the decomposition given in the proof of Lemma 4.4 in Barrientos

et al. (2010), we set

mi(z) = Q(x) [52,1(1‘)54,0(95) - 53,1($)53,0($)] )
where, for p € {2,3,4} and [ € {0, 1},

1~ Ki@)8 (@)Y
nd,(h) Z hp=2

Spi(x) =

and
n2h2q§§ (h)

Q@) = e D) EWa(e)
So, we need to show taking in consideration the dependence assumption of

the observations, if necessary, that for p € {2,3,4} and [ € {0, 1}

ES, (z) = O(1),

Q(x) = 0(1),

Sp,l(x) - ESP,Z('T) = Oq.co. < n;I:(/Lh) )
Cov [SQJ(ZE), 5470(1')] =0 ( n;ri?h) )
COU [8371(‘@), 5370(1')] = O ( nglpr::(?jh) .
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e It is easy to see that under (H1)—(H4), for p € {2,3,4} and [ € {0,1} ,we
have

ES, () =0(1) .

e Treatment of the term Q(z)

We have

EWis(2) = E B (2)Ki(2) K2 (2)| — E [B1(2) B2(2) Ky () Ko (2)]
together with
BE () () K () Ko < O [ [ Bt a)dP, )
B(z,h) J B(z,h)
and (HT7) implies that
e R @R =0 ([ [ @R ).
B(z,h) J B(x,h)
By applying (H3) and (H5b), we get
/ / B (u, ) B(t, ) dPrx, (11, £) < O [B, ()],
B(z,h) J B(z,h)
which implies that
E [B1(2) Bo(2) K (2) Kz ()] = 0 (12 [@a(W)]') .
Now, Lemma 1.1-(iii) and the last result allow to write
EWyy(z) > Ch?[@,(h)]'. (1.11)

So, for n sufficiently large

IR A () \
U= = DEWa) =

e Treatment of the term S, ;(z) — ES,,(z)
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We have

Spala) = ESyu(w) = s ST (a),

where

T0(0) = AP 20(0) = s {Ki)8! @)Y, = B[R 3@}
(1.12)

with Al(-k’l)(x) is defined in (1.5).

Note that, because E(T'"!(z)) = 0, EIL"Y(2)|7 = O(®,(h)) for ¢ > 2 and
using Tchebychev’s inequality, we can apply Proposition A.11-i in Ferraty
and Vieu (2006), to get:

there exist ¢ > 2, for any € > 0, » > 1 and for some 0 < C' < 00

P(|Spi(z) = E[Spi()]| > ) = (IZF(’” )| > ned, (’U)

< OfAi(z) + As(w)],

(1.13)

where

—r/2 a+1)q/(q+a)
e2n%(d,(h))?2 » r (at1)g
Ai(z) = (1 + —Tsi,l,k(x) and As(z) =nr =nd. () :

Now, taking for n > 0

lnn

m and r = (lnn)2,

we obtain

1 (atD)q 9y 3atl) (a+1)q

Ay(x) < Cn 2@t (Inn)” " 2@k (P, (h)) 26te)

Next, using (HS8), it exists some real number v > 0 such that
Ay(z) = O(n17"). (1.14)
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Moreover, in view of equation (1.6) and the fact that In(z +1) = z — 2?/2 +

o(x?/2) where z tends to zero, we can write
Ay(z) < Cn~ T2, (1.15)

which shows that A;(x) is the general term of a convergent series for an
appropriate choice of 7.

Hence, by combining relations (1.13), (1.14) and (1.15), we derive

Sp,l('@ - Esp,l(m) = Ou.co. (\/ i )
(

e Finally, by following similar arguments used to prove (1.6), we obtain

Cov [Sy1 (), Syo(z)] = < )

and

Cov[Ss1 (), Sso(x)] = O <m%(h> ) |

In view of (H8), this last rate is negligible with respect to O < n;;;’(‘h) )

The proof is then completed. 0
Lemma 1.5. If assumptions (H1),(H3), (H4), (H5a), (H5b), (H7) and (HS)

hold, we have
Inn
— ]_ e _—

ZP<m0 1)<oo

Proof. We can deduce the first part of the claimed results directly from the

and

proof of Lemma 1.4 by taking for all 7, ¥; = 1.

Therefore, mg(x) converges almost completely to 1 and this involves that
- 1
ZP (mo(x) < 5) < 0.
n=1
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1.3 Uniform almost-complete convergence

This section is devoted to the uniform version of Theorem 1.1. In practice,
the uniform consistency has great importance because it is used to improve
the efficiency of the estimation and to solve some problems such as data-
driven bandwidth choise (see Benhenni et al. (2007)), or bootstrapping (see
Ferraty et al. (2008)). Noting that, unlike in the multivariate case, the
uniform consistency is not a standard extension of the pointwise one. So,
suitable additional tools and topological conditions are needed.

More precisely, we establish the uniform almost-complete convergence of
m(z) on some subset Sr C F, such that Sy c \Ji", B(z,r,), where for
all k € {1,...,d,}, zx € Sr and (r,,) (resp. (d,)) is a sequence of positive
real (resp. integer) numbers.

The covering condition on the subset S is linked to the topological structure
of the functional space F. It controls the Kolmogorov’s entropy of the set
Sr. Such considerations have been introduced in nonparametric functional
data analysis by Ferraty et al. (2010). The latter contains several examples
of subsets S and functional spaces F which satisfy this condition.

For this purpose,we set the following assumptions
(Ul) There exist a differentiable function ¢ and strictly positive constants

C,Cy and (5 such that

Yz € Sp,Vh > 0; 0 < C1d(h) < &, (h) < Cob(h) < 00

and

dny > 0,Vn < no, @' (n) < C,

where @' denotes the first derivative of @ with ¢(0) = 0.
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(U2) The regression function m satisfies:

3C >0,3b>0,Ve € S, 2’ € Bz, h),|m(z) —m(2)| < Cd’(z,a").

(U3) The function J(.,.) satisfies (H3) uniformly on z and the following

Lipschitz’s condition

3C > 0,Vay € S, 13 € Sr,x € F,|B(w, 11) — B(x, 22)| < Cd(21, 72).
(U4) The kernel K fulfills (H4) and is Lipschitzian on [0, 1].
(U5) The sequence (X;,Y;) satisfies (H5a) and

(Usb) 30<d<1,3C; >0, Cy >0 such that Vx; € S5,V 29 € SF,
0< Cy[@(R)])'" < P[(X1,X,) € B(ay, h)x € Blxa, h)] < Cy [B(h)]'H.

(U6) Vm >2,3C, > 0, E(|Y|"/X) < Cyand 3C; > 0, sup,; E (|YiY;]/(Xi, X;)) <
02 < Q.

(U7) The bandwidth h satisfies (H7) uniformly on x € S%.

(U8) The bandwidth h satisfies (H8) and for r,, = O (%), the sequence d,,

satisfies for n large enough d,, ~ n

Roughly speaking, most of these hypotheses are uniform version of the
corresponding conditions in the pointwise case. (U3) and (U7) are introduced
to deal with the local linear method and are respectively similar to (U3) and
(U6) in Messaci et al. (2015). (U5) and (U8) allow to treat the dependence
terms and were inspired by imposed conditions in Laksaci et al.  (2011)
and Attaoui et al. (2014). (Ul) and (U2) are commonly used to get the
uniformity (see Messaci et al. (2015)) and (U4) is a technical assumption.
The last condition on entropy in (U8) is satisfied in some common cases (see
example 4 on page 338 in Ferraty et al. (2010)) and leads to find again the
same rate as in the pointwise case but uniformly on .

Our result is as follows.
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Theorem 1.2. Under assumptions (U1)-(U8), we have

_ Inn
52 ) = = O0) + Ones ( nqs(m) |

To treat the uniform convergence of m(x), we need the following prelim-

inary technical lemma. This is the uniform version of Lemma 1.1 and its

proof works in the same manner.

Lemma 1.6. Under assumptions (U1), (U3), (U4), (U5b) and (U7), we
obtain

i) V(p, 1) € N x N, sup, s, E (K(2)81(2)]) < CH'(h).

ii) V(p1,p2, l1,l2) € N* x N* x N x N,

up, s, B (KD (@)KE(2) |8 (@) |2 (@)]) < CRO+H ()],

iii) Ing € N,¥n > ng, infues, E[K)(z)Ko(x)52(x)] > Ch? [®(R)] .

Proof. The proof of Theorem 1.2 is a direct consequence of the decomposition

(2.4) and the following lemmas. O
Lemma 1.7. Assume that hypotheses (U1)-(U5) and (U7) are satisfied, then

sup |m(z) — Emy(z)| = O(hY).

z€SFE
Proof. We have .
Emy(x) = WE [Wi2(2)Ys]
and Em;(z) can also be written as
1
Emi(z) = E[E(m ()| X2)] = () EWiy(2) E(Y2| X5)]

So, we get under assumption (U4)

[m(x) = Emy(2)] = e | E AWz () m(x) — m(X2)[} < supyep,n Im(z) — m(a')].
We need to take into account hypothesis (U2) to obtain

sup |m(z) — Emy(z)] = O(hb).

z€SFE
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Lemma 1.8. Under assumptions of Theorem 1.2, we have

z€ESE

Inn
sup |my(z) — Emy(x)] = Og co. ( n@(h)) .

Proof. Following the same steps as in the proof of Lemma 1.4, but using

Lemma 1.6 instead of Lemma 1.1, we obtain under assumptions (Ul) and
(U3)—(U8), for p € {2,3,4} and | € {0, 1}

sup Q(z) = O(1), sup ES,;(z) = 0(1) (1.16)

zESFE zESE

and

1 1
561151[; Cov [S21(z), Sio(x)] = O (nqﬁ(h)) , 561151; Cov [S31(x), S50(z)] = O (n@(h) ) )
(1.17)

It remains to show that, for p € {2,3,4} and [ € {0, 1},

:Eusp |Spi(x) — ESpi(x)] = Og.co. (1 / nlgr;_(r;)) ) (1.18)

To this aim, let us set
j(@) —arg  min d(z,z;),

FE{1,2,mmdn}

and consider the following decomposition

sup |Sp(2) = ESp(x)| < sup |Spi(x) = Spaljw)]

z€SFE z€SFE
+ sup [Spi(2560) — ESp ()]
z€SE
+ susp |ESp,l(xj(z)) — ESp,l(:c)‘ = Ff’l + Ff’l + Fg”l.
TESF
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Let us now study each term F]f’l for k € {1,2,3}.
Study of the term F?’
For all € > 0, we have that
1
2 (Fg > 5) —p (je{rln%n} 1S, 4(2;) — ES,i(x;] > 5)

<d, max P (|Spi(z;)— ESp(z;|>¢)

- J€{l,....dn}
> T8 ()

where Ff’l(x) is defined in (1.12). By applying Proposition A.11-i in Ferraty
and Vieu (2006) and since E|F§k’l) (x)]7 = O(P,(h)) for ¢ > 2, we have,
there exist ¢ > 2, for any € > 0, » > 1 and for some 0 < C' < 00

> n@(h)e) ,

P <F§’vl > 5) < C(A+ Ay),

where
—r/2 a+1)q/(g+a)
e?n*d*(h) r (at+1)a/(q
A =d, 1+ ——2 Ay = d,nrt
' ( i rSe s C v (5”@“1))

and S?, = sup,cq, S, ,(z) = O(nd(h)) in view of relation (1.6) together
with hypothesis (U1).
Choosing for n > 0

Inn

nds—(h) and r = (lnn)Q,

eE=n
we obtain
A =0 ) and Ay = O(n~ '),

where v,/ > 0.

Hence, we get for n large enough

|
P (F E g ) < On7,
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where £ > 0.
Study of the terms F/' and F!'
First, let us analyze the term F} . Since K is supported in [0, 1] and accord-

ing to (Ul), we can write

C n
1 ) ! —2 1
PP < i) S zz )Ki(l‘) P (@)Y B (Xi) — K@) B8] (%) Y; 1, ) (X0)

sup ZKi(ﬂf)lB(x,h)(Xi)|Yil|

n

=1

Analysis of the term FP}
According to assumption (U3), we get

1p@n (Xi) |Bi(x) — Bi(®j(a)) 1B, 0y m) (Xi)

< Oralbam 0BG n (Xi) + Ol g 056, 0w (X0)

and

g (Xi) |57 (x) — ﬁg(xj(x))lB(xm),h)(Xz‘)

< Crahl e, m 0B (Xi) + Ch* Ly n B m (Xi)-

By grouping the cases p = 3 and p = 4, we found

15 (X:) |87 (2) = B2 (%)) 1By 0y i) (X3)
< CTTth*SlB(xj(x),h)ﬂB(Z,h) (XZ) + Chp721B(x7h)ﬂW(Xi>’

which yields to the following inequality

Cr i
n Y Ki(x)1p@ . X,
nhd(h) 5&2;' () L) 0BG ) (X0)

P <
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+

oy sup Z |YZ|K B(m,h)ﬂW(Xi)- (1.19)
Z‘ES]: i=1

Analysis of the term Ff’zl
Using the following inequality

1B(wj($),h)(Xi) Ki(m)lB(z,h)(Xi) - Ki(xj(ﬂﬁ))lB(x,h)UB(:Jc,h)(Xi)
< 1BGan) N Bl m) (Xi) [ Ki(2) = Ki(;(2))] + Ki(25(2)) g, ) mnmem (Xi)

and by hypotheses (U3) and (U4), we obtain

187 (@) LBy 0y ) (K0) [ Ki(2) Ly () — K (20|

< Ch? [ng(aah)nB(wj(I),h) (Xi) + Ki(‘rj(x))1B(Ij(z),h)ﬂm(Xi>i| )

which leads to

FPy <

Cry
Y (@ o X;
nh¢<h>f;;2;‘ otcmstennX)

C
nd(h) :cSEuSI; ; i |K :E] ) B(x,h)mB(mj(x),h)( )

This last inequality combined with (1.19) allow us to write

Cr
Dl n E
s nh®(h) :cselgjr i1 v LB B Tj(z):h) (X3)

C
+ sup Z YVHIK (2560) = Ki(@) Vg, e (X0
( ) TESFE =1 J
. d sup Z VI K= Ki(@j@)) L o nynBrom (Xi)-
n ( S ; ()

Taking into account hypothesis (U4), we find

Cr,
FPl < Y15, X;
< S 2 3 Do ),
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Let

Cr,|Y}
L sup 1p(, R)UB(z (), h)<X)

Z,L' —
h rESF

In the same manner as for proving (1.6), we have under hypotheses (U1),
(U5b), (U6) and (U)

=> " |Cov(Z;, Z;)| = O(nd(h)).

i=1 j=1

. .. 1 .
It remains to use similar arguments as to treat F3” to obtain

Inn
Pl -
F" =04 co. < n@(h)) .

P <E (sup |Spa() Sp,l(xj(:v))o )

z€SE

Inn
Dl
57 =0 ( n@(h)) '

Applying (1.16), (1.17) and (1.18) together with the last condition of hy-

Second, since

we deduce that

pothesis (U8), the result of Lemma 1.8 is immediately obtained. O

Lemma 1.9. If assumptions (U1),(U3), (U4), (H5a), (U5b), (U7) and (US)

0 a.co. n E(h)

1
ZP(;e%ffmo 7)< §)<°°-

Proof. The first part of the claimed results can be directly deduced from the

and

proof of Lemma 1.8 by taking for all ¢, ¥; = 1 and this yields easily to the
second part. O
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Chapter 2

Nonparametric local linear
estimation of the functional
regression based on censored data

under independant condition

Since the pioneer works in Ferraty and Vieu (2006), various studies dealt
with the nonparametric functional kernel estimation. This research field is
motivated by the fact that several data collected in practice, are given in the
form of curves and that the progress of the digital computing tools allows
treatment of such observations. In the complete data case and when the
regressors are of functional type, Leulmi and Messaci (2019)established the
rates of the pointwise and the uniforme almost-complete convergences for the
lacal linear estimator of the generalized regression function. Besides, there
exists an extensive literature on the conditional quantile function estimation,
when the data are independent and identically distributed. Unfortunately,
in many practical applications such as reliability and survival time studies,

the interest response variable may be incompletely observed, which make
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the study of censored data more useful in practice. In this chapter we give
the works of Leulmi (2020), where the author investigated the rates of the
pointwise and the uniform almost-complete convergences of a local linear
nonparametric regression estimator for a censored scalar response random
variable, given a functional random covariate, in the independent and iden-

tically distributed data case.

2.1 Definition of the estimator

Let us draw n pairs of random variables i.i.d. from the pair (X,Y") which is
valued in F x R.

We report that in the complete case, the local linear estimator of the regres-
sion function m(z) = E(Y|X = z) is presented in Barrientos et al. (2010) as

follows "
__ Zi,j:l Wij(2)Y;
m(z) = =n ,
Zi,j:l Wij(z)
with the convention 0/0 := 0 and W;;(x) are defined by (1.1).

As'Y; is not disponible in practice, we can only observe a sample (X;, Z;, §;)1<i<n

of i.d. observations of (X,Z = Y A C,9) where R is nonnegative cen-
soring random variable with unknown continuous survival function G (Vt,
S(t) = P(C >t)) and 6 = lyy<cy (where 14 denotes the indicator function
of the set A) and Y is a nonnegative random variable.

Let Ty = sup{t, Fy(t) < 1} denote the upper endpoint of the support of Fy,
where Fy(t) = P(U < t) denote the distribution of a real random variable
(rrv.) U.

All over this chapter, we will assume that Tc < oo and let T' be a positive
real number such that 7" < Ty-.

Let (A1) be the following assumption.

e C and (X,Y) are independent and Ty < T < 0.
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e J7" < Ty such that Vi, 1 <:<n; 7, <T.

This assumption is a standard condition in nonparametric censoring estima-
tion which permits us to obtain an unbiased estimator. Like so, the indepen-
dence assumption between R and (X,Y") is plausible whenever the censoring
is independent of the patients modality, Ty < T¢ implies that S(T) > 0
because T' < Ty .

Inspiring by the idea of Barrientos et al. (2010) combined with that of Gues-
soum and Ould Said (2008) and by hypothesis (A1), we can construct a

local linear estimator of m(x) by
n 5ij
() = Zi,j:l Wij(x)s(zj)
ZZj:l Wij(z)

with the convention 0/0 := 0 and W;;(x) is defined in (1.1).

unfortunately, we can not use the estimator (2.1) because S is unknown in

(2.1)

practice. however we replace it by its Kaplan and Meier (1958) estimator

S,, defined as

10 \ HZ@<tr .
n 1__f@) O it < 7
Sn(t> _ Hz—l ( n—i+1 (n) (22)
0 ift > Zp,
where Z) < Z) < ... < Z) are the order statistics of Z; and d(;) the
noncensoring indicator corresponding to Z;.

So, the feasible estimator of m(x) is given by
n 0;Z;
N Zz’,j:l Wi (ﬁ)%
m(x) = = =
Zi,j:l Wij(x)

with the convention 0/0 := 0. Notice that for all 1 < j < n, 5,(Z;) =0
implies that §; = 0.

(2.3)
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2.2 Pointwise almost-complete convergence

To establish the pointwise almost-complete convergence of m(z), for a fixed
point z in F, we need the assumptions (H1)-(H3) in addition to the following

assumptions.

(D1) The kernel K is a positive and differentiable function on its support
[0, 1].

(D2) The bandwidth h satisfies

lim h =0 and lim( Inn ):0.

n—o0 n—oo

(D3) There exists an integer ng, such that

1 ! d ,
Vn>n0,m/o @x(zh,h)a (2*K(2)) >C >0

and

nf Bl )P = o ( / B P 0dPx(w))

where dPx is the distribution of X.

(D4) For all m > 2, 6, : z — E(|]Y|™|X = x) is a continuous operator at

x.

Remark that the hypotheses (H1)-(H3) and (D1)-(D3) are the same condi-
tions assumed in Barrientos et al. (2010) and Leulmi and Messaci (2019).
The condition (D4) is the same condition (H6) in Leulmi and Messaci (2018)
and (H7) in Leulmi and Messaci (2019) with o(t) = ¢.

Now, we are able to give the rate of the pointwise almost-complete conver-

gence of m(z).

Theorem 2.1. Under assumptions (A1), (H1)-(H3) and (D1)-(D4), we get

N Inn
m(x) —m(z) =0 (hb) + Og.co. ( 2B, () > )
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To treat the pointwise almost-complete convergence of m(z), we need

Lemma A.1 introduced in Barrientos et al. (2010).

Proof. 1t is easy to see that the proof of Theorem 2.1 is a direct consequence

of the following decomposition given by

1

m(z) —m(z) = - [(m1(x) = mu(x)) + (ma(x) — Emu(x)) + (Ema(m) —m(z))]
m(z) — mo(x
where
o 1 N RN 1 x
M) = e & sz ™Y T s nE e &
(2.5)
and . 57
R T e D IR C AR (26)
Then, we apply the following Lemmas. n

Lemma 2.1. Assume that hypotheses (A1), (H1), (H2) and (D1) are satis-
fied, then
m(z) — E(imy(z)) = O (k).

Proof. As (X, Z;,0;) are i.i.d., we get

1

Emy(z) —m(zx) = —E[ng(x)]

1) {ng(l‘) [E <Z28_1(22)52|X2) - m(:p)} } .

Hypothesis (D1), combining with the fact that E(03]| X5, Ys) = S(Y2), give
that

E [Z,57N(25)05| X5] = E [Y257 (Y2) E (65| X2, Y2) | Xo] = m(Xa).
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Then, we get

Emy(z) —m(z) =

_
E[Wia(z)]

E [Wia(x) (m(X2) —m(z))]. (2.7)

The claimed result is obtained by using the last relation and the condition

(H2).

]

Lemma 2.2. [f the assumptions of Theorem 2.1 hold, we obtain

E(n(x)) = Ouer ( e ) .

Proof. We need to show that

ﬁll (.ﬁE) —

Z P (’ml(x) -

E(m(x)] >

Inn -
€ 2%, () 00.

By following the same decomposition idea as in the proof of Lemma 4.4 in

Barrientos et al. (2010), we can write

Wij(z
n (n — 1 W12 Z J

?711 (i[))

M,

222 (h) 1 &
nn = 1B Wz ( ZK V2,657 )> <n¢x<h> 2
8,010,572

)6,2;871(Z;)

1 n
(o>

h

Q(x)[My(x)Myo(x) — Mz 1(z)

where, for p € {2,3,4} and [ € {0, 1},

Kj(x) B2 (x) 2465~

Ms3(z)],

"Z;) n2h2@2(h)

So, we have

ﬁll (I‘) —

1 n
pa(@) = nd, (h) Z

J=1

Eﬁll (.T) =

hp—2

and Q(x) =

Q(x){[My1(x) Myp(x) — E(Ma(z) Myo(z))]

[M31(x) M3 o(x) —
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Notice that, Q(z) = O(1) (see the proof of Lemma 4.4 in Barrientos et al.
(2010)), so, we have to show that, for p € {2,3,4} and [ € {0, 1}

2P <|Mpz E(My(2))] > ¢ %) < o0, BlMy(@)] = 0(1),

and that almost-surely

E(My,(x))E(Myo(z)) — E(My,1(z)Myo(x)) = O ( Bl )

and

B(Ms(2))E(Ms () — E(Ms, () Mo (x)) = O ( i ) .

e Firstly we have

Myi(w) = E(My(z)) = —— 2@ Z 2) B (2) 248 SN Z)
- BT 2( )Z18.574(2,)]
_ _th s R @) 25 7(2)
- B(Ki(2)B(0)216,57(2))]
= Ly
where -
™ (2) ;:m[Ki(a:)ﬂf’_Q(x)ZfCSfS_l(Zi)—E(Ki(af)ﬁf (@)2;8,57'(Z:))] (2.9)

In order to apply an exponential inequality, we focus on the absolute moments
of the r.r.v. n(p Y(z). By Lemma A.1(i) in Barrientos et al. (2010), we can
write

En?) (z)™ = O ([@,(h)]™™*") .
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Finally, it suffices to apply Corollary A.8—(ii) in Ferraty and Vieu (2006)
with a? = [@,(h)]~! to get, for p € {2,3,4} and [ € {0,1}

Inn

MpJ(%) - EMp,l<x> = Oa‘co. < W ) . (210)

e It is easy to see that under (H1), (H3), (D1) and (A1), we get, for p €
{2,3,4} and [ € {0, 1},

E[M,(z)] = h**®,(h) ' E [K(z)f *(2) 218487 (Z1)] < €, (2.11)

the last inequality is obtained by using the Lemma A.1(i) in Barrientos et
al. (2010).
e Treatment of the term E(Ms(x))E(Myo(z)) — E(Maq(x)Myo(z))
We can write
1
nh?d, (h)?
+ O ((n@m(h))_l) :

E(Ms () E(Myo(x)) — E(Maa(2)Mao(x)) B[K\(2) 8} (2)| E[Ky (2)m(X1)]

By using Lemma A.1(i) in Barrientos et al. (2010), it is easy to see that

E(My(2)) E(Myo(2)) — BE(Mz, (r)Mio(x)) = O ((n@(h))7"),  (2.12)

which is negligible with respect to O ( n;;;’(lh) >, under (D2).

e By similar arguments, one can state

E(Ms1(2))E(Ms () — E(Ms1(2)M;o(z)) = O ( n;t?h) > . (2.13)

]

Lemma 2.3. (see Barrientos et al. (2010))
Under the assumptions (H1), (H3), (D1) and (D3), we get

~ Inn > = 1
mo(x) — 1 = Oy co. ( WD () ) and ;P <m0(x) < 5) < 0.
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Lemma 2.4. Under assumptions (A1), (H1), (H3), (D1) and (D3), we ob-

tain
~ - Inn
ml(l’) - ml(l’) = Oq.co. ( W ) .

Proof. Because the assumption (A1) and the definitions of m;(x) and m;(z)
n (2.5) and (2.6), we can write

1 1 1
A= DB ] 2 (2~ sw)‘

A~ ~

[ () = (2)]

ITIsup|Sa(t) = S(2)] 1
= Sn(T)S(T) n(n— 1)E [Wia(z)] ; Wij(z)
ITlsup|Sa(t) = S(2)]
= Sn(T)S(T) [mo(), (2.14)

where mg(x) is defined in (2.5).
In order hands, by adapt Theorem 1 of Bitouzé et al. (1999), we get

1
sup |Sn(t) - S(t)| = Oa.co. < M ) y (215)
t<T n
which is equals to O, .. ( %) The proof is completed by using Lemma,
2.3. O]

2.3 Uniform almost-complete convergence

In this section, we give the uniform version of the Theorem 2.1 on some subset
Sr of F which can be covered by a finite number of balls. This number has
to be related to the radius of these balls.

We suppose that x1, ..., x4, is an r,-net for Sz where for all k € {1,...,d,},

xp € Sr and (r,) is a sequence of positive real numbers.
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To establish the uniform almost-complete convergence of m(x), we need the

assumptions (H1)—(H3) in addition to the following assumptions.
(E1) The kernel K fulfills (D1) and is Lipschitzian on [0, 1].

(E2) The bandwidth h satisfies (H5) and for r,, = O (22), the sequence d,,

satisfies, for n large enough

(Inn)? nd(h)
1
nd(h) <Ind, < Inn

and
(e 9]
Zd};a <00, for some o > 1.

n=1

(E3) The hypothesis (D3) is satisfies uniformly on z € Sz.

(E4) 3C >0,Vm > 2, E([Y|™X) < du(z) < C, with §,,(z) continous on
Sr.

Notice that most of these conditions are uniform version of the corresponding
conditions in the pointwise case. We refer to Leulmi and Messaci (2019) for
the conditions (U1)—(U3), (E1) and (E3). The condition (E4) is the same
condition (H3) in Ferraty et al. (2010) and (U7) in Leulmi and Messaci
(2019) with ¢(t) = t. The assumption (E2) is linked with the topological
structure of the functional variable (for more details and examples, see Kol-
mogorov and Tikhomirov (1959) and Ferraty et al. (2010)).

Our main result is as follows.

Theorem 2.2. Under assumptions (A1), (U1)-(U3) and (E1)-(E}), we
have

sup |m(z) —m(z)| = O (k") + O dnd,

oS, a.co. nfﬁ(h) .
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This result shows that, contrary to the finite case, the rate of convergence
obtained may differ from that of the pointwise consistency. Notice that this
rate of convergence is the same as that of Leulmi and Messaci (2019) in the
case of uncensored data.

To treat the uniform convergence of m(z), we need to Lemma 4.1 introduced
in Messaci et al. (2015).

Proof. 1t is clear that the proof of Theorem 2.2 is a direct consequence of the
decomposition (2.4) and of the following Lemmas which correspond to the

uniform versions of Lemmas 2.1-2.4. ]

Lemma 2.5. Assume that hypotheses (A1), (U1), (U2) and (E1) hold, then
sup |m(z) — E(my(z))| = O (h") .
TESFE

Proof. 1t is a direct proof, by combining equation (2.7) and hypothesis (U2).
[l

Lemma 2.6. Under assumptions of Theorem 3.2, we obtain

- - Ind,
sup [y (z) — E(ma(2))] = Oaco. <\/m > :

Proof. We use again the decomposition (2.8) and by following the same steps
asin (2.11), (2.12) and (2.13), with using Lemma 4.1 in Messaci et al. (2015)
instead of lemma A.1 in Barrientos et al. (2010), we obtain under the assump-
tions (U1), (U3), (E1), (E3) and (A1), for p=2,3,4and [ =0, 1,

sup E(M,;(z)) = O(1), sup Q(x)=0(1), (2.16)

zeSF TESFE

sup rE<M2,1<a:>>E<M4,o<w>>—E<M2,1<x>M4,o<x>>\=0( ! )

zESFE

and

sup |E(Mzq(z))E(M3zpo(x)) — E(Ms1(x)Mzo(z))| = O ( ! ) :

z€SFE
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which is, in view of hypothesis (E2), equals to O ( 7:;—%).

So, we need to check that for p =2,3,4 and [ = 0, 1,

Ind,
mseuSp; |Mp,l(x) - E(Mpyl(m))‘ = Ou.co. ( n@(h)) .

Now, we consider the following decomposition

sup [M,,(2) — BE(Mp(x))| < sup [My(2) = My(wj)))|

z€SFE z€ESE

sup |E(My(7j))) — E(Myi()(x)))]

zESE

sup | E(Mp(2))) — E(Mp(2))|
zESFE

3

Z TP,

=1

+

+

Study of the terms 77! and T
First, let us analyze the term T} ! Since K is supported in [0, 1] and according

to (Ul), we can write

Cr n
Tp,l < n Zl 5%5«*1 Zz 1 . N X,L '
U= nhd(h) f;ﬁ;' i105:57(Zi) 1 nuB a; o ) (Xi)

Let
~ CralZ}16iS7(Z:)

¢ hd(h) 5D LB muB( o) (X3)

The assumptions (A1) and (E4), implie that
< In__ (2.17)

so, by applying corollary A.8-(ii) in Ferraty and Vieu (2006), with a? = 2=

n h®(h)?
1 & rplnn
—_— k J— E .
n ;:1 57, (51) + Oa.co. < nh@(h))
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Applying (2.17) again (for m = 1), one gets

ol _ T r,lnn
Tl - O( h ) +Oa.co. ( nh@(h)) .

Combining this equation with assumption (E2) and the second part of the

assumption (Ul), we obtain

Ind
il _ n
Tl - Oa.co. ( n@(h)) . (218)

Second, since

Tg’l < F (sup ‘Mp,z@) - Mp,l(f’fj(w))‘) )

z€SFE

we deduce that

Ind
sl n
15" = Og.co. ( n@(h)) . (2.19)

Study of the term 77",
For all ¢ > 0, we have that

- Ind
7l n — )
p <T§ > A nah) ) =P <zseus2 [ Mpa(@i)) = EMpa(s)] > G4 [ 2505 )

- Ind
(b, n

1
< d, max P (—
Tdp } n

l‘j(z>6{$1 .....

where ngp D is defined in (2.9). By using again Corollary A.8-(ii) in Ferraty
and Vieu (2006) and the assumption (E2), we obtain
Ind
T2 = Opeo | (| s |- 2.20

Finally, the result of Lemma 2.6 follows from the relations (2.18), (2.20) and
(2.19). O
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Lemma 2.7. (see Messaci et al. (2015)) If assumptions (U1), (U3), (E1)-
(E3) are satisfied, we get

- Ind, 1
sup |[mo(x) — 1| = Og.co. ( 3 > and ZP ([L'IEIISE: mo(x 5) < 00.

rESE

Lemma 2.8. Under assumptions (A1), (Ul), (U3) and (E1)-(E3), we ob-

tain

Ind
m —m = Oa co. — .
sup | () — 1 ()] . ( 0 )

Proof. By the relation (2.14), we can write

sup [ () — g ()] < C'sup Sa(t) — S(8)] sup |io(a)].

zeSFE t<T z€SE

The proof is completed by the relation (2.15) and Lemma 2.7. O]
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Chapter 3

Nonparametric local linear
estimation of the functional
regression based on censored data

under strong mixing condition

In Chapter 2, we study a nonparametric local linear regression estimator in
the functional and censored case under independant condition. The present
work gives its extension to the dependent case (a-mixing) and this fact com-
plicates considerably the study. The interest comes mainly from the fact that
some application fields, for functional methods, need to analyze time series.
This work has been published in a international journal (see Leulmi et al.
(2022) for the sections 3.1 and 3.2).

3.1 Definition of the estimator

Consider n pairs of random variables (X, Y;);=1. ., identically distributed as

the pair (X,Y") which is valued in F x R.

.....
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Unfortunately, Y; is not available in our setting. We can only observe a
sample (X;, Z;,0;)1<i<n of 1.i.d. observations of (X,Z =Y A C,0) where C
is nonnegative censoring random variable with unknown continuous survival
function S (V¢, S(t) = P(C > t)) and 0 = liy<c) (where 14 denotes the
indicator function of the set A) and Y is a nonnegative random variable.

For the rest of the Chapter, we will assume that the sequences (X;)i1<i<n,
(Yi)1<i<n and (C;)1<i<n are stationary and a-mixing with mixing coefficients
ai(n), as(n) and as(n) respectively. Notice that, in view of Lemma 2 in Cai
(2001), we can show that, the sequences (X, Y:)1<i<n, (Zi)1<i<n and then
(Xi, Zi, 0;)1<i<n are a-mixing with coefficients a(n), b(n) and a(n) respec-

tively, where

and
a(n) = 4max(a;(n),b(n)) = 4max (ag(n), 4 max(as(n), az(n))) .

Furthermore, the dependence assumption of (X;)1<i<n, (Y3)1<i<n and (C;)1<i<n,
seems to be more general and one can think to replace it by a classical de-
pendence assumption of (X, Y;)1<;<, and the sequence (C;)1<i<y, is1.1.d. cen-
soring random variable, see for example Benkhaled et al. (2020). Because,
since (X, Yi)1<i<n is stationary and a-mixing, it is straightforward that the
sequences (X;)1<;<, and (Y;)1<i<n are also stationary and a-mixing. This can
be deduced from the fact that the later can be seen as a projection-image
of the former. On other hand, the a-mixing condition of (C;);<;<, is more
comprehensive than the independence assumption, we put as = 0.

A feasible local linear nonparametric estimator of m(x), constructed in Leulmi
(2020), is defined by

n 02
B Ez‘,j:1 mj(@snj(ZJJ

J
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where W;;(x) is defined in (1.1) and S, is the well known Kaplan and Meier
(1958) estimator of S, which given in (2.2). Notice that for all 1 < j < n,
Gn(Z;) = 0 implies that ¢; = 0.

From now on, we have that (X;, Z;, §;)1<i<n is strongly mixing with mixing’s
coefficient a(n).

Now we are in position to give our assumptions and main result.

3.2 Pointwise almost-complete convergence

The aim of this section is to establish the pointwise almost-complete con-

vergence of m. For this purpose, we need the assumptions (H1)-(H8) and

(A1)

Theorem 3.1. Assume that assumptions (A1) and (H1)-(H8) are satisfied,
then

~ Inn
m(z) — m(x) = O(h®) + Oq.co. ( B (1) > )

One of the main features of the present paper is studding the local lin-
ear estimation under the dependent and censored case, which is generalizes
several usual situations. In particular, we consider the independent case (see
Leulmi (2020)), the complete case(see Leulmi and Messaci (2018)) and the
kernel method (see Ling (2016)).

Proof. To treat the pointwise almost-complete convergence of m(z), we need
Lemma Al introduced in Leulmi and Messaci (2018) and the following pre-
liminary tecnical Lemma 3.1. Then, the proof of the Theorem 3.1 is based

on the decomposition (2.4) and the following Lemmas. O
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As the dependence assumption reveals covariances terms, let us define for
k€ {0,2} and [ € {0,1}

G2, (@) ZZ |Cou(AM) (2), AV (2))], (3.2)

=1 j=1

where, for i € {1,...,n}

(2

A () = o {K) 52 () — BIK() 52 (2]}

(3.3)
We now focus on these covariances terms in the following result.
Lemma 3.1. Under assumptions (A1) and (H1)-(H7), we have
Grak(@) = O(n@y(h)). (3-4)

Proof. for k € {0,2}and 1 € {0,1}, we set

G2, (@) =D |Cou(AF (1), AV (@))| = Ty (@) +Ja(2) 40V ar(AF ()

i=1 j=1
(3.5)
with

Dcov ), AP @) S1={(0.4) : 1< i — | < ma}-

and

Ty (@) =3 |Cou(AFD (@), AV @) Sy = {(i,5) i ma +1< i —j| <n—1},

So

where the sequence (m,,) will be specified below.

o7



For the Ji , (7) term, since for all 7 in {1,...,n}, E(A kl)( )) = 0, we have

T (a Z|E APD ()]
< Z{E K;(2) B8 (2)E(|012!S7(2:)8, 2L S 7 (Z)) ||( X3, X))

+|EIK -( )B; () E (5’2’ ( )IX)]HE[Kj(x)ﬁf() (052557 (2;)1 X1}
_h%sgl Z{E o) K () 35 () E(|6;Y] 057 1 (X3, X))

+ |E z-(w)ﬂf(fv) (Y IX)BIE ()55 () B(8;Y] X1}
the last inequality is obtained by the condtion (Al). Under the conditions
(H2) and (H6) and by using the Lemma A1l in Leulmi and Messaci (2018) ,

we get
Jin(@) < CSTH(T)nmy, [(D:(h)F + (@.(h))?]
< Cnimy, (D, (h)).
For the Jj, (7) term, we must calculate the absolute moments of the r.r.v.

AR ().

)

q
BN (2)|7 < b= € BIK (2)8767 2P STV (2)| | EK () B (2)01 2187 (Z;) |4

J=0

q
STy OB (0)87 (2) B (67 Y 579 (Y)|X0)]

[B(Ki(2) 8 () E(|0Y] S~ (Vo) [ X))
q . . .
< Gy Cy B (2)57 (2) BV X)) [E (K (2) 5 (@) BV X))
=0
the last inequality is obtained by conditionning on X;. Now using Lemma
A1 Leulmi and Messaci (2018) and under (H6), we obtain

EIAM @)l = 0 (2, () )
—0(@,(h)).
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Now, we can use a covariance inequality for unbounded mixing sequences
(see Proposition A.10.(ii) in Ferraty and Vieu (2006)) together with (H5a)

to obtain

Ty(@) =" |Cov(AM) (), ALV ()]
So

< ¢ [Bat @) " Y fali - i)

Taking m,, = (®,(h))~¢ , we get
() = O(n®.(h)) (3.6)

and

(¢=2)(ad—1)

Tpu(®) < C (0o (R)) |1 (@o(R)

| ula=2)(ad-1)

<C(n@y(h)n " |

the last result coming from the condition (H8). Now, we can choose ¢ such
that u% > 1. So, we obtain

Jon(x) = O(n®q(h)) (3.7)

For the variance term, Lemma Al in Leulmi and Messaci (2018) and condi-
tions (A1) and (H6) permit to write

(k1) ¢ 2
VaT(Alkl (z)) < S2(T) [@I(h) + (P, (h)) } (3.8)
< CD,(h).
The poof is completed by (3.5), (3.6), (3.7) and (3.8). O
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Lemma 3.2. Assume that hypotheses (A1), (H1)-(H5) and (H7) hold, then
m(z) — E(my(z)) = O (k).

Proof. The bias term is not affected by the dependence condition. Therefore,
by the equiprobability of the couples (X;, Z;, 0;), we get

1
E[Wis(z)]
Hypothesis (H4), combining with the facts that E(dy]| X5, Ys) = S(Y2) and
0979 = 02Y5, give that

Eml(ﬂf) — m(x) = E {W12($) [E (225_1(22)52|X2) — m(l’)} } .

E (7,57 (Z2)62Xa] = E [YaS™ (Ya) E (52| X2, Ya) | Xa] = m(Xa).

Then, we have

1
E[Wha(z)]
The claimed result is obtained by using the last relation and the condition
(H2). m

Effiy(x) - mz) = E W) (m(Xz) —m(x))].  (3.9)

Lemma 3.3. Under assumptions of Theorem 3.1, we get
Inn
m — E(m = Og.co. — .
() — B(a(x)) = O ( THD )

Proof. Inspiring by the proof of Lemma 4.4 in Barrientos et al. (2010), we

consider the following decomposition

fin(z) = n<n_1 e ZWU 10,2,57(2y)

RN | ’
" = DE Wl ( ZK V20,872 )> (n@(h).z

= Q(2)[Da1(z)Dso(z) — D31(x) D3 ()],

1 j(ﬂf)ﬁj(iﬁ)zj(sjs_( Z;) 1 K()8(x)
(mﬁx(h); h ) (ngbx(h)z h )

60



where, for p € {2,3,4} and [ € {0, 1},
K;(x)B 2 (x) Z6t S7(Z;) n?h?®2(h)

1
Dpi(w) = nd,(h) Z hp—2 and Q(x) = n(n —1)E [Wis(z)]

j=1
Notice that, Q(z) = O(1) (see the proof of Lemma 2 in Leulmi and Messaci
(2018)), so, we have to show that, for p € {2,3,4} and [ € {0,1}

2P <|Dp,z<x> ~ B(Dyu())] > ¢ n;—zlh)) < o0, E[D,(x)) = 0(1),

and that almost surely

Cov [Dy,1(x), Dap(x)] = O ( ngi?h) >

and

Cov [Ds.1(x), Dyo(z)] = O ( n;l?h) ) .

e Firstly we have

D, (x) — ED,,

ZA(P 21)

with Agk’l) (x) is defined in (3.3).

Note that, because E(A (2)) = 0, E|AY (2)]7 = O(®,(h)) for ¢ > 2 and
using Tchebychev’s inequality, we can apply Proposition A.11-i in Ferraty
and Vieu (2006), to get for any ¢ > 2, & > 0, r > 1 and for some 0 < C' < 00

P(|Dpi(x) = E[Dy(2)]| > €) (\ZA )| > ned, (h)>

< ClA(x) + Ag(x)],

(3.11)

—r/2
52712(@ (h))2 r (a+1)q/(q+a)
A S O T Sl A S d A = nr! )
(@) ( " rGi,l,k($) o 2(e) = mr (5n¢x(h)>
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Now, choosing for n > 0

1
e=n n@t?h) and 7 = (Inn)?

In view of Lemma 3.1, we have G}, (z) = O(n®;(h)). So, we obtain

1 (a+1)q 3(at+1)q (at+1)q

Ay(x) < Cn' " 2ata) (Inn) > 2@ (P, (b)) 2w,

Next, using (HS8), it exists some real number v > 0 such that
Ay(z) = O(n~17"). (3.12)

Moreover, in view of equation (3.4) and the fact that In(z +1) =z — 2%/2 +

o(x?/2) where x tends to zero, we can write
Ay(z) < Cn "/, (3.13)

which shows that A;(x) is the general term of a convergent series for an
appropriate choice of 7.
Hence, by combining relations (1.13), (3.12) and (3.13), we derive

Inn

DPJ(Q:) - EDp,l(x> = Oa.co. < m) .

e It is easy to see that under (H1), (H3), (H4) and (A1), we get, for p €
{2,3,4} and [ € {0, 1},

E[D,(x)] = h* P, (h) ' E [K(2)B! (x) 2180 S (Z1)] < €, (3.14)

the last inequality is obtained by using the Lemma Al1(i) in Leulmi and
Messaci (2018) and the condition (A1).

e Finally, by following similar arguments used to prove (3.4), we obtain

Cov [Dy1(w), Dagl(x)] = O (n@i(h) )
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and

Cov [Ds1(x), D3o(2)] = O (n@i(h) ) '

In view of (HS8), this last rate is negligible with respect to O < nl% ) The
proof is then completed. O

Lemma 3.4. (see Leulmi and Messaci (2018)) If assumptions (H1),(H3),
(H4), (H5a), (H5b), (H7) and (H8) are satisfied, we obtain

mo(z) — 1 = Og.co. (U%) and ZP(mO 1) < 00.

Lemma 3.5. Under assumptions (A1), (H1),(H3), (H4), (H5a), (H5b) and
(H7), we have

~ ~ Inn
ml(m) - ml(x) = Oa.co. ( n@x(h) > .

Proof. Because the assumption (Al) and the definitions of m4(x) and m;(x)
n (2.5) and (2.6), we can write

1 1 1
R PIRCIRE (5~ S<ZJ~>)‘

IT\ sup () = S(1)]

[ () = ma ()]

= Su(T)S(T) n(n — 1)E [Wiy(z)] Z Wij(x)
T sup\S ) — S|

< —easm M

where mg(x) is defined in (2.5).
In order hands, following Cai (2001) and Rouabah et al. (2018), we obtain

sup [ (t) = S(4)] = Oa.co. ( n ) , (3.16)

t<T n
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Inn

n®,(h)

which is equals to O . ( ) The proof is completed by using Lemma
3.4.

]

3.3 Uniform almost-complete convergence

In this section, we give the uniform version of the Theorem 3.1 on some subset
Sz of F which can be covered by a finite number of balls. This number has
to be related to the radius of these balls.

We suppose that z, ..., x4, is an r,-net for Sz where for all k € {1,...,d,},
x € Sy and (ry,) is a sequence of positive real numbers.

To study the uniform almost-complete convergence of m(x), we need the
assumptions (U1)—(U8) in addition to the assumption (Al).

Theorem 3.2. Under assumptions (A1) and (U1)-(US8), we have

sup [i(z) — m(z)] = O (h*) + o < 712?]:) ) |

TESE

Proof. 1t is clear that the proof of Theorem 3.2 is a direct consequence of the

decomposition (2.4) and of the following Lemmas. O

Lemma 3.6. Assume that hypotheses (A1), (U1), (U2) and (U4) hold, then

sup [m(z) — B(n (z))] = O ()

zeSFE

Proof. 1t is a direct proof, by combining equation (3.9) and hypothesis (U2).
]

Lemma 3.7. Under the assumptions of Theorem 3.1, we obtain

~ - Inn
sup [ () — B (2))] = O ( TR ) |

zESE
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Proof. Following the same steps as in the proof of Lemma 3.3, but using
Lemma 1.6 instead of Lemma 1.1, we obtain under assumptions (A1), (U1l)
and (U3)—(U8), for p € {2,3,4} and [ € {0,1}

sup E(Dy(z)) = O(1), sup Q(z) = O(1), (3.17)
1
zE€SF ’ ' B ’ ’ - nd(h) ’
sup |E(Das () E(Dag(2)) — E(May () Dyo(a))| = O ( )

and

1
feusi |E(D31(x))E(Dso(x)) — E(Dsa(x)Dso(z))| = O (n@(h)) )

which is, in view of hypothesis (U5), equals to O <w /—ng(% _
So, we need to check that for p=2,3,4and [ =0,1,

Inn
D — E(D = Oqg.co .
Now, we consider the following decomposition

sup |Dy(z) — E(Dp())] < sup |Dy() = D))

zESE z€SE
+ sup |E(Dypi(2j(x))) — E(Dpi(2j(a)))]
zESF
+  sup |E(Dyi(zj@)) — E(Dpy(x))]
z€ESE

3
D,
E Li .
i=1

Study of the term L5,
For all € > 0, we have that

P (Lg’l > g> —p ( max  |Dy(z;) — EDpy(x;] > g)

JE{L,-...dn}




where AP!(z) is defined in (3.3). By applying Proposition A.11-i in Ferraty
and Vieu (2006) and since E|A§k’l) (2)]9 = O(P,(h)) for ¢ > 2 , we have,
there exist ¢ > 2, for any € > 0, r > 1 and for some 0 < C' < 00

p (Lg’l > 5) < C(Ay + Ay),

where
/2 a+1)q/(q+a)
e?n*d*(h) r (at+1)a/(q
Ai=d, |1+ ——= Ay =dnr [ ———
' ( i rSe s C v (5n95(h))

and G}, ; = sup,eg, G2, (2) = O(n®(h)) in view of relation (3.4) together
with hypothesis (U1).
Choosing for n > 0

lnn

n®d(h)

=1 and r = (Inn)?,

we obtain
A =0Mn ") and Ay = O(n~ ),

where v,/ > 0.

Hence, we get for n large enough

P (Lg’l > Inn ) < Cn~ ¢,

n®(h)
where £ > 0.
Thus

Inn
Lg»l = Oaco. ( n@(h)) . (318)

Study of the terms L' and L3'.
First, let us analyze the term L{"l. Since K is supported in [0, 1] and according
to (Ul), we can write

Cr "
Bt i 2151871 (Z)1 X
b= TL]’L@(h) xseu‘spf;‘ Z| ¢ ( l) B(Lh)UB(xj(ac)vh)( 1)
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Let

Cr,| 21161871 Z:)
; 7179 1 . . X._
& hd(h) cegy DEMUBEsE N »X)

In the same manner as for proving (3.4), we have under hypotheses (U1),
(U5Db), (U6) and (US)

= 3" ICoul&, 6)] = Ond(h)).

i=1 j=1

. .. 1 .
It remains to use similar arguments as to treat LL" to obtain

Inn
P = Opco ( — (h)> . (3.19)

Second, since

Lpl < FE (sup ’Dpl DpJ(xj(w))‘) ’

zESFE
we deduce that

i Inn

Finally, the result of Lemma 3.7 follows from the relations (3.19), (3.18) and
(3.20). O

Lemma 3.8. (see Messaci et al. (2015)) Assume that assumptions (Ul),
(U6) are satisfied, we get

=R Inn 1
sup |mo(z) — 1| = Og.co. ( B0 > and ZP (zlef}sffmg x) < 5) < 00.

zESFE

Lemma 3.9. Under assumptions (A1), (UZ), (U6), we obtain

Inn
m —m ::()aca .
xseusli |ma(z) — my(z)] _ ( () )

Proof. By the relation (3.15), we can write

sup [ (2) — i (z)] < Csup|Sa(t) — S| sup [ ()],

z€SFE t<T zE€ESE

The proof is completed by the relation (3.16) and Lemma 3.8. O
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Chapter 4
Simulation study

In this chapter, we carry out a simulation study in order to compare the
performances of the local linear methodology with those of the kernel method,
in the tree cases : Functional and complete case under dependant condition
(see 4.1), Functional and censored case under independant condition (see 4.2)

and Functional and censored case under dependant condition (see 4.3).

4.1 Functional and complete case under depen-

dant condition

In this section, two examples of simulation are presented to illustrate the per-
formance of the proposed estimator (LLR), for functional and complet data
under dependant condition. More precisely, we compare the LLR estimator
to the kernel regression estimator (K R) studied in Ferraty and Vieu (2006).
For the computation of the (LLR) and the (KR) estimators, we use the
quadratic kernel K (z) = 2(1—2%)1jo 1(z) and the bandwith h is chosen by the
2-fold cross-validation method. Take into account of the smoothness of the

curves X;(t) (see Figure 4.6), we choose the semi-metric d based on the deriva-

68



tive described in Ferraty and Vieu (2006) (see routines "semimetric.deriv"
and "semimetric.pca" in the website http://www.lsp.ups-tlse.fr/staph /npfda)
and we take 8 = d (for the LLR estimator).

4.1.1 Example

Let us consider the following nonparametric regression model
Y =m(X)+e,

where

1 1
m(X)=-expg 2 —

4 1 2
( Ik X’(t)dt)
and € is the error supposed to be generated by an autoregressive model defined
by
1 .
Ei:_(ei—1+£i)v ZZl;"'?”

V2
with & are centered random variables normally distributed (i.i.d.) with a

variance equal to 0.1 (§ ~» N(0,0.1)). The functional covariate X (t) is
defined, for ¢ € [0, 7/3] by

X(t) =2 — cos (W(t—%)), te[o,%ﬁ]

where W is an a-mixing process generated by W, = %Wi_l + n; with 7; are

1.1.d (0, 1) and are independent from W;, which is generated independently

by Wy ~» N (0, 1) (see Figure 4.1 below for a sample of these curves). Notice

that the conditional mean function will coincide and will be equal to m(z).
In this simulation, to illustrate the performance of our estimator, we proceed

as follows:

e Step 1. For a different sample sizes n = 100, 200, 300, 500, we split our data
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Figure 4.1: The curves X;.
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into two subsets:

- (X4,Y)1<i<n,: The learning sample used to build the estimators, where
ny =n/2.

- (Xi, Yi)ny<i<n: The testing sample used to make a comparison, with ny =
n+1.

e Step 2. We calculate the two estimators by using the learning sample and
we find the LLR and K R estimators of the conditional expectation (m and
mgr), for a different sample sizes n = 100, 200, 300, 500.

e Step 3. We plot the true values m(X;) for all ¢ (ny < i < n) against the
predicted ones by means of the two estimators, one in each graph (for a fixed
sample size n = 100, see Figure 4.2).

e Step 4. To be more precise, we measure the prediction accuracy, for

local linear: MSE=0.0885 kernel: MSE=0.1038

00 02 04 06 08 10
00 02 04 06 08

Figure 4.2: From left to right representation of the LLR and K R estimators
(n = 100).
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different values of n, by using the mean absolute errors (MAE), given by

nao+1

MAE(KR) = 5> |mkr(X;) — m(X))]

no+1

{ MAE(LLR) := 15 500, (X)) — m(X;)|

and the prediction errors (MSE) such that

{ MSE(LLR) = A5 Y0 (i(X;) — m(X;))”
MSE(KR) = 1 3" (iigr(X;) — m(X;))”

no—+1

The obtained results are in the table 4.1.

Table 4.1: MSE and MAE comparaison for LLR and K R methods according

to sample sizes.

n = 100 n = 200 n = 300 n = 500
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE
LLR|0.0885(0.1998]0.0695|0.1686|0.0536 | 0.1471 | 0.0369 | 0.0962
KR 0.1038]0.2635|0.0764|0.1853|0.0674|0.1541|0.0562 | 0.1422

From Table 4.1 and Figure 4.2, we observe that the quality of the two
estimators perform better when the sample size n increase. Also, we can be
seen that our predictor has a good behavior than the kernel one for functional

and complete data under dependant condition.

4.2 Functional and censored case under inde-

pendant condition

In this section, we conduct two examples of simulation to illustrate the per-

formance of the local linear regression estimator (LLR) studied in Leulmi
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(2020) (see chapter 2), for functional and censored data under independant
condition. for further illustration. More precisely, we compare the LLR esti-
mator to the conditional expectation kernel estimator (KR) studied in Ling
(2016).

For the computation of the LLR and the KR estimators, we use the quadratic
kernel K (x) = 3(1 — 2?)1p1)(x) and the bandwith % is chosen by the 2-fold
cross-validation method. The semi-metric d is based on the derivative de-
scribed in Ferraty and Vieu (2006)(see routines "semimetric.deriv" in the
website http://www.lsp.ups-tlse.fr /staph/npfda) and we take 8 = d (for the
LLR estimator).

4.2.1 Example
We consider a functional covariate X (¢) on the interval [0, 1]
X(t) = A2 —cos(ntW)) + (1 — A) cos(ntW),

where W is a centered random variable normally distributed with a variance
equal to 1 and A is a random variable having a Bernoulli distribution with
parameter p = 0.5. We carried out the simulation with a 400-sample of the
curve X which is represented in the Fig. 4.3.

The scalar response variable is defined as
Y =r(X)+e,

where X and e are independent, the error € is a centered random variable

normally distributed with a variance equal to 0.1 and

Given X = z, we can easily see that Y ~» N (r(z),0.1), and therefore, the

conditional mean functions will coincide and will be equal to r(x).
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Moreover, as a first model, the censoring variable C' has an exponential dis-
tribution with parameter A\ = 1.5. In the second model, C is distributed as
Weibull distribution with parameters &k = 2 and A = 0.5.

Under these two models, we compute the kernel regression estimator (KR)
studied in Ling (2016) and defined by

S K(hN(X, 1) 268, (Z) (0
- Yo K(h (X5, 2)) ( 0) (4.1)

T/fLKR(ﬁ)

0

and our LLR estimator m(z) on the basis of the sample (X;, Z;,d;)1<i<n,
where Z; = min(Y;, C;) and 6; = lyy,<c;y-

In this simulation, to illustrate the performance of our estimator, we proceed
as follows:

e Step 1. We split our data into two subsets:

- (X5, Yi)1<i<s00: The learning sample used to build the estimators.

- (X, Yi)s01<i<a00: The testing sample used to make a comparison.

e Step 2. We calculate the two estimators by using the learning sample and
we find the LLR and KR estimators of the conditional expectation (m and
MKR)-

e Step 3. We plot the true values (r(X;)) for all ¢ (301 < ¢ < 400) against
the predicted ones by means of the two estimators (one in each graph), this

is displayed in Fig. 4.3 for the first model and Fig. 4.4 for the second model.
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LLR: MSE=0.0218 KR: MSE=0.0735

3.0
I

20
I

Lin}

1.0

0 20 &0 100 00 05 1.0 1.5 00 05 10 15

Time

Figure 4.3: From left to right the curves X;, the LLR estimator and the KR

estimator for the first data model.

75



LLR: MSE=0.0132 KR: MSE=0.0341

o
D l::'
o
] Q3 O-::-Cg
o 08
o)
— o)
It o fon
o 3}
o
-:::_O%

Figure 4.4: Representation of the LLR and the KR estimators for the second

data model.

e Step 4. To be more precise we evaluate the prediction errors given by

400 400
MSE(LLR) = ﬁ (M(X;) = (X)) and MSE(KR) :— 13)0 (Fxr(X;) — (X))’
7=301 7=301
and the mean absolute errors (MAE) defined by
400 400
MAB(LLR) := £ ]23%1 (X)) =r(X;)| and MAB(KR) := £ ]23;1 1mcr(X;)—r(X;)]-

The obtained results are in the table below (see talbe 4.2.
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Table 4.2: MSE comparaison for KR and LLR methods for the two models.

The first model The second model
MSE MAE MSE MAE
LLR 0.0218 0.1239 0.0132 0.0831
KR 0.0735 0.1652 0.0341 0.1296

To make a decision, we choose an other example.

4.2.2 Example

In this example, The functional covariate X is generated by the following

X(t) =2— cos (W(t—%ﬂ)), te[o,%ﬂ]

where W is a random variable having a standard normal distribution. The

equation:

curves are discretized on the same grid which is composed of 215-equidistant
values in [0, 3] (see Fig. 4.5).

The scalar response is defined as
Y =r(X)+e,

where X and e are independent, the error € is a centered random variable

normally distributed with a variance equal to 0.1 and

Lol 1
r(X) = Py 2 <f01 X’(t)dt>2

4
For this model, we adopt the censored mechanism (X;, Z;,d;)1<i<n, where

Z; = min(Y;, C), 6; = lyy,<¢,) and the censoring random variable C' has an
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exponential distribution with parameter A\ which is adapted in order to get
different censoring rates (CR).

In this simulation, to illustrate the efficiency of our estimator, we proceed as
follows:

e Step 1. We divide our sample of size 215 into the learning sample (X, Y;)1<i<10s
and the testing (X, Y:)109<i<215

e Step 2. We calculate the two estimators by using the learning sample and
we find the LLR and KR estimators of the conditional expectation (m and
MKR)-

e Step 3. We plot the true values (r(X;)) for all ¢ (109 < i < 215) against
the predicted ones by means of the two estimators (one in each graph)
(CR = 28.04%, see Fig. 4.5).
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Figure 4.5: From left to right the curves X;, the KR estimator and the LLR
estimator (C'R = 28.04%).

e Step 4. To be more precise, we measure the prediction accuracy, for

different values of CR, by using the mean absolute errors (MAE), given by
MAE(LLR) := — Z [ (X;)=r(X;)| and MAB(KR) = - Z \mxr(X;)—r(X;)],

as well as the prediction errors (MSE) such that

215 215
MSE(LLR) == — (m(X;) —7(X,))* and MSE(KR):= 0

=109 §=109

The obtained results are in the table below.
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Table 4.3: MSE and MAE comparaison for LLR and K R methods according
to CR.

CR=187% |CR =28.04%|CR = 49.53%| CR = 73.83%
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE
LLR[0.0056]0.0419{0.0445]0.1234|0.1337| 0.243 {0.1594|0.2746
KR [0.01250.0652|0.0617|0.1462 | 0.1409 | 0.2448 | 0.1595 | 0.2755

Note from Table 4.3 that the MSE and the MAE values for both kernel
and local linear methods become more important when the CR increases. In
addition, we remark that the local linear estimator performs better than the
kernel estimator. (see Figs. 4.3, 4.4 and 4.5 and Tables 4.2 and 4.3).
Conclusion and comments
In conclusion, We remark that our estimator has a good performance and
seems to outperform the kernel estimator even for censored data. Moreover,
we note that the prediction accuracy of the regression function decreases

whenever the CR increases.

4.3 Functional and censored case under depen-

dant condition

In this section, two examples of simulation are presented to illustrate the
performance of the proposed estimator (LLR), for functional and censored
data under dependant condition. More precisely, we compare the LLR esti-
mator to the kernel regression estimator (K R) studied in Ling (2016).

For the computation of the (LLR) and the (K R) estimators, we use the
quadratic kernel K (z) = 2(1—%)1jo5(z) and the bandwith h is chosen by the

2-fold cross-validation method. Take into account of the smoothness of the
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curves X;(t) (see Figure 4.6 and 4.7), we choose the semi-metric d based on
the derivative (for the first example) and the PCA (for the second example)
described in Ferraty and Vieu (2006) (see routines "semimetric.deriv" and
"semimetric.pca" in the website http: //www.lsp.ups-tlse.fr /staph /npfda) and
we take § = d (for the LLR estimator).

4.3.1 Example

Let us consider the following nonparametric regression model
Y =m(X) +e,

where

1 1
m(X)=-expg 2—

4 1 2
( Jo X ’(t)dt)
and € is the error supposed to be generated by an autoregressive model defined
by
1 .
6 =—7(€1+&), i=1--,n

V2
with & are centered random variables normally distributed (i.i.d.) with a
variance equal to 0.1 (§ ~» N(0,0.1)). The functional covariate X (t) is
defined, for ¢ € [0, 7/3] by

X(t) =2 — cos (W<t—2§>), te[o,%ﬂ]

where W is an a-mixing process generated by W, = %Wi,l + n; with n; are
i.i.d A(0,1) and are independent from W, which is generated independently
by Wy ~» N(0,1) (see Figure 4.6 for a sample of these curves). Notice that
the conditional mean function will coincide and will be equal to m(x).

For this model, we adopt the censored mechanism (X;, Z;,0;)1<i<n, Where

Z; = min(Y;, C;), 6; = lgy,<c,) and the censoring random variable C; =
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a;Ci_1 + ¢; with a; ~ N(0,0.1) and ¢; are i.i.d. exp(1.5) and are indepen-
dent from C;, which is generated independently by Cy ~» exp(1.5) .

In this simulation, to illustrate the performance of our estimator, we proceed
as follows:

e Step 1. For a different sample sizes n = 100, 200, 300, 500, we split our data
into two subsets:

- (Xi,Y)1<i<n,: The learning sample used to build the estimators, where
ny =n/2.

- (Xi, Yi)ny<i<n: The testing sample used to make a comparison, with ny =
ny+1.

e Step 2. We calculate the two estimators by using the learning sample and
we find the LLR and KR estimators of the conditional expectation (m and
mgr), for a different sample sizes n = 100, 200, 300, 500.

e Step 3. We plot the true values m(X;) for all i (ny < i < n) against the
predicted ones by means of the two estimators, one in each graph (for a fixed

sample size n = 300, see Figure 4.6).
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Figure 4.6: From left to right the curves X;, the LLR and KR estimators
(n = 300).

e Step 4. To be more precise, we measure the prediction accuracy, for
different values of n, by using the mean absolute errors (MAE), given by
{ MABE(LLR) := 5 370 [(X;) = m(X;)
MAE(KR) = ;25 370, Imxr(X;) — m(X;)]
and the prediction errors (MSE) such that

{ MSE(LLR) := A5 >0 (m(X;) — m(X;))*
MSE(KR) = 5 3" (iigr(X;) — m(X;))*

no+1
The obtained results are in the table 4.4.
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Table 4.4: MSE and MAE comparaison for LLR and K R methods according

to sample sizes.

n = 100 n = 200 n = 300 n = 500
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE
LLR|0.0896|0.2008]0.0775|0.1796|0.0641|0.1529|0.0396 | 0.1062
KR 0.1190]0.2338|0.0867|0.1933|0.0796 | 0.1590|0.0471 | 0.1529

From Table 4.4 and Figure 4.6, we observe that the quality of the two
estimators perform better when the sample size n increase. Also, we can be
seen that our predictor has a good behavior than the kernel one.

We preffer to give a second example to make a better decision.

4.3.2 Example

We fixe n = 200 and we generated the functional explanatory variables X ()
as follows

where a; ~ N (4,3), ¢; ~ N(0,0.01) and b; is an a-mixing process generated
by b; = $a;_1+n; with n; are i.i.d. N(0,1) and are independent from b;, which
is generated independently by by ~~ N(0,3). We carried out the simulation
with a 300-sample of the curve X (¢) (see 4.7).

The scalar response variable is defined as

Y =m(X)+e,
where
! 1
m(X) = dt
®= [ rrm



and € is the error generated by an autoregressive model defined by

1
6 =—— i=1,---,200

€1+ &,
7 1+&

with & ~» N(0,0.1). Notice that the conditional median function will coin-
cide and will be equal to m(z).

We also simulate n i.i.d. rondom (C;) exponentially distributed with pa-
rameter A which is adapted in order to get different censoring rates (CR).
We compute our estimator with the observed data (X;, Z;,0;)1<i<n, Where
Z; = min(Y;, C;) and §; = lyy,<c,3. Next, we split our data into a learning
sample with size 135 and a test sample with size 65. The true values are
plotted against the predicted ones by means of our estimator m(z) and the
kernel estimator mgg(x) (CR = 1.48%).
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Figure 4.7: From left to right the curves X;, the LLR and KR estimators
(CR = 1.48%).

To be more precise, we measure the prediction accuracy, for different

values of CR, by using the mean absolute errors (MAE), given by
{ MAB(LLR) i= g5 216 /R(X;) = (X))
MAE(KR) = g 338 46 [mcr(X;) — m(X;)]
and the prediction errors (MSE) such that
{ MEB(LLE) = g ¥yiaa (MXG) = (X))
MSE(KR) := g 310 5 (Mrr(X;) — m(X;))*
The obtained results arein the table 4.5.
Figure 4.7 and Table 4.5 show that, our estimator performs better than
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Table 4.5: MSE and MAE comparaison for LLR and K R methods according
to CR.

CR=1.48% |CR =28.67%|CR =48.15%| CR = 73.33%
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE
LLR|0.0019]0.0331]0.0182/0.1044|0.0260{0.12710.05458 | 0.2106
KR 0.0037]0.0353{0.0220|0.1098|0.0295|0.1474 | 0.0610 |0.2314

the kernel estimator. It is also clear that, the quality of the both estimators
become slightly worse when we have high percentage of censoring, however
it remains acceptable.

Conclusion and comments

In conclusion, our Our theoretical and practical studies confirmed without
surprise that the quality of the LLR and the K R estimators are better for a
bigger sample size n and a weak rate of censoring C'R. Furthermore, as for
independent and censored data, the LLR estimator stay more accurate than

the K R one in all cases.
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Perspectives

To conclude this thesis we raise some perspectives that may be the object of
future works.

e Show the almost complete convergence results (pointwise and uniform) for
the condtional quantile and coditional mode for functional, censored and a-
mixing data.

e Study the quadratic mean convergence and the asymptotic normality for
functional, censored and a-mixing data.

e Establish the almost complete convergence results when the explanatory
variable is valued in fuctional space in the setting of the association depen-

dence condition.
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Abstract

In this thesis, we consider the problem of the nonparametric estimation of
the regression function when the response variable is real and the regressor is
valued in a functional space (space of infinite dimension), by using the local
linear method.

Firstly, we suppose that the observations are strongly mixing and we
establish the pointwise and the uniform almost complete convergence, with
rates, of the local linear regression estimator.

Secondly, we consider a sequence of independent and identically dis-
tributed observations and we introduce a local linear nonparametric esti-
mation of the regression function for a censored scalar response random vari-
able. Then, we establish their pointwise and the uniform almost-complete
convergences, with rates.

Our main results is based on the functional and censored data under
strong mixing condition and we study the rate of the pointwise almost-
complete convergence of the local linear regression estimator.

Finally, a simulation study illustrates the performance of the local linear
methodology with respect to other kernel method, in the tree cases: Func-
tional and complete case under dependent condition, Functional and censored
case under independent condition and Functional and censored case under
dependent condition.

Keywords: Functional data, Censored data, Local linear Estimation,

Almost-complete convergence, a-mixing.



Résumé

Dans cette thése nous considérons le probléme de I’estimation non paramétrique
de la fonction de régression d’une variable réponse réelle conditionnée par une
variable explicative fonctionnelle (4 valeurs dans un espace de dimension in-
finie), par utilisation de la méthode locale linéaire.

Dans un premier temps, nous supposons que les observations sont fortement
mélangeantes et nous étudions la convergence presque compléte ponctuelle et
uniforme, avec taux, de ’estimateur local linéair de la fonction de régression.
Puis, dans un second temps, nous considérons une suite d’observations in-
dépendantes et identiquement distribuées et nous introduisons ’estimateur
local linéaire de la fonction de régression dans le cas censuré. Ensuite, nous
étudions leurs convergences presque complétes ponctuelle et uniforme.

Mes principaux résultats sont basés sur des données fonctionnelles et cen-
surées sous la condition de mélange forte et nous étudions les vitesses de
convergences presque compléte ponctuelle et uniforme de 'estimateur local
linéair de la fonction de régression.

Finalement, les études de simulations illustre la performance de la méthode
locale linéaire par rapport A la méthode de noyau, dans les trois cas : le cas
fonctionnel et complet sous la condition de dépendance, le cas fonctionnel
et censuré sous la condition d’indépendance et le cas fonctionnel et censuré
sous la condition de dépendance.

Mots clés: Données fonctionnelles, Données censurées, Estimation locale

linéaire, Convergence presque compéte, a-mélange.



