RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEURE ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITÉ FRÈRES MENTOURI CONSTANTINE1 FACULTÉ DES SCIENCES EXACTES DÉPARTEMENT DE CHIMIE

N° d'ordre :.....

Série :.....

THÈSE PRESENTÉE

POUR OBTENIR LE DIPLOME DE DOCTORAT 3èmeCycle LMD EN CHIMIE

OPTION

Chimie Organique

DÉSILYLATION DES INDOLES

ET

SYNTHESE STEREOSELECTIVE DE BIHETEROCYLES CONTENANT DE L'INDOLE ET DU 5,6-DIHYDROPYRIDINE-2(H)-ONE

Par

Salah KENNOUCHE

Président	SALAH.AKKAL	Pr. Université Frères Mentouri-Constantine1
Directeur de thèse	CHERIF.BEHLOUL	Pr. Université Frères Mentouri-Constantine1
Examinateur	ABBESS. TABDJOUN	MCA. Université Frères Mentouri-Constantine1
Examinateur	ABBES. BOUKHARI	Pr. Université Badji Mokhtar Annaba

Soutenue le 21/11/2022

Je dédie ce travail :

A ma mère

A mon père

A ma famille

A mes amies

Remerciements

Ce travail a été effectué en collaboration entre laboratoire des Produits Naturels d'origine Végétale et de synthèse Organique (PHYSYNOR), de l'université Frères MentouriConstantine1, et l'institut de Synthèse Organique, université d'Alicante Espagne. Ma reconnaissance revient principalement au Professeur Cherif BEHLOUL qui, en m'encadrant au cours de ces cinq années, m'a offert l'opportunité de travailler sur un projetscientifique intéressant et stimulant. Je le remercie de m'avoir accueilli au sein de son équipe de recherche ainsi que pour la confiance qu'il m'a toujours accordée. Son œil critique m'a été d'une grande aide pour avancer que ce soit aussi bien à la paillasse que pendant la rédaction de cette thèse. Ce travail n'aurait pas vu le jour sans ses qualités d'enseignement, sa patience et sa compréhension.

Je tiens à remercier le Professeur S. AKKAL de m'avoir honoré en acceptant la présidence de ce Jury. Tout comme, je tiens à exprimer mes sincères remerciements à messieurs A. BOUKHARI, professeur à l'université d'Annaba,. Je remercie également monsieur A. TABDJOUN, maitre de conférences à l'université Frères Mentouri-Constantine1, d'avoir accepté de juger ce travail. Je tiens également à remercier mes collègues de laboratoire pour l'atmosphère dynamique très stimulante qui régnait dans le laboratoire. Les années passées avec vous furent un réel plaisir.

Je voudrais remercier Miguel Yus, Carmen Najera Professeur à l'université d'Alicante de m'avoir accueilli au sein de son équipe dans le cadre d'une formation PNE 2019-2020 Je remercie chaleureusement monsieur **F. FOUBELO**, Professeur à l'université d'Alicante, ses précieux conseils, sa gentillesse et sa disponibilité à chaque besoin manifesté, je vous renouvelle mes remerciements FOU.

Je souhaite remercier le groupe SINTAS de l'unité de recherche de l'université d'Alicante.Un grand merci à tous mes collègues de laboratoire PHYSYNOR étudiants et enseignants particulièrement à Amir, Mohamed Zaabat, Chafai, Imed, A celles et ceux que j'ai côtoyés à la paillasse.

Abréviations

Réactifs et solvants			
APTS	Acide para-toluène sulfonique		
R-BINOL	R-binaphtol		
B2pin2	bispinacolediborone		
DAG	diacétone D-glucose		
DBAD	Azodicarboxylate de di- <i>t</i> -butyle		
DBU	1,8-diazabicyclo [5.4.0] undéc-7- ène		
DCM	Dichlorométhane		
DHP	Dihydropyrane		
DIBAL	Hydrure de diisobutylaluminium		
DMF	<i>N</i> , <i>N</i> -diméthylformamide		
DMAP	N, N-diméthylaminopyridine		
DMSO	Di méthylsulfoxyde		
3-HQD	3-hydroxyquinuclidine		
KHMDS	Bis(triméthylsilyl) amidure de potassium		
LHMDS	Bis(triméthylsilyl)amidure de lithium		
NBS	<i>N</i> -bromosuccinimide		
Mes	Mésyle (méthanesulfonyle)		
PDC	Pyridinium dichromate		
PPTS	Pyridinium <i>p</i> -toluène sulfonate		
[Rh(COD)Cl]2	chlorure 1,5 cycloctadiène de rhodium		
SET	Single electron transfert		
TBAB	Bromure de <i>tétra</i> butylammonium		

ТВНР	Hydropéroxyde de <i>tert</i> -butyle
tBs	<i>Tert</i> -butanesufinyle
TEA	Triéthylamine
THP	Tétrahydropyrane
THF	Tétrahydrofurane
TFA	Acide trifluoroacétique
TMEDA	Tétraméthyléthylènediamine

TMSCN	Cyanure de triméthylsilyle
VO (acac)2	Acétylacétonate de Vanadyle
Groupements protecteurs	
Boc	tert-butoxycarbonyle
Bn	Benzyle
Bz	Benzoyle
Cbz	Benzyloxycarbonyle
Fmoc	9- Fluorenylméthyloxycarbonyle
MOM	Méthoxyméthyle
Piv	Pivaloyle
TBDMS	<i>t</i> -butyldiméthylsilyle
K5CoW12O40.3H2O	dodécatangestocobaltate de potassium tri-hydraté
TMSCl	Chlorure de triméthylsilyle
ET ₃ SiOTF	le triflate de triéthylsilyle
TBS	TBS :Éthers tert-
	butyldiméthylsilyliques
OTBDPS	Le tert-Butyldiphenylsilyl éther

OCO2R	Les Carbonates
Unités et autres	
A°	Angstrom
ССМ	Chromatographie sur couche mince
J	Constante de couplage
mmol	Millimol
ppm	Partie par million
Rdt	Rendement
RMN	Résonance magnétique nucléaire
t.a	Température ambiante
Tf	Température de fusion
δ	Déplacement chimique

Généralités expérimentales

Techniques et appareillages utilisés

Les spectres de Résonance Magnétique Nucléaire (RMN)

Les spectres ont été effectués à 20°C et les déplacements chimiques sont exprimés en partie par million (ppm). Les constantes de couplage sont exprimées en Hz. La multiplicité des signaux est ainsi notée: s (singulet), d (doublet), dd (doublet de doublet), t (triplet), q (quadruplet), et m (multiplet). La référence interne prise pour le CDCl3 est de 7.26 ppm pour le 1H et 77.20 ppm pour le 13C.

Les spectres RMN ont été enregistrés sur des appareils Bruker de type:

Avance 250, à 250 MHz pour le proton et 62.9 MHz pour le carbone.

✤ Avance 300, à 300 MHz pour le proton et 75 MHz pour le carbone.

Avance 400, à 400 MHz pour le proton et 101 MHz pour le carbone.

Chromatographies

Les réactions sont suivies par les chromatographies sur couches minces (CCM) où elles sont effectuées sur plaques de silice Merck 60F254 et sont révélées par UV. Les chromatographies sur gel de silice ont été réalisées avec de la micro silice Merck 230-400 mesh. **Point de fusion**

Les points de fusion ont été déterminés à l'aide d'un banc Köfler et d'un appareil pour point de fusion à capillaire « Fine Control Electrothermal Capillary ».

Spectrométrie Infra Rouge

Spectromètre Shimadzu F IR-8201 PC de l'université d'alicante Espagne. Les composés solides sont greffés sur des pastilles en KBr. Les fréquences d'absorption sont données en cm-1.

Les solvants

Les solvants de chromatographie et de recristallisation sont utilisés sans purification préalable.

Sommaire

Chapitre I: Généralité sur l'indole		
1. Définition de l'indole		
2.Structure del'indole		
3.Historique de la chimie de l'indole		
4.Activité biologique		
5.Méthodes de synthèse		
5.1.La réaction de Fischer		
5.2.La réaction de Bischler		
5.3.La réaction de Bartoli		
5.4 La réaction de Beissert		
5.5 Réaction de Madelung		
5.6 La réaction intermoléculaire de Larock		
5.7 Désation de Diels Alder		
5.7. Keaction de Diels-Alder		
0. Reactivite		
7. Caractere acido-basique de l'indole		
7.1.Caractere nucleophile de l'indole		
8. Réaction vis-à-vis des électrophiles		
8.1.Protonation		
8.2.Nitration		
8.3.Sulfonation		
8.4.Sulfonylation		
9.Halogénation		
9.1.Halogénation en position 3		
9.1.1.Chloration		
9.1.2.Bromation		
9.1.3. Iodation		
10.Alkylation		
10 1 Alkylation de la position 3		
10.2 Réaction avec des imines et des sels d'iminium		
10.3 Réaction avec des ovimes		
10.5. Reaction avec des nitrones		
11 Conclusion		
12 Décultate et discussion		
12. Resultats et discussion		
12.1.Resultats obtenus		
12.2.Etude spectrale		
13.Partie experimentale		
Chapitre II. La chimie des groupements protecteurs		
I.Generalités		
2.Protection		
2.1.Protection régiosélective		
2.2Protection chimiosélective		
3. Caractéristiques d'un bon groupement protecteur		
4.Les principaux groupements protecteurs utilisés en synthèse organique		
5.Rôle des groupements protecteurs en synthèse organique		
6.Protection de la fonction alcool		
6.1. Forme Esters		
6.1.1Esters d'acétate		
6.1.2Esters de benzoate (Bz)		
VIII ELEVITE WE DUREDURE (BEJIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		

7.Les éthers silylés	41
7.1 Le triméthylsilyle éther (OTMS)	41
7.2Éthers de triéthylsilyle (TES)	42
7.3Éthers tert-butyldiméthylsilyliques (TBS)	44
7.4Éther tert-butyldiphénylsilylique (OTBDPS)	45
7.5Le tert-Butyldiphenylsilyl éther (OTBDPS)	
7.6Éthers tert-butyliques	45
7.8Le tert-Butyldinhenvlsilvl éther (OTBDPS)	47
8 Les Carbonates (OCO2R)	47
9 Protection de la fonction amine	48
10 les Amide	48
10.05 Allule	10
12 Les Allyda andres D NH D'	50
12.les Alkyls amine R-NH-R'	50
13.Les Carbamates.	51
14.Le tert-Butyloxycarbonyle (N-Boc)	51
15.Le Benzyloxycarbonyl (Cbz)	52
16.Le 9-Fluorenylmethyloxycarbonyle (N-Fmoc)	53
17.Résultats et discussion	56
17.1. Protection des indoles par le chlorure de Silyle	56
17.2.Mécanisme réactionnel	56
17.3.Résultats obtenus	57
18.Etude spectrale	61
19. Parie expérimentale	66
Chapitre III. La déprotection	
1.Introduction	74
1.Introduction 2.Méthodes de déprotection	74 74
1.Introduction 2.Méthodes de déprotection 2.1.Groupes protecteurs clivés par les solvants basiques	74 74 74
 1. Introduction 2. Méthodes de déprotection 2.1. Groupes protecteurs clivés par les solvants basiques 2.2. Groupes protecteurs clivés par un acide 	74 74 74 75
 1. Introduction 2. Méthodes de déprotection 2.1. Groupes protecteurs clivés par les solvants basiques 2.2. Groupes protecteurs clivés par un acide 2.3. Groupes protecteurs clivés par les ions fluorure 	74 74 74 75 75
 1. Introduction	74 74 74 75 75 75
 Introduction	74 74 75 75 75 75 76
 Introduction	74 74 75 75 75 76 76
1. Introduction. 2. Méthodes de déprotection. 2.1. Groupes protecteurs clivés par les solvants basiques. 2.2. Groupes protecteurs clivés par un acide. 2.3. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par élimination réductrice. 2.5. Groupes protecteurs clivés par la lumière. 3. applications de magnésium, zinc et fer en synthèse organique. 3.1. Magnesium.	74 74 75 75 75 76 76 76
1. Introduction. 2. Méthodes de déprotection. 2.1. Groupes protecteurs clivés par les solvants basiques. 2.2. Groupes protecteurs clivés par un acide. 2.3. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par élimination réductrice. 2.5. Groupes protecteurs clivés par la lumière. 3. applications de magnésium, zinc et fer en synthèse organique. 3.1. Magnesium. 3.1.1. Le magnésium comme catalyseur en chimie organique.	74 74 75 75 75 76 76 76 76 76
1. Introduction. 2. Méthodes de déprotection. 2.1. Groupes protecteurs clivés par les solvants basiques. 2.2. Groupes protecteurs clivés par un acide. 2.3. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par élimination réductrice. 2.5. Groupes protecteurs clivés par la lumière. 3. applications de magnésium, zinc et fer en synthèse organique. 3.1. Magnesium. 3.1.1. Le magnésium comme catalyseur en chimie organique. 3.1.1.1. réaction de Grignard.	74 74 75 75 75 76 76 76 76 77 77
1. Introduction. 2. Méthodes de déprotection. 2.1. Groupes protecteurs clivés par les solvants basiques. 2.2. Groupes protecteurs clivés par un acide. 2.3. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par les ions fluorure. 2.5. Groupes protecteurs clivés par la lumière. 3. applications de magnésium, zinc et fer en synthèse organique. 3.1.1.Le magnésium comme catalyseur en chimie organique. 3.1.1.1. réaction de Grignard. 3.1.1.2. Réaction de Reforematsky.	74 74 75 75 75 76 76 76 76 76 77 77
1. Introduction. 2. Méthodes de déprotection. 2.1. Groupes protecteurs clivés par les solvants basiques. 2.2. Groupes protecteurs clivés par un acide. 2.3. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par les ions fluorure. 2.5. Groupes protecteurs clivés par la lumière. 3. applications de magnésium, zinc et fer en synthèse organique. 3.1.1. Le magnésium comme catalyseur en chimie organique. 3.1.1.1. réaction de Grignard. 3.1.2. Réaction de Reforematsky. 3.1.2. Le magnésium comme agent réducteur.	74 74 75 75 75 76 76 76 76 76 77 77 77
1. Introduction. 2. Méthodes de déprotection. 2.1. Groupes protecteurs clivés par les solvants basiques. 2.2. Groupes protecteurs clivés par un acide. 2.3. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par les ions fluorure. 2.5. Groupes protecteurs clivés par la lumière. 3. applications de magnésium, zinc et fer en synthèse organique. 3.1.1. Le magnésium comme catalyseur en chimie organique. 3.1.1.2. Réaction de Grignard. 3.1.2. Le magnésium comme agent réducteur. 3.1.2.1. Cyclisation réductrice.	74 74 75 75 75 76 76 76 76 76 77 77 77 78 78
1. Introduction. 2. Méthodes de déprotection. 2. 1. Groupes protecteurs clivés par les solvants basiques. 2.2. Groupes protecteurs clivés par un acide. 2.3. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par les ions fluorure. 2.5. Groupes protecteurs clivés par la lumière. 3. applications de magnésium, zinc et fer en synthèse organique. 3.1. Magnesium. 3.1.1. Le magnésium comme catalyseur en chimie organique. 3.1.1.2. Réaction de Grignard. 3.1.2. Le magnésium comme agent réducteur. 3.1.2.1. Cyclisation réductrice. 3.1.3. Réduction de la double liaison conjuguée	74 74 75 75 75 76 76 76 76 76 76 77 77 77 77 78 78 78
1. Introduction	74 74 75 75 75 76 76 76 76 76 76 77 77 77 78 78 78 79
1. Introduction. 2. Méthodes de déprotection. 2.1. Groupes protecteurs clivés par les solvants basiques. 2.2. Groupes protecteurs clivés par un acide. 2.3. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par les ions fluorure. 2.5. Groupes protecteurs clivés par la lumière. 3. applications de magnésium, zinc et fer en synthèse organique. 3.1. Magnesium. 3.1.1. Le magnésium comme catalyseur en chimie organique. 3.1.1.1. réaction de Grignard. 3.1.2. Réaction de Reforematsky. 3.1.2.1. Cyclisation réductrice. 3.1.3. Réduction de la double liaison conjuguée. 3.1.4. Réduction des groupes fonctionnels. 3.1.4. Réduction du groupe nitro	74 74 75 75 75 76 76 76 76 76 76 77 77 77 78 78 78 79 79
1.Introduction. 2.Méthodes de déprotection. 2.1.Groupes protecteurs clivés par les solvants basiques. 2.2.Groupes protecteurs clivés par un acide. 2.3.Groupes protecteurs clivés par les ions fluorure. 2.4.Groupes protecteurs clivés par la lumière. 3.applications de magnésium, zinc et fer en synthèse organique. 3.1.Magnesium. 3.1.1.Le magnésium comme catalyseur en chimie organique. 3.1.1.1. réaction de Grignard. 3.1.1.2. Réaction de Reforematsky. 3.1.2.Le magnésium comme agent réducteur. 3.1.3. Réduction de la double liaison conjuguée. 3.1.4.Réduction de la double liaison conjuguée. 3.1.4.Réduction de groupes fonctionnels. 3.1.4.1.Réduction de groupe nitro.	74 74 75 75 75 76 76 76 76 76 76 77 77 77 78 78 79 79 79
1.Introduction. 2.Méthodes de déprotection. 2.1.Groupes protecteurs clivés par les solvants basiques. 2.2.Groupes protecteurs clivés par les ions fluorure. 2.3.Groupes protecteurs clivés par les ions fluorure. 2.4.Groupes protecteurs clivés par les ions fluorure. 2.4.Groupes protecteurs clivés par les ions fluorure. 2.4.Groupes protecteurs clivés par les ions fluorure. 2.5.Groupes protecteurs clivés par la lumière. 3.applications de magnésium, zinc et fer en synthèse organique. 3.1.Magnesium. 3.1.1.Le magnésium comme catalyseur en chimie organique. 3.1.1.1. réaction de Grignard. 3.1.1.2. Réaction de Reforematsky. 3.1.2.Le magnésium comme agent réducteur. 3.1.3. Réduction de la double liaison conjuguée. 3.1.4.Réduction de groupes fonctionnels. 3.1.4.1.Réduction du groupe nitro. 3.1.4.2. Réduction de l'azide. 3.1.4.3. Réduction de l'azide.	74 74 75 75 75 76 76 76 76 76 76 77 77 78 78 79 79 79 80
1.Introduction. 2.Méthodes de déprotection. 2.1.Groupes protecteurs clivés par les solvants basiques. 2.2.Groupes protecteurs clivés par un acide. 2.3.Groupes protecteurs clivés par les ions fluorure. 2.4.Groupes protecteurs clivés par le lumière. 3.applications de magnésium, zinc et fer en synthèse organique. 3.1.Magnesium. 3.1.1.Le magnésium comme catalyseur en chimie organique. 3.1.1.1. réaction de Grignard. 3.1.1.2. Réaction de Reforematsky. 3.1.2.Le magnésium comme agent réducteur. 3.1.3. Réduction de la double liaison conjuguée. 3.1.4.Réduction du groupe nitro. 3.1.4.2. Réduction de l'azide. 3.1.4.3. Réduction de l'anine. 3.1.4.4. Réduction de l'anine.	74 74 75 75 75 76 76 76 76 76 76 77 77 78 78 79 79 80 80
1.Introduction. 2.Méthodes de déprotection. 2.1.Groupes protecteurs clivés par les solvants basiques. 2.2.Groupes protecteurs clivés par les ions fluorure. 2.3.Groupes protecteurs clivés par les ions fluorure. 2.4.Groupes protecteurs clivés par les ions fluorure. 2.4.Groupes protecteurs clivés par les ions fluorure. 2.5.Groupes protecteurs clivés par la lumière. 3.applications de magnésium, zinc et fer en synthèse organique. 3.1.Magnesium. 3.1.1.Le magnésium comme catalyseur en chimie organique. 3.1.1. réaction de Grignard. 3.1.1. Réaction de Reforematsky. 3.1.2.Le magnésium comme agent réducteur. 3.1.3. Réduction de la double liaison conjuguée. 3.1.4.Réduction de groupes fonctionnels. 3.1.4.1.Réduction du groupe nitro. 3.1.4.2. Réduction de l'azide. 3.1.4.3. Réduction de l'azide. 3.1.4.4. Réduction de l'halogénure. 3.1.4.5 Désorvarénation	74 74 75 75 75 76 76 76 76 76 76 76 77 77 77 78 78 79 79 79 80 80 80
1.Introduction. 2.Méthodes de déprotection. 2.1.Groupes protecteurs clivés par les solvants basiques. 2.2.Groupes protecteurs clivés par un acide. 2.3.Groupes protecteurs clivés par les ions fluorure. 2.4.Groupes protecteurs clivés par les ions fluorure. 2.4.Groupes protecteurs clivés par les ions fluorure. 2.5.Groupes protecteurs clivés par la lumière. 3.applications de magnésium, zinc et fer en synthèse organique. 3.1.Magnesium. 3.1.1.Le magnésium comme catalyseur en chimie organique. 3.1.1. réaction de Grignard. 3.1.1. Réaction de Reforematsky. 3.1.2.Le magnésium comme agent réducteur. 3.1.3. Réduction de la double liaison conjuguée. 3.1.4.Réduction de groupes fonctionnels. 3.1.4.Réduction de l'azide. 3.1.4.3. Réduction de l'azide. 3.1.4.4. Réduction de l'halogénure. 3.1.4.5. Désoxygénation.	74 74 75 75 75 76 76 76 76 76 76 76 76 77 77 78 78 79 79 79 80 80 80 80 81
1. Introduction. 2. Méthodes de déprotection. 2. 1. Groupes protecteurs clivés par les solvants basiques. 2.2. Groupes protecteurs clivés par un acide. 2.3. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par élimination réductrice. 2.5. Groupes protecteurs clivés par la lumière. 3. applications de magnésium, zinc et fer en synthèse organique. 3.1. Magnesium. 3.1.1. Le magnésium comme catalyseur en chimie organique. 3.1.1. réaction de Grignard. 3.1.1. réaction de Reforematsky. 3.1.2. Le magnésium comme agent réducteur. 3.1.3. Réduction de la double liaison conjuguée. 3.1.4. Réduction du groupe nitro. 3.1.4. Réduction de l'azide. 3.1.4.3. Réduction de l'azide. 3.1.4.4. Réduction de l'halogénure. 3.1.4.5. Désoxygénation. 3.2. Zinc.	74 74 74 75 75 75 76 76 76 76 76 76 76 76 77 77 77 78 78 78 79 79 79 80 80 80 80 81 82
1. Introduction. 2. Méthodes de déprotection. 2. 1. Groupes protecteurs clivés par les solvants basiques. 2.2. Groupes protecteurs clivés par un acide. 2.3. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par les ions fluorure. 2.4. Groupes protecteurs clivés par les ions fluorure. 2.5. Groupes protecteurs clivés par la lumière. 3. applications de magnésium, zinc et fer en synthèse organique. 3.1. Magnesium. 3.1.1. Le magnésium comme catalyseur en chimie organique. 3.1.1. réaction de Grignard. 3.1.1. réaction de Reforematsky. 3.1.2. Le magnésium comme agent réducteur. 3.1.3. Réduction de la double liaison conjuguée. 3.1.4. Réduction de groupes fonctionnels. 3.1.4. Réduction de l'azide. 3.1.4.3. Réduction de l'azide. 3.1.4.4. Réduction de l'halogénure. 3.1.4.5. Désoxygénation. 3.2.1. Propriété chimique. 3.2.1. Déduction de l'halogénure.	74 74 74 75 75 75 76 76 76 76 76 76 76 77 77 77 78 78 78 79 79 79 80 80 80 80 80 81 82 82
1.Introduction. 2.Méthodes de déprotection. 2.1.Groupes protecteurs clivés par les solvants basiques. 2.2.Groupes protecteurs clivés par les ions fluorure. 2.3.Groupes protecteurs clivés par les ions fluorure. 2.4.Groupes protecteurs clivés par les ions fluorure. 2.5.Groupes protecteurs clivés par la lumière. 3.applications de magnésium, zinc et fer en synthèse organique. 3.1.Magnesium. 3.1.1.Le magnésium comme catalyseur en chimie organique. 3.1.1.1. réaction de Grignard. 3.1.1.2. Réaction de Reforematsky. 3.1.2.Le magnésium comme agent réducteur. 3.1.3. Réduction de la double liaison conjuguée. 3.1.4. Réduction de groupes fonctionnels. 3.1.4.1. Réduction de l'azide. 3.1.4.2. Réduction de l'azide. 3.1.4.3. Réduction de l'halogénure. 3.1.4.4. Réduction de l'halogénure. 3.1.4.5. Désoxygénation. 3.2. Zinc. 3.2.1. Réduction des liaisons multiples.	74 74 74 75 75 75 76 76 76 76 76 76 76 77 77 77 78 78 79 79 79 79 80 80 80 80 80 81 82 82 82
1. Introduction 2. Méthodes de déprotection 2.1. Groupes protecteurs clivés par les solvants basiques 2.2. Groupes protecteurs clivés par les ions fluorure 2.3. Groupes protecteurs clivés par les ions fluorure 2.4. Groupes protecteurs clivés par les ions fluorure 2.5. Groupes protecteurs clivés par la lumière 3. applications de magnésium, zinc et fer en synthèse organique 3.1. Magnesium 3.1. 1. Le magnésium comme catalyseur en chimie organique 3.1. 1. réaction de Grignard 3.1. 2. Réaction de Reforematsky 3.1. 2. Le magnésium comme agent réducteur 3.1. 2. Le magnésium comme agent réducteur 3.1. 2. Réduction de la double liaison conjuguée 3.1. 4. Réduction du groupe nitro 3.1. 4. Réduction de l'azide 3.1. 4. Réduction de l'azide 3.1. 4. Réduction de l'halogénure 3.1. 2. Réduction de l'halogénure 3.1. 4. Réduction de l'halogénure 3.1. 4. Réduction de l'halogénure 3.1. 4. Réduction de l'halogénure 3.2. 1. Propriété chimique	74 74 74 75 75 76 76 76 76 77 77 77 78 78 79 79 79 79 80 80 80 80 81 82 82 82 82 82

3.2.2.4.Réduction de la liaison C-X	83
3.2.2.5.Réduction des liaisons carbone-azote	84
3.2.3. La réaction de Reformatsky	84
3.3. Fer	84
3.3.1.Historique du fer en chimie organométallique et en catalyse homogène	84
3.3.2. Le couplage de Kumada	85
3.3.3. Réaction de couplage aryle-aryle	86
3.3.4. Mécanismes monoélectroniques	86
3.3.5.Cycles catalytiques biélectroniques	87
4. Résultats et discussion.	89
4.1.Introduction	89
4.2. Optimisation de la réaction de désilvlation de l'indole N-protégé	89
4.3. Résultats obtenus.	90
4.4.conclusion	91
4.5.Etude spectrale	94
4.6. Partie expérimentale	98
Chapitre IV : Synthèse stérosélective de bihétérocycles	
1.Généralité de l'imine	103
2.Caractéristiques des N-tert-butanesulfinvlimines	103
3.Synthèse de sulfinylimines et imidates	104
3.1. synthèses de sulfinylimines	104
4. Réactivité	107
1 1 Synthèse des acides a amine phosphariques	107
4.1. Synthèse des actues d-annue phospholiques	107
4.2. Synthèse des amines propargyliques	107
4.5. Synthèse des annues propargynques	100
4.4. Synthèse asymétrique des p-lactames	100
4.5. Synthèse asymétrique des isoindolines	109
4.0. Synthèse asymétrique d'acides 8 x inseturés a amine	110
4.7. Synthese asymetrique u actues p,y-insatures u-animo	110
5 Désultate at discussion	111
5.1 Introduction	114
5.1.1111/000000011	114
5.2. Optimisation de la reaction	115
5.3. Mecanisme reactionnel	110
5.5 Allylation diastáráosálactiva, nar l'indium avac la bromura d'allyla, da	110
sulfinvliminos	117
5 6 Synthàsa at allulation diastáráosálaativa das sulfinyliminas, protágáos par N	11/
S.o.Synthese et anylation diastereoselective des summynnimes protegees par N-	110
57 Synthàsa das aprylamidas, at das indalyldihydronyridin 2 anas	120
5.9 Synthèse des hutyrolaatamas	120
s.o.synthese des Dutyrolactames	121
5.9.conclusion	123
5.7.Etude spectrale	125
5.8.Partie expérimentale	130

I

Introduction générale

Introduction Générale

La chimie des composés azotés est la source privilégiée de nombreux sujets d'étude en chimie organique. L'atome d'azote est présent dans de nombreuses molécules naturelles d'intérêt pharmacologique et de très nombreuses méthodes ont été mises au point pour accéder aux composés azotés, notamment hétérocycliques. Quelques unes d'entre elles ont été explorées, à travers la chimie des indoles.

Cet intérêt est encore stimulé par la mise en évidence des activités pharmacologiques variées que présentent la majorité de ces composés.

Parmi les différentes classes de ces composés, les indoles et les indoles protégés qui jouent un rôle intéressant comme squelette de base pour la synthèse de beaucoup d'autres produits pharmacologiquement et biologiquement actifs où on les trouve comme: ant iinflammatoire, anti-allergique, antifongiques, antibactériens, anticancéreux.

Leur intérêt dans la chimie médicinale est lointain pour venir à une fin. La découverte de nouvelles réactions, capables de former plusieurs liaisons, en une seule étape, avec de bons rendements globaux, tout en respectant l'environnement, est donc devenue un défi important pour le chimiste organicien. Ainsi, les réactions de protéction et déprotéction, qui répondent à l'ensemble de ces critères, jouent un rôle innovateur et font l'objet d'une attention toute particulière.

L'objectif majeur de ces travaux de thèse est lié au réexamen et au développement des nouvelles méthodes de déportation des différents indoles protégés par le groupe silyle en utilisant plusieurs métaux qui sont le magnésium (Mg), le zinc (Zn) et fer (Fe). Notre thèse est ou sindée en quatre chapitres. Le premier chapitre est consacré à une revue bibliographique sur l'intérêt biologiques et les différentes méthodes de synthèse des indoles. En effet, la première partie de ce travail sera consacrée à la synthèse du dérivé des indoles. Le deuxième chapitre concerne la protection des à dérivés de l indole.

Les autres chapitres sont consacrés pour un à autre axe de recherche développé dans notre laboratoire, qui concerne de la déportation des indoles et le quatrième chapitre est dédie à la synthèse des biheterocycles contenant le motif indole et les fragments 5,6dihydropyridin-2(1*H*)-one ou α - méthylène- β -butyrolactam.

Figure 1

Chapitre I: Généralité sur l'indole

Chapitre I: Généralité sur l'indole

1. Définition de l'indole

Le noyau indolique est un composé organique hétéroaromatique très répandu dans la nature. Cette unité structurale est en effet présente dans de très nombreuses molécules bioactives, qu'elles soient naturelles ou bien synthétiques. Ces hétérocycles azotés sont régulièrement utilisés en tant que bloc de synthèse. C'est pour ces raisons que les indoles sont une cible de choix pour les chimistes organiciens¹

L'indole est un composé solide à la température ambiante, qui possède une odeur intense lié de matière fécale. En revanche à faibles concentrations, il possède une odeur fleurie, et est un constituant d'un grand nombre de parfums.

2.Structure de l'indole

Le benzopyrrole, plus connu sous le nom indole est un composé organique hétéroaromatique. Le nom indole est dérivé de l'indigo, un pigment bleu dont la molécule contient deux groupements indolin-3-ones liés en position 2 (Figure2). Sa structure a été élucidée par Bayer en 1869². Il peut être décrit formellement comme étant formé d'un cycle benzénique et d'un cycle pyrrole fusionnés. La nomenclature proposée par Bayer ³ puis utilisée par Fisher ⁴, qui a mis en évidence cette structure cyclique fusionnée en le nommant par le benzo[b]pyrrole.

Figure 02 : Structure de l'indole et de l'indigo

3. Historique de la chimie de l'indole

La chimie de l'indole a commencé au milieu du XIXème siècle avec des recherches approfondies sur le colorant naturel indigo, qui est un colorant bleu violet, depuis XVIème siècle, au début de l'industrie chimique allemande, une recherche a aboutit au développement d'un procédé industriel fiable pour l'indigo, ainsique la première préparation de l'indole en 1866 par distillation de l'oxindole en présence depoussière de Zinc.

Il est bien connu que l'anneau indole est un échafaudage structural privilégié, qui a été trouvé dans une gamme fascinante de nombreux produits naturels, tels que les alcaloïdes, les peptides et les divers composés synthétiques.

Dans les années 50, la découverte majeure de deux médicaments contenant un noyau indole, la réserpine et la vincristine, a en effet contribué grandement à étudier encore plus la chimie de cet hétérocycle.

Alors L'indole et ses dérivés ont occupé une place unique dans la chimie des composés hétérocycliques de l'azote en raison de leurs propriétés biodynamiques variées.

Parmi les 100 médicaments les plus vendus au monde, 8 d'entre eux contiennent un noyau indole. Depuis la réserpine et la vincristine les médicaments, tels que le Taladastatil ou la fluvastatine parmi d'autres, génère un revenu de plus de 3.2 milliards de dollars pour les industries pharmaceutiques et il est bien normal que, dans un tel contexte, cet hétérocycle soit l'un des plus étudiés au monde.

Aujourd'hui, le champ de la recherche sur l'indole, est une multitude de molécules allant de la molécule mère plutôt simple aux plus complexes molécules.

4. Activité biologique

Depuis cette découverte, l'intérêt grandissant pour ce type de molécules s'explique par lefait qu'elles se retrouvent dans la structure de nombreux produits naturels possédant de fortesactivités biologiques. On cite quelques exemples⁵:

Figure 02

5. Méthodes de synthèse

Bien qu'il existe de nombreuses méthodes de synthèse du squelette indole, certaines sont classiques, d'autre plus particulière. La synthèse ainsi que la fonctionnalisation de l'indole,ont été le sujet de nombreuses recherches depuis plus d'un siècle.

5.1.La réaction de Fischer

La méthode la plus couramment utilisée, encore à ce jour, est la synthèse d'indoles de Fischer.Découverte par Herman Emil Fischer en 1883^{6,7}, cette méthode consiste en la cyclisation d'unephénylhydrazone, formée à partir d'aldéhydes ou de cétones, et d'une hydrazine, pour aboutir à l'indole polysubstitué correspondant.

Schéma 01

Cette réaction est catalysée par un acide de Lewis ou un acide de Brønsted. Parmi les méthodes de synthèses d'indoles, la réaction de Fischer reste la plus étudiée⁸. Si l'hydrazone ne peut être synthétisée selon ces conditions, la modification de Buchwald s'avère utile⁹.

Schéma 02

5.2.La réaction de Bischler

La réaction de Bischler, reportée en 1892, implique l'alkylation d'une aniline par un cétohalogénure, suivie d'une fermeture de cycle catalysée par un acide ¹⁰. À l'instar de la réaction de Fischer, de nombreuses méthodes ont été développées afin de rendre la réaction de Bischler accessible à un grand nombre de groupements fonctionnels . La cétone peut être remplacée par un aldéhyde ou un alcyne grâce à l'emploi de ruthénium¹¹ou zinc¹².

Schéma 3

5.3.La réaction de Bartoli

Plus récemment, le groupe du Pr Bartoli a publié une méthode de synthèse simple, à partir de nitrobenzènes et d'un réactif de Grignard, donnant alors accès à des indoles substitués.¹³

5.4.La réaction de Reissert

Schéma 4

La méthode de Reissert permet l'accès aux indoles 2-carbonylés. Cette réaction consiste en la déprotonation en milieu basique de l'*o*-nitrotoluène. Ce substrat va ensuite attaquer une molécule d'oxalate d'éthyle. Des conditions d'hydrogénation sur palladium sur charbon en milieu acide permettent ensuite de réduire le groupement nitro en amine qui permet la formation de l'indole parcyclisation¹⁴.

Schéma 5

5.5.Réaction de Madelung

La réaction de Madelung ne nécessite pas non plus de catalyseurs métalliques. Elle consiste en la cyclisation d'un alkylarylamide substitué en ortho en présence d'un alcoolate. L'indole disubstitué est ensuite formé, par cyclisation, à hautes températures^{15,16}.

Schéma 6

5.6.La réaction intermoléculaire de Larock

La réaction de Larock¹⁷ est une réaction palladocatalysée entre une 2-iodoaniline et un alcyne. Les alcynes dissymétriques conduisent à la formation d'un seul régioisomère. Le groupement le plus encombrant sera toujours celui le plus proche de l'azote, comme dans le cas de la synthèse de Fisher.

Schéma 7

5.7.Réaction de Diels-Alder

Padwa et al.¹⁸ont pu synthétiser par cycloadditions [4+2] de Diels-Alder l'oxoassoanine. Outre la réaction de Diels-Alder développée ici, l'indole peut êtreformé via des cycloadditions 1,3-dipolaires mettant en jeu des nitrones et des allènes.

6.Réactivité

L'indole est un composé à caractère aromatique possédant un système π à 10 électrons. Le doublet électronique porté par l'atome d'azote participe à l'aromaticité du bicycle et contribue ainsi aux déplacements des électrons des formes mésomères. Les contributions des formes limites **C** et **E** sont quasi-inexistantes puisqu'elles affectent la structure aromatique du cycle benzénique, ce qui nécessite une dépense énergétique trop importante¹⁹

7. Caractère acido-basique de l'indole

Contrairement aux amines classiques, l'indole est une base faible puisque le caractère aromatique est perdu en cas de réaction chimique mettant en jeu ce doublet²⁰. L'atome d'hydrogène porté par l'azote possède un faible caractère acide, d'une valeur de pKa égale à 20,95 dans le DMSO ²¹. La déprotonation de l'atome d'azote nécessite donc l'utilisation d'une base forte comme l'hydrure de sodium ou le n-butyllithium, dans un milieu totalement anhydre.

Lorsque le contre-ion associé à l'anion indolique est de type alkalin, le sel a un caractère ionique très marqué et réagit par attaque électrophile sur l'atome d'azote. Lorsque l'amine estprotégée, l'hydrogène en position C2 de l'hétérocycle peut alors être déprotoné avec lenbutyllithium ou le LDA (diisopropylamidure de lithium) et conduit à un produit d'ortholithiation (Schéma 10) qui est un nucléophile très puissant ²².

Schéma 10

7.1.Caractère nucléophile de l'indole

Du fait de son aromaticité, l'indole a un caractère nucléophile marqué. Avec une densité électronique plus importante en position 3, l'indole sera plus réactif dans cette position vis-à-vis des électrophiles (Figure 04). Si on considère l'indole comme une énamine benzylique, c'est la position β par rapport à l'azote qui est la plus nucléophile ²³.

Figure 04

La réaction impliquant l'indole la plus décrite est l'addition nucléophile sur la position 3,qui est la plus nucléophile, et qui sera la plus réactive lors de ces réactions. Au vu de nombreux électrophiles existants, il serait fastidieux de décrire toutes les réactions de substitution nucléophiles en position 3 de l'indole.

Il est admis que lorsque la position 3 est substituée, c'est la position 2 qui devient réactive vis à vis des nucléophiles. Dans le cas contraire, il est nécessaire de discriminer la position 3 en faveur de la position 2 par l'utilisation d'un groupement ortho-directeur sur l'azote.L'indole peut aussi être oxydé, réduit, être réactif dans des réactions de Diels-Alder

8. Réaction vis-à-vis des électrophiles

8.1. Protonation

La protonation de l'indole conduit généralement à la formation d'un 2,3-bis-indole (aussi appelé dimère indoline) vial'addition nucléophile d'un indole sur l'indolium. Si les indoles concernés sont des 3-halogéno indoles, le système va évoluer jusqu'à la réaromatisation complète (Schéma 11)²⁴.

Schéma 11

8.2.Nitration

La nitration de l'indole dans l'acide nitrique dilué conduit au 3-nitroindole. Si le cation indolium se forme avant l'ajout du réactif de nitration, c'est la position 5 qui sera nitrée ²⁵. Le mélange H₂SO₄/HNO₃ conduit à des mélanges complexes de dimères.

8.3.Sulfonation

Katritzky et al ²⁶, ont mis au point une réaction de sulfonation des composés aromatiques et hétéro aromatiques dans laquelle l'indole est le plus réactif. La sulfonation se fait en position 3 par le trioxyde de sulfure et aboutit à de l'acide 3-indoly lsulfonique.

Schéma 13

8.4.Sulfonylation

Zheng et al ²⁷, ont développé une méthode de sulfonylation du *N*-méthyl indole dans des conditions douces en utilisant la lumière et un catalyseur à base de Ruthénium.

Schéma 14

9.Halogénation

D'une manière générale, l'halogénation fournit des dérivés halogénés de l'indole en position 3, avec un peu d'isomères en position 2. Ce sont des composés instables.

9.1.Halogénation en position 3

9.1.1.Chloration

La chloration du 2-aryl-5,6-dicarbonitrile-1-hydroxyindole par un excès de *N*chlorosuccinimide, en présence d'acide acétique glaciale et une quantité catalytique de H₂O₂,donne l'intermédiaire A. Ce dernier, par traitement avec la pipéridine et l'éthanol donne le produit chloré désiré ²⁸.

Schéma 15

9.1.2.Bromation

L'halogénation directe des indoles en absence d'un métal de transition est rarement observée. Récemment, Xiang et al ²⁹, ont utilisé TBAB et KBr comme source d'halogénation.

Schéma 16

9.1.3.Iodation

L'équipe de Gribblea développée une méthode de synthèse des 3-iodoindoles afin de synthétiser le lithien correspondant. Pour cela, ils ont protégé l'azote par un groupement

Chapitre I :

phénylsulfonyle, et ainsi stabiliser le produit halogéné, ils ont utilisé cette méthode pour la synthèse d'un dérivé de l'ellipticine³⁰.

Schéma 17

10.Alkylation

10.1.Alkylation de la position 3

L'alkylation de la position 3 via l'utilisation d'un composé organométallique de l'indole ne peut s'effectuer que dans le cas d'indoles non protégés. En effet, la formation de l'espècemétallée ne peut se faire qu'après déprotonation de la position 1 par une base forte. La déprotonation de l'indole conduit à un dérivé *N*-métallé qui réagira vis-à-vis des électrophiles avec une réactivité comparable à celle d'un anion allylique³¹.

Schéma 18

10.2. Réaction avec des imines et des sels d'iminium

La réaction illustrant le mieux la réactivité des noyaux indoliques vis-à-vis de la double liaison carbone-azote est la réaction de Mannich.³²Ele consiste à faire réagir un noyau indolique avec une amine en présence d'un aldéhyde en milieu acide. Ainsi, la réaction de l'indole avec la diméthylamine et le para formaldéhyde en milieu acide a permis de préparer la gramine ³³.

Toutefois, peu de réactions de Mannich avec des amines primaires et des aldéhydes autres que le formaldéhyde ont été décrites. Elles conduisent en effet à des mélanges de produits. Le domaine d'application de cette transformation est donc limité.³⁴Des variantes ont été développées.³⁵Dans cette courte présentation, nous limiterons à de récents exemples. La condensation de noyaux indoliques avec des imines, en présence d'un agent d'activation, peut conduire soit à des amines indoliques, soit à des 3,3'-diindolylalcanes.

En 2003, Carter et ses collaborateurs ont décrit l'addition du *N*-méthylindole sur un chlorhydrate d'iminium en présence d'un catalyseur chiral.³⁶Ils obtiennent ainsi une amine optiquement active avec un excellent rendement de 98%

Schéma 19

En 2004, Fukuyama et coll. ont décrit un travail d'additions nucléophiles sur une imino lactone chirale dans le but d'accéder à des dérivés de type α -arylglycine.³⁷L'imine est activée par l'acide trifluoro acétique. Dans l'exemple impliquant l'indole, l'adduit correspondant est obtenu avec un excellent rendement de manière totalement diastéréosélective.

Wang, a publié en 2005 une nouvelle voie d'accès aux 3,3'-diindolylalcanes, par réaction de l'indole avec diverses N-tert-butylsulfinylimines en présence de KHSO4, d'amberlyst ou de diiode.³⁸La réaction passe intermédiairement par un sel d'azafulvénum, sur lequel s'additionne un deuxième noyau indolique

Schéma 21

10.3.Réaction avec des oximes

Heydari et ses collaborateurs³⁹ont très récemment développé la première et la seule réaction décrite entre des noyaux indoliques et des oximes. Elle peut être assimilée à une réactionde Mannich dans laquelle l'indole jouerait le rôle du réducteur. Dans cette trans formationmulti-composants, un aldéhyde, l'hydroxylamine *O*-silylée, l'indole et du chlorure detriméthyl silyle sont mélangés dans une solution 5M de perchlorate de lithium dans l'éther diéthylique. L'oxime intermédiairement obtenue est alors activée par le chlorure detriméthyl silyle et piégée par l'indole. Les auteurs ont ainsi préparé une série d'hydroxylamines indoliques *O*-silylées avec d'excellents rendements

Notons que ces chimistes n'ont travaillé qu'avec des aldéhydes aliphatiques peu fonctionnalisés. De plus, seule la réaction avec l'indole non substitué a été étudiée.

10.4. Réaction avec des nitrones

Du fait de la présence d'un oxygène électronégatif et de la charge positive portée par l'azote, la double liaison carbone-azote des nitrones est plus polarisée que celle des imines, rendant le carbone plus électrophile. Les nitrones sont donc en général plus réactives que les imines correspondantes dans les réactions de substitution électrophile aromatique. Il n'existe cependant que très peu d'exemples reportés de ce type de réaction.

En 1982, Banerji et Mukhopadhyay⁴⁰ont condensé des *N*-phénylnitrones dérivées d'aldéhydes aromatiques avec l'indole, le 2-méthyl indole et le 2-phényl indole au reflux du méthanol. Cette étude avait pour but de former les adduits correspondants aux cyclisations1,3-dipolaires entre les noyaux indoliques et les nitrones. Ils ont obtenus dans tous les cas les3,3'-diindolylalcanes correspondants. L'hypothèse émise a été que l'hydroxylamine indolique intermédiairement obtenue générait le sel d'azafulvénium qui, après départ d'une molécule d'arylhydroxylamine, subissait ensuite l'addition 1,4 d'un deuxième noyau indolique

Depuis 1995, notre équipe s'intéresse aux réactions des noyaux indoliques avec les nitrones dans le but d'accéder à des *N*-hydroxylamines indoliques (I).⁴¹Au cours des études préliminaires, il a été constaté qu'il était nécessaire d'ajouter un agent d'activation dans lemilieu réactionnel pour observer une réaction entre une nitrone et un noyau indolique. De plus,deux classes de produits ont été obtenues en fonction de l'agent d'activation choisi.

- Quand la nitrone est activée par de l'acide chlorhydrique, généré in situ par réaction entre le méthanol et le chlorure d'acétyle anhydre, ce sont les *N*-hydroxylamines indoliques qui sont obtenues.

 Quand la nitrone est activée par du chlorure de triméthylsilyle dans le dichlorométhane en présence de deux équivalents de composé indolique, les 3,3'-diindolylalcanes symétriques (II)sont obtenus.

Schéma 22

11.Conclusion

Dans ce chapitre nous avons donné un aperçu bibliographique sur la synthèse des indoles et leur réactivité. Ceci va nous permettre par la suite de préparer plusieurs composés dérivés de l'indole.

Résultats et discussion

12.Résultats et discussion

Synthèse des dérivés de la Gramine

D'après les propriétés et la réactivité des indoles que nous avons développées précédemment, il paraît évident que les indoles puissent être obtenus via la réaction entre un indole et un composé à double liaison C=N.

La réaction la plus connue des indoles vis-à-vis des doubles liaisons C=N est la réaction de Mannich, mettant en jeu une addition nucléophile d'indole sur un ion iminium formé par addition d'une amine sur une cétone.

Schéma 23

Mécanisme réactionnel

La polarisation de la liaison C=N induit un caractère électrophile, tandis que la conjugaison du doublet libre de l'azote avec cette liaison confère un caractère nucléophile. Ces deux types de réactivité ont été exploités suivant les conditions réactionnelles.

Schéma 24

L'attaque nucléophile du noyau indole qui agit par la position 3 sous l'impulsion du doublet libre de l'azote.

Mais comme nous sommes toujours en milieu acide, l'azote ne reste pas libre et se protone directement. Pour cela on procède à l'alkylation pour neutraliser le proton acide.

Préparation des produits de Knoevenagel

La condensation de Knoevenagelest une réaction très générale qui a lieu entre un composé à méthylène activé et un aldéhyde (ou une cétone) en présence de base, qui conduit à un alcène fonctionnalisé. Afin d'éviter la réaction d'énolisation concurrente, le composé carbonylé ne doit pas posséder d'atome d'hydrogène sur l'atome de carbone en du carbonyle.

Cette réaction est d'une grande importance en synthèse organique car elle permet la formation d'une nouvelle double liaison carbone-carbone induisant ainsi plusieurs possibilités de réactivité.La condensation du 1*H*-indole-2-carbaldéhyde avec un composé à méthylène activé (malononitrile ou benzoy lacétate d'éthyle) dans l'éthanol, donne l'oléfine substituée

correspondante. La réaction se déroule à reflux, et permet d'obtenir les produits de condensation pratiquement purs, après une simple filtration et lavage à l'éthanol glacé.

Mécanisme réactionnel

Schéma 27

12.1.Résultats obtenus

Les produits de cette série sont rassemblés dans le tableau suivant:

Entrée	Produits	Temps (h)	Tf(°C)	Rdt (%)
1		10	141-142	75
2	TZ	10	137-138	95
3	TZ	10	134-135	85

4	N N H	10	131-132	94
5	CN CN CN	02	219-221	68
Etude spectrale

12.2.Etude spectrale

Les produits préparés ont été identifiés par les méthodes spectroscopiques usuelles(RMN ¹H, ¹³C)

$\Rightarrow \mathbf{RMN}^{1}\mathbf{H}$

1H-indol-3yl)-N-N diéthylméthanamine (1)

L'analyse du spectre RMN ¹H montre:

- Un singulet large à 8.49ppm d'intégration 1H correspond au NH de l'indole.

Dans la zone aromatique on observe trois signaux : un doublet à 7.69 ppm correspond au proton H4, un autre doublet dédoublé à 7.32ppm correspond au H7, et un multiplet à [7.29-7.14] ppm d'intégration 2H attribuable aux H3, H5, H6.

- Un signal à champ magnétique moyen à 3.94 ppm sous forme d'un singulet d'intégration 2H attribuable au proton du groupement CH₂N.

- Un autre signal sous forme d'un quadruplet d'intégration 4H correspondant à $(CH_3CH_2)_2$ avec un déplacement chimique 2.62 ppm.

- Par ailleurs, le signal à champ magnétique fort sous forme d'un triplet d'intégration 6H à 1.19 ppm caractéristique aux groupements méthyles $(CH_3CH_2)_2$.

1-(1*H*-indol-3-yl)-*N*, *N*-diméthylméthanamine (2)

Sur le spectre RMN proton on distingue un singulet large à 8.8 ppm d'intégration 1H qui correspond au groupement NH indolique.Les protons aromatiques sortent entre 7.75 et 7.10 ppm.Un signal singulet d'intégration 1H est attribué au proton en position 2 de l'indole, et un singulet du groupement méthylique sort à 3.71 ppm, tandis que les deux groupements CH₃apparaissent à 2.36 ppm.

3-(Pipéridin-1-ylméthyl)-1*H*-indole (3)

L'analyse du spectre RMN ¹H présente les mêmes caractéristiques spectrales qu'avec le produit précédent à la seule différence des cinq groupes méthylènes du cycle pipéridine qui résonnent dans la zone [2.21- 1.62] ppm.

3-(Morpholin-4-ylméthyl)-1*H*-indole (4)

Le spectre RMN proton de ce produit présente un singulet large à 8.41 ppm d'intégration 1H correspond au NH indolique.Les protons aromatiques sortent dans l'intervalle [7.81-7.07] ppm.Par ailleurs, un singulet du groupement méthylique sort à 3.76 ppm, et les quatre groupements CH_2 du cycle pyrrolidine apparaissent à 2.75 et 2.63 ppm respectivement.

3-(3-(2,2-Dicyanoethenyl)-1*H*-indole (5)

Le spectre RMN ¹H montre la présence d'un singulet à 12.69 ppm d'intégration 1H correspond au proton oléfinique (HC=C). Les protons aromatiques apparaissent entre 7.58 et 7.25 ppm,

♦ RMN¹³C

(1*H*-indol-3yl)-*N*-*N* diéthylméthanamine (1)

On observesur le spectre RMN ¹³C les pics suivants:

-Les carbones quaternaires sortent entre [136.2-123.9] ppm.

-Les autres picsqui résonnent entre [122.7-111.2] ppm sont caractéristiques des goupements CH du cycle aromatique.

-Un autre pic à 47.7 ppm est attribuéau carbone du groupement<u>CH2N-(CH2CH3)2</u>.

-Un pic à 46.5 ppm attribuable au carbone du groupement $N-(\underline{C}H_2CH_3)_2$.

-Un pic à11.7 ppm attribuable au carbone du groupement $N-(CH_2CH_3)_2$.

1-(1H-indol-3-yl)-N, N-diméthylméthanamine (2)

Le spectre RMN ¹³C du composé 1-(1*H*-indol-3-yl)-*N*, diméthylméthanamine présente dans la zone du champ faible deux pics à 136.2, 127.9 ppm corresponds aux deux carbones quaternaires C3aet C7a. Les autres carbones apparaissent comme suit:

-Les carbones hybridés sp₂C₂, C₃, C₄, C₅, C₆ et apparaissent à 124.1, 121.8, 119.4, 119.1, 127.8 et 111.2 ppm respectivement.

- Finalement, deux pics à 45.4 et 45.3 ppm corresponds aux CH₂-N(CH₃)₂, et les deux (CH₃) respectivement.

3-(Pipéridin-1-ylméthyl)-1*H*-indole (3)

Le spectre RMN ¹³C de ce produit présente la même empreinte que le précédent à la différence que les cinq carbones du cycle pipéridine résonnent entre 54.4 et 24.4 ppm.

3-(Morpholin-4-ylméthyl)-1H-indole(4)

Le carbone du groupe CH_2 sort à 29.0 ppm et les carbones du cycle morpholine apparaissent à [67.1 -53.6] ppm.

3-(3-(2,2-Dicyanoethenyl)-1*H*-indole (5)

Le spectre de ce composé montre le pic attendu pour la fonction nitrile CN à 115.9 ppm, les autres carbones aromatiques apparaissent dans l'intervalle [152.5 -116.0] ppm.

Partie expérimentale

13.Partie expérimentale Synthèse du dérivé de la gramine Mode opératoire général

Dans un ballon tricol on ajoute à l'amine (diméthylamine, diéthylamine, pipéridine oupyrrolidine) (0.066 mol), l'acide acétique glacial (3.84g, 0.064mol) goutte à goutte, cette addition est réalisée dans un bain de glace telle que la température ne dépasse pas 5°C, puis on ajoute à 5 °C (2.20 g, 0.073 mol) de formaldéhyde (solution à 40%). On agite légèrement puis on verse dans le mélange réactionnel (3 g, 0.026 mol) d'indole. On continue l'agitation jusqu'à la dissolution complète de l'indole. Le mélange réactionnel est abandonné pendant 10 heures sous vive agitation puis on ajoute lentement1.79 g de NaOH dans 19.23 mL d'eau. La suspension obtenue est refroidie dans un bain de glace pendant 2 h. On filtre, on récupère le solide puis on le traite à l'éther. La solution éthérée est lavée (2 x 10 mL) à l'eau puis séchée sur sulfate de sodium. Le solvant est évaporé à sec sous pression réduite. Puis le résidu est recristallisé dans le mélange (acétone/H₂O)

(1*H*-indol-3yl)-*N*-*N* diéthylméthanamine (1)

A partir de 3 g de l'indole, 2.75 mL de formaldéhyde et 6.82 mL de diéthylamine, on obtient selon le mode opératoire général, 1.18g de (1*H*-indol-3yl)-*N*-*N*diéthylméthanamine. Rendement: 75% Point de fusion: 141-142 °C Aspect: cristaux blancs IR (KBr): v^{-3} 049, 2796, 1450, 1292, 1184, 1111, 1040, 965 cm⁻¹ RMN ¹H (250 MHz, CDCl₃) δ = 8.81 (br s,1 H), 7.79 (dd, *J* = 7.3, 1.2 Hz, 1 H), 7.40 (dd, *J* = 7.1, 1.1 Hz, 1 H), 7.18-7.07 (m, 2 H), 7.02 (s, 1 H), 3.89 (s,2 H), 2.69 (q, 4 H), 1.21 (t, 6 H). RMN ¹³C (62.9 MHz, CDCl₃) δ = 136.1 (Cq_{7a}), 128.1 (Cq_{3a}), 123.9 (CH), 122.7 (CH), 119.6

(CH), 119.3 (CH), 112.6 (CH), 111.2 (Cq), 47.7 (CH₂), 46.5 (2CH₂), 11.7 (2CH₃).

1-(1H-indol-3-yl)-N,N-diméthylméthanamine (2)

A partir de 3 g de l'indole, 2.75 mL de formaldéhyde et 3.3 mL de diméthylamine, on obtient selon le mode opératoire général, 3.76 g de**1-(1***H***-indol-3-yl)-***N***,***N***-diméthylméthanamine.**

Rendement: 95%

Point de fusion: 137-138 °C

Aspect: cristaux blancs

IR (KBr): **v**⁻ 3100, 2992, 2855, 1546, 1371, 1239, 1096, 992 cm⁻¹

RMN ¹**H** (**250 MHz, CDCl**₃) δ = 8.84 (br s, 1 H), 7.75 (dd, *J* = 7.4, 1.1 Hz, 1 H), 7.34 (dd, *J* = 7.1, 1.05 Hz, 1 H), 7.18-7.10 (m, 2 H), 7.07 (s, 1 H), 3.71 (s, 2 H), 2.36 (s, 6 H).

RMN ¹³**C (62.9 MHz, CDCl₃)** δ = 136.2 (Cq_{7a}), 127.9 (Cq_{3a}), 124.1 (CH), 121.8 (CH), 119.4 (CH), 119.1 (CH), 112.7 (CH), 111.2 (Cq), 45.4 (CH₂), 45.3 (2CH₃).

3-(Morpholin-4-ylméthyl)-1*H*-indole (3)

A partir de 3 g de l'indole, 2.75 mLde formaldéhyde et 6.5 mL de pyrrolidine, on obtient selon le mode opératoire général, 5.3g g de **3-(morpholin-4-ylmethyl)-1***H***-indole**.

Rendement: 85 %

Point de fusion: 135 °C

Aspect: poudre blanche.

IR (KBr): *v*⁻ 3443, 3068, 1485, 1352, 1276, 1116, 1026, 895 cm⁻¹

RMN ¹**H** (250 MHz, CDCl₃) δ = 8.41 (br s, 1 H), 7.81 (dd, *J* = 7.5, 1.1 Hz, 1 H), 7.38 (dd, *J* = 8.0, 1.15 Hz, 1 H), 7.25-7.07 (m, 3 H), 3.78-3.68 (m, 6 H), 2.75-2.63 (m, 4 H).

RMN ¹³**C (62.9 MHz, CDCl₃)** δ=136.3 (Cq_{7a}), 127.9 (Cq_{3a}), 123.9 (CH), 122.1 (CH), 120.4 (CH), 119.6 (CH), 112.1 (CH), 111.2 (Cq), 67.1 (CH₂), 54.1 (2CH₂), 53.6 (2CH₂).

3-(Pipéridin-1-ylméthyl)-1H-indole (4)

A partir de 3 g de l'indole, 2.75 mLde formaldéhyde et 6.5 mL de pipéridine, on obtient selon le mode opératoire général, 5.4 g de **3-(pipéridin-1-ylméthyl)-1***H***-indole**.

Rendement: 94 %

Point de fusion: 131-132 °C

Aspect: poudre blanche

IR (KBr): $v^{-3100, 2936, 2800, 1541, 1368, 1322, 1248, 1172, 983 \text{ cm}^{-1}$ RMN ¹H (250 MHz, CDCl₃) $\delta = 8.81$ (br s, 1 H), 7.74 (dd, J = 8.1, 1.2 Hz, 1 H), 7.35 (dd, J = 7.2, 1.3 Hz, 1 H), 7.30-7.10 (m, 3 H), 3.77 (s, 2 H), 2.60-2.50 (m, 4 H), 1.48-1.41 (m, 6 H) RMN ¹³C (62.9 MHz, CDCl₃) $\delta = 136.1$ (Cq_{7a}), 128.4 (Cq_{3a}), 124.2 (CH), 121.7 (CH), 119.4 (CH), 119.3 (CH), 112.1 (C), 111.2 (Cq), 54.4 (CH₂), 53.8 (CH₂), 26.1 (CH₂), 24.4 (CH₂).

Préparation du 3-(2,2-dicyanoéthényl)-1H-indole à partir du 1H-indole-3-carbaldéhyde

A une solution de 1H-indole-3-carbaldéhyde (0,435 g, 3,0 mmol) dans l'ethanol (7,0 mL) on ajoute successivement du malononitrile (0,198 g, 0,166 mL, 3,0 mmol), de l'acide acétique glacial (0,006 g, 0,007 mL, 0,1 mol) et de la pipéridine (0,130 g, 0,15 mL, 1,5 mmol). Le mélange réactionnel a été laissé sous agitation à 78 °C pendant 2h. En suite, le mélange a été refroidi à la température ambiante, et le solide a été filtré et recristallisé dans l'éthanol pour obtenir un composé pur.

3-(3-(2,2-Dicyanoéthenyl)-1H-indole (5)

A partir de 0,435 g1H-indole-3-carbaldéhyde, et 0,198 g du malononitrile, on obtient selon le mode opératoire général, 0.48g de **3-(3-(2,2-dicyanoethenyl)-1***H***-indole. Rendement:** 68% **Point de fusion:** 219-221 °C

Aspect: poudre blanche.

IR (KBr): *v*⁻ 3266, 3050, 3012, 2217, 1562, 1496, 1434, 1342, 1226, 1145, 798, 728 cm⁻¹

RMN ¹**H (250 MHz, CDCl₃)** δ = 12.69 (br s, 1 H), 8.68 (s, 1 H), 8.52 (s, 1H), 8.04-8.02 (m, 1 H), 7.58-7.56 (m, 1 H), 7.33-7.25 (m, 2 H).

RMN ¹³**C (62.9 MHz, CDCl₃)** δ=152.5 (CH), 136.2 (Cq_{7a}), 133.3 (CH), 126.7 (Cq_{3a}), 123.9 (CH), 122.6 (CH), 119.0 (CH), 116.0 (Cq), 115.9 (Cq), 113.1 (CH), 112.0 (Cq), 69.2 (Cq).

Chapitre II: La chimie des groupements protecteurs

Chapitre II: La chimie des groupements protecteurs

1. Généralités

La synthèse organique est certainement le domaine clé de la chimie du vivant, et le plus envoûtant par ses perspectives sans fin de création. C'est la discipline qui favorise la découverte de nouvelles molécules potentiellement actives. Généralement elle est basée sur l'application d'une ou plusieurs réactions successives. Elle possède un certain nombre de possibilité selon le choix de la réaction, la méthode appropriée, et aussi selon l'efficacité des réactifs disponibles.⁴²

Généralement le problème posé en synthèse organique, est que certains groupements fonctionnels ne sont pas contrôlables, ils peuvent interférer dans des réactions éventuelles ce qui gêne la synthèse initialement prévue. Ces problèmes peuvent être évités par une modification par rapport à l'ordre des réactions, où en masquant temporairement le groupement intervenant.

Quand une réaction chimique doit être effectuée sélectivement sur un emplacement réactif dans un composé multifonctionnel, d'autres groupements fonctionnels doivent être temporairement bloqués. Beaucoup de groupements protecteurs ont été développés à cette fin.

La synthèse organique n'a pas encore mûri au point où les groupements protecteurs ne sontpas nécessaires pour la synthèse des produits naturels et synthétiques. C'est pour cette raison,ces dernières années plusieurs ouvrages et publications sont consacrés à la chimie des groupements protecteurs.

Philip J. Kocieński a dit dans son livre, *Protecting Groups*, que les groupements protecteurs sont devenus une voie que nous ne pouvons pas éluder, nous continuerons à dépendre d'elles pour l'avenir et nous pouvons admirer l'ingéniosité qui est investie dans leur conception, donc la protection n'est pas un principe mais c'est un avantage.

Dans ce chapitre nous allons présenter un aperçu bibliographique sur les différentes méthodes appropriées utilisées pour la protection des différents groupements fonctionnels.

2. Protection

Lors d'une synthèse multi-étapes, il est courant de se retrouver confronté à des problèmes d'orthogonalité, lorsque plusieurs groupements fonctionnels peuvent réagir dans la même réaction. Le schéma suivant présente le besoin de réduire la fonction ester et conserver la fonction carbonyle en présence d'un réducteur fort.

Schéma 28

Tant que la fonction cétone est plus réactive que la fonction ester, l'addition directe du $LiAlH_4$ sur le β -céto-ester conduit à la réduction de la fonction cétone au lieu de la fonction ester

Il faut donc transformer le groupement fonctionnel carbonyle en groupement inerte visà-vis du LiAlH4, cette étape s'appelle une **protection**.

Schéma 30

La première étape consiste à la protection de la fonction carbonyle qui est la plus réactive(cétone), pour la rendre moins active vis-à-vis de la réduction. Le LiAlH4 agit ensuite surl'ester cible, finalement la déprotection de la fonction acétal est réalisée par une hydrolyse acide.⁴³

La protection est l'une des méthodes les plus importantes en chimie organique, elle est basée sur la modification ou le blocage temporaire d'une ou plusieurs fonctions dans un composé polyfonctionnel d'une manière sélective pour exploiter au maximum l'orthogonalité autrement dit la chimio ou/et la régiosélectivité.

Schéma 31

2.1.Protection régiosélective:

Deux fonctions, à première vue identiques, peuvent être protégées par le même agent de protection. Cependant, à cause de l'encombrement d'une des deux fonctions, la protection ne pourra pas avoir lieu sur les deux fonctions, on parle alors de protection régiosélective.

2.2. Protection chimiosélective:

Lorsque deux fonctions organiques ou plus se trouvent sur la même molécule, la protection chimiosélective s'impose, ce qui nous oblige à choisir un bon groupement protecteur et les bonnes conditions expérimentales.

Figure 05

3. Caractéristiques d'un bon groupement protecteur

Un groupe fonctionnel doit respecter 7 critères⁵⁹ afin d'être considéré comme un bon groupe protecteur, empêchant ainsi sa destruction ou inhibant sa réactivité lors d'une réaction chimique:

- Facile à greffer sur la fonction à protéger d'une part et facile à cliver d'autre part afin de retrouver la fonction originale avec des bons rendements.

- Stable dans les conditions de réactions ultérieures projetées.
- Orthogonale vis-à-vis des autres groupements protecteurs.
- Facile à caractériser par les méthodes d'analyse (RMN, SM, IR, etc...).
- Stable vis-à-vis les techniques de séparation et de purification comme la chromatographie.
- Le coût de la réaction de protection et de déprotection d'un groupement ne doit pas être trop élevé.
- Le produit de la déprotection doit être facile à séparer du résidu de la protection.

4.Les principaux groupements protecteurs utilisés en synthèse organique

Les principaux groupements protecteurs utilisés en synthèse organique vis-à-vis des fonctions (hydroxyles, amines, carboxyles) sont: Me (a), Ac (b), Boc (c), Bn (d), Bz (e), Fmoc(f), Cbz (Z) (g), Tr (h), R3Si (i),...etc(Figure 6).

Figure 06

5. Rôle des groupements protecteurs en synthèse organique

Lorsqu'une réaction chimique doit être réalisée sélectivement sur un site réactif dans un composé multifonctionnel, les autres sites réactifs doivent être temporairement bloqués. De nombreux. groupe protecteur doit répondre à un certain nombre d'exigences. Il doit réagir sélectivement et avec un bon rendement pour donner un substrat protégé qui est stable aux réactions projetées. Le groupe protecteur doit pouvoir être éliminé sélectivement et avec un bon rendement disponibles, de préférence non toxiques, qui n'attaquent pas le groupe fonctionnel régénéré.

Le groupe protecteur doit former un dérivé (sans génération de nouveaux centres stéréogéniques) qui peut être facilement séparé des produits secondaires associés à sa formation ou à son utilisation.clivage .Le groupe protecteur doit avoir un minimum de fonctionnalités supplémentaires pour éviter d'autres sites de réaction.

6.Protection de la fonction alcool

La protection et la déprotection des alcools ont fait l'objet d'une attention particulière ces dernières années, non seulement en raison de leur importance fondamentale, mais aussi pour leur rôle dans la synthèse multi-étapes. Une grande sélectivité est fréquemment demandée pour un groupe hydroxy dans la chimie des polyols, ainsi que la simplicité et la douceur de la préparation et de l'élimination de la fonction spécifique. De plus, même lorsqu'un substrat protège et déprotège efficacement, la réaction doit souvent être refroidie et les produits doivent être isolés. du mélange réactionnel et purifiés par des méthodes appropriées.. Pour les substrats particulièrement, ces opérations peuvent provoquer une nouvelle dégradation. Dans ces situations, l'utilisation de catalyseurs solides permet de réaliser toutes les opérations décrites ci-dessus de manière plus efficace.

6.1. Forme Esters

6.1.1Esters d'acétate

L'acétylation des alcools est une réaction importante pour le chimiste organique⁴⁴ de synthèse. Elle est fréquemment utilisée pour la dérivatisation et la caractérisation des alcools ainsi que pour des transformations ultérieures L'acétylation d'alcools et de phénols⁴⁵ a été réalisée à température ambiante en utilisant l'anhydride acétique comme réactif d'acylation. en présence de montmorillonites KSF et K10. Les groupes hydroxy primaires réagissent de manière préférentielle en présence de groupes secondaires (bien qu'une petite quantité de produit diacétylé soit obtenue).

Schéma 32

6.1.2. Esters de benzoate (Bz)

La migration des acyles est moins problématique avec les benzoates et elle est encore plus réduite avec les pméthoxybenzoates. Néanmoins, la migration est observée lorsqu'il y a une force motrice, comme le montre la migration du benzoate en direction du N-acétyl neuronal⁴⁶. Dans ce cas, la migration était thermodynamiquement conduite par la plus grande stabilité du benzoate équatorial dans le produit. Cependant, dans des conditions acides (25 % de HF dans l'acétonitrile, 50 °C, 24 h), d'un benzoyle axial vers un hydroxyle équatorial adjacent sur un cycle cyclohexane ne se produit pas.La différence de vitesse de solvolyse du benzoate et de l'acétate est suffisante pour permettre l'élimination sélective des acétates en présence d'un solvant. L'élimination sélective des acétates en présence de benzoates. Les conditions typiques comprennent le magnésium méthylate dans le méthanol .La substitution du fluor sur les groupes benzoyle augmente la labilité hydrolytique.

Schéma 33

7.Les éthers silylés

Les éthers silylés jouent un rôle très important dans la protection d'hydroxyles.⁴⁷Une variété de méthodes de protection/déprotection a été développée ces dernières années.⁴⁸ La silylation d'hydroxyle des alcools et des phénols a une influence sur la solubilité dans les solvants non polaires aussi bien que la stabilité thermique pour des fins d'analyse chromatographique.⁴⁹ Généralement, la préparation des silyles éthers est effectuée par l'action des alcools sur les silylchlorides comme le TMSCI ou des disilazanes comme le HMDS dans des conditions basiques.

7.1. Le triméthylsilyle éther (OTMS)

L'hexaméthyldisilazane (HMDS) est l'agent le plus utilisé pour la triméthylsilylation des hydroxyles d'alcools et phénols,⁵⁰ c'est due au facilité d'isolement de l'éther résultant et puisque le seul produit secondaire est l'ammoniaque. L'activation de L'HMDS requiert l'utilisation de catalyseurs bien appropriés.

Introduction

Une méthode efficace et chimiosélective du triméthylsilylation des alcools et phénols a été reportée par Yadegari et *al* ⁵¹utilisant un catalyseur régénérable [TiIV(salophen)(OTf)2] **27** (Schéma 33).

Schéma 34

Clivage

Habibi et *al*⁵²ont développé un protocole de déprotection de TMS sous l'action de dodécatangestocobaltate de potassium tri-hydraté K₅CoW₁₂O_{40.3}H₂O (schéma 34).

Schéma 35

7.2. Éthers de triéthylsilyle (TES)

Formation

Trois des procédures les plus courantes pour la formation d'éthers TES ont été sélectionnées pour leur valeur de préparation à grande échelle.. Les éthers de triéthylsilyle sont préparés par la méthode suivante réaction de Sl'alcool avec le chlorotriéthylsilane en présence d'une quantité catalytique d'imidazole . ou de DMAP.17 Le triflate de triéthylsilyle en présence de pyridine ou de 2,6-lutidine⁵³ peut être utilisé pour protéger les β -

hydroxyaldéhy des cétones⁵⁴, et les esters. Le chlorotriéthylsilane et le triflate de triéthylsilyle sont disponibles dans le commerce

Schéma 36

Clivage

Dans une synthèse de l'antibiotique ionophore polyéther Salinomycine, un éther TES primairea été clivé de préférence à un éther TES tertiaire en utilisant un complexe HF. pyridine à température ambiante⁵⁵.

Schéma 36

7.3. Éthers tert-butyldiméthylsilyliques (TBS)

Formation

L'encombrement stérique du groupe tert-butyle diminue considérablement la vitesse de silylation avec le chlorure de Tert-Butyldiméthylsilyle (TBSCl, mp 86-89 °C, bp 125 °C) de sorte que les taux pratiques sont mieux obtenus par l'addition d'activateurs basiques tels que les imidazoles ou le DMAP⁵⁶ et par l'utilisation de solvants aprotiques dipolaires. l'utilisation de solvants aprotiques dipolaires tels que le DMF. Les alcools primaires⁵⁷ réagissent beaucoup plus rapidement que les que les alcools secondaires, mais les alcools tertiaires sont inertes.

Clivage

Au cours d'une synthèse de dérivés sensibles de la Prostaglondine D .n'ont pas pu déprotéger un éther bis-TBS (schéma II.9) en utilisant de l'acide acétique aqueux de la manière habituelle, mais une hydrolyse réussie a été réalisée en utilisant du HF aqueux dans de l'acétonitrile. dans des conditions qui sont maintenant largement utilisées pour la synthèse.. L'HF (pKa 3,45) n'est que légèrement plus acide que l'acide formique (pKa 3.75) et ces conditions sont assez douces pour tolérer les acétals, sters et les époxydes^{58,59}.

Schéma 38

7.4. Éther tert-butyldiphénylsilylique (OTBDPS)

Formation

Le TBDPS est introduit par la réaction d'un hydroxyle aliphatique avec le TBDPSClen milieu pyridinique, d'autres réactifs sont utilisés en fonction des groupes fonctionnels de la molécule. L'addition de AgNO₃ augmente la vitesse de la réaction de silylation de l'alcool le plus acide.

Clivage

De tels éthers sont généralement clivés dans un milieu basique.⁶⁰ Le TBDPS est clivé sélectivement par le fluorure de tétra-butylammonium⁶¹ (schéma 40)

7.6. Éthers tert-butyliques

Formation

La méthode traditionnelle de préparation des éthers tert-butyliques consiste à faire réagir un fort excès d'isobutène avec une solution de l'alcool dans le dichlorométhane en présence d'acide sulfurique concentré.Cette méthode est efficace pour protéger les fonctions hydroxyle des chaînes latérales de la sérine, de la thréonine et de la tyrosine (schéma 41).^{62,63} Une méthode plus pratique impliquant l'utilisation de la résine Amberlyst H-15 dans l'hexane comme catalyseur acide mérite une plus grande attention.

Clivage

Une large gamme d'acides de Lewis a été employée pour cliver les éthers tertbutyliques, mais seule une petite sélection de ceux utilisés dans diverses synthèses de produits naturels sera citée ici.Ainsi,10 % d'anhydride a été utilisé pour cliver l'éther tert-butylique avec un bon rendement et donner l'acétate correspondant. Le titane a également été utilisé pour donner l'alcool. Au cours d'une synthèse de1 α ,25-Dihydroxy-vitamine D , un groupe de Hofmann-LaRoche⁶⁴ a trouvé queiodotriméthylsilane accomplissait la déprotection d'un éther tert-butylique en présence d'un ester acétique secondaire.. La réaction est généralement effectuée dans du tétrachlorométhane ou du chloroforme à 25°C pendant ≤10 min40.

Schéma 42

Clivage

Habibi et *al*⁶⁵ont développé un protocole de déprotection de TMS sous l'action de dodécatangestocobaltate de potassium tri-hydraté K5CoW12O40.3H2O (schéma 43).

Schéma 43

7.8. Le tert-Butyldiphenylsilyl éther (OTBDPS)

Le *tert*-Butyldiphenylsilyl éther (TBDPS) est l'un des groupements protecteurs des hydroxyles, il est particulièrement utilisé en synthèse totale⁶⁶ pour sa stabilité lors de la déprotection d'autres éthers silylés dans des conditions acides.

Introduction

Le TBDPS est introduit par la réaction de TBDPSCl avec un hydroxyle aliphatique dans un milieu pyridinique , d'autres réactifs sont utilisés selon les groupements fonctionnels de la molécule. L'ajout d'AgNO₃ augmente la vitesse de la réactionde silylation de l'alcool le plus acide.⁶⁷

Clivage

Ce type d'éthers est généralement clivé dans un milieu basique.2 Le TBDPS est clivésélectivement par le fluorure de *tetra*-butyle ammonium.⁶⁸

Schéma 45

Chapitre II:

8.Les Carbonates (OCO2R)

Les carbonates constituent une classe importante des composés ayant une importance pharmacologique et chimique.⁶⁹ Ils sont utilisés comme agents d'alkylation dans des réactions organiques, en chimie médicinale et pharmaceutique.⁷⁰

Le groupement méthoxycarbonyle (OCO₂Me) est introduit sur un hydroxyle en utilisant le chlorofomate de méthyle sans sélectivité vis-à-vis la fonction amine. ⁷¹

Clivage

Le carbonate est déprotégé sélectivement en présence de K₂CO₃.⁷²

9. Protection de la fonction amine

Plusieurs composés organiques biologiquement actifs contenant la fonction amine, ont fait l'objet de plusieurs travaux de protection/déprotection ces dernières années en synthèse organique.⁷³ Dans ce cadre, la conception de nouvelles méthodes douces et efficaces pour la protection/déprotection de la fonction amine devient une priorité.

10. Les Amides

Parmi les différentes méthodes de protection de la fonction amine, l'acylation a pris une grande importance, elle a des applications industrielles. Les amides sont stables dans

Chapitre II:

l'hydrolyse acide et basique et peut être hydrolysées par un chauffage dans des conditions acides ou basiques.

Acétamides

Les amides sont généralement protégés à partir de chlorure d'acide ou d'anhydrides correspondant. D'autres réactifs et de procédures de couplage des amines ont été développés pour la préparation des amides.⁷⁴

Formation

L'utilisation de l'acide acétique plutôt que les réactifs conventionnels est efficace de point de vue économie d'atomes. Kulkarni et *al.*⁷⁵ ont développés une nouvelle méthode d'acylation chimiosélective d'amines aliphatiques, aromatiques et cycliques. La réaction se produit par l'acide acétique en présence de zéolite

Schéma 48

Clivage

L'hydrolyse enzymatique de l'acétamide avec l'acylase de Hog kidney a été réalisée avec une énantiosélective intéressante.⁷⁶

11.Les Allyles *Formation*

Deux méthodes ont été utilisées pour la protection de la fonction amine par le groupement d'allyle. La première c'est une simple alkylation utilisant le bromide d'allyle en

THF en présence des carbonates du sodium. La deuxième méthode est l'allylation du Pd(0) catalysé avec l'acétate d'allyle (Schéma 50)

Schéma 50

12. Les Alkylamines R-NH-R'

Le groupement *N*-Bn est commodément clivé par hydrogénolyse par rapport l'éther benzylique.⁷⁷ La protection *N*-Bn est largement utilisé en synthèse organique vue la stabilité de ce motif dans diverses conditions réactionnelles (traitement acide/base et les catalyseurs nucléophiles).

Le groupement benzyle est introduit sélectivement sur la fonction amine de l'amino alcool à l'aide du chlorure de benzyle en présence de carbonate de sodium.⁷⁸

Schéma 51

Clivage

Le groupement N-Bn peut être clivé par hydrogénolyse en présence de Pd/C dans EtOH .⁷⁹

13.Les Carbamates

Les carbamates ont été employés pour la protection de la fonction amine. En effet, le doublet électronique libre porté par l'azote n'est pas réactif et est engagé en mésomérie avec le carbamate, il est alors possible de faire des aménagements fonctionnels sans un caractère nucléophile prononcé de l'amine.⁸⁰

14.Le tert-Butyloxycarbonyle (N-Boc)

L'efficacité des carbamates *tert*-butyliques est due à leur stabilité dans diverses conditions réactionnelles comme les attaques nucléophiles, les traitements basiques modérés et l'hydrogénation catalytique.^{81,82}

Heydari *et al.* ^{83,84} ont développés une méthode efficace avec de bons rendements. La *Ntert*-butoxycarbonylation des amines primaires et secondaires est effectuée dans un milieu hétérogène en utilisant le di-*tert*-butyle dicarbonate en présence d'hétéropolyacide $H_3PW_{12}O_{40}$.

Schéma 53

Clivage

La déprotection chimiosélective N-Boc est communément réalisé par un traitement acide et est accomplie rapidement en utilisant 5 équivalents de TFA à 60°C pendant 30 min.^{85,86}. La sélectivité de cette méthode de déprotection *N*-Boc est approuvée parla préservation de l'éther OTBDMS.

15.Le Benzyloxycarbonyl (Cbz)

Le benzyloxycarbonyl (Cbz) est un groupement très utile pour la protection des amines en synthèse organique et particulièrement en synthèse des peptides, des alcaloïdes et des acides aminés.^{86,87} Le motif Cbz est très commode dans la protection de la fonction amine des molécules polyfonctionnelles, celle-ci est due à la stabilité vis-à-vis diverses conditions acides/basiques et aussi son orthogonalité vis-à-vis des autres groupements protecteurs⁸⁸.

Introduction

Le traitement des amines aliphatiques (cyclique, acyclique) et aromatiques par le chloroformate de benzyle en présence de nitrate de lanthanium (III) hexahydraté (La(NO₃)₃.6H₂O) conduit aux carbamates correspondants. La chimio sélectivité de la *N*-benzyloxycarbonylation est réalisée en présence des hydroxyles d'alcools aliphatique et phénols.^{89,90}

Schéma 55

Chapitre II:

Clivage

La déprotection *N*-Cbz est couramment effectuée dans les conditions d'hydrogénation catalytique^{91,92}. L'hydrogénolyse du benzyl 4-(2-ethoxy-2- oxoethylidene) pipéridine-1 carboxylate abouti à la déprotection de *N*-Cbz et aux composés secondaires .^{93,94}

Schéma 55

16.Le 9-Fluorènylméthyloxycarbonyle (N-Fmoc)

La forme carbamique *N*-Fmoc est largement utilisée pour la protection de la fonction amine en synthèse peptidique sur phase solide ou en solution, vu sa stabilité dans les conditions acides et son orthogonalité vis-à-vis les formes *N*-Boc et *N*-Cbz.^{95,96}

Introduction

La protection *N*-Fmoc d'amino acide^{97,98} qui possède une fonction amine secondaire est effectuée utilisant le Fmoc-Cl en excès (4,4 éq) dans un mélange du (dioxane/H₂O : 2/1) en présence du diisopropyléthylamine à température ambiante.⁹⁹

Schéma 56

Récemment, la protection par le 9-Fluorenylmethyloxycarbonyle d'une série d'amines¹⁰⁰ aliphatiques et aromatiques, acides aminés, amino alcools est rapporté dans un milieu aqueux dans des conditions douces et en absence de catalyseurs . L'utilisation de l'éthanol comme un co-solvant est indispensable dans le cas des solutés insolubles dans l'eau. Cette méthode s'est avérée être chimiosélective en présence de nucléophiles modérés.^{102,103}

Schéma 57

Clivage

Le Fmoc est souvent stable dans les conditions d'hydrogénolyse. Cependant, il a été observé que dans des conditions particulières, il peut être clivé par traitement avec $H_2/Pd/C$, dans le mélange AcOH/MeOH.^{104,105}

James et *al* ^{106,107} ont rapportés la déprotection du *N*-Fmoc en présence de 1,8diazabicyclo[5.4.0] undec-7-ene (DBU) en quantité catalytique et le 1-octanethiole (Schéma58).

Schéma 58

Résultats et discussion

17.Résultats et discussion

17.1. Protection des indoles par le chlorure de Silyle

Ces dernières années, la protection des liaisons N-H dans les hétérocycles contenant de l'azote a été réalisée généralement par l'introduction d'un groupe silyle (triphényle silyle), ce dernier est l'un des groupements protecteurs couramment utilisés pour la protection sélective des alcools primaires, amines, carbohydrates, peptides et des nucléotides, grâce à son effet stérique.

Nous avons utilisé la méthode de protection des indoles en milieu basique pour obtenir les *N*-silylindoles à partir des dérivés d'indole et le chlorure de silyle (Schéma 59).

Schéma 59

17.2.Mécanisme réactionnel

La réaction de l'indole avec le chlorure de silyle évolue selon une réaction de substitution nucléophile d'ordre 1(Schéma 60). Elle s'effectue en 2 étapes: La première étape: mono moléculaire, lente, au cours de laquelle a lieu la rupture hétérolytique de la liaison Si-Cl, et la formation du carbocation, ce dernier réagit avec la DMAP pour former l'intermédiaire (A).

La deuxième étape: très rapide, au cours de laquelle le nucléophile (ici le sel indolique) réagit avec l'intermédiaire (A).

Schéma 60

17.3.Résultats obtenus

On remarque que les produits protégés ont été obtenus avec de bons à excellents rendements.

Entrée	Produits	Temps (h)	Tf (°C)	Rdt (%)
6	Ph Si~Ph Ph	1	156-157°C	85
7	CHO N Ph Si~Ph Ph Ph	1	146-147 °C	82
8	Ph Si~Ph Ph	1	141-142 °C	82

Tableau 2.	Protection	des dérivés	d'indole par	le groupement	silvle.
	11000000000		a maone par		J j

	Br			
9	N Ph' Si~Ph Ph	1	153-154°C	80
10	BnO N Si-Ph Ph Ph	1	158-159°C	78
11	N N Ph ph	1	152-153°C	68
12	N N Ph Ph	1	158-159°C	68
13	N N Ph Ph Ph	1	151-152°C	72
14	N N Ph Ph	1	155-156°C	74
15	CN CN CN CN CN CN CN CN	1	155-156°C	72

Etude spectrale

18.Etude spectrale

Les produits protégés obtenus ont été identifiés par les méthodes spectroscopiques usuelles (RMN ¹H, ¹³C).

Silylation des indoles

♦ RMN¹H

Les N-silylindoles ont été obtenues à partir de l'indole et ses dérivés et le chlorure de silyle.

Tableau 3. RMN ¹H des dérivés d'indole protégés par le groupement silyle

Comp.	(H2',H3',H4')	R ₂	R ₃	H4	Н5	Н6	H7
6	7.41-7.32(m,15H)	(R ₂ , R ₃ = H) 7.13-6.98 (m2H)		7.63-7.59 (m, 7 H)			
7	7.51-7.25 (m, 15 H)	(R ₂ = H) 8.01 (s, 1 H)	R₃=CHO 9.89 (s, 1 H)	7.62-7.59 (m, 7 H)			
8	7.62-7.58 (m, 5 H), 7.53-7.46 (m, 10 H),	(R₂=CH₃) 2.42 (s, 3 H)	(R ₃ = H) 6.14 (s, 1 H)	7.25 (dd, <i>J</i> = 8. 7.06-6.91	1, 0.9Hz, (m, 2 H)	1 H),
9	7.70-7.59 (m, 9 H), 7.44-7.35 (m, 9 H), 7.28 (d, <i>J</i> = 3.0 Hz, 1 H)		(R₃=H) 7.28 (d, <i>J</i> = 3.0 Hz, 1 H)	7.20 (dd, J = 8.6, 1.7 Hz, 1 H)			
10	7.39-7.27 (m, 11 H), 6.88-6.81 (m, 3 H)		(R₃=H) 6.35 (d, <i>J</i> = 3.0 Hz, 1 H)	7.45-7.43 (m, 5 H), 7.20-7.13 (m, 5 H)			
11	7.45-7.31 (m, 9 H), 7.12-7.01 (m, 4 H)	7.19 (s, 1 H)	$(R3=CH_2-N)$ $CH_2CH_3)_2$ 3.84 (s, 2 H), 2.58 (q, J = 7.2 Hz, 4 H), 1.14 (t, J) = 7.2 Hz, 6 H)	,	7.62-7.51	(m, 6 H)	

12	7.44-7.29 (m, 12 H)		(R₂= CH₂- NCH₃)₂3.65 (s, 2 H), 2.23 (s, 6 H)	7.65 (dd, <i>J</i> = 7.3, 1.4 Hz, 1 H), 7.25-7.12 (m, 7 H
13	7.42-7.27 (m, 9 H)		(R ₃ =CH ₂ - Morpholin) 7.15-6.98 (m, 4 H), 3.63-3.36 (m, 6 H), 2.28-2.19 (m, 4 H)	7.67-7.61 (m, 7 H)
14	7.75-7.58 (m, 6 H), 7.28-7.20 (m, 9 H)		(R ₃ = CH ₂ - pipéridine) 3.72 (s, 2 H), 3.63- 3.58 (m, 4 H), 1.49- 1.40 (m, 4 H), 1.27- 1.18 (m, 2 H	7.45-7.42 (m, 2 H), 7.17-7.12 (m, 3 H)
15	7.61-7.51 (m, 8 H), 7.41-7.27 (m, 10 H)	8.43 (s, 1 H)	8.53 (s, 1 H)	7.84 (dd, $J = 8.0, 2.0$ Hz, 1 H)

Interprétation générale des spectres RMN ¹H (Tableau 3)

Les résultats spectroscopiques en résonance magnétique nucléaire (RMN¹H) permettent de détecter les principaux communssignaux:

Les protons aromatiques du groupement silvle sortent entre [7.70-7.01] ppm.
Les protons aromatiques de l'indole (H2, H3, H4, H5, H6, H7) apparaissent à [7.84-7.12] ppm
Les substituants en position 2 et 3:

•produit (7) le proton de la fonction aldéhyde apparait à 9.89 ppm sous forme singulet.
•.Le groupement méthyle sort à 2.42 (s, 3 H) ppm sous forme de singulet (produit 7).

• Dans le spectre du diéthylaminométhyl on observonce:

-Un quadruplai et à 2.58 ppm d'intégration 4H correspond au CH₂ lié directement à l'atome d'azote(CH₂C<u>H₂-N).</u>

- Un autre triplet à 1.14 ppm d'intégration 6H correspond au CH₂lié à un autre(CH₃CH₂-N)...

• Sur le spectre du produit (12), on voit, un singulet d'intégration 2H correspond au CH₂-N, et et un singulet du groupement méthylique sort à 2.23ppm,

• Pour le produit (14) on observe les signaux suivant:

- Un singulet à 3.72 ppm qui correspond au CH₂, et un multiplet à[3.63-3.58]ppm attribué aux deux groupements CH₂. Un autre multiplet dans la zone du champ forts entre [1.27-1.18] ppm correspond aux 3 méthylènes du cycle pipéridine.
• Dans le spectre RMN proton les quatre groupements CH₂ du cycle morpholine apparaissent à 3.63et 2.19 ppm respectivement.

RMN¹³C

Tableau 4. RMN ¹³C des dérivés d'indole protégés par le groupement silyle

Com p.	3xC 1'	6xC 2'	6xC 3'	3xC 4'	C2	C3	C3a	C4	C5	C6	C7	C7a	Sub.en position 2 ou 3
6	137. 2	135. 9	128. 7	129. 3	125. 3	102. 2	130. 8	121. 1	119.9	122. 0	112. 0	137. 5	-
7	137. 3	136. 2	128. 8	130. 8	125. 1	120. 1	125. 6	123. 6	121.2	122. 4	113. 1	139. 7	R3= CHO 187.4
8	136. 0	130. 8	121. 2	128. 7	136. 4	100. 0	128. 6	120. 0	119.7	121. 1	111. 2	137. 3	R2=CH ₃ , 13.4 (CH ₃)
9	137. 3	136. 0	127. 0	113. 0	128. 7	101. 9	130. 8	125. 3	113.7	124. 8	121. 1	137. 5	-
10	133. 1	129. 7	127. 4	129. 3	128. 7	102. 1	128. 7	121. 6	154.1,136 .0, 128.6, 126.2, 112.6, 71.9	121. 4	104. 8	139. 3	-
11	136. 3	136. 0	129. 0	130. 8	128. 7	119. 9	129. 5	121. 6	122.3	121. 4	125. 9	137. 4	$R3= CH2-N(CH_2CH3)250.0, 47.3,11.59$
12	136. 0	135. 1	127. 9	129. 9	124. 5	120. 0	128. 0	119. 0	119.6	121. 9	111. 2	136. 2	R3= CH ₂ - NCH ₃) ₂ 53.6, 44.7

13	137. 6	135. 9	129. 1	130. 7	135. 9	121. 2	135. 9	121. 2	122.4	128. 7	119. 6	137. 8	R3= CH ₂ - pyrrolidin e 67.2, 54.3 53.9
14	136. 1	137. 2	130. 6	135. 8	122. 3	119. 9	119. 4	112. 2	119.4	111. 5	111. 2	137. 8	R3=CH ₂ - pipéridine, 58.1, 53.9, 23.8, 18.4
15	128. 0	126. 8	124. 4	119. 6	119. 0	116. 1	114. 7	112. 0	110.1	107. 5	104. 5	128. 5	143.6, 103.4, 96.0

Interprétation générale des spectres RMN ¹³C (Tableau 4)

Les spectres RMN ¹³C permettent de vérifié les structure de nos composés, dans ce qui suit on donne les pics correspondant aux carbones caractéristiques :

-Les carbones hybridés sp²(CH) de l'indole apparaissent entre 125.4 et 104.3 ppm.
- Les carbones tertiaires de l'indole sortent dans l'intervalle [148.2-109.7] ppm.

- Les CH aromatiques du groupe silyle résonnent dans la zone [130.7-121.9] ppm.

-L'apparition des carbones tertiaires aromatiques du groupe silyle entre [136.3-148.2] ppm.

- Le carbone caractéristique tertiaire du groupe silyle sort à [87.1-59.8] ppm

Partie expérimentale

19.Partie expérimentale

Protection des indoles par le chlorure de trityle

Mode opératoire général

Dans un ballon de 100 mL et sous agitation, on introduit 1mmol (0.117g) de dérivés d'indoles dans 5 mL de EtOH, puis on additionne lentement une solution du (5.0 mL) de NaOH (0.60 g, 1.5 mmol) à 0 °C pendant 10 minutes, ensuite on ajoute le mélange chlorure de silyle (0.294g g, 1 mmol), et diméthylaminopyridine (0,046 g, 0.2 mmol), dissout dans 5 mL de dichlorométhane et on laisse agiter pendant 1 h. Le produit obtenu est extrait, séché par MgSO4 puis évaporé. Le résidu obtenu est ensuite recristallisé dans l'EtOH absolue.FFFDFDFDFDFDFD

Triphénylsilyl)-1*H*-indole (6)

A partir de 0.117g de l'indole et 0.294g chlorure de silyle, on obtient selon le mode opératoire général, 0.318g de **triphénylsilyl)-1***H***-indole.**

Rendement: 85 %

Point de fusion: 156-157°C

Aspect:Solid violet

IR (KBr): *v*⁻ 3443, 3068, 1485, 1352, 1276, 1116, 1026, 895 cm⁻¹

RMN ¹**H** (400 MHz, CDCl₃) δ = 7.63-7.59 (m, 7 H), 7.41-7.32 (m, 12 H), 7.13-6.98 (m, 2H). **RMN** ¹³C (101 MHz, CDCl₃) δ = 146.8 (3Cq), 136.9 (Cq), 130.7 (6CH), 129.6 (CH), 127.8 (Cq), 127.3 (6CH), 126.0 (3CH), 125.4 (CH), 122.8 (CH), 121.7 (CH), 119.2 (CH), 110.9 (CH),

1-(Triphénylsilyl)-1*H*-indole-3-carbaldéhyde (7)

A partir de 0.145 g de l'indole et 0.294g chlorure de silyle, on obtient selon le mode opératoire général, 0.329g de 1-(triphénylsilyl)-1*H*-indole-3-carbaldehyde.

Rendement: 82 %

Point de fusion: 146-147 °C

Aspect: Solide violet

IR (KBr): v⁻ 3262, 1629, 1519, 1392, 1149, 1069, 854, 757 cm⁻¹

RMN ¹**H** (400 MHz, CDCl₃) δ = 9.89 (s, 1 H), 8.19 (dd, *J* = 8.1, 2.0 Hz, 1 H), 8.01 (s, 1 H), 7.62-7.59 (m, 7 H), 7.51-7.25 (m, 11 H).

RMN ¹³C (101 MHz, CDCl₃)δ = 186.5 (CHO), 148.2 (3Cq), 144.5 (Cq), 144.0 (CH), 128.2 (6CH), 127.9 (6CH), 127.0 (3CH), 124.5 (Cq), 123.9 (2CH), 122.5 (CH), 121.2 (Cq), 112.8 (CH)

2-Méthyl-1-(triphénylsilyl)-1H-indole (8)

A partir de 0.131 g de l'indole et 0.294g chlorure de silyle, on obtient selon le mode opératoire général, 0.318g de **2-méthyl-1-(triphénylsilyl)-1***H***-indole**.

Rendement: 82 %

Point de fusion: 141-142 °C

Aspect: solide Violet

IR (KBr): *v*⁻ 3381, 3052, 1589, 1454, 1384, 1305, 1215, 1117, 1008, 924 cm⁻¹

RMN ¹**H (400 MHz, CDCl₃)** δ = 7.62-7.58 (m, 6 H), 7.53-7.46 (m, 10 H), 7.25 (dd, *J* = 8.1, 0.9Hz, 1 H), 7.06-6.91 (m, 2 H), 6.14 (s, 1 H), 2.42 (s, 3 H).

RMN ¹³C (101 MHz, CDCl₃) δ = 146.3 (3Cq), 135.0 (Cq), 132.7 (Cq), 130.7 (6CH), 128.6 (Cq), 127.9 (6CH),127.3 (3CH), 125.6 (CH), 122.4 (CH), 120.5 (CH), 118.6 (CH), 109.7 (CH), 15.3 (CH3)

5-Bromo-1-(triphénylsilyl)-1*H*-indole (9)

A partir de 0.194 g de l'indole et 0.294g chlorure de silyle, on obtient selon le mode opératoire général, 0.363 g de **5-bromo-1-(triphénylsilyl)-1***H***-indole.**

Rendement: 80%
Point de fusion: 153-154°C
Aspect: Solide violet
IR (KBr): v⁻ 3411, 1722, 1473, 1427, 1314, 1227, 1090, 997 cm⁻¹
RMN 1H (400 MHz, CDCl3) δ = 7.70-7.59 (m, 9 H), 7.44-7.35 (m, 9 H), 7.28 (d, J = 3.0 Hz, 1 H), 7.20 (dd, J = 8.6, 1.7 Hz, 1 H).
RMN 13C (101 MHz, CDCl3) δ = 146.8 (3Cq), 136.9 (Cq), 130.7 (6CH), 129.6 (CH), 127.8 (Cq), 127.3 (6CH), 126.0 (3CH), 125.4 (CH), 122.8 (CH), 121.7 (CH), 119.2 (CH), 110.9 (CH),

5-Benzyloxy-1-(triphénylsilyl)-1*H*-indole (10)

A partir de 0.223g g de l'indole et 0.294g chlorure de silyle, on obtient selon le mode opératoire général, 0.363g de **5-benzyloxy-1-(triphénylsilyl)-1***H***-indole.**

Rendement: 78%

Point de fusion: 158-159°C

Aspect: Solide violet

IR (KBr): *v*⁻ 3219, 2972, 2795, 1538, 1352, 1186, 1068, 854 cm⁻¹

RMN ¹**H (400 MHz, CDCl₃)** δ = 7.45-7.43 (m, 5 H), 7.39-7.27 (m, 11 H), 7.20-7.13 (m, 5 H), 6.88-6.81 (m, 3 H), 6.35 (d, *J* = 3.0 Hz, 1 H), 5.05 (s, 2 H).

RMN ¹³C (101 MHz, CDCl₃) δ = 146.9 (3Cq), 144.0 (Cq), 136.2 (Cq), 128.8 (6CH), 128.0 (2CH), 127.8 (2CH),127.3 (6CH), 126.8 (Cq), 124.3 (CH), 121.9 (3CH), 120.7 (CH), 119.7 (CH), 119.5 (CH), 111.4 (CH), 111.2(Cq), 104.3 (CH), 8, 22.7 (CH2).

3-(Diéthylaminométhyl)-1-(triphénylsilyl)-1H-indole (11)

A partir de 0.202g g de l'indole et 0.294g chlorure de silyle, on obtient selon le mode opératoire général, 0.326g de **3-(diéthylaminométhyl)-1-(triphénylsilyl)-1***H***-indole.**

Rendement: 68%

Point de fusion: 152-153°C

Aspect: Solide violet

IR (KBr): *v*⁻ 3312, 3021, 1619, 1455, 1342, 1222, 1118, 997 cm⁻¹

RMN ¹**H** (400 MHz, CDCl₃) $\delta = 7.62-7.51$ (m, 6 H), 7.45-7.31 (m, 9 H), 7.19 (s, 1 H), 7.12-7.01 (m, 4 H) 2.84 (c, 2 H) 2.58 (c, L = 7.2 H = 4 H) 1.14 (t, L = 7.2 H = 6 H)

7.01 (m, 4 H), 3.84 (s, 2 H), 2.58 (q, *J* = 7.2 Hz, 4 H), 1.14 (t, *J* = 7.2 Hz, 6 H).

RMN ¹³C (101 MHz, CDCl₃) δ = 144.0 (3Cq), 136.2 (Cq), 128.8 (6CH), 128.0 (6CH), 127.8 (Cq), 127.3 (3CH),127.0 (CH), 124.0 (CH), 121.6 (CH), 119.8 (CH), 113.2(Cq), 111.3 (CH), 57.6 (CH2), 46.6 (2 CH2),11.9 (2 CH3)

3-(Diméthylaminométhyl)-1-(triphénylsilyl)-1*H*-indole (12)

A partir de 0.174g g de l'indole et 0.294g chlorure de silyle, on obtient selon le mode opératoire général, 0.403 g de **3-(diméthylaminométhyl)-1-(triphénylsilyl)-1***H***-indole**

Rendement: 68%

Point de fusion: 158-159°C

Aspect: Solide violet

IR (KBr): *v*⁻ 3111, 2992, 2854, 1546, 1428, 1338, 1118, 1111, 964 cm⁻¹

RMN ¹**H (400 MHz, CDCl₃)** δ = 7.65 (dd, *J* = 7.3, 1.4 Hz, 1 H), 7.44-7.29 (m, 12 H), 7.25-7.12 (m, 7 H), 3.65 (s, 2 H), 2.23 (s, 6 H).

RMN ¹³C (101 MHz, CDCl₃) δ =144.0 (3Cq), 136.2 (Cq), 128.8 (6CH), 128.0 (6CH), 127.8 (Cq), 127.3 (3CH),127.0 (CH), 124.0 (CH), 121.6 (CH), 119.8 (CH), 113.2(Cq), 111.3 (CH), 57.6 (CH2),11.9 (2 CH3)

3-(Morpholin-4-ylméthyl)-1-(triphénylsilyl)-1*H*-indole (13)

A partir de 0.216g g de l'indole et 0.294g chlorure de silyle, on obtient selon le mode opératoire général, 0.437g de **3-(morpholin-4-ylméthyl)-1-(triphénylsilyl)-1***H***-indole Rendement:** 74%

Point de fusion: 155-156°C

Aspect: Solide violet

IR (KBr): *v*⁻ 3111, 2480, 2069, 1332, 974 cm⁻¹

RMN ¹**H (400 MHz, CDCl₃)** δ = 77.67-7.61 (m, 7 H), 7.42-7.27 (m, 9 H), 7.15-6.98 (m, 4 H), 3.63-3.36 (m, 6 H), 2.28-2.19 (m, 4 H).

RMN ¹³C (101 MHz, CDCl₃) δ = 147.0 (3Cq), 136.1 (Cq), 129.2 (6CH), 129.1 (6CH), 128.4 (Cq), 128.0 (3CH),127.3 (CH), 124.1(CH), 121.8 (CH), 119.4 (CH), 111.2(Cq), 107.7 (CH), 54.3 (2 CH2), 26.0 (CH2),24.4 (2 CH2).

3-(Pipéridin-1-ylméthyl)-1-(triphénylsilyl)-1H-indole (14)

A partir de 0.214g g de l'indole et 0.294g chlorure de silyle, on obtient selon le mode opératoire général, 0.423g de **3-(pipéridin-1-ylméthyl)-1-(triphénylsilyl)-1***H***-indole**.

Rendement: 72%

Point de fusion: 151-152°C

Aspect: solide Violet

IR (KBr): *v*⁻ 3068, 2854, 1589, 1468, 1372, 1304, 1117, 994 cm⁻¹

RMN ¹**H** (400 MHz, CDCl₃) $\delta = 7.75 \cdot 7.58 \text{ (m, 6 H)}, 7.45 \cdot 7.42 \text{ (m, 2 H)}, 7.28 \cdot 7.20 \text{ (m, 9 H)}, 7.17 \cdot 7.12 \text{ (m, 3 H)}, 3.72 \text{ (s, 2 H)}, 3.63 \cdot 3.58 \text{ (m, 4 H)}, 1.49 \cdot 1.40 \text{ (m, 4 H)}, 1.27 \cdot 1.18 \text{ (m, 2 H)}$ **RMN** ¹³**C** (101 MHz, CDCl₃) $\delta = 144.0 \text{ (3Cq)}, 141.2 \text{ (Cq)}, 128.8 \text{ (6CH)}, 128.0 \text{ (6CH)}, 127.8 \text{ (Cq)}, 127.3 \text{ (3CH)}, 127.0 \text{ (CH)}, 121.8 \text{ (CH)}, 120.6 \text{ (CH)}, 117.7 \text{ (CH)}, 112.9 \text{ (Cq)}, 112.2 \text{ (CH)}, 52.2 \text{ (3 CH2)}, 45.5 \text{ (2 CH2)}, 23.0 \text{ (CH2)}.$

3-(2,2-Dicyanoéthenyl)-1-(triphénylsilyl)-1*H*-indole (15)

A partir de 0.193g g de l'indole et 0.414g chlorure de silyle, on obtient selon le mode opératoire général, 0.423g de **3-(2,2-dicyanoéthenyl)-1-(triphénylsilyl)-1***H***-indole**

Rendement: 72%

Point de fusion: 155-156°C

Aspect: Violet solid

IR (KBr): v^{-3068} , 3066, 1827, 1484, 1304, 1115, 997 cm⁻¹ RMN ¹H (400 MHz, CDCl₃) δ = 8.53 (s, 1 H), 8.43 (s, 1 H), 7.84 (dd, J = 8.0, 2.0 Hz, 1 H), 7.61-7.51 (m, 8 H), 7.41-7.27 (m, 10 H).

RMN¹³C (101 MHz, CDCl₃) δ = 144.0 (3Cq), 141.2 (Cq), 128.8 (6CH), 128.0 (6CH), 127.8 (Cq), 127.3 (3CH),127.0 (CH), 121.8 (CH), 120.6 (CH), 117.7 (CH), 112.9(Cq), 112.2 (CH), 52.2 (3 CH2), 45.5 (2 CN),23.0 (CN).

Chapitre III: La déprotection

Chapitre III : La déprotection

1. Introduction

La protection et la déprotection dans les fonctions organiques jouent un rôle important dans la synthèse organique multi-étapes. La grande importance de l'introduction et de l'élimination sélective des groupes protecteurs dans la synthèse organique sont bien établies. Le succès de la méthodologie dépend largement de la stabilité des groupes protecteurs vis-àvis de différents réactifs acides ou non acides et de la facilité avec laquelle ils peuvent être installés et retirés. Cependant, les différentes méthodes conventionnelles d'introduction et de clivage de ces groupes rapportées dans la littérature présentent des inconvénients tels que la manipulation dans des conditions strictes et la génération de sous-produits et que la sélectivité n'est pas au rendez-vous. Il existe de nombreuses méthodes de conversion des éthers trityliques et des pivaloyl tétrazoles en alcools et amines correspondants.

Mais une méthode douce et neutre qui permettrait effectuer le clivage sélectif en présence d'autres groupes fonctionnels sensibles est encore en core souhaitable. De plus, à notre connaissance. La déprotection sélective à l'aide de métaux est extrêmement rapportée dans la littérature comme une méthode très douce, efficace et hautement sélective pour l'élimination des liaisons C-N et C-O.

2. Méthodes de déprotection

2.1. Groupes protecteurs clivés par les solvants basiques

Les dérivés acyles des thiols, hydroxyles (alcools et carboxyles) et groupes amine sont parmi les plus anciens groupes protecteurs encore utilisés de nos jours .Ils sont tous facilement préparés par des méthodes standard à partir d'acides carboxyliques activés, mais leur hydrolyse relativement facile avec une base varie considérablement ,Les esters de thiol sont trop sensibles aux attaques nucléophiles pour offrir une protection durable au groupe thiol¹⁰⁸. protection durable pour le groupe thiol1 mais les esters d'acétate, de benzoate et de pivalate offrent une protection dans une gamme de conditions suffisamment large pour être utile sur le plan synthétique.

Schéma 61

1.1. Groupes protecteurs clivés par un acide

Les groupes protecteurs labiles aux acides sont les plus difficiles à classer car pratiquement tous les groupes protecteurs peuvent être clivés par un acide ,certains groupes protecteurs, L'orthogonalité des acides labile peut être divisée en deux parties: la première partie consiste à une rupture hétérolytique de la liaison C-O des alkyles tertiaires¹⁰⁹, éther benzylique ou ester avec la formation des carbocation.

Schéma 62

1.2. Groupes protecteurs clivés par les ions fluorure

Tous les groupes protecteurs courants des éthers trialkylsilyles sont labiles à l'hydrolyse acide ou basique à des degrés très divers. ou de base à des degrés très variables et leur stabilité et leur facilité de déprotection peuvent être finement en ajustant la substitution sur le silicium. La déprotection avec le fluorure procède par la formation d'un intermédiaire fluorosiliconate pentavalent

Schéma 63

1.3. Groupes protecteurs clivés par élimination réductrice

La deuxième réaction, qui s'apparente à une β -élimination, implique l'élimination réductrice du l'ester 2,2,2-trichloroéthylique lors d'un traitement avec du zinc dans l'acide acétique ou un couple zinc-cuivre dans le DMF pour donner du 1,1-dichloroéthylène.¹¹⁰

Schéma 64

2.5. Groupes protecteurs clivés par la lumière

Les dérivés de 2-nitrobenzyle, benzoïne etphénacyle appartiennentaux groupes etle plus célèbre d'entre 2-nitrobenzyle. protecteurs photolabiles. eux est le Les travaux de Barltropet de son équipe décrivent l'importance de ces groupes protecteurs. Ils ontmontré que le benzoate de 2-nitrobenzyle subissait un photoclivage parirradiation des ravons ultraviolets pour libérer l'acide benzoïque et le 2nitrosobenzaldéhyde selon le mécanisme illustré dans le schéma 65.111.112

Schéma 65

3. Applications de magnésium, zinc et fer en synthèse organique

Les métaux sont d'excellents réactifs de réductions et sont très utiles en synthèse organique.¹¹³Les métaux qui ont un potentiel d'ionisationtel que: l'indium (5.8 eV), magnésium (7.65 eV), zinc (9,4 eV) et l'aluminium (5.99 eV) et avec une source d'hydrogène ont été utilisés avec succès en tant qu'agents réducteurs. Pour cela, les métaux sont révélés comme un excellent réactif de transfert électronique pour cliver de nombreux groupes protecteurs.

3.1.Magnesium

Le magnésium est lié sous forme de carbonates, de silicates, de chlorures, de sulfates et de différents oxydes (abondance naturelle = 2 %) dans la croûte terrestre .La concentration de magnésium dans l'eau est en moyenne de 1,3 mg/L.¹¹⁴ Les cations magnésium participent à divers processus biologiques .Le site production de composés organomagnésiens a été

rapportée pour la première fois en 1859, Après cela, plusieurs essais ont été faits pour préparer des composés dialkyles du magnésium et étudier leur réactivité (en1900), leur potentiel synthétique alors qu'il travaillait à l'optimisation de la réaction de Barbier.¹¹⁵

3.1.1.Le magnésium comme catalyseur en chimie organique 3.1.1.1. Réaction de Grignard

L'addition d'un halogénure d'organomagnésium (réactif de Grignard) à une cétone ou un aldéhyde, pour former un alcool tertiaire ou secondaire respectivement. La réaction avec formaldéhyde conduit à un alcool primaire.

Les réactifs de Grignard sont également utilisés dans les réactions importantes : L'addition d'un excès d'un réactif de Grignard à un ester ou une lactone donné un alcool tertiaire dans lequel deux groupes alkyle sont identiques, et l'addition d'un réactif de Grignard à un nitrile produit une cétone non symétrique par l'intermédiaire d'une métalloimine. Ils ont rapporté que les réactifs de Grignard liés à la (-)-sparteine désymmetrizecyclique effectivement pour produire des cétoacides en très bon excès énantiomérique¹¹⁶.

Schéma 66

3.1.1.2. Réaction de Reforematsky

La réaction magnésio-réformatsky est similaire aux préparations de Grignard, en employant du magnésium au lieu du zinc, étaient essentiellement limités à l'ester bromo-tbutylique et bromo aryla cétamides, comme dans la réaction de Grignard L'autoconditionnement est une réaction secondaire indésirable. Cet inconvénient peut être compensé par l'extraordinaire réactivité du zinc/argent-graphite.Il est important de noter que les réactions magnésio-reformatsky peuvent également être réalisées avec du magnésiumgraphite.¹¹⁷ métal a réactif de haute réactivité permet des réactions avec des α -halogènes alcanoates d'éthyle, à - 78°C pour donner l'énolate magnésio-ester correspondant qui peut réagir avec une variété de substrats (schéma 67) En général, les rendements sont modérés à bons, bien qu'inférieurs à ceux des réactions reformatsky classiques utilisant du zinc activé.

Schéma 67

3.1.2.Le magnésium comme agent réducteur

3.1.2.1. Cyclisation réductrice

L'addition intramoléculaire de radicaux de carbone à des liaisons multiples par cyclisation radicalaire a été démontrée comme un outil dans la synthèse organique.¹¹⁸La réaction de cyclisation des cétones liées à des esters α , β -insaturés s'est déroulée lentement lorsque les substrats ont été traités avec 3 équiv. de magnésium dans du méthanol sec en présence d'une quantité catalytique de HgCl2 à -23°C pendant 3h .La cyclisation a donné des mélanges d'isomères trans et cis avec d'excellents rendements, ainsi que des traces de produits de réduction simples.

Clivage réducteur

Kandil et al, décrivent l'utilisation de Mg/MeOH pour le clivage par réduction, au cours de la synthèse de la phéromone d'agrégation (+)-lineatin.¹¹⁹Un clivage réducteur inattendu du groupe On a observé un clivage réducteur inattendu du groupe dioxolanyle en tentant de réduire la double liaison oléfinique d'un nitrile insaturé.Un clivage probablement réducteur a d'abord donné du ntirile insaturé,après avoir été catalysé par Mg (OMe).

Schéma 69

3.1.3. Réduction de la double liaison conjuguée

La réduction de la double liaison conjuguée d'une cétone insaturée à l'aide de Mg a été rapportée en 1929 par Zechmeister et Rom.¹²⁰En 1973, une autre étude a rapporté le premier emploi pour la réduction d'un nitrile insaturé en son analogue saturé.¹²¹ après la réduction de plusieurs nitriles insaturés avec des quantités excessives de Mg (40 équiv) dans MeOH à température ambiante, un certain nombre de types différents de nitriles insaturés ont été réduits avec des rendements élevés¹²²

3.1.4. Réduction des groupes fonctionnels

3.1.4.1.Réduction du groupe nitro

Les composés nitro aromatiques peuvent être réduits en composés azoxy dans des rendements modérés (30~90%) avec Mg métallique dans un solvant mixte de méthanol et une petite quantité de solution aqueuse saturée de NH4C¹²³.Les différents agents réducteurs utilisés pour réduire les nitroarèes en composés azoïques, on utilise souvent un mélange de Zn et de NaOH ¹²⁴.Les utilisations de Mg en grand excès, ont orienté les composés azoxy à réduire en hydrazines. Ils ont également obtenu des dérivés azoïques ou hydroxylaminés en fonction des conditions de réaction, (principalement la quantité de Mg utilisée).Une réduction supplémentaire en amine pourrait être obtenue en employant une condition de réaction assez différente en utilisant le sulfate d'ammonium comme promoteur.

Schéma 71

3.1.4.2. Réduction de l'azide

La réduction des azides en amines correspondantes en présence de Mg/MeOH sont décrite par Maiti et al, en 1988¹²⁵

Schéma 72

3.1.4.3. Réduction de l'imine

Le Mg réduit diverses aldimines aromatiques en amines primaires ou secondaires saturées correspondantes.¹²⁶ L'oxime a également été réduite en amine en présence de NH4OAc aqueux saturé¹²⁷

Schéma 73

3.1.4.4. Réduction de l'halogénure

Mg dans le méthanol absolu à température ambiante réduit les halogénures d'aryle, mais les fluorures sont réduits avec un excès de Mg dans des alcools bouillants tels que l'isopropanol ou le tert-butanol.¹²⁸Dans ces conditions de réaction, les halogénures secondaires et tertiaires subissent une élimination pour donner une oléfine comme produit principal¹²⁹.

3.1.4.5. Désoxygénation

Il existe différents réactifs connus pour la désoxygénation des sulfoxydes.¹³⁰Désoxygénation s'est déroulée lentement avec Mg /MeOH de sulfoxyde,¹³¹N-oxyde,¹³² oxyde de phosphine.¹³³ Les isomères E et Z des sulfoxydes d'alcénylphényle ont été soumis aux conditions standard pour donner les sulfures correspondants en rendement quantitatif.


```
Schéma 75
```

D'autre part, la réduction des alkylphénylsulfoxydes était si lente à basse température que des quantités excessives de Mg (6 équiv.) et un temps de réaction prolongé (5 h) ont été nécessaires pour compléter la réaction. Cependant, les rendements des sulfures correspondants sont presque quantitatifs

3.2. Le zinc

Le **zinc** est un élément semblable au magnésium dans la mesure où son étatd'oxydation courant est +2, donnant un cation de taille comparable à celle de Mg₂₊. C'est le24_{eme} élément le plus abondant dans l'écorce terrestre. Il possède cinq isotopesnaturels stables.C'est un métal pauvre, qui ne répond pas à la définition des éléments de transitiond'IUPAC.

3.2.1. Propriété chimique

3.2.2.1. Réduction des liaisons multiples

Les doubles liaisons sont rarement réduites par le zinc, par contre les triples liaisons sont converties en alcènes en utilisant soit le couple zinc / cuivre, soit l'amalgame de zinc.¹³⁴ La réduction régiostéréospécifique d'une large gamme de dérivés des alcynes peut être réalisée en utilisant le zinc.¹³⁵Les alcools propargyliques aussi sont réduits facilement en présence du zinc

Schéma 77

3.2.2.Réduction des carbonyles

Le zinc peut réduire les cétones en alcools ou en méthylène, selon les conditions de la réaction et la nature du substrat. Par exemple, les α -dicétones sont transformés sélectivement en α -hydroxycétones (Schéma 77).¹³⁶

Schéma 77

3.2.2.3. Réduction de la liaison C-O

La liaison carbone-oxygène situées en α d'une insaturation est facilement réduite par le zinc en milieu acide. Dans le cas des α -hydroxy cétones, les cétones sont obtenues avec de bons rendements.¹³⁷Une large gamme d'éthers allyliques, benzyliques, acétates et alcools ont réduite par le zinc.^{138.139}

Schéma 78

3.2.2.4. Réduction de la liaison C-X

Les halogénures d'alkyle et d'alcényle sont facilement réduits par le zinc dans diverses conditions réactionnelles. Le tribromothiophène est réduit sélectivement en monobromure de thiophène. Les β -chloroénones sont réduits en énones par le couple zinc / argent dans le méthanol à température ambiante .

Schéma 78

3.2.2.5. Réduction des liaisons carbone-azote

Les amides et les oximes sont converties en amines, et divers hétérocycles portant des doubles liaisons carbone-azote sont réduits par le zinc dans des conditions acides.¹⁴⁰Les cyanamides peuvent être peuvent être proprement clivés pour donner des amines¹⁴¹a et la réduction par le zinc des acylnitriles donne des dérivés α - amino cétone (Schéma 79). Les amides aromatiques peuvent être réduits avec de la poussière de zinc en aldéhydes aromatiques. Les liaisons carbone-soufre activées α à un groupe carbonyle et les ylides de soufre peuvent être réduits avec de la poussière de zinc.ylides peuvent être réduits avec du zinc.

3.2.3. La réaction de Reformatsky

L'insertion de zinc dans des α -halo esters produit des énolates d'esters de zinc qui réagissent facilement avec des aldéhydes ou des cétones., conduisant à des produits aldoliques. Historiquement, cette réaction a été importante car elle a permis la première génération quantitative d'un énolate d'ester. Cependant, plusieurs méthodes de synthèse modernes pour la préparation stéréosélective de produits aldol à l'aide d'énolates métalliques sont en concurrence avec les méthodes de synthèse traditionnelles.de Reformatsky¹⁴² .s'est avérée importante pour l'insertion rapide et quantitative du zinc.

3.3.Le fer

3.3.1. Historique du fer en chimie organométallique et en catalyse homogène

Bien que la chimie du fer en tant que matériau ait été étudiée et maîtrisée par l'Homme depuis la Préhistoire, son utilisation à l'échelle moléculaire n'est que très récente. Les premières structures de complexes métalliques sont proposées au cours du XIX_e siècle, et Mond et Berthelot découvrent séparément en 1891 le complexe pentacarbonyle de fer $[Fe(CO)_5]^{143.144}$.En 1930, Reilhen et Hieberdécrivent respectivement les complexes $[Fe(\eta_4-butadiène)(CO)_3]$ et $[Fe(H)_2(CO)_4]^{145}$.Bien que plusieurs chimistes aient décrit l'obtention d'une poudre orangée après le passage du cyclo pentadiène dans des tuyaux en fer,c'est Woodward et Wilkinson qui élucident la structure du ferrocène¹⁴⁶ en 1952,ce qui vaudra à ce dernier l'obtention du Prix Nobel de Chimie en 1973

Pourtant, une des premières tentatives de réaction de formation de liaison C-C a été entreprise en1941 par Kharasch et Fields qui utilisent comme catalyseurs des sels métalliques divers, dont FeCl₃,pour procéder à la réaction d'homocouplage oxydant d'un arylmagnésien en présence d'unhalogénure aromatique (l'utilisation de deux substrats phénylés ne permettant pas par ailleurs de discriminer la réaction d'homocouplage de celle de couplage croisé !)¹⁴⁷

C'est ensuite Jay Kochi qui est le premier en 1971 à réellement mettre en valeur le rôle de FeCl₃comme catalyseur du couplage C_{sp3} - C_{sp2} entre un alkylmagnésien et un bromure de vinyle ¹⁴⁸.

3.3.2. Le couplage de Kumada

Si la première réaction de création d'une liaison C-C ferr ocatalysée date de 1971, il a fallu attendre les années 2000 pour que les mécanismes réactionnels commencent à être étudiés, et les degrés d'oxydation actifs du fer discutés. La réaction-modèle pour l'étude de ces mécanismes est alors la réaction dite de Kumada faisant intervenir un nucléophile organomagnésien et un halogénure organique, car c'est celle qui a été le plus étudiée et dont l'étendue est la plus grande entermes de variété d'hybridation des substrats considérés (sp, sp², sp₃)

Schéma 83

3.3.3. Réaction de couplage aryle-aryle

résultats expérimentaux de Jacobi von Wangelin, où la catalyse était assurée par Fe(acac)₃ et le mécanisme n'était pas discuté ¹⁴⁹.C'est à notre connaissance la seule mention d'uncomplexe de fer(-II) dans le cas d'un organomagnésien d'hybridation sp₂. La formation de[Fe-II(MgBr)₂] n'est pour autant pas expliquée dans ce cas, et aucun résultat expérimental présenté depuis n'a permis de confirmer le rôle du fer(-II) en présence d'un nucléophile arylmagnésien.¹⁵⁰

Schéma 84

3.3.4. Mécanismes monoélectroniques

Nous avons évoqué dans la partie précédente les résultats de Knowles, Cahiez, et Bedford faisantétat d'une activation radicalaire de l'électrophile lorsqu'un fer(0) était à l'origine du cycle catalytique.D'autres études expérimentales favorisent cette piste, pour différents DO de l'espèce active du couplage. Fürstner rapporte l'hypothèse d'un processus

Chapitre III :

catalytique monoélectronique lors du couplage entre le (R)-2-bromooctane et PhMgBr, catalysé par le complexe de fer(-II) de Jonas, carl'information stéréochimique est perdue au cours de la réaction ¹⁵¹. Pour une autre réaction de couplage aryle-alcényle, il observe la cyclisation de l'électrophile typique d'unmécanisme radicalaire.

Schéma 84

3.3.5.Cycles catalytiques biélectroniques

1.2.1 Cycle catalytique fer(I)/fer(III)

Kochi, grâce à des études poussées de distribution des produits, de cinétique de réaction et depiégeages de radicaux, propose lui-même le couple FeI/FeIII dans le cadre d'un couplage alkylevinyle¹⁵².Il discute la possibilité que le fer(I) soit formé rapidement par réaction entre FeCl₃ etl'organomagnésien. Il subirait ensuite une addition oxydante du bromure vinylique avec rétention de configuration, puis une trans métallation avec le groupement aliphatique du Grignard.Finalement, l'étape d'élimination réductrice régénèrerait l'espèce active de fer(I) en même tempsque le produit de couplage serait relâché. Cette hypothèse est appuyée par son observation en RPE d'une espèce de spin S = $\frac{1}{2}$, un état de spin courant du fer(I).

Schéma 85

Résultats et discussion

4. Résultats et discussion

4.1.Introduction

L'unité indole est largement représentée dans la nature, et a attiré beaucoup d'attention de la part des chimistes et des pharmacologues, car les molécules naturelles et synthétiques portant cette fraction structurelle présentent une variété d'activités biologiques. Par conséquent, les méthodes qui permettent la fonctionnalisation régiosélective des indoles sont d'une importance capitale en chimie médicinale. Ces méthodologies comprennent les substitutions électrophiles, et l'activation C-H catalysée par les métaux afin d'effectuer une formation ultérieure de liaisons C-C ou C-hétéroatomes. D'autre part, le caractère relativement acide de l'atome d'hydrogène lié à l'azote pourrait interférer avec les réactions précédemment commentées. Dans ces circonstances, l'utilisation d'un groupe protecteur est nécessaire, principalement en transformant l'indole en sulfonamide, carbamate, aminal, correspondant ou par des réactions de N-benzylation ou de silvlation. Le triphénylsilyle a été utilisé comme groupe protecteur pour les hétéroatomes, car il peut être facilement introduit et également retiré au moven d'acides de Brønsted ou de fluorures. Poursuivant notre intérêt pour le développement de nouvelles méthodologies utilisant des métaux dissous dans les processus de détritilation, de dépivaloilation, de désacylation, de désilylation, de déallyloxyet de débenzyloxycarbonylation, de détert-butoxycarbonylation et de débenzylation, nous rapportons ici l'utilisation de métaux ferreux, magnésiens et zincifères dans des solvants protiques pour la désilylation d'indoles protégés par un groupe N-triphénylsilyle, en évitant les conditions acides typiques ou l'utilisation de fluorures coûteux et dangereux.

	Tableau 5 Optimisation de la réaction de désilylation de l'indole N-protégé												
		Conditions de réaction	n										
Entry	Metal (equiv)	Solvants (ratio) ^b	T (°C)	t (h)	Rendement (%) ^c								
1		MeOH-THF (3:4)	23	24	0								
2		MeOH-THF (3:4)	65	24	0								
3	Fe (0.5)	MeOH-THF (3:4)	65	24	0								
4	Fe (1.0)	MeOH-THF (3:4)	65	24	15								
5	Fe (2.0)	MeOH-THF (3:4)	65	24	85								
6	Mg (0.5)	MeOH-THF (3:4)	23	24	0								
7	Mg (1.0)	MeOH-THF (3:4)	65	24	0								
8	Mg (2.0)	MeOH-THF (3:4)	65	24	25								
9	Mg (3.0)	MeOH-THF(3:4)	65	24	95								
10	Zn (0.5)	(CH ₂ OH) ₂ -THF (3:4)	23	24	0								
11	Zn (1.0)	(CH ₂ OH) ₂ -THF (3:4)	66	24	15								
12	Zn (2.0)	(CH ₂ OH) ₂ -THF (3:4)	66	24	90								

4.2. Optimisation de la reaction de desligiation de l'indole N-pro	otege
--	-------

Nous avons pris l'indole silvlé comme composé modèle afin de trouver les meilleures conditions réactionnelles pour réaliser le processus de désilvlation sélective, et en utilisant le fer, le magnésium et le zinc comme réactifs réducteurs dans des solvants protiques. La désilvlation n'a pas eu lieu en l'absence du métal à température ambiante, et également à 65 °C dans un mélange de MeOH et de THF (Tableau 5, entrées 1 et 2). Le même résultat a été observé en travaillant en présence de 0,5 équivalents de fer à 65 °C (Tableau5, entrée 3). Cependant, une désilvlation a été observée, bien qu'avec un faible rendement, lorsque la quantité de fer a été augmentée à 1 équivalent, et après 24 h (Tableau 5, entrée 4). Heureusement, l'élimination complète du groupe silvle s'est produite en utilisant 2 équivalents du métal (tableau 5, entrée 5). Lorsque le magnésium a été utilisé comme réactif réducteur, les meilleures conditions de réaction pour que la désilvlation ait lieu étaient celles qui incluent l'utilisation de 3 équivalents du métal, dans un mélange de MeOH et de THF à 65 °C (Tableau 5, entrées 6-9). En travaillant avec le zinc, la désilvlation s'est mieux déroulée dans un mélange d'éthylène glycol, comme solvant protique, au lieu de MeOH, et de THF. Les conditions optimales pour le zinc ont été trouvées en utilisant 2 équivalents de métal à 65 °C dans le mélange de solvants précédemment commenté.

4.3. Résultats obtenus

Après détermination des conditions optimales qui sont indiquées dans le tableau 5 (entrées 4, 7, 10 et 12) et comme il est bien montré dans le tableau 5, la désilylation des dérivés indoliques **6-15** correspondants a été realisée avec des rendements qui varient entre 80-95 %. Les résultats avec les deux autres métaux (Mg, Zn) sont presque semblables. Nous avons remarqué que la désilylation par l'aluminium a minimisé le temps dela réaction (2-3 h) avec le très bons rendements 86-95%.

Tableau 6. Désiylation des dérivés d'indoles par les trois métaux

	Matériel de départ					Produit de la réaction, méthode et rendement $(\%)^a$					
Entrée	No.	R^1	\mathbb{R}^2	R ³		No.	Structure	A (Fe)	B (Mg)	C (Zn)	
1	6	Н	Н	Н		16		95	93	96	

90

2	7	Н	СНО	Н	17	CHO ZH	93	92	94
3	8	Me	Н	Н	18	Me NH	92	91	93
4	9	Н	Н	Br	19	Br	89	87	90
5	10	Н	Н	OBn	20	BnO	89	88	91
6	11	Н	CH ₂ NEt ₂	Н	1	NEt ₂	85	83	87
7	12	Н	CH ₂ NMe ₂	Н	2	NMe ₂	83	82	85
8	13	Н	CH ₂ N(CH ₂ CH ₂) ₂ O	Н	3		82	81	86
9	14	Н	CH ₂ N(CH ₂)5	Н	4		81	80	83
10	15	Н	CH=C(CN) ₂	Н	5		79	77	81

4.4. Conclusion

En conclusion, nous avons rapporté ici une procédure efficace pour éliminer le groupe triphénylsilyle des 1H-indoles N-silylés fonctionnalisés dans des conditions de réaction relativement douces et avec des rendements élevés. Ces méthodologies tolèrent les liaisons Chétéroatomes réactives et les fonctionnalités qui ne sont pas compatibles avec les métaux lourds hautement réactifs. Ces méthodes représentent une alternative précieuse aux autres procédurs de désilylation qui sont réalisés dans des conditions acides fortes ou au moyen de fluorures coûteux et dangereux.

Etude spectrale

4.5.Etude spectrale

Désylilation des indoles

Les produits déprotégés obtenus ont été identifiés par les méthodes spectroscopiquesusuelles (RMN ¹H, ¹³C).

♦RMN¹H

Taleau 7. RMN 1H désilylation des dérivés d'indole

Comp.	NH	R2 R3		H4	H5	H6	H7	
16	7.94 (sL, 1H)	R2=R3=H 7.21 – 7.07 <i>(m, 3H)</i>		7.65-7.64 (m, 1H)	6.55 (ddd, J = 8.1, 2.0, 0.9 Hz, 1H)	7.21 – 7.07 <i>(m,</i> <i>3H)</i>	7.36 – 7.26 (m, 1H)	
17	Non détecté	R2=CH3 2.26 (s, 3H)	R3= H 6.18(s, 1H)	7.1		7.55 (dd, 1H)		
18	12.15 (sL, 1H)	R2=H 8.29 (s, 1H)	R3=CHO 9.94 (s, 1H)	8.10 (dd,J = 6.8, 1.0 Hz, 1H)) (dd,J .8, 1.0 , 1H)		7.53– 7.49 (m, 1H)	
19	8.05 (sL, 1H)	7.26- 7.12 (m, 3H)	R3=H 6.46 (d, 1H)	7.85 (s, 1H)	R5= Br 7.26-7.1		.26-7.12 (m, 3H)	
20	7.90 (sL, 1H)	R2=H 7.29 (d, 1H)	R3=H 6.48 <i>(d,</i> <i>1H)</i>	7.64 (d, J= 2.3 Hz, 1H)	R5=phénoxy 7.49-7.38 (m, 4H), 7.02 (m, 1H), 6.92-6.89 (m, 2H)	7.49-7.3	38 (m, 4H)	
21	8.52 (sL, 1H)	R2=H 7.29- 7.11 (m, 3H)	$R3 = CH_{2} - N-CH_{2} - CH_{3})_{2}$ $3.92 (s, 2H, CH_{2}), 2.62 - (m, 4H, 2CH_{2}), 2.62$	7.79 (d, J =7.37 Hz, 1H)	7.29-7.11 (n	n, 3H)	7.37 (dd, J = 9.07, 2.64 Hz 1H)	

			1.19 (m, 6H, 2CH ₃)			
22	8.8 (sL, 1H)	7.28- 7.12 (m, 3H)	R3= CH ₂ - N-(CH ₃) ₂ 3.76 (s, 2H, CH ₂), 1.62 (m, 6H, 2 CH ₃)	7.73 (d, J = 7.32 Hz,1H)	7.28-7.12 (m, 3H)	7.36 (d, J = 7.08 Hz, 1H)
23	8.67 (sL, 1H)	R2=H 7.25- 7.04 (m, 3H)	R3=CH ₂ - Morpholin 3.76 (s, 2H, CH ₂), 2.45 (t, 4H, 2CH ₂), 1.57 (t, 4H, 2CH ₂)	7.80 (d, J=7.47 Hz, 1H)	7.25-7.04 (m, 3H)	7.33 (dd, J =8.32, 2.2 Hz 1H)
24	8.8 (s, 1H)	7.28 R2- =H 7.12 (m, 3H)	R3=CH ₂ - pipéridine 3.76 (s, 2H, CH ₂), 2.21 (m, 4H, 2CH ₂),1.62 (m,6H, 3CH ₂)	7.73 (dd, 1H)	7.28-7.12 (m, 3H)	7.36 (dd, 1H)
25	8.8 (s, 1H	7.33-7.25 (m, 2 H);	8.68 (s, 1 H), 8.52 (s, 1H),	7.69 (dd, 1H	7.28-7.12 (m, 3H)	7.36 (dd, 1H)

Interprétation générale des spectres RMN 1H (tableau 7)

Cette série de déprotection du groupement benzyle est caractérisé par le signal du groupement NH indolique qui sortà [12.15-7.93] ppm sous forme singulet large. Les protons aromatiques apparaissent entre [8.29-6.46] ppm.

* RMN¹³C

Comp.	C2	C3	C3a	C4	C5	C6	C7	C7a	Sub. Position 2,3 et 5
16	124.2	102.6	127.8	120.7	122.0	119.8	111.1	135.8	-
17	35.2	101.3	129.2	120.6	119.8	121.5	110.2	136.5	<i>R2</i> =CH ₃ , 16.6
18	138.9	118.6	124.5	123.9	121.2	122.5	112.8	137.4	<i>R3=CHO</i> 185.4
19	122.0	116.6	134.4	116.8	116.6	133.1	102.4	136.5	R5=Br
20	128.4	102.6	128.5	104.6	139.4	111.8	110.9	135.1	<i>R5=phénoxy</i> 157.2, 129.5, 127.8, 127.6
21	123.8	112.3	129.2	119.40	119.45	121.8	111.0	137.1	$\begin{array}{c} R3 = CH_2 - N_{-} \\ (C1H_2 CH_3)_2 \\ 67.0, 47.8, \\ 26.0 \end{array}$
22	123.5	112.0	129.1	119.3	119.4	121.6	110.9	136.1	R3=CH2-N- (CH3)2, 66.8, 46.0
23	124.3	111.8	128.3	119.2	119.3	121.7	111.2	136.1	<i>R3</i> =CH ₂ - pipéridine, 54.3, 53.7, 25.9, 24.3
24	124.1	112.4	128.4	119.42	119.46	121.8	111.1	136.1	<i>R3</i> =CH ₂ - pyrrolidine
25	136.2	133.3	126.7	123.9	122.6	119.0	116.0	115.9	R3=CH=CH

Tabeau 8. RMN 13C désilylation des dérivés d'indole

Interprétation générale des spectres RMN ¹³C (tableau 8)

Les spectres RMN ¹³C de cette série de composés présente les pics caractéristiques des carbones suivants:

- Les carbones quaternaires sortent dans la zone du champ faible entre [138.5-111.8] ppm.

-Les carbones hybridés sp²apparaissent à [138.9-101.3] ppm.

Partie expérimentale

4.6. Partie expérimentale

Détritylation des indoles

Mode opératoire général

A une solution de l'indole protégé (0.1 mmol), on ajoute du Métal (**Mg:** 4.8mg, 0.2mmol; **Zn:** 6.5mg, 0.1mmol; **Fe:** 2.7mg, 0.05mmol) dans 5 mL de MeOH.La réaction portée à reflux est suivie par CCM. Lorsque le produit de départ est consommé, le mélange est filtré, le résidu est extrait dans l'acétate d'éthyle puis lavé par une solutionsaturé de NaHCO₃ (2 mL). L'indole est récupéré par recristallisation dans AcOEt/Hexane(50/50).

1*H*-indole (16)

Point de fusion: 52 °C

Aspect: poudre blanche

RMN ¹H (300 MHz, CDCl₃) δ 7.94 (sL, 1H), 7.65 – 7.64 (m, 1H), 7.36 – 7.26 (m, 1H), 7.21 – 7.07 (m, 3H),6.55 (ddd, *J* = 8.1, 2.0, 0.9 Hz, 1H).

RMN ¹³**C (75 MHz, CDCl₃)** δ135.8 (Cq), 127.8 (Cq), 124.2 (CH), 122.0 (CH), 120.7 (CH), 119.8 (CH), 111.1(CH), 102.6 (CH).

2-Méthyl-1*H*-indole (17)

Point de fusion: 57-59°C

Aspect: poudre blanche

RMN ¹**H** (**250 MHz, CDCl₃**) δ 7.55 (dd, 1H), 7.12-7.05 (m, 3H), 6.18 (s, 1H), 2.26 (s, 3H). **RMN** ¹³**C** (**62.9 MHz, CDCl₃**) δ136.5 (Cq), 135.2 (Cq), 129.2 (Cq), 121.5 (CH), 120.6 (CH), 119.8 (CH), 110.2(CH), 101.3 (CH), 16.6 (CH3).

1*H*-indole-3-carbaldéhyde (18)

Point de fusion: 198 °C

Aspect: poudre blanche

RMN ¹**H** (400 MHz, DMSO- d_6) δ 12.15 (sL, 1H), 9.94 (s, 1H), 8.29 (s, 1H), 8.10 (dd, J = 6.8, 1.0 Hz, 1H), 7.53–7.49 (m, 1H), 7.28-7.20 (m, 2H). **RMN** ¹³**C** (101 MHz, DMSO- d_6) δ 185.4 (CHO), 138.9 (CH), 137.4 (Cq), 124.5 (Cq), 123.9 (CH), 122.5 (CH),121.2 (CH), 118.6 (Cq), 112.8 (CH).

5-bromo-1*H*-indole (19)

Point de fusion: 90-92 °C

Aspect: poudre blanche

RMN ¹**H (250 MHz, CDCl₃) δ** 8.05 (sL, 1H), 7.85 (s, 1H), 7.26-7.12 (m, 3H), 6.46 (d, *J* = 2.6 Hz, 1H).

RMN ¹³**C (62.9 MHz, CDCl₃) δ** 136.5 (Cq), 134.4 (Cq), 133.1 (CH), 122.0 (CH), 116.8 (CH), 116.6 (Cq), 102.4(CH).

5-Phénoxy-1*H*-indole (20)

Point de fusion: 246°C

Aspect: poudre blanche à jaune claire

RMN ¹**H** (250 MHz, CDCl₃) δ 7.90 (sL, 1H), 7.64 (d, *J*= 2.3 Hz, 1H), 7.49-7.38 (m, 4H), 7.29 (d, 1H), 7.00-6.98 (m, 1H), 6.92-6.89 (m, 2H), 6.48 (d, 1H). **RMN** ¹³**C** (62.9 MHz, CDCl₃) δ 157.2 (Cq), 139.4 (Cq), 135.1 (Cq), 129.5 (2CH), 128.5 (Cq), 128.4 (CH), 127.6 (2CH), 111.8 (CH), 110.9 (CH), 104.6 (CH), 102.6 (CH).

N-((1H-indol-3-yl)méthyl)-N-éthyléthanamine (21)

Point de fusion:109-110 °C

Aspect: cristaux blancs

RMN ¹**H** (**250 MHz, CDCl₃**) δ 8.52 (sL, 1H), 7.79 (d, *J* =7.37 Hz, 1H), 7.37 (dd, *J* = 9.07, 2.64 Hz 1H), 7.29-7.11 (m, 3H), 3.92 (s, 2H), 2.62 (m, 4H), 1.19 (m, 6H). **RMN** ¹³**C** (62.9 **MHz, CDCl₃**) δ 137.1 (Cq), 129.2 (Cq), 123.8 (CH), 121.8 (CH), 119.45 (CH), 119.40 (CH),112.3 (Cq), 111.0 (CH), 67.0 (CH₂), 47.8 (2CH₂), 26.0 (2CH₃).

1-(1*H*-indol-3-yl)-N,N-diméthylméthanamine (22)

Point de fusion: 128-130 °C

Aspect: cristaux blancs

RMN ¹**H (250 MHz, CDCl₃) δ** 8.8 (sL, 1H), 7.73 (d, *J* = 7.32 Hz, 1H), 7.36 (d, *J* = 7.08 Hz, 1H), 7.28-7.12 (m,3H), 3.76 (s, 2H), 1.62 (m, 6H).

RMN ¹³**C (62.9 MHz, CDCl₃) δ**136.1 (Cq), 129.1 (Cq), 123.5 (CH), 121.6 (CH), 119.4 (CH), 119.3 (CH),112.0 (Cq), 110.9 (CH), 66.8 (CH2), 46.0 (2CH3).

3-(Pipéridin-1-ylméthyl)-1*H*-indole (23)

Point de fusion:98 °C

Aspect: Solide blanc

RMN ¹**H (250 MHz, CDCl₃) δ**8.8 (s, 1H); 7.73 (dd, 1H), 7.36 (dd, 1H), 7.28-7.12 (m, 3H), 3.76 (s, 2H), 2.21(m, 4H), 1.62 (m, 6H).

RMN ¹³**C (62.9 MHz, CDCl₃) δ**136.1 (Cq), 128.3 (Cq), 124.3 (CH), 121.7 (CH), 119.3 (CH), 119.2 (CH),111.8 (Cq), 111.2 (CH), 54.3 (2CH₂), 53.7 (CH2), 25.9 (2CH₂), 24.3 (CH₂).

3-(Morpholin-4-ylméthyl)-1*H*-indole (24)

Point de fusion: 134-135 °C

Aspect: Solide blanc

RMN ¹**H (250 MHz, CDCl₃)** δ = 8.41 (br s, 1 H), 7.81 (dd, *J* = 7.5, 1.1 Hz, 1 H), 7.38 (dd, *J* = 8.0, 1.15 Hz, 1 H), 7.25-7.07 (m, 3 H), 3.78-3.68 (m, 6 H), 2.75-2.63 (m, 4 H).

RMN ¹³C (62.9 MHz, CDCl₃) δ (62.5 MHz, CDCl₃): δ = 136.3 (C), 127.9 (C), 123.9 (CH), 122.1 (CH), 120.4 (CH), 119.6 (CH), 112.1 (CH), 111.2 (C), 67.1 (CH₂), 54.1 (CH₂), 53.6 (CH₂).

3-(3-(2,2-Dicyanoethenyl)-1*H*-indole (25)

Point de fusion: 219-221 °C

Aspect: Solide blanc

RMN ¹**H** (**250 MHz, CDCl**₃) δ = 12.69 (br s, 1 H), 8.68 (s, 1 H), 8.52 (s, 1H), 8.04-8.02 (m, 1 H), 7.58-7.56 (m, 1 H), 7.33-7.25 (m, 2 H).

RMN ¹³**C (62.9 MHz, CDCl₃)** δ = 152.5 (CH), 136.2 (C), 133.3 (CH), 126.7 (C), 123.9 (CH), 122.6 (CH), 119.0 (CH), 116.0 (C), 115.9 (C), 113.1 (CH), 112.0 (C), 69.2 (C).

Chapitre IV: Synthèse stérosélective de bihétérocycles

Chapitre IV : Synthèse stérosélective de bihétérocycles

1. Généralité de l'imine

Les imines sont des composés azotés importants en raison de leur remarquable le ctrophilie, qui sont largement distribués dans la nature et présentent des activités pharmacologiques polyvalentes. Polyvalentes^{153,154}. De nombreuses méthodes de formation d'imines ont été rapportées en synthèse organique en raison de l'importance des imines dans les domaines de la chimie¹⁵⁵ et de la biologie^{156,157}.

Les procédures de deux importantes sulfinimines, les N-p-toluènesulfinimines et les Ntertbutanesulfinimines, ont été développées par Davis¹⁵⁸ et Ellman¹⁵⁹respectivement. Ces deux importantes sulfinimines se sont avérées être des intermédiaires potentiels pour les synthèses organiques de dérivés d'amines.

Les imines sont généralement obtenues par condensation d'aldéhydes et d'amines. Le site N-(tert-butylsulfinyl) imines énantiomériquement pures se sont révélées être des substrats très polyvalents pour la synthèse asymétrique d'amines primaires chirales¹⁶⁰.Les amines primaires chirales sont une classe très intéressante car elles sont présentes dans de nombreux produits naturels et biologiquement actifs. et font également partie de produits pharmaceutiques et agrochimiques.

Le groupe sulfinyle chiral et attracteur d'électrons joue un double rôle en tant que groupe activateur et stéréo directeur. et présente l'avantage de pouvoir être facilement éliminé des produits de la réaction, ce qui permet d'obtenir des amines primaires libres. Conduisant à des amines primaires libres¹⁶¹.

2. Caractéristiques des N-tert-butanesulfinylimines

Au cours de la dernière décennie, l'utilisation de N-tert-butanesulfinimines¹⁶¹ comme précurseurs d'amines chirales a connu un grand développement. La raison en est que le groupe tertbutanesulfinyle présente des caractéristiques particulières qui le différencient des autres :

-Les deux énantiomères du N-tert-butanesulfinamide peuvent être préparés à grande échelle sous forme énantiomériquement pure. et sont disponibles commercialement à des prix raisonnables.

-La condensation directe du tert-butanesulfinamide avec une large gamme d'aldéhydes et de cétones a lieu avec des rendements élevés dans des conditions de réaction douces.

cétones, ce qui permet d'obtenir des N-tertbutansulfinyl aldimines et des cétimines respectivement. Ceux-ci sont moins sensibles à l'hydrolyse que la plupart des N-alkyl, aryl, acyl ou carbamoyl imines...

-Les N-tert-butanesulfinylimines sont plus électrophiles que les N-alkyl ou arylimines typiques en raison de la densité de charge positive localisée dans l'atome de soufre. Cette électrophilie permet l'addition de nombreux nucléophiles ,tels que les réactifs organométalliques de magnésium, lithium, zinc, silice, indium, cérium et bore, carbaniones stabilisées sous forme d'énolates ; nucléophiles autres que le carbone tels que phosphore, bore, étain et silice, commeénolates, ainsi que différents hydrures.

-Le groupe tert-butanesulfinyle, en plus d'être chiral, permet la coordination des métaux, fournissant des diastéréosélectivités élevées dans les réactions d'addition.

-Le groupe tert-butanesulfinyle agit comme un groupe protecteur atténuant la nucléophilie de l'amine. Il est également stable dans différentes conditions de réaction, telles que comme la présence de bases fortes, de nucléophiles et d'une grande variété de métaux de transition dans des processus catalysés.

-La déprotection du groupe tert-butanesulfinyle s'effectue facilement avec du chlorure d'hydrogène dans du méthanol.

Le chlorure d'hydrogène dans le méthanol, générant le chlorhydrate correspondant de l'amine avec des rendements presque quantitatifs.

3.Synthèse de sulfinylimines et imidates

3.1. Synthèses de sulfinylimines

Les *N*-sulfinylimines possèdent l'avantage d'être plus stables et plus difficilement énolisables que leurs analogues sulfonylées, tout en gardant une électrophilie importante. De plus, la chiralité portée par l'atome de soufre permet de réaliser des transformations diastéréosélectives avec généralement une très haute induction asymétrique. Leur large utilisation en synthèse organique a commencé avec les travaux de Davis et le développement des *p*-tolylsulfinylimines.¹⁶²Ces dernières peuvent subir l'addition nucléophile de nombreux organométalliques, mais l'utilisation de nucléophiles fortement basiques conduit souvent à des mélanges de produits issus à la fois de l'addition sur l'imine et sur l'atome de soufre. Ce manque de sélectivité a pu être pallié grâce aux travaux du groupe d'Ellman et le développement des *tert*-butanesulfinylimines, capables de subir l'addition d'organolithiens avec une sélectivité totale.

Le groupement *tert*-butanesulfinyle peut être gardé comme groupe protecteur pour une éventuelle séquence réactionnelle après l'addition, son comportement est analogue à celui d'un groupement Boc, facilement clivable en milieu acide. Nous nous intéresserons donc uniquement aux méthodes de synthèse des *tert*-butanesulfinylimines

La condensation du *tert*-butanesulfinamide avec les aldéhydes et les cétones a fait l'objet de nombreuses études et les principales méthodes décrites sont résumées dans le. Les premières conditions développées par le groupe d'Ellman utilisent un excès de sulfate de magnésium en présence d'un catalyseur acide pour former des aldimines aromatiques et aliphatiques.¹⁶³L'utilisation de sulfate de cuivre a permis plus tard de s'affranchir de la catalyse acide et de diminuer le nombre d'équivalents d'agent desséchant ; cependant ces méthodes utilisent un grand excès d'aldéhyde et ne sont pas applicables à la

104

méthode préparation cétimines. La la plus générale de pour conduire aux tertbutanesufinylimines est sans doute l'utilisation d'un tétra-alkoxyde de titane en excès commeacide de Lewis et agent desséchant¹⁶⁴.C'est encore le groupe d'Ellman qui a mis au point ces conditions pour synthétiser des aldimines et des cétimines avec des rendements isolés supérieurs à 73%. Nakata a par la suite publié des conditions basiques utilisant le carbonate decésium pour activer cette fois le sulfinamide et non plus l'aldéhyde.¹⁶⁵Seules des aldiminessont accessibles par cette voie, avec des rendements souvent plus modestes de l'ordre de 45 à75%. Une variante utilisant l'hydrogénosulfate de potassium comme agent déshydratant a étépubliée par Qin en 2005.¹⁶⁶Les aldimines aromatiques comme aliphatiques sont accessibles par cette voie avec des rendements souvent comparables à ceux obtenus via un alkoxyde detitane. De façon plus originale, le groupe de Chan a montré la possibilité d'utiliser une quantité catalytique de triflate d'ytterbium afin de réaliser cette condensation.¹⁶⁷

Peu d'exemples ont été décrits mais les rendements sont bons en série aromatique comme aliphatique. Par la suite, de nouvelles conditions basiques ont été publiées, employant cette fois la soude dans le méthanol pour générer efficacement des aldimines aromatiques.¹⁶⁸Plusrécemment, des conditions type Barbier utilisant le zinc en présence de bromure de benzyleont été appliquées à la synthèse de sulfinylimines de manière très efficace, donnant accès auxaldimines aromatiques et aliphatiques. Enfin, le groupe de Guijarro a récemment décrit une synthèse de cétimines et aldimines sans solvant, assistée par les microondes. Les temps de réactions sont grandement écourtés, cependant ces conditions nécessitent tout de même deux équivalents d'alkoxyde de titane pour amener la réaction à complétions.

Schéma 86

Les hétérocycles azotés aturiques à trois chaînons ont suscité un intérêt croissant ces dernières années, car les composés présentant ce motif structurel ont des activités pharmacologiques très diverses. Les aziridines chirales jouent également un rôle important dans la synthèse asymétrique car elles peuvent agir à la fois comme ligands et comme auxiliaires chiraux

. Les méthodes de synthèse les plus utilisées pour former le cycle aziridine comprennent des cyclisations intramoléculaires dans Des synthèses stéréosélectives d'aziridines ont été réalisées une addition nucléophile à la N-tert-butane et à l'aziridine. sur des N-tert-butanesulfinyl α -chloroimines, la déprotonation du bromoforme avec de l'hexaméthyldisilazide (NaHMDS) sur des N-tert-butanesulfinyl aldimines chirales (RS)-14, à basse températur pour former des aziridines par des réactions d'aza-Darzens et de Corey-Chaykovsky.

Schéma 87

Une intéressante réaction vinylogue asymétrique aza-Darzens a été employée pour accéder aux cis-vinylaziridines¹⁶⁹ et Le groupe de Njardarson a constaté que la réaction de différentes imines chirales aromatiques et aliphatiques¹⁷⁰, la rection conduit à la formation de cis-vinylaziridines dans le THF à -78 °C.

Schéma 88

4.Réactivité

Le *t*-BS est une amine chirale commercialement disponible, très stable et l'un des produits le plus utilisés pour la synthèse asymétrique des amines. Il est très emplyé pour la synthèse asymétrique d'une très large gamme de composés aminés, y compris les amines

ramifiées; acide aminé; amine allylique; amine homoallylique ;amine propargylique; 1,2-amino-alcool; 1,3-amino- alcools; 1,2-diamine; aziridines et de nombreux types d'amines contient le fluor La synthèse d'une amine α ramifiés non fonctionnalisée peut être réalisée à partir de l'imine par addition de réactifs organométalliques¹⁷¹.

4.1.Synthèse des acides α-amino phosphoriques

Récemment, *N-tert*-Butanesulfinyl aldimines et cétimines ont utilisés pour la synthèse asymétrique des acides α -aminophosphoriques, analogues des acides aminés. L'addition du diméthyl phosphonate à l'imine dans des conditions basique donne des produits avec un bon diastéreoselectivité¹⁷²

Schéma 89

4.2.Synthèse asymétrique des azétidines

L'azétidine ¹⁷³ a attiré moins d'attention que les aziridines, les pyrrolidines et les pipéridines, parmi les aza-hétérocycles de petite et moyenne taille., car il n'existe pas de méthodes générales pour leur préparation. Cependant, les hétérocycles azotés à quatre chaînons ont récemment trouvé des applications en pharmacie en tant que composés à haute activité biologique. Parmi ce groupe d'hétérocycles azotés, les β -lactames (azétidin-2-ones) ont fait l'objet d'une attention particulière ¹⁷⁴, car ils sont facilement accessibles à partir de β -aminoesters

Schéma 90

4.3.Synthèse des amines propargyliques

Les dérivés des amines propargylique chiraux sont des intermédiaires clé pour la synthèse des plusieurs produits naturel. Dans le même cadre la *N-tert*-Butanesulfinylpropargylique amine résultant de l'addition d'un dérivé acétylinéque à l'imine qu'est utilisé comme intermédiaire dans la réaction de *Pictet-Spengler* qui permet de préparer les dérivés de tétrahydropyrido-benzofurane ou indole.¹⁷⁵

Schéma 91

4.4.Synthèse asymétrique des β-lactames

Les β -Lactam antibiotiques sont une classe importante d'agents antibactériens ¹⁷⁶.Dans ce reaction en utilisant le groupe sulfinyle ¹⁷⁷a synthèse stéréosélective du spiro β -lactame 57 à partir de la (R)-N-tertbutanesulfinyl isatin ketimine 53 chirale (R = H), avec un groupe protecteur trityle volumineux lié à l'atome d'azote indolique (Tr = triphénylméthyle) et du bromoacétate d'éthyle. La réaction de type Reformatsky, médiée par Zn/Cu, a fourni un composé énantiomériquement pur. après purification par chromatographie sur colonne.

Schéma 92

4.5.Synthèse asymétrique des cycles pyrrolidines

Le cycle pyrrolidine est plus représenté dans les produits naturels que les hétérocycles à 3 et 4 chaînons contenant de l'azote. Ce réseau moléculaire est également présent dans les médicaments et autres molécules biologiquement actives. Pour cette raison, il existe de nombreux exemples de méthodologies de synthèse de ces composés dans la littérature. Dans la plupart des cas, le cycle pyrrolidine est formé à partir d'une amine avec une chaîne hydrocarbonée qui porte également un groupe fonctionnel. On a constaté que l'arylation de sulfinylimines chirales avec des tétraarylboronates de sodium se déroulait avec une grande diastéréosélectivité sous catalyse au rhodium, ses collègues ont appliqué cette méthodologie à la synthèse de pyrènes 2-substitués et de pyrrolidines 2-substituées¹⁷⁸. L'arylation de l'imine chlorée a été réalisée avec 2 % molaire d'un catalyseur à l'air dans du dioxane, en présence de 2 équivalents de MeOH, à 65 °C. Les amides bruts ont été convertis en pyrrolidines correspondantes avec un rendement élevé.

Schéma 93

4.6.Synthèse asymétrique des isoindolines

Des isoindolines avec des substituants en positions 1 et 3 ont été synthétisées à partir d'une N-tertbutanesulfinylimine aromatique, portant un accepteur de Michael en position ortho. Fustero, Barrio et leurs collègues ont découvert qu'en combinant une addition nucléophile asymétrique sur l'imine chirale, avec un conjuguée intramoléculaire d'aza-Michael, les isoindolines 1,3-disubstituées attendues étaient produites avec une grande diastéréosélectivité. Elevée

Schéma 94

4.7.Synthèse asymétrique d'acides β,γ-insaturés α-amino

La méthode pour la synthèse énantiosélective d'acides β , γ -insaturés α -amino ,sera faire par une réaction de Petasis diastéréosélective, promue par un acide de Lewis, d'acides vinylboroniques , de (R)-N-tertbutanesulfinamide et d'acide glyoxylique . Ils ont constaté que les meilleurs résultats ont été obtenus en travaillant avec InBr comme acide de Lewis, dans du dichlorométhane à température ambiante ¹⁷⁹. Dans ces conditions de réaction,

Schéma 94

4.8.Synthèse des amines allyliques

L'addition de l'indium allylique à l'imines a été décrite pour la première fois par *Grigg et al.*¹⁷⁹Cetteméthodologie, consacré à préparer l'indium allylique par transmétalation du complexe allyl π - palladium(II), ce dernier est généré par la réactiondu Pd(OAc), ligand de tris (2-furyl) phosphine, iodure arylique et un allène. La réaction àtrois-composant fournie une seule diastéréoisomère (Schéma 95).

Schéma 95

Chapitre IV :

Récemment, *Foubelo, Yus*¹⁸⁰ont réalisé l'allylation du *N-tert*-Butanesulfinylimine catalysé par le tétrakis (triphénylphosphine) Palladium. La réaction a été réalisée à partir des alcools allyliques en présence de l'iodure d'indiumcomme agent réducteur avec des bons rendements. La réaction avec l'alcool crotylique est totalement régiosélective, donnantl'anti-diastéréoisomère comme produit majoritaire

Schéma 96

Résultats et discussion

Résultats et discussion

5.1.Introduction

Le motif indole est largement représenté dans des composés ayant de nombreuses applications dans, par exemple, les sciences des matériaux, l'agriculture, et surtout, l'industrie pharmaceutique. Ces composés sont d'origine naturelle et synthétique. Il existe deux types généraux de méthodologies conduisant à la synthèse de dérivés de l'indole. Celles qui comprennent la formation du cycle condensé à cinq chaînons contenant de l'azote, et celles dans lesquelles une fonctionnalisation supplémentaire de l'unité indole a lieu, en tenant compte de la sélectivité desdifférentssitesdisponibles sur ce système. Parmi les plus récents, les processus catalytiques asymétriques pour la construction des dérivés de l'indole présentent un intérêt particulier, au moyen d'une organocatalyse asymétrique, ou sous catalyse de métaux de transition, qui permettent la formation régiosélective de liaisons carbone-carbone et carbone-hétéroatome. Le motif indole étant présent dans de nombreux produits polycycliques naturels, des méthodologies d'annulation ont également été développées pour permettre l'accès à ces composés et à leurs analogues. À cet égard, le caractère nucléophile de la position C3 de l'indole joue un rôle fondamental en réagissant avec des électrophiles.

En poursuivant notre intérêt pour le développement de nouvelles méthodologies pour la synthèse stéréosélective d'hétérocycles contenant de l'azote, nous avons envisagé une stratégie de synthèse pour accéder aux bihétérocycles portant des parties indole et méthylène butyrolactame ou dihydro pyridinone. Une allylation diastéréosélective catalysée par l'indium de la N-tert-butanesulfinylimine dérivée de l'indole est une étape clée de cette stratégie (schéma 97). Les produits obtenus présentent un intérêt pharmacologique certain puisque les motifs méthylènebutyrolactame ou dihydropyridinone seuls présentent une large gamme d'activités biologiques.

Schéma 97.

5.2. Optimisation de la réaction

Notre stratégie pour atteindre des bihétérocycles possédant à la fois les fragments indole et lactame, a commencé par la synthèse des N-*tert*-butanesulfinylimines chirales à partir des dérivés d'indolecarbaldéhydes1. Afin de determiner les meilleures conditions de la réaction, nous avons pris l'indole-3-carbaldéhyde 1a et le (S)-N-tert-butanesulfinamide comme substrats modèles.

Tableau 8.Optimisation de la formation de l'imine 3a à partir de l'aldéhyde 1a et du (S)-
tert-butanesulfinamide 2

Entrée	Additif	Solvant	Activation	Température	Temps	Rendement (%)
1	Ti(OEt) ₄ (2.0 equiv)	THF		23 °C	4 h	NR
2	Ti(OEt) ₄ (2.0 equiv)	THF		reflux	4 h	>5
3	Mg(SO ₄) ₂ (1.5 equiv)	CH ₂ Cl ₂		23 °C	12 h	NR
4	Cu(SO ₄) ₂ (1.5 equiv)	CH ₂ Cl ₂	23 °C		12 h	NR
5	TsOH·SiO ₂ (0.16 mol %)		US))))	23-50 °C	12 h	NR
6	$Ti(OEt)_4$ (2.0 equiv)		MW (40 W)	70 °C	10 m	68
7	Ti(OEt) ₄ (2.0 equiv)		Thermique	80 °C	1 h	75

De manière surprenante, la condensation directe de ces réactifs en présence d'un acide de Lewis et d'un piège à eau à température ambiante, n'a pas produit l'imine attendue (Tableau 8, entrées 1, 3, 4). Ce sont des conditions typiques pour la formation de N-tertbutanesulfinylimines dérivées d'aldéhydes aliphatiques et aromatiques. [En effectuant la condensation avec du tétraéthoxyde de titane dans du THF à reflux, qui a bien fonctionné pour les imines moins réactives, seules des traces de l'imine **3a** ont été détectées dans le brut de la réaction (Tableau 8, entrée 2). L'utilisation d'acide *p*-toluènesulfonique supporté sur du gel de silice n'a pas été efficace pour la formation de l'imine sous activation par ultrasons (Tableau 8, entrée 5). Heureusement, la condensation a bien fonctionné sous irradiation par micro-ondes pendant 10 minutes, en présence de tétraéthoxyde de titane, sans solvant supplémentaire (tableau 8, entrée 6). De même, un rendement maximal a été obtenu dans des conditions exemptes de solvant et par activation thermique (80 °C) pendant 1 heure (tableau 8, entrée 7).

5.3.Mécanisme réactionnel

La condensation de l'aldéhyde s'effectue en utilisant le tétraéthoxyde de titane comme acide de Lewis activant la fonction carbonyl de l'aldéhyde à l'attaque du *t*-butanesulfinamide (*t*-BuSONH₂). Afin de favoriser la formation de l'imine, le tétraéthoxyde de titane joue également le role d'un capteur d'eau. Sinon, le *t*-butanesulfinamide n'est pas un bon nucléophile. Le mécanisme est détaillé ci-dessous.

5.4. Résultats obtenus

Nous avons ensuite étudié la portée de la réaction dans les conditions optimisées indiquées dans l'entrée 7 du tableau 8. Les imines **3c** et **5** attendues ont été obtenues avec des rendements relativement élevés après purification par chromatographie sur colonne.Les halogènes et les groupes donneurs d'électrons ont été bien tolérés à différentes positions. Les substituants alkyles sur l'atome d'azote de l'indole n'ont pas affecté la formation de l'imine,

puisque les composés **3a** et **3f** (le dérivé N-méthyle correspondant) ont été obtenus avec des rendements similaires. Le meilleur résultat a été obtenu pour l'indole-2-carbaldéhyde (4), avec le groupe formyle en position C2 du système indole (imine **5**, rendement de 87%), qui est moins nucléophile que la position C3.

5.5. Allylation diastéréosélective par l'indium avec le bromure d'allyle de sulfinylimines

Nous avons envisagé les dérivés d'homoallylamine **3b** comme des intermédiaires de synthèse dans la voie des bihétérocycles cibles décrits dans le schéma suivants. Ces composés ont été facilement préparés avec une excellente énantiopurité dans des conditions de réaction

développées dans notre groupe de recherche. Les imines chirales **3h** et **5** ont été traitées avec un excès (1,5 équiv) de bromure d'allyle (**6a**), en présence d'indium métallique, dans du THF à 60 °C pendant 6 heures .

 Tableau 9. Les rendements de la synthèse Allylation diastéréosélective par l'indium avec le bromure d'allyle de sulfinylimines

Les dérivés homoallylamines 7c, 7d et 8 ont été obtenus avec d'excellents rendements et des diastéréosélectivités après purification par chromatographie sur colonne . Seule l'imine 7g, stériquement plus encombrée, dérivée du 2-méthylindole-3-carbaldéhyde correspondant (**3b**), n'a pas donné le produit allylé 7b attendu. Le résultat stéréochimique de ces allylations est bien connu. L'attaque nucléophile a lieu sur la face Re des imines **3a** et **5** avec la configuration S au niveau de l'atome de soufre, conduisant aux produits de réaction **7** et **8** avec la configuration R au niveau du centre stéréogénique formé (Tableau 9). Malheureusement, la décomposition du sel d'ammonium intermédiaire dans une extension relativement importante a été observée après l'élimination du groupe sulfinyle dans des conditions acides, avant la N-acylation planifiée avec le chlorure d'acryloyle. Probablement, l'atome d'azote de l'indole facilite la libération de l'ammoniac comme groupe partant attaché au carbone lié à la position C3.

5.6.Synthèse et allylation diastéréosélective des sulfinylimines protégées par N-Boc

Afin d'éviter la décomposition du sel d'ammonium, et dans le but d'atténuer le caractère nucléophile de la position C3,nous avons décidé de placer un groupe attracteur d'électrons sur l'azote indolique. Pour cette raison, des imines N-Boc-protégées représentatives **9a**, **9c**, **9e**et **10** ont été préparées d'abord à partir des N-tert-butanesulfinylimines 3 et 5 correspondantes,

Chapitre IV :

respectivement, avec des rendements élevés à excellents . Une allylation supplémentaire promue par l'indium des imines 9 et 10 dans les conditions de réaction précédemment commentées a conduit aux dérivés homoallylamine attendus, avec des rendements modérés.

5.7.Synthèse des acrylamides et des indolyldihydropyridin-2-ones

L'élimination du groupe tertio-butanesulfinyle dans les dérivés d'homoallylamine N-Boc-protégés a été effectuée dans des conditions acides dans MeOH, et le sel d'ammonium résultant a été traité avec du chlorure d'acryloyle à 0 °C dans un système de solvant biphasé constitué d'hydroxyde de sodium aqueux 4M et de dichlorométhane. Les acrylamides attendus ont été isolés en excellents rendements dans la plupart des cas . Heureusement, la décomposition des sels d'ammonium intermédiaires n'a pas eu lieu dans les indoles N-Bocprotégés. Les bihétérocycles cibles basés sur les squelettes indole et dihydropyridinones ont été obtenus par métathèse par fermeture de cycle des acylamides, sous catalyseur au ruthénium de deuxième génération de Hoveyda-Grubbs, avec des rendements élevés

5.8.Synthèse des butyrolactames

L'allylation des indolylsulfinylimines avec le 2-(bromométhyl)acrylate d'éthyle (dans une solution aqueuse saturée de bromure de sodium en présence de 4 équivalents d'indium à température ambiante pendant 48 h n'a pas permis d'obtenir les aminoesters . Nous avons constaté que ces conditions fonctionnaient bien pour les N-tert-butanesulfinyl aldimines aliphatiques et aromatiques, [9,20]et lorsque la réaction était effectuée à une température plus élevée, une décomposition de l'indolvlimine avait lieu. Heureusement, une conversion complète a été obtenue dans du THF à 100 °C après 48 heures pour donner un mélange des dérivés d'esters aminés attendus, et des butyrolactames .Dans ces conditions de réaction, les esters aminés initialement formés pourraient partiellement se cycliser pour donner des méthylène-butyrolactames. À partir du mélange réactionnel, les aminoesters ont été convertis en butyrolactames, après élimination du groupe tert-butylsulfinyle dans des conditions acides à basse température, et traitement basique final. Des rendements relativement faibles ont été obtenus, probablement en raison de la décomposition partielle du sel d'ammonium résultant de l'élimination du groupe sulfinyle dans des conditions acides. Par analyse HPLC utilisant des colonnes avec un garnissage chiral, les valeurs er des produits de réaction ont été 97:3 déterminées, allant de (19d) à 72:28 (2

Sur la base d'études antérieures , la configuration Sdu centre stéréogénique nouvellement créé dans le diastéréoisomère majeur des composés a été attribuée. Afin d'expliquer ce résultat stéréochimique, nous avons proposé que l'attaque nucléophile de l'intermédiaire allylindium sur la face Si de l'imine de configuration SS se produise préférentiellement à travers un état de transition ouvert A, dans une sorte de configuration scis, qui est plus stable (Figure 1a). Au contraire, un modèle de cycle à six chaînons B (Figure 1b), avec un métallacycle à quatre chaînons, dans lequel le métal est chélaté à la fois par les atomes d'oxygène et d'azote de la fraction imine, a été proposé pour l'allylation promue par l'indium de ces aldimines chirales avec le bromure d'allyle et il conduirait à la configuration opposée. La chélation intermoléculaire de l'indium de l'intermédiaire allylindium résultant de l'acrylate de 2-(bromométhyle) d'éthyle (6b) avec le groupe sulfinyle de l'imine peut être entravée par une chélation intramoléculaire plus favorable avec le groupe ester, facilitant l'addition par un état de transition ouvert A (Figure 1a).

5.8. Conclusion

En résumé, les 2- et 3-indolyldihydropyridinones (15 et 16) et les méthylènebutyrolactames (19 et 20) ont été préparés de manière hautement énantiosélective, en utilisant comme précurseurs les N-tert-butanesulfinylimines 3 et 5, dérivées de l'indolecarbaladehyde correspondant. Les allylations diastéréosélectives des imines chirales catalysées par l'indium, ainsi que la métathèse de fermeture de cycle pour les lactames 15 et 16, sont des étapes clés des méthodologies présentées ici. Les bihétérocycles15, 16, 19 et 20, basés sur l'indole d'une part, et sur des motifs de méthylène-butyrolactame ou de dihydropyridin-2-one d'autre part, pourraient être d'un intérêt potentiel puisque ces motifs hétérocycliques sont connus pour présenter eux-mêmesdes activités biologiques inestéressant. Etude spectrale

5.7.Etude spectrale :

Tableau 10. RMN H (300 MHz, CDCl₃, δ ppm, J Hz

Comp	NH	R2	R3	H4	H5	H6	H7			
			$R^{3}=5,6$							
			dihydropyridin							
			6.72 (ddd, J =							
15a			10.0, 5.3, 3.1							
	$R^1 = Boc$	R ² =H 7.32-	Hz, 1H), 6.11-	8 10 (d. I-	m 2H) 738					
	1.69 (s,		6.03 (m, 1H),	(dd I = 0.4, 7, 2, 1, 110, 1.00 - 1.37) (III, 211), 1.50						
	9H)	7.24 (III, 111)	5.79 (s, 1H),	(11)					
			5.05 (ddt, J =							
			11.2, 6.0, 1.0							
			Hz, 1H), 2.79-							
			2.61 (m, 2H)							
			$R^{3}=5,6$							
	R ¹ = Boc 1.67 (s, 9H)	R ² =H 7.51 (s, 1H)	dihydropyridin							
			6.07 (dd, J =							
			9.9, 1.8 Hz,				3.14 (q, J =			
			1H), 5.68 (s,	7.48-7.42	(m, 1H), 7.2	7-7.20 (m,	7.4 Hz, 2H,			
15c			1H), 5.04 (dd.	2H), 6.72 (ddd, J = 9.9, 1	5.0, 3.3 Hz,	1.22 (t, J =			
			J = 10.6 6.7		1H)		7.5 Hz,			
			Hz 1H)				3H)			
			$2.76_{-}2.67$ (m							
			2.70-2.07 (III, 2H)							
			211),			807 (d. I-	004714)			
			$R^{3}=5,6$			8.07 (u, J –	9.0 HZ, 1H),			
			dihydropyridin			7 10 (0	(111)			
	$R^1 = Boc$	R ² =H	6.11-6.04 (m,	.	$R^5 = O$ -	/.10-6.9	92 (m, 1H)			
15 ^e	1.68 (s,	6.77-6.69 (m,	1H), 5.79 (s,	/.5/(s,	CH _{3,} 3.87					
	9H)	1H)	1H), 5.05-4.96	IH)	(s, 3H)					
			(m, 1H), 2.82-							
			2.60 (m, 2H)							

			$R^{3}=5.6$						
15g	R ¹ = Boc 1.71 (s, 9H)	R ² =H 6.13-6.06 (m, 1H)	dihydropyridin 5.92 (s, 1H), 5.11 (dd, <i>J</i> = 10.0, 6.8 Hz, 1H), 2.74 (ddd, <i>J</i> = 9.9, 3.7, 2.4 Hz, 2H)	8.27 (dd, <i>J</i> = 9.2, 2.2 Hz, 1H)	8.34 (d, <i>J</i> = 9.2 Hz, 1H)	8.55 (dd, <i>J</i> = 2.1, 0.7 Hz, 1H)			
16	R ¹ = Boc 1.73 (s, 9H)	R ² =5,6 dihydropyridin .33 (s, 1H), 6.04-5.97 (m, 1H), 5.49 (dt, J = 7.5, 3.9 Hz, 1H), 3.08- 2.96 (m, 1H), 2.80-2.67 (m, 1H)	R ³ =H 6.60 (s, 1H)	8.03 (dd, J = 8.4, 1.0 Hz, 1H), 7 7.35-7.20 (m, 2)			7.54-7.48 (m, 1H), H)		
19c	R ¹ =H 8.23 (s, 1H)	6.39 (s, 1H), 6.11 (s, 1H), 5.41 (t, J = 2.3 Hz, 1H), 5.07 (dd, J = 8.1, 4.6 Hz, 1H), 3.37-3.29 (m, 1H), 3.00-2.94 (m, 1H),	R ³ =H 7.07 (s, 1H)	7.42-7.39	2.85 (q, J = 7.5 Hz, 2H), 1.36 (t, J =7.5 Hz, 3H)				
19d	R ¹ =H 8.65 (s, 1H)	$\overline{7.04 (t, J = 8.0}$ Hz, 1H), 6.68 (s, 1H), 6.05 (s, 1H), 5.69 (dd, J = 8.1, 3.4 Hz, 1H), 5.38 (s, 1H), 3.46 (dd, J = 8.1, 17.2 Hz, 1H), 2.86 (dd, J = 17.2,	R ³ =H 7.16 (s, 1H)	7.34-7.26 (m, 2H), 7.04 (t,J = 8.0 Hz,			Hz, 1H),		

20	R ¹ =H 9.58 (s, 1H),	3.4 Hz,1H) 5.98 (s, 1H), 5.30 (s, 1H), 4.88 (dd, J = 8.3, 4.7 Hz, 1H), 3.20 (dd,J = 17.3, 8.3 Hz, 1H), 2.85-2.78 (m,	R ³ =H 6.35 (s, 1H)	7.55-7.52 (m, 1H), 7.34-7.31 (m, 1H), 7.18-7.05 (m, 2H)
		2.85-2.78 (m, 1H)		

<u>**RMN**¹H:</u>

Les spectres RMN ¹H de noyou indole sont simples et d'interprétation facile car ils présentent tous la même empreinte d'où l'interprétation générale suivante:

• Pour les composés**15a**,**15c**,**15e**,**15g** et**16**, le proton (N-BOC) de groupe tre-butoxycarbone sort généralement dans la zone [1.73-1.68] ppm sous forme d'un singulet

Les protons du cycle aromatique de l'indole résonnent entre [8.34-7.34] ppm caractéristique du (ddd,d,m)

• Les protons portés par les carbones des sommets 2 et 3:

* C2-H : sort dans la zone vers [7.51-6.06] ppm sous forme d'un multiplet.

* C3-H : sort entre 7.16 et 6.60ppm sous forme d'un singulet.

Les substituants portés par le noyau indolique en positions 2,3 :

•Les protons des substituants en position 3 du5,6-dihydropyridin-2(1*H*)-one résonnent dans la zone caractéristique à [6.72- 2.61] ppm.

•Le groupe éthyle en position *para* dans le composé**15c** sort entre 3.14 et1.22 ppm sous formed'un quadruplet d'intégration 2Het d'un triplet d'intégration 3H.

• Le groupe méthoxyen position *ortho* dans le composé **15e** sort à 3.87 ppm sous formed'un singulet.

Tableau 11 . RMN 13C (300 MHz, CDCl₃, δ ppm, J Hz):

 $\begin{array}{c} R_{5}^{5} \stackrel{R^{4}}{\longrightarrow} & R^{3} \\ R_{5}^{5} \stackrel{R^{4}}{\longrightarrow} & R^{2} \\ R_{7}^{7} \stackrel{N}{\xrightarrow{}} & R^{1} \\ R^{7} \stackrel{R^{1}}{\xrightarrow{}} & R^{1} = \operatorname{Boc}, H \\ R^{2} = H, 5, 6 \text{-dihydropyridin}, 3 \text{-methylenepyrrolidin} \\ R^{3} = H, 5, 6 \text{-dihydropyridin} \end{array}$

Com p.	C2	C3	C3a	C4	C5	C6	C7	C7a	R ¹ =B oc	R ⁴ R	R 5	R R	ub. Position 2 et 3
15a	125. 0	120. 2	127. 8	115. 7	123. 1	124. 6	119. 2	135. 9	149.4, 84.2, 28.2	-	-	-	166.5, 140.7,48. 5, 31.1
15c	126. 7	120. 1	132. 3	116. 7	125. 2	124. 6	129. 3	134. 6	149.2, 83.9, 28.1	-	-	27. 9, 14. 7	166.6,140 .7 48.5, 31.2 123.4
15e	123. 8	119. 8	128. 6	116. 5	155. 9	124. 7	119. 8	133. 5	149.4, 84.1 28.2	55. 8	-	-	166.6,140 .8 124.7, 48.5 30.9
15g	128. 5	108. 6	136. 4	120. 7	115. 9	124. 5	115. 9	140. 8	150.5, 84.4 28.2	-	-	-	165.9, 139.5
16	123. 5	119. 8	123. 6	113. 4	124. 4	123. 5	111. 0	138. 3	-	-	-	-	170.8,124 .3 117.1, 48.0 121.9

19c	127. 7	136. 6	120. 3	120. 2	119. 7	122. 0	111. 0	138. 2	-	-	-	-	170.8,138 .2 122.0, 116.9, 49.3
19d	123. 6	121. 8	121. 2	117. 7	123. 6	124. 3	121. 8	138. 2	-	-	-	-	170.8, 138.2 122.0, 116.9, 49.3
20	127. 7	136. 6	120. 3	120. 2	119. 7	122. 0	111. 0	138. 2	-	-	-	-	170.8,138 .2 122.0, 116.9, 49.3

Dans la zone [150.5-149.2] ppm caractéristique au carbone quaternaire porteur de lafonction (N-BOC)de groupe tre-butoxycarbone.

- Le carbone C2 sort dans la zone [128.5-123.6] ppm.
- Le carbone C3 sort dans la zone des carbones quaternaires [121.8-119.8] ppm.
- Les carbones du noyau 5,6-dihydropyridin-2(1H)-onesortent à [170-49.3] ppm,

• Les carbones C3a, C7a, carboness quaternaires du noyau aromatique, sortent dans la zone [140.4-124.2] ppm dont les faibles valeurs sont obtenues avec les substituants en *ortho*donneurs effet inductif. pareffet mésomère et attracteurs par CH Les aromatiques apparaissent entre [138.2-125.4] ppm. • Le carbone du groupe méthyle en position ortho, métaou para dans les produits 15c, 15e, 19c, sort dans la zone des carbones primaire [21.5-19.3] ppm. En outre le carbone du groupe méthoxy (produit 4h) sort à 55.4 ppm

129

Partie expérimentale

5.8.Partie expérimentale

Procédure générale pour la synthèse des N-tert-butanesulfinyl-imines :

Dans un ballon à haute pression, un mélange de (S)-tert-butanesulfinamide (2,0 mmol, 0,3025 g), et l'indolecarbaldéhydecorrespondant ou (2,0 mmol) a été laissé sous agitation pendant 1 h à 80 °C. Ensuite, Le mélange résultant est filtrésur la célite et concentré sous vide. Le résidu a été purifié par chromatographie sur colonne (gel de silice, hexane/EtOAc)

(S_S)-*N*-(*tert*-Butanesulfinyl)-1-(1*H*-indol-3-yl)methanimine (3a):

.Point de fusion: 172-174°C

Aspect: Huile incolore

 $[\alpha]^{20}_{D}$ -186.8 (*c* 0.97, CH₂Cl₂)

 $\mathbf{Rf} = 0.28$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3185,1581, 1446, 1245, 1052, 709 cm-1

¹H NMR(400 MHz, CDCl₃) δ =9.56 (s, 1H), 8.76 (s, 1H), 8.31 (ddt, *J* = 7.1, 1.5, 0.8 Hz, 1H), 7.64 (d, *J* = 3.0 Hz, 1H), 7.46 (dd, *J* = 6.3, 2.1 Hz, 1H), 7.32-7.27 (m, 2H), 1.31 (s, 9H) ¹³C NMR(100 MHz, CDCl₃) δ = 156.4 (CH), 137.2 (C), 132.8 (CH), 124.9 (C), 124.1 (CH), 122.4 (CH), 122.2 (CH), 115.2 (CH), 111.8 (C), 57.2 (C), 22.6(CH₃) LRMS (EI)*m*/*z* 248 (M⁺, 1.0%), 192 (58), 144 (100), 143 (20), 142 (12), 117 (10), 116 (10),

57 (11).

(S_S)-*N*-(*tert*-Butanesulfinyl)-1-(2-methyl-1*H*-indol-3-yl)methanimine (3b)

Point de fusion: 176-178 °C

Aspect:Solide jaune

 $[\alpha]^{20}$ _D-103.6 (*c*1.04, CH₂Cl₂)

 $\mathbf{Rf} = 0.27$ (héxane/AcOEt 1:1)

IR(neat) v ⁻3151, 1569, 1461, 1334, 1033, 740 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** *δ*=9.78 (s, 1H), 8.85 (s, 1H), 8.29-8.23 (m, 1H), 7.41-7.34 (m, 1H), 7.28-7.20 (m, 2H), 2.59 (s, 3H), 1.35 (s, 9H);

¹³C NMR(100 MHz, CDCl₃) δ = 155.7 (CH), 144.6 (C), 136.2 (C), 126.6 (C), 123.4 (CH), 122.4 (CH), 121.6 (CH), 111.4 (CH), 57.3 (C), 22.9 (CH₃), 12.5 (CH₃);

LRMS (EI)*m*/*z* 262 (M⁺, <1%), 204 (13), 158 (10), 156 (23), 155 (10), 154 (10), 129 (11), 105 (51).

(S_S)-N-(*tert*-Butanesulfinyl)-1-(7-ethyl-1*H*-indol-3-yl)methanimine (3c):

Point de fusion: 154-156 °C

Aspect: Solide blanc

 $[\alpha]^{20}_{D}$ -123.1(*c* 1.23, CH₂Cl₂)

 $\mathbf{Rf} = 0.35$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3235, 2973, 1743, 1600, 1214, 1141, 1072 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** δ =9.58 (s, 1H), 8.76 (s, 1H), 8.21-8.10 (m, 1H), 7.65 (d, *J* = 3.0 Hz, 1H), 7.28-7.20 (m, 1H), 7.15 (dd, *J* = 7.2, 1.1 Hz, 1H), 2.92 (q, *J* = 7.6 Hz, 2H), 1.37 (t, *J* = 7.6 Hz, 3H), 1.30 (s, 9H)

¹³C NMR(100 MHz, CDCl₃) δ = 156.1 (CH), 135.8 (C), 132.3 (CH), 127.1 (C), 124.4 (C), 122.4 (CH), 122.4 (CH), 119.5 (CH), 115.2 (C), 56.9 (C), 23.7 (CH₂), 22.2 (CH₃), 13.9 (CH₃) LRMS (EI)*m*/*z*276 (M⁺, <1%), 220 (42), 172 (100), 155 (16), 57 (12);HRMS (ESI-TOF) Calcd for C₁₁H₁₀N₂ [M⁺-C₄H₁₀OS] 170.0844, found170.0841

(S_S)-N-(*tert*-Butanesulfinyl)-1-(4-bromo-1*H*-indol-3-yl)methanimine (3d):

Point de fusion: mp166-168 °C

Aspect: Solide marron

 $[\alpha]^{20}_{D}$ +112.1(*c* 1.09, CH₂Cl₂)

 $\mathbf{Rf} = 0.51$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3085, 2919, 1577, 1326, 1033, 728 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** δ =12.44 (s, 1H), 9.55-9.34 (m, 1H), 8.30 (s, 1H), 7.56 (dd, J = 8.1, 0.9 Hz, 1H), 7.42 (dd, J = 7.6, 0.9 Hz, 1H), 7.13 (t, J = 7.9 Hz, 1H), 1.17 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 155.9 (CH), 138.2 (C), 131.1 (CH), 125.6 (CH), 124.3 (C), 123.5 (CH), 113.2 (C), 112.5 (CH), 112.3 (C), 56.9 (C), 22.2 (CH₃).

LRMS (EI)m/z326 (M⁺, <1%), 272 (85), 222 (92), 191 (100), 143 (76); HRMS (ESI-TOF) Calcd for C₉H₅Br⁷⁹N₂ [M⁺-C₄H₁₀OS] 219.9636, found219.9624.

(S_S)-N-(*tert*-Butanesulfinyl)-1-(5-methoxy-1*H*-indol-3-yl)methanimine (3e):

Point de fusion: mp172-174 °C

Aspect: Solide blanc

 $[\alpha]^{20}_{D}$ +112.1(*c* 1.09, CH₂Cl₂)

 $\mathbf{Rf} = 0.51$ (héxane/AcOEt 1:1)

IR (neat) v⁻3193, 1569, 1430, 1214, 1049, 728 cm⁻¹

¹**H** NMR(400 MHz, CDCl₃) δ =9.60 (s, 1H), 8.74 (s, 1H), 7.83 (d, *J* = 2.5 Hz, 1H), 7.61 (d, *J* = 3.1 Hz, 1H), 7.37-7.30 (m, 1H), 6.95 (dd, *J* = 8.8, 2.6 Hz, 1H), 3.87 (s, 3H), 1.31 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 155.8 (CH), 155.4 (C), 132.5 (CH), 131.4 (C), 125.1 (C), 114.2 (CH), 113.4 (CH), 112.1 (C), 103.3 (CH), 56.4 (CH₃), 55.1 (C), 21.8 (CH₃).

LRMS (EI)*m/z*326 *m/z*278 (M⁺, <1%), 221 (71), 220 (21), 174 (11), 173 (100), 172 (53), 57 (14)

(SS)-N-(tert-Butanesulfinyl)-1-(4-nitro-1H-indol-3-yl)methanimine (3f)

Point de fusion: mp179-181 °C

Aspect: Solide blanc

 $[\alpha]^{20}_{D}$ +95.5 (*c* 0.43, EtOAc)

 $\mathbf{Rf} = 0.26$ (héxane/AcOEt 1:1)

IR (neat) v⁻3100, 2923, 1573, 1515, 1438, 1326, 1045 cm⁻¹

¹H NMR(400 MHz, CDCl₃) δ = 12.78 (s, 1H), 8.79 (s, 1H), 8.50 (s, 1H), 7.88 (dd, *J* = 2.6, 7.9 Hz, 2H), 7.42 (t, *J* = 8.0 Hz, 1H), 1.16 (s, 9H).

¹³C NMR(100 MHz, CDCl₃δ= 156.8 (CH), 142.7 (C), 139.4 (C), 136.6 (CH), 122.3 (CH), 118.5(CH), 118.1 (CH), 115.9 (C), 112.0 (C), 56.5 (C), 21.8 (CH₃).

LRMS (EI)*m*/*z* 293 (M+,<1%), 237 (49), 173 (45), 156 (100), 114 (45), 57 (63); HRMS (ESI-TOF) Calcd for C9H5N3O2 [M+-C4H10OS]187.0382, found 187.0378.

(SS)-N-(tert-Butanesulfinyl)-1-(6-nitro-1*H*-indol-3-yl)methanimine (3g)

Point de fusion: 162-164°C

Aspect: Solide blanc

 $[\alpha]^{20}$ _D-311.7 (*c* 0.54, EtOAc)

 $\mathbf{Rf} = 0.26$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3139, 2962, 1577, 1536, 1436, 1334, 1033, 798, 732 cm-1

¹**H NMR(400 MHz, CDCl₃)** δ = 9.50 (s, 1H), 9.29 (d, *J* = 2.3 Hz, 1H), 8.80 (s, 1H), 8.26 (dd, *J* = 9.0, 2.3 Hz, 1H), 7.86 (d, *J* = 2.9 Hz, 1H), 7.54 (dd, *J* = 9.0, 0.6 Hz, 1H), 1.35 (s, 9H).

¹³C NMR(100 MHz, CDCl₃)δ= 155.6 (CH), 143.5 (C), 140.1 (C), 134.9 (CH), 124.4 (C), 119.6 (CH), 119.3 (CH), 116.5 (C), 112.0 (CH), 57.6 (C), 22.5 (CH₃).

LRMS (EI)*m*/*z* 187 (M+-C4H10OS, 100%), 157 (34), 141 (64), 114 (42); HRMS (ESITOF) Calcd for C9H5N3O2 [M+-C4H10OS] 187.0382, found 187.0382.

(S_S)-N-(*tert*-Butanesulfinyl)-1-(1-methyl-1*H*-indol-3-yl)methanimine (3h):

Point de fusion: mp148-150°C

Aspect: Solide blanc

 $[\alpha]^{20}$ D –147.2 (*c* 1.18, CH₂Cl₂)

 $\mathbf{Rf} = 0.29$ (hexane/EtOAc 1:1)

IR(neat) v⁻ 3274, 2954, 1573, 1373, 1178, 1064, 752 cm⁻¹

¹H NMR(400 MHz, CDCl₃) δ = 8.70 (s,51H), 8.30 (d, J = 7.7 Hz, 1H), 7.50 (s, 1H), 7.40-7.22 (m, 3H), 3.83 (s, 3H), 1.28 (s, 9H).

¹³C NMR(100 MHz, CDCl₃)δ= 155.7 (CH), 138.1 (C), 136.4 (CH), 125.6 (C), 123.7 (CH), 122.3 (CH),122.3 (CH), 113.8 (C), 109.8 (CH), 57.1 (C), 33.5 (CH3), 22.5 (CH₃).

LRMS (EI) *m*/z262 (M+,<1%), 204 (19), 158 (100), 157 (22), 156 (12), 105 (54); HRMS (ESI-TOF) Calcd for C14H18N2OS [M+] 262.1140, found 262.1138.

(S_S)-N-(*tert*-Butanesulfinyl)-1-(1*H*-indol-2-yl)methanimine (5)

Point de fusion: 182-184°C

Aspect: Solide blanc

 $[\alpha]^{20}$ D-74.4(*c* 0.70, CH₂Cl₂)

 $\mathbf{Rf} = 0.68$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3247,2977, 1731, 1535, 1303, 1253, 1226, 1149, 1072 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** $\delta ==9.05$ (s, 1H), 8.62 (s, 1H), 7.70 (dd, J = 8.1, 1.0 Hz, 1H), 7.44-7.40 (m, 1H), 7.34 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.15 (ddd, J = 8.1, 7.0, 1.0 Hz, 1H), 7.06 (dd, J = 2.1, 1.0 Hz, 1H), 1.28 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 153.2 (CH), 138.1 (C), 133.5 (C), 128.1 (C), 126.1 (CH), 122.7 (CH), 121.1 (CH), 112.1 (CH), 111.7 (C), 58.1 (C), 22.8(CH₃).

LRMS (EI)*m/z* 248 (M⁺, <1%), 191 (52), 144 (10), 143 (100), 116 (11), 18 (88), 57 (19).

Procédure générale pour l'allylation des sulfinyl-imines

Un mélange de la sulfinylimine correspondante (1,0 mmol), de bromure d'allyle (**6a**, 1,5 mmol, 0,182 g, 0,132 mL) et d'indium métallique (1,5 mmol, 0,172 g) dans du THF (2,0 mL) a été agité dans un ballon à haute pression à 60 °C pendant 6 h. Puis le mélange résultant a été hydrolysé avec de la saumure (10 mL) et extrait avec de l'EtOAc (3×15 mL). La phase organique a été lavée avec de la saumure (3×10 mL), séchée avec du MgSO4 anhydre, et le solvant évaporé (15 Torr). Le résidu a été purifié par chromatographie sur colonne (gel de silice, hexane/EtOAc) pour donner les produits 7, 8, 11 et 12

(1*R*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-1-(1*H*-indol-3-yl)but-3-en-1-amine (7a)

Point de fusion: 154-156°C

Aspect: Solide blanc

 $[\alpha]^{20}_{D}$ +114.5 (*c* 0.57, CH₂Cl₂)

 $\mathbf{Rf} = 0.23$ (héxane/AcOEt 1:1)

IR (neat) v⁻3189, 1569, 1430, 1261, 1214, 1049, 798, 721 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** $\delta ==8.43$ (s, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.23-7.16 (m, 2H), 7.14-7.08 (m, 1H), 5.88-5.73 (m, 1H), 5.26-5.12 (m, 2H), 4.81-4.72 (m, 1H), 3.75 (d, J = 2.9 Hz, 1H), 2.84-2.75 (m, 2H), 1.20 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 136.9 (C), 134.9 (CH), 125.75 (C), 123.3 (CH), 122.1 (CH), 120.1 (CH), 119.4 (CH), 118.6 (CH₂), 115.7 (C), 111.5 (CH), 55.3 (C), 51.4 (CH), 41.8 (CH₂), 22.8 (CH₃).

LRMS (EI m/2290 (M⁺, <1%), 234 (46), 207 (23), 185 (18), 171 (52), 156 (67), 144 (100);HRMS(ESI-TOF) Calcd for C₁₂H₁₄N₂OS [M⁺-C₄H₈]234.0827, found234.0821.

(1*R*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-1-(7-ethyl-1*H*-indol-3-yl)but-3-en-1-amine (7c)

Point de fusion: 154-156°C

Aspect: Solide marron

 $[\alpha]^{20}_{D}$ +4.3 (*c*1.13, CH₂Cl₂)

 $\mathbf{Rf} = 0.14$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3247, 2923, 1450, 1361, 1033,744 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** $\delta ==\delta$ 8.47 (s, 1H), 7.62-7.51 (m, 1H), 7.19 (d, J = 2.6 Hz, 1H), 7.12-7.01 (m, 2H), 5.88-5.68 (m, 1H), 5.27-5.13 (m, 2H), 4.77 (td, J = 6.9, 2.9 Hz, 1H), 3.82 (d, J = 3.0 Hz, 1H), 2.95-2.74 (m, 4H), 1.38 (t, J = 7.6 Hz, 3H), 1.20 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = = 135.2 (C), 134.4 (CH), 126.2 (C), 124.4 (C), 123.5 (CH), 119.7 (CH), 117.9 (CH₂), 117.3 (CH), 115.3 (C), 54.8 (C), 51.1 (CH), 41.2 (CH₂), 23.3 (CH₂), 22.2 (CH₃), 13.1 (CH₃).

LRMS (EI)m/z318 (M⁺, 1%), 277 (9), 221 (6), 198 (100), 172 (18), 146 (13), 57 (14); HRMS(ESI-TOF) Calcd for C₁₈H₂₆N₂OS [M⁺] 318.1766, found318.1748

(1*R*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-1-(4-bromo-1*H*-indol-3-yl)but-3-en-1-amine (7d)

Point de fusion: 166-168 °C

Aspect: Solide orange

 $[\alpha]^{20}_{D}$ +84.4 (*c*1.17, CH₂Cl₂)

 $\mathbf{Rf} = 0.12$ (héxane/AcOEt 1:1)

IR(neat) v⁻ 3286, 1427, 1334, 1180, 1033, 906, 744 cm-1

¹**H NMR(400 MHz, CDCl₃)** $\delta ==9.38$ (s, 1H), 7.43-7.01 (m, 3H), 6.92 (t, J = 7.8 Hz, 1H), 5.86 (dt, J = 16.4, 9.3 Hz, 1H), 5.54 (s, 1H), 5.25-5.10 (m, 2H), 3.91 (s, 1H), 2.98-2.94 (m, 1H), 2.74-2.68 (m, 1H), 1.26 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 137.8 (C), 134.9 (CH), 134.8 (CH), 124.2 (C), 123.8 (CH), 122.4 (CH), 118.1 (CH₂), 117.6 (C), 113.1 (C), 110.8 (CH), 55.6 (C),49.8 (CH), 42.1 (CH₂), 22.1 (CH₃).

LRMS (EI*m*/z 368(M⁺, <1%), 248 (57), 222 (7), 196 (16), 169 (100), 143 (27), 57 (27); HRMS (ESI-TOF) Calcd for $C_{12}H_{13}^{79}BrN_2OS$ [M⁺-C₄H₈] 311.9932, found311.9906. (1*R*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-1-(5-methoxy-1*H*-indol-3-yl)but-3-en-1-amine (7e)

Point de fusion: mp162-164 °C

Aspect: Solide marron

 $[\alpha]^{20}_{D}$ +130.2 (*c* 1.43, CH₂Cl₂)

 $\mathbf{Rf} = 0.10$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3239, 1481, 1214, 1033, 917, 802 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** $\delta ==8.38$ (s, 1H), 7.27-7.23 (m, 1H), 7.13 (dd, J = 6.3, 2.5 Hz, 2H), 6.85 (dd, J = 8.8, 2.4 Hz, 1H), 5.79 (ddt, J = 17.2, 10.2, 7.0 Hz, 1H), 5.23-5.10 (m, 2H), 4.71 (td, J = 7.0, 2.9 Hz, 1H), 3.83 (s, 3H), 3.80 (d, J = 2.9 Hz, 1H), 2.79-2.72 (m, 2H), 1.19 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 153.2 (C), 134.3 (CH), 131.5 (C), 125.6 (C), 123.5 (CH), 118.1 (CH₂), 114.6 (C), 111.7 (CH), 111.5 (CH), 101.5 (CH), 55.3 (CH₃), 54.7 (C), 50.8 (CH), 41.1 (CH₂), 22.2 (CH₃).

LRMS (*m*/*z*320 (M⁺, 2%), 279 (9), 200 (100), 173 (13), 57 (14); HRMS (ESI-TOF) Calcd for C₁₃H₁₆N₂O [M⁺-C₄H₈OS] 216.1263, found216.1280.

(1*R*,*SS*)-*N*-(*tert*-Butanesulfinyl)-1-(4-nitro-1*H*-indol-3-yl)but-3-en-1-amine (7f)

Point de fusion: 162-164 °C

Aspect: Solide marron

[α]20D +80.6 (*c* 2.00, CH₂Cl₂)

 $\mathbf{Rf} = 0.28$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3100, 2923, 1515, 1326, 1270,1130, 1037, 732 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** δ = 10.63 (s, 1H), 7.73 (dd, *J* = 7.9, 1.0 Hz,1H), 7.39 (d, *J* = 2.8 Hz, 1H), 7.06 (dd, *J* = 8.0, 1.0 Hz, 1H), 6.78 (t, *J* = 7.9 Hz, 1H), 5.85-5.72 (m,1H), 5.19-5.12 (m, 1H), 5.10-5.03 (m, 2H), 4.47 (d, *J* = 4.3 Hz, 1H), 2.88 (ddt, *J* = 9.7, 5.3, 1.5 Hz,2H), 1.30 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 142.2 (C), 139.1 (C), 135.3 (CH), 127.5 (CH), 119.8 (CH), 118.3 (CH), 118.2 (CH), 117.7 (C), 117.6 (CH2), 116.3 (C), 56.1 (C), 51.7 (CH), 39.5(CH2), 22.8 (CH₃).

LRMS (EI) *m/z* 278 (M+-C4H9, 1%), 215 (74), 197 (52), 167 (100), 57 (92); HRMS (ESI-TOF) Calcd for C12H12N3O3S [M+-C4H9] 278.0599, found 278.0594.

(1R,SS)-N-(tert-Butanesulfinyl)-1-(6-nitro-1H-indol-3-yl)but-3-en-1-amine (7g)

Point de fusion: 162-164 °C

Aspect: Solide marron

 $[\alpha]$ 20D +39.5 (*c* 0.92, CH₂Cl₂)

 $\mathbf{Rf} = 0.20$ (hexane/EtOAc 1:5)

IR (neat) v⁻ 3197, 2919, 2854, 1739, 1650,1523, 1342, 1253, 1153 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** δ = 9.26 (s, 1H), 8.70 (d, *J* = 2.3 Hz,1H), 8.12 (dd, *J* = 9.0, 2.2 Hz, 1H), 7.42 (dd, *J* = 9.0, 0.5 Hz, 1H), 7.33 (d, *J* = 2.3 Hz, 1H), 5.87-5.74 (m, 1H), 5.30-5.17 (m, 2H), 4.77 (td, *J* = 7.6, 7.1, 2.2 Hz, 1H), 3.90 (d, *J* = 2.3 Hz, 1H), 2.83-2.74 (m, 2H), 1.22 (s, 9H).

¹³C NMR(100 MHz, CDCl₃)δ= 141.4 (C), 134.1 (C), 126.7 (CH),124.9 (CH), 119.3 (CH), 117.8 (CH), 117.6 (CH), 117.5 (CH2), 111.6 (C), 55.6 (C), 51.0 (CH), 41.8(CH₂), 22.1 (CH₃). LRMS (EI) *m*/*z*239 (M+-C7H12, 14%), 165 (10), 115 (3), 70 (100); HRMS(ESI-TOF) Calcd for C10H9N3O2 [M+-C6H12OS] 203.0695, found 203.0690.

(1*R*,*S*S)-*N*-(*tert*-Butanesulfinyl)-1-(1-methyl-1*H*-indol-3-yl)but-3-en-1-amine (7h)

Point de fusion: 162-164 °C

Aspect: Solide marron

 $[\alpha]^{20}_{D}$ +44.5 (*c*1.22, CH₂Cl₂)

 $\mathbf{Rf} = 0.65$ (héxane/AcOEt 1:1)

¹**H NMR(400 MHz, CDCl₃)** $\delta ==$ 7.70 (dt, J = 7.9, 1.0 Hz, 1H), 7.32-7.20 (m, 3H), 7.15-7.00 (m, 2H), 5.79 (ddt, J = 17.2, 10.1, 7.0 Hz, 1H), 5.24-5.11 (m, 2H), 4.72 (td, J = 7.0, 3.0 Hz, 1H), 3.76 (s, 3H), 3.68 (d, J = 3.0 Hz, 1H), 2.80-2.74 (m, 2H), 1.17 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 137.7 (C), 135.1 (CH), 127.9 (CH), 126.3 (Cq), 121.8 (CH), 120.4 (CH), 119.1 (CH), 118.6 (Cq), 114.3 (CH), 109.6 (CH), 55.3 (C), 51.4 (CH₂), 42.1(CH₃), 32.9 (CH₂), 22.9 (CH₃).

LRMS *m*/z304 (M⁺, 1%), 263 (16), 207 (7), 184 (100), 158 (22), 57 (10); HRMS (ESI-TOF) Calcd for C₁₃H₁₅N₂ [M⁺-C₄H₉OS] 199.1235, found 199.1244.

(1*R*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-1-(1*H*-indol-2-yl)but-3-en-1-amine (8)

Point de fusion: mp162-164 °C

Aspect: Solide marron

 $[\alpha]^{20}_{D} + 127.3(c \ 0.52, CH_2Cl_2)$

 $\mathbf{Rf} = 0.45$ (héxane/AcOEt 1:1)

IR (neat) v⁻3185, 1581, 1446, 1245, 1052, 709cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** $\delta ==9.21$ (s, 1H), 7.62-7.56 (m, 1H), 7.41-7.35 (m, 1H), 7.22-7.08 (m, 2H), 6.43 (d, J = 1.8 Hz, 1H), 5.89-5.72 (m, 1H), 5.26-5.13 (m, 2H), 4.77-4.66 (m, 1H), 3.98 (d, J = 4.0 Hz, 1H), 2.81-2.74 (m, 2H), 1.29 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = = 138.7 (C), 136.3 (C), 133.9 (CH), 128.3 (C), 121.9 (CH), 120.5 (CH), 119.8 (CH), 119.2 (CH₂), 111.2 (CH), 100.6 (CH), 56.2 (C), 52.9 (CH), 40.6(CH₂), 22.9 (CH₃).

LRMS m/2290 (M⁺, <1%), 234 (63%), 207 (18), 186 (10), 174 (89), 156 (46), 144 (100); HRMS (ESITOF) Calcd for C₁₆H₂₂N₂OS [M⁺] 290.1453, found290.1452.

Procédure générale pour la synthèse de sulfinyl-imines N-Boc-protégées:

Un mélange de la sulfinylimine correspondante (1,0 mmol), de la 4-(N,Ndiméthylamino)pyridine (DMAP, 0,01 mmol, 0,0012 g) et du décarbonate de di-tert-butyle (Boc2O, 1,25 mmol, 0,273 g) dans du THF sec (8,0 mL) sous argon, a été agité à 23°C pendant 2 heures. 273 g) dans du THF sec (8,0 mL) sous argon, a été agité à 23 °C pendant 2 h. Puis le solvant a été évaporé (15 Torr). Le résidu a été purifié par chromatographie sur colonne (gel de silice, hexane/EtOAc).

(S_S)-N-(*tert*-Butanesulfinyl)-1-[(1-*tert*-butoxycarbonyl)-1H-indol-3-yl]methanimine (9a):

Point de fusion: 117-118°C

Aspect: Solide blanc

 $[\alpha]^{20}_{D}$ –21.9 (*c* 0.69, CH₂Cl₂)

 $\mathbf{Rf} = 0.60$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3197, 2977, 1751, 1604, 1568, 1369, 1234, 1149, 1076 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** $\delta == 8.76$ (s, 1H), 8.32 (d, J = 7.8, 1H), 8.21 (d, J = 8.2 Hz, 1H), 8.09 (s, 1H), 7.47-7.35 (m, 2H), 1.72 (s, 9H), 1.31 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 156.05 (CH), 133.05 (CH), 125.8 (CH), 124.2 (CH), 122.3 (CH), 117.8 (C), 115.3 (CH), 85.2 (C), 57.35 (C), 28.1 (CH₃), 22.5 (CH₃)

LRMS m/z 348 (M⁺, <1%), 292 (35), 236(85), 188(41), 144(80), 57(100);HRMS(ESI-TOF) Calcd for C₉H₆N₂[M⁺-C₉H₁₈O₃S] 142.0531, found 142.0535. (*S*_S)-*N*-(*tert*-Butanesulfinyl)-1-[(1-*tert*-butoxycarbonyl)-7-ethyl-1*H*-indol-3yl]methanimine (9c)

Point de fusion: 92-93°C

Aspect: Solide blanc

 $[\alpha]^{20}_{D}$ +19.3 (*c* 0.85, CH₂Cl₂)

 $\mathbf{Rf} = 0.44$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3235, 2973, 1743, 1600, 1214, 1141, 1072 cm⁻¹

¹H NMR(400 MHz, CDCl₃) δ =8.73 (s, 1H), 8.23 (dd, *J* = 7.7, 1.5 Hz, 1H), 8.02 (s, 1H), 7.37-7.26 (m, 2H), 3.19-3.10 (m, 2H), 1.69 (s, 9H), 1.30 (s, 9H), 1.24 (td, *J* = 7.5, 0.8 Hz, 3H) ¹³C NMR(100 MHz, CDCl₃) δ = 155.9(CH), 148.7(C), 135.7(CH), 134.9(C), 131.7(C), 128.3(C), 127.5(CH), 124.7(CH), 120.0(C), 117.5(CH), 84.8(C), 57.3(C), 27.9(CH₂), 27.8(CH₃), 22.5 (CH₃), 14.9 (CH₃).

LRMS *m/z*376 (M⁺, <1%), 320 (24), 264 (43), 247 (2), 172 (89), 57 (100); HRMS(ESI-TOF) Calcd forC₁₁H₁₀N₂[M⁺-C₉H₁₈O₃S] 170.0844, found 170.0848.

(S_S)-N-(*tert*-Butanesulfinyl)1-[(1-*tert*-butoxycarbonyl)-5-methoxy-1H-indol-3yl]methanimine (9e):

Point de fusion: 92-93°C

Aspect: Solide blanc

 $[\alpha]^{20}$ D-49.1 (*c* 0.53, CH₂Cl₂)

 $\mathbf{Rf} = 0.48$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3143,2977, 1739, 1592, 1477, 1245, 1145, 1072 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** δ =8.74 (s, 1H), 8.09-8.03 (m, 2H), 7.83 (d, *J* = 2.6 Hz, 1H), 7.03 (dd, *J* = 9.1, 2.6 Hz, 1H), 3.88 (s, 3H), 1.70 (s, 9H), 1.31 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 156.9(C), 156.1(CH), 148.9(C), 133.3(C), 130.7(CH), 127.8(C), 117.5(C), 116.0(CH), 114.7(CH), 104.6(CH), 85.0(C), 57.2(C), 55.5(CH₃), 28.1(CH₃), 22.5(CH₃).

LRMS *m*/*z*378 (M⁺, <1%), 322 (37), 266 (78), 218 (81), 174 (68), 57(100); HRMS(ESI-TOF) Calcd forC₁₀H₈N₂O [M⁺-C₉H₁₈O₃S]172.0637, found 172.0644.

(SS)-*N*-(*tert*-Butanesulfinyl)1-[(1-*tert*-butoxycarbonyl)-4-nitro-1*H*-indol3yl]methanimine (9f)

Point de fusion: mp121-122°C

Aspect: Solide blanc

[α]20D +61.6 (*c* 0.65,CH₂Cl₂)

 $\mathbf{Rf} = 0.43$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3116, 1758, 1596, 1535, 1357, 1253, 1139, 732 cm⁻¹

¹**H** NMR(400 MHz, CDCl₃) δ = 8.82 (d, J = 0.6 Hz, 1H), 8.59 (dd, J = 8.4, 1.0 Hz, 1H), 8.31 (s, 1H), 7.92 (dd, J = 8.0, 0.9 Hz, 1H), 7.49 (t, J = 8.2 Hz, 1H), 1.72 (s, 9H), 1.29 (s, 10H).

¹³C NMR(100 MHz, CDCl₃)δ=156.6 (CH), 148.2 (C), 143.4 (C), 137.8 (C), 133.4 (CH), 124.9 (CH), 120.5 (CH), 120.1 (CH),119.2 (C), 116.3 (C), 86.5 (C), 57.6 (C), 28.0 (CH₃), 22.5 (CH₃).

LRMS *m/z* 336 (M+-C4H8,1%), 173 (25), 156 (54), 114 (26), 57 (100); HRMS (ESI-TOF) Calcd for C9H5N3O2 [M+-C9H18O3S] 187.0382, found 187.0377.

(SS)-N-(*tert*-Butanesulfinyl)1-[(1-*tert*-butoxycarbonyl)-6-nitro-1*H*-indol3yl]methanimine (9g)

Point de fusion: mp113-115°C

Aspect: Solide blanc

[α]20D -89.9 (*c*0.81, CH₂Cl₂)

 $\mathbf{Rf} = 0.38$ (hexane/EtOAc 3:1)

IR (neat) v⁻ 3139, 2973, 1751, 1600, 1519, 1330, 1261, 1076, 798, 736 cm⁻¹

¹H NMR(400 MHz, CDCl₃) δ = 9.25-9.22 (m, 1H), 8.77 (s, 1H), 8.33 (d, *J* = 1.9 Hz, 2H), 8.20 (s, 1H),1.73 (s, 9H), 1.34 (s, 9H).

¹³C NMR(100 MHz, CDCl₃)δ=155.2 (CH), 148.2 (C), 144.7 (C), 139.1(C), 134.8 (CH), 126.9 (C), 121.1 (CH), 118.8 (CH), 118.0 (C), 115.6 (CH), 86.6 (C), 57.7 (C), 28.0(CH₃), 22.5 (CH₃).

LRMS m/z 187 (M+-C9H18O3S, 100%), 157 (33), 141 (72), 114 (50); HRMS (ESI-TOF) Calcd for C₉H₅N₃O₂ [M+-C9H18O3S] 187.0382, found 187.0376.

(S_S)-N-(tert-Butanesulfinyl)1-[(1-tert-butoxycarbonyl)-1H-indol-2-yl]methanimine (10):

Point de fusion: 131-132 °C

Aspect: Solide blanc

 $[\alpha]^{20}_{D}$ -47.1 (*c* 0.68, CH₂Cl₂)

 $\mathbf{Rf} = 0.60$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3247, 2977, 1731, 1585, 1303, 1253, 1226, 1149, 1072 cm⁻¹

¹**H** NMR(400 MHz, CDCl₃) δ =9.18 (s, 1H), 8.25 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.44 (m, 1H), 7.33-7.25 (m, 2H), 1.73 (s, 9H), 1.31 (s, 9H)

¹³C NMR(100 MHz, CDCl₃) δ = 156.1 (CH), 138.05 (C), 135.3 (C), 128.2 (CH), 126.9 (CH), 123.6 (CH), 122.1 (CH), 116.0 (CH), 113.6 (CH), 85.6 (C), 58.1 (C), 28.2 (CH₃), 22.7 (CH₃). LRMS *m*/*z*348 (M⁺, <1%), 292(13), 236(50), 144(100), 57(77); HRMS(ESI-TOF) Calcd forC₉H₆N₂[M⁺-C₉H₁₈O₃S]142.0531, found 142.0530.

(1*R*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-1-[(1-*tert*-butoxycarbonyl)-1*H*-indol-3-yl]but-3-en-1amine (11a):

Point de fusion: 131-132 °C

Aspect: Solide blanc

 $\left[\alpha\right]^{20}$ +93.5 (*c* 0.64, CH₂Cl₂)

 $\mathbf{Rf} = 0.42$ (hexane/AcOEt 1:1)

IR (neat) v⁻ 3197,2977, 1731, 1454, 1361, 1249, 1157, 1052 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** δ =8.18 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 7.7 Hz, 1H), 7.58 (s, 1H), 7.37-7.19 (m, 2H), 5.86-5.74 (m, 1H), 5.27-5.17 (m, 2H), 4.73 (ddd, *J* = 8.4, 6.0, 2.7 Hz, 1H), 3.79 (s, 1H), 2.84-2.68 (m, 2H), 1.68 (s, 9H), 1.20 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 149.55 (C), 136.1 (C), 134.2 (CH), 128.4 (C), 124.4 (CH), 122.35 (CH), 120.3 (CH₂), 120.7 (CH), 119.25 (C), 115,45 (CH), 83.8 (C), 55.6 (C), 50.9 (CH), 41.1 (CH₂), 28.2 (CH₃), 22.7 (CH₃).

LRMS m/z 390 (M⁺, <1%), 334 (5), 270 (13), 214 (100), 170 (91), 57 (83);HRMS (ESI⁻ TOF)Calcd for C₁₇H₂₁NO₂[M⁺-C₄H₉NOS] 271.1572, found 271.1557.

(1*R*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-1-[(1-*tert*-butoxycarbonyl)-7-ethyl-1*H*-indol-3-yl]but-3en-1-amine (11c):

Point de fusion: 131-132 °C

Aspect: Solide blanc

 $[\alpha]^{20}_{D}$ +71.06 (c 1.51, CH₂Cl₂)

 $\mathbf{Rf} = 0.40$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3216, 2973, 1743, 1353, 1257, 1218, 1153, 1052 cm⁻¹

¹**H** NMR(400 MHz, CDCl₃) δ =7.54-7.45 (m, 2H), 7.21-7.14 (m, 2H), 5.88-5.76 (m, 1H), 5.30-5.17 (m, 2H), 4.71 (ddd, J = 8.3, 5.7, 2.7 Hz, 1H), 3.69 (d, J = 2.7 Hz, 1H), 3.22-3.04 (m, 2H), 2.82-2.67 (m, 2H), 1.65 (s, 9H), 1.29-1.24 (m, 3H), 1.21 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 149.3(C), 134.8(C), 134.4(CH), 131.9(C), 130.0(C), 126.6(CH), 126.2(CH), 122.9(CH), 120.2(C), 119.1(CH₂), 117.8(CH), 83.3(C), 55.6(C), 50.7(CH), 41.1(CH₂), 28.0(CH₂), 27.9(CH₃), 22.7(CH₃), 14.8(CH).

LRMS m/z 418 (M⁺, <1%), 242 (57), 198 (97), 57(100); HRMS (ESI-TOF)Calcd for C₁₉H₂₇N₂O₃S [M⁺-C₄H₇] 363.1742,found 363.1754.

(1*R*,*S*S)-*N*-(*tert*-Butanesulfinyl)-1-[(1-*tert*-butoxycarbonyl)-5-methoxy-1*H*-indol-3-yl]but-3-en-1-amine (11e)

Point de fusion: 131-132 °C

Aspect: Solide blanc

[α]20D +72.8 (c 0.85, CH2Cl2)

 $\mathbf{Rf} = 0.44$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3143, 2973, 1727, 1473, 1373, 1249, 1157, 1072 cm-1

¹**H NMR(400 MHz, CDCl₃)** δ = 8.05 (s,1H), 7.55 (s, 1H), 7.11 (d, *J* = 2.5 Hz, 1H), 6.94 (dd, *J* = 9.0, 2.5 Hz, 1H), 5.88-5.73 (m, 1H), 5.28-5.17 (m, 2H), 4.69 (ddd, *J* = 8.3, 5.9, 2.7 Hz, 1H), 3.86 (s, 3H), 3.69 (d, *J* = 2.8 Hz, 1H), 2.82-2.66(m, 2H), 1.67 (s, 9H), 1.22 (s, 9H)

¹³C NMR(100 MHz, CDCl₃)*δ*= 155.5 (C), 149.5 (C), 134.2(CH), 130.8 (C), 129.3 (C), 125.0 (CH), 120.0 (C), 119.2 (CH2), 116.1 (CH), 112.9 (CH), 103.2 (CH), 83.6 (C), 55.7 (C), 55.5 (CH), 50.8 (CH), 41.0 (CH2), 28.2 (CH3), 22.7 (CH3)

LRMS LRMS(EI)*m/z* 420 (M+,<1%), 244 (100), 200 (62), 57 (60); HRMS (ESI-TOF) Calcd for C18H24N2O4 [M+-C4H8] 364.1457, found 364.1439

(1*R*,*S*S)-*N*-(*tert*-Butanesulfinyl)-1-[(1-*tert*-butoxycarbonyl)-4-nitro-1*H*-indol-3-yl]but-3en-1-amine (11f)

Point de fusion:110-112°C

Aspect: Solide blanc

 $[\alpha]^{20}$ D+185.3 (c 0.73, CH₂Cl₂)

 $\mathbf{Rf} = 0.43$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3309, 2927, 1743, 1523, 1342, 1268, 1153 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** δ = 8.60 (d, *J* = 8.3 Hz, 1H), 7.93 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.83 (d, *J* = 1.1 Hz, 1H), 7.41 (t, *J* = 8.2 Hz, 1H), 5.89-5.77 (m, 1H), 5.25-5.18 (m, 2H), 5.11-5.06 (m, 1H), 3.72 (d, *J* = 4.4Hz, 1H), 2.86-2.79 (m, 1H), 2.57-2.48 (m, 1H), 1.69 (s, 9H), 1.25 (s, 9H)¹³**C NMR(100 MHz, CDCl₃)** δ = 148.7 (C), 143.3 (C), 137.9 (C), 134.2 (CH), 128.4 (CH), 123.7 (CH), 121.1 (C), 120.911(CH), 120.2 (CH), 119.2 (CH2), 85.2 (C), 55.9 (C), 51.0 (C), 41.9 (CH2), 28.1 (CH3), 22.7 (CH3)

LRMS LRMS(EI)*m/z* 378 (M+-C4H9,1%), 215 (27), 167 (22), 115 (9), 57 (100); HRMS (ESI-TOF) Calcdfor C13H11N3O4 [M+-C8H18OS] 273.0724, found 273.0719.

(1*R*,*S*S)-*N*-(*tert*-Butanesulfinyl)-1-[(1-*tert*-butoxycarbonyl)-6-nitro-1*H*-indol-3-yl]but-3en-1-amine (11g)

Point de fusion: 110-112°C

Aspect: Solide blanc

 $[\alpha]^{20}$ D +87.4 (c 0.51, CH₂Cl₂)

RF 0.35 (hexane/AcOEt 3:2)

IR (neat) v⁻ 3197, 2973, 1739, 1519, 1450, 1338, 1249, 1157, 1052, 906, 825 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** δ = 8.60 (dd, *J* = 2.2, 0.6 Hz, 1H), 8.30 (d, *J* = 9.2 Hz, 1H), 8.21 (dd, *J* = 9.2, 2.3 Hz, 1H), 7.71 (s,1H), 5.86-5.70 (m, 1H), 5.29-5.18 (m, 2H), 4.72 (td, *J* = 7.0, 2.1 Hz, 1H), 3.78 (d, *J* = 2.2 Hz, 1H), 2.74 (ddd, *J* = 7.4, 6.0, 1.1 Hz, 2H), 1.68 (s, 9H), 1.18 (s, 9H).

¹³C NMR(100 MHz, CDCl₃)δ= 148.7 (C), 143.2 (C), 139.4 (C), 133.6 (CH), 128.1 (C), 127.5 (CH), 120.7 (C), 119.9 (CH2), 119.8(CH), 117.0 (CH), 115.7 (CH), 85.3 (C), 55.7 (C), 50.5 (CH), 41.2 (CH₂), 28.1 (CH₃), 22.7 (CH₃).

LRMS LRMS(EI)*m*/*z*329 (M+ -C4H10OS, 2%), 214 (60), 167 (100), 115 (10); HRMS (ESI-TOF) Calcd for C₁₂H₁₂N₃O₂ [M+-C₉H¹⁷O₃S] 230.0930, found 230.0926.

(1*R*,*S*_S)-*N*-(*tert*-Butanesulfinyl)-1-[(1-*tert*-butoxycarbonyl)-1*H*-indol-2-yl]but-3-en-1amine (12)

Point de fusion: 131-132 °C

Aspect: Solide blanc

 $[\alpha]^{20}_{D} + 81.4 (c \ 0.64, CH_2Cl_2)$

 $\mathbf{Rf} = 0.45$ (héxane/AcOEt 1:1)

¹**H NMR(400 MHz, CDCl₃)** δ =8.05 (d, J = 8.7 Hz, 1H), 7.53-7.48 (m, 1H), 7.32-7.18 (m, 3H), 6.61 (s, 1H), 5.81 (ddt, J = 17.2, 10.2, 7.0 Hz, 1H), 5.38-5.08 (m, 3H), 2.96-2.86 (m, 1H), 2.80-2.69 (m, 1H), 1.73 (s, 9H), 1.24 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 150.75 (C), 142.15 (C), 136.8 (CH), 134.4 (C), 128.8 (C), 124.25 (CH), 123.0 (CH), 120.7 (CH), 119.0 (CH₂), 116.0 (CH), 108.7 (CH), 108.7 (C), 84.7 (C), 56.0 (C), 41.5 (CH₂), 28.35 (CH₃), 22.8 (CH₃);

LRMS *m/z* 390 (M⁺, <1%), 270 (12), 214 (100), 170 (38), 57 (41);HRMS(ESI-TOF)Calcd for C₁₇H₂₁N₂O₃S [M⁺-C₄H₈] 334.1351, found 334.1343.

(1*R*,*S*S)-*N*-Acryloyl-1-[(1-*tert*-butoxycarbonyl)-1*H*-indol-3-yl]but-3-en-1-amine (13a)

Point de fusion: 131-132 °C

Aspect: Solide blanc

 $[\alpha]$ 20D +85.7 (*c* 0.79, CH₂Cl₂)

RF 0.47 (hexane/AcOEt 2:1)

IR (neat) v⁻ 3259, 1731, 1658, 1454,1373, 1157, 1083 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** $\delta == 8.12$ (d, J = 8.3 Hz, 1H), 7.62 (d, J = 7.8Hz, 1H), 7.54 (s, 1H), 7.36-7.31 (m, 1H), 7.29-7.22 (m, 1H), 6.32 (dd, J = 16.9, 1.5 Hz, 1H), 6.09 (dd, J = 17.0, 10.3 Hz, 1H), 5.91-5.79 (m, 2H), 5.65 (dd, J = 10.3, 1.5 Hz, 1H), 5.56-5.48 (m, 1H), 5.23-5.10 (m, 2H), 2.85-2.70 (m, 2H), 1.69 (s, 9H)

¹³C NMR(100 MHz, CDCl₃) δ = =164.8 (C),149.7 (C), 134.0 (CH), 130.7 (CH), 128.9 (C), 126.8 (C), 124.7 (CH2), 122.9 (CH), 122.8 (CH),120.9 (C), 119.5 (CH), 118.2 (CH2), 115.3 (CH), 83.9 (C), 45.1 (CH), 38.6 (CH2), 28.2 (CH3)

LRMS LRMS (EI) m/z 340 (M+, 2%), 243 (100), 199 (32), 145 (38), 168 (23), 57 (56); HRMS (ESITOF) Calcd for C₁₅H₁₆N₂O [M+-C₅H₈O₂] 240.1263, found 240.1266

(1*R*,*S*S)-*N*-Acryloyl-1-[(1-*tert*-butoxycarbonyl)-7-ethyl-1*H*-indol-3-yl]but-3-en-1-amine (13c)

Aspect: Solide blanc

 $[\alpha]^{20}$ D +87.7 (*c* 1.06, CH₂Cl₂)

*R*F 0.51 (hexane/AcOEt 2:1)

IR (neat) v⁻ 3255, 2973,1743, 1658, 1538, 1357, 1257, 1149 cm-1

¹**H NMR(400 MHz, CDCl₃)** δ =7.47-7.44 (m, 2H),7.23-7.18 (m, 2H), 6.32 (dd, *J* = 16.9, 1.4 Hz, 1H), 6.07 (dd, *J* = 16.9, 10.3 Hz, 1H), 5.93-5.81 (m,1H), 5.75 (d, *J* = 8.7 Hz, 1H), 5.66 (dd, *J* = 10.3, 1.4 Hz, 1H), 5.55-5.47 (m, 1H), 5.24-5.10 (m,2H), 3.13 (q, *J* = 7.5 Hz, 3H), 2.86-2.73 (m, 2H), 1.66 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 164.7 (C), 149.4 (C), 134.3 (CH), 131.9 (C), 130.7 (CH), 130.5 (C), 126.8 (C), 126.5 (CH2), 125.4(CH), 123.5 (CH), 120.4 (C), 118.0 (CH2), 117.2 (CH), 83.5 (C), 45.0 (CH), 38.6 (CH₂), 28.0(CH₃), 27.9 (CH₂), 14.8 (CH₃).

LRMS LRMS (EI) *m/z* 368 (M+, 5%), 271 (83), 227 (64), 197 (29), 173 (43), 57 (100); HRMS (ESI-TOF) Calcd for C₁₇H₂₀N₂O [M+-C₅H₈O₂] 268.1576, found 268.1572.

(1*R*,*S*_S)-*N*-Acryloyl-1-[(1-*tert*-butoxycarbonyl)-5-methoxy-1*H*-indol-3-yl]but-3-en-1amine (13e)

Point de fusion: 131-132 °C

Aspect: Solide blanc

 $\left[\alpha\right]^{20}_{D}$ +64.3 (*c* 1.38, CH₂Cl₂)

 $\mathbf{Rf} = 0.38$ (héxane/AcOEt 1:1)

IR (neat) v⁻ 3239,2981, 1727, 1658, 1450, 1380, 1157, 1076 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** δ =7.98 (d, *J* = 9.0 Hz, 1H), 7.51 (s, 1H), 7.08 (d, *J* = 2.5 Hz, 1H), 6.94 (dd, *J* = 9.0, 2.5 Hz, 1H), 6.32 (dd, *J* = 16.9, 1.5 Hz, 1H), 6.09 (dd, *J* = 16.9, 10.2 Hz, 1H), 5.94-5.73 (m, 2H), 5.66 (dd, *J* = 10.3, 1.5 Hz, 1H), 5.55-5.43 (m, 1H), 5.25-5.10 (m, 2H), 3.84 (s, 3H), 2.84-2.70 (m, 2H), 1.68 (s, 9H)

¹³C NMR(100 MHz, CDCl₃) δ = 164.8 (C), 155.9 (C), 134.0 (CH), 130.7 (CH), 129.8 (C), 126.8 (CH₂), 123.4 (CH), 120.8 (C), 118.2 (CH₂), 116.1 (CH), 113.6 (CH), 102.1 (CH), 83.8 (C), 55.7 (CH), 44.9 (CH₃), 38.5 (CH₂), 28.2 (CH₃).

LRMS m/z 370 (M⁺, 7%), 273 (100), 219 (32), 198 (11), 175 (33), 57 (42); HRMS (ESI-TOF)Calcd for C₁₆H₁₈N₂O₂ [M⁺-C₅H₈O₂] 270.1368, found 270.1375.

(1*R,S*S)-*N*-Acryloyl-1-[(1-*tert*-butoxycarbonyl)-6-nitro-1*H*-indol-3-yl]but-3-en-1-amine (13g)

Point de fusion:58-59°C

Aspect: Solide blanc

 $[\alpha]$ 20D +43.0 (*c* 0.44,CH₂Cl₂)

RF 0.56 (hexane/AcOEt 1:1)

IR (neat) v⁻2919, 2854, 1739, 1650, 1523, 1342, 1253, 1153 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** δ =8.57-8.53 (m, 1H), 8.24 (dd, *J* = 3.2, 1.4 Hz, 2H), 7.66 (d, *J* = 0.9 Hz, 1H), 6.35 (dd, *J* = 16.9, 1.5 Hz, 1H), 6.14 (dd, *J* = 16.9, 10.2 Hz, 1H), 5.96 (d, *J* = 7.9 Hz, 1H), 5.88-5.73 (m, 1H), 5.70 (dd, *J* = 10.2, 1.5 Hz, 1H), 5.48 (td, *J* = 7.2, 6.1 Hz, 1H), 5.26-5.15 (m, 2H), 2.83-2.76 (m, 2H), 1.70 (s, 9H).

¹³C NMR(100 MHz, CDCl₃) δ = 164.9 (C), 148.8 (C), 143.6 (C), 138.9 (C), 133.3 (CH), 130.3 (CH), 128.6 (C), 127.5 (CH2), 125.9 (CH), 121.9 (C), 119.9 (CH), 119.0 (CH₂), 115.9(CH), 115.6 (CH), 85.4 (C), 45.3 (CH), 38.8 (CH₂), 28.1 (CH₃).

LRMS *m*/*z*214 (M+-C8H13NO3, 66%), 196 (4), 167 (100), 114 (9); HRMS (ESI-TOF) Calcd for C₁₅H₁₅N₃O₃ [M+-C₅H₈O₂] 285.1113, found 285.1111.

(1*R*,*S*S)-*N*-Acryloyl-1-[(1-*tert*-butoxycarbonyl)-1*H*-indol-2-yl]but-3-en-1-amine (14)

Point de fusion:128-129°C

Aspect: Solide blanc

 $[\alpha]$ 20D +92.5 (*c* 0.65, CH₂Cl₂)

RF 0.48 (hexane/EtOAc 2:1)

IR (neat) v⁻ 3166, 1727, 1658, 1554, 1454, 1322, 1153 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** δ =8.03(dd, *J* = 8.3, 0.9 Hz, 1H), 7.50-7.47 (m, 1H), 7.31-7.26 (m, 1H), 7.22 (td, *J* = 7.4, 1.1 Hz, 1H), 7.04(s, 1H), 6.59 (s, 1H), 6.30 (dd, *J* = 17.0, 1.6 Hz,

1H), 6.16 (dd, *J* = 17.0, 10.2 Hz, 1H), 5.86-5.69 (m,2H), 5.66-5.63 (m, 1H), 5.16-5.03 (m, 2H), 2.74-2.67 (m, 2H), 1.75 (s, 9H).

¹³C NMR(100 MHz, CDCl₃)δ164.5 (C), 151.0 (C), 139.9 (C), 136.7 (C), 134.2 (CH), 131.2 (CH), 128.7 (C), 126.3(CH2), 124.3 (CH), 122.9 (CH), 120.6 (CH), 117.9 (C), 115.7 (CH), 109.7 (CH), 84.9 (C), 47.9(CH), 38.8 (CH₂), 28.2 (CH₃).

LRMS *m*/z340 (M+, <1%), 243 (35), 199 (100), 145 (62), 57(52); HRMS (ESI-TOF) Calcd for C₁₅H₁₆N₂O [M+-C₅H₈O₂] 240.1263, found 240.1270.

(R)-6-[(1-tert-Butoxycarbonyl)-1H-indol-3-yl]-5,6-dihydropyridin-2(1H)-one (15a)

Point de fusion: 128-129°C

Aspect: Solide blanc

 $[\alpha]^{20}$ D +112.5 (*c* 0.90, CH₂Cl₂)

RF 0.44 (hexane/AcOEt 1:3)

IR (neat) v⁻ 3224, 2923, 1727, 1673,141369, 1307, 1083 cm⁻¹

¹**H** NMR(400 MHz, CDCl₃) δ =8.19 (d, J = 8.3 Hz, 1H), 7.66-7.57 (m,2H), 7.38 (ddd, J = 8.4, 7.2, 1.3 Hz, 1H), 7.32-7.24 (m, 1H), 6.72 (ddd, J = 10.0, 5.3, 3.1 Hz, 1H),6.11-6.03 (m, 1H), 5.79 (s, 1H), 5.05 (ddt, J = 11.2, 6.0, 1.0 Hz, 1H), 2.79-2.61 (m, 2H), 1.69 (s,9H)

¹³C NMR(100 MHz, CDCl₃)δ166.5 (C), 149.4 (C), 140.7 (CH), 135.9 (C), 127.8 (C), 125.0 (CH), 124.6 (CH), 123.1 (CH), 122.8 (CH), 120.2 (C), 119.2 (CH), 115.7 (CH), 84.2 (C),48.5 (CH), 31.1 (CH₂), 28.2 (CH₃).

LRMS m/z312 (M+, 17%), 256 (71), 212 (44), 168 (47), 144 (59), 57 (100); HRMS (ESITOF) Calcd for $C_{18}H_{20}N_2O_3$ [M+] 312.1474, found 312.1480. (*R*)-6-[(1-tert-Butoxycarbonyl)-7-ethyl-1*H*-indol-3-yl]-5,6-dihydropyridin-2(1*H*)-one (15c):

Point de fusion: mp128-129°C

Aspect: Solide blanc

 $[\alpha]20D + 37.5 (c 1.74, CH_2Cl_2)$

RF 0.50 (hexane/AcOEt 1:3)

IR (neat) v⁻ 3243, 2927,1739, 1666, 1353, 1149, 1056 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** δ 7.51 (s, 1H), 7.48-7.42 (m,1H), 7.27-7.20 (m, 2H), 6.72 (ddd, J = 9.9, 5.0, 3.3 Hz, 1H), 6.07 (dd, J = 9.9, 1.8 Hz, 1H), 5.68 (s,1H), 5.04 (dd, J = 10.6, 6.7 Hz, 1H), 3.14 (q, J = 7.4 Hz, 2H), 2.76-2.67 (m, 2H), 1.67 (s, 9H), 1.22(t, J = 7.5 Hz, 3H).

¹³C NMR(100 MHz, CDCl₃)δ166.6 (C), 149.2 (C), 140.7 (CH), 134.6 (C), 132.3 (C), 129.3 (C), 126.7 (CH), 125.2 (CH), 124.6 (CH), 123.4 (CH), 120.1 (C), 116.7 (CH), 83.9(C), 48.5 (CH), 31.2 (CH₂), 28.1 (CH₃), 27.9 (CH₂), 14.7 (CH₃).

LRMS *m/z*340 (M+, 13%),284 (27), 240 (50), 216 (16), 172 (40), 57 (100); HRMS (ESI-TOF) Calcd for C₂₀H₂₄N₂O₃ [M+]340.1787, found 340.1797.

(*R*)-6-[(1-*tert*-Butoxycarbonyl)-5-methoxy-1*H*-indol-3-yl]-5,6-dihydropyridin-2(1*H*)-one (15e)

Point de fusion: 128-129°C

Aspect: Solide blanc

 $[\alpha]^{20}$ D +80.3 (*c* 1.33, CH₂Cl₂)

RF 0.40 (hexane/AcOEt 1:3)

IR (neat) v⁻ 3216, 2931,1727, 1673, 1376, 1253, 1157, 1079 cm-1

¹**H NMR(400 MHz, CDCl₃)** δ =8.07 (d, *J* = 9.0 Hz,1H), 7.57 (s, 1H), 7.10-6.92 (m, 3H), 6.77-6.69 (m, 1H), 6.11-6.04 (m, 1H), 5.79 (s, 1H), 5.05-4.96(m, 1H), 3.87 (s, 3H), 2.82-2.60 (m, 2H), 1.68 (s, 9H)

¹³C NMR(100 MHz, CDCl₃)*δ*= 166.6 (C),155.9 (C), 149.4 (C), 140.8 (CH), 128.6 (C), 124.7 (CH), 123.8 (CH), 119.8 (C), 116.5 (CH), 113.6(CH), 101.9 (CH), 84.1 (C), 55.8 (CH3), 48.5 (CH), 30.9 (CH2), 28.2 (CH3)

LRMS *m/zm/z* 342(M+, 25%), 286 (100), 242 (25), 174 (45), 57 (92); HRMS (ESI-TOF) Calcd for C₁₃H₁₀N₂O₂ [M+-C₆H₁₂O₂] 226.0742, found 226.0748.

(*R*)-6-[(1-*tert*-Butoxycarbonyl)-6-nitro-1*H*-indol-3-yl]-5,6-dihydropyridin-2(1*H*)-one (15g)

Point de fusion: 128-129°C

Aspect: Solide blanc

 $[\alpha]^{20}$ D +69.2 (*c* 0.97, CH₂Cl₂)

RF 0.28 (hexane/AcOEt 1:3)

IR (neat) v⁻ 3180, 2923,1739, 1673, 1519, 1454, 1338, 1153 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** $\delta == 8.55$ (dd, J = 2.1, 0.7Hz, 1H), 8.34 (d, J = 9.2 Hz, 1H), 8.27 (dd, J = 9.2, 2.2 Hz, 1H), 7.75 (d, J = 0.8 Hz, 1H), 6.73(ddd, J = 10.0, 4.8, 3.6 Hz, 1H), 6.13-6.06 (m, 1H), 5.92 (s, 1H), 5.11 (dd, J = 10.0, 6.8 Hz, 1H),2.74 (ddd, J = 9.9, 3.7, 2.4 Hz, 2H), 1.71 (s, 9H).

¹³C NMR(100 MHz, CDCl₃)δ= 166.5 (C), 143.615(C), 140.4 (C), 127.7 (CH), 126.0 (C), 124.7 (CH), 121.4 (CH), 120.3 (C), 115.9 (CH), 115.4 (CH),99.3 (CH), 85.7 (C), 48.1 (CH), 31.3 (CH2), 29.7 (CH3), 28.1 (CH)

LRMS *m/zm/z* 357 (M+ ,<1%),311 (4), 261 (8), 257 (86), 57 (100); HRMS (ESI⁻TOF) Calcd for C₁₃H₁₁N₃O₃ [M+-C₅H₈O₂]257.0800, found 257.0791.

(R)-6-[(1-tert-Butoxycarbonyl)-1H-indol-2-yl]-5,6-dihydropyridin-2(1H)-one (16)

Point de fusion: 128-129°C

Aspect: Solide blanc

[α]20D +69.2 (*c* 0.97, CH2Cl2)

RF 0.28 (hexane/AcOEt 1:3)

IR (neat) v⁻ 3180, 2923,1739, 1673, 1519, 1454, 1338, 1153 cm-1

¹H NMR(400 MHz, CDCl₃) $\delta == 8.55$ (dd, J = 2.1, 0.7Hz, 1H), 8.34 (d, J = 9.2 Hz, 1H), 8.27 (dd, J = 9.2, 2.2 Hz, 1H), 7.75 (d, J = 0.8 Hz, 1H), 6.73(ddd, J = 10.0, 4.8, 3.6 Hz, 1H),

6.13-6.06 (m, 1H), 5.92 (s, 1H), 5.11 (dd, *J* = 10.0, 6.8 Hz, 1H),2.74 (ddd, *J* = 9.9, 3.7, 2.4 Hz, 2H), 1.71 (s, 9H)

¹³C NMR(100 MHz, CDCl₃)δ= 165.9 (C), 150.5 (C), 140.8 (C), 139.5 (CH), 136.4 (C), 128.5 (C), 124.5(CH), 124.5 (CH), 123.2 (CH), 120.7 (CH), 115.9 (CH), 108.6 (CH), 85.0 (C), 48.6 (CH), 29.4(CH2), 28.2 (CH3)

LRMS *m/zm/z* 312 (M+, 13%), 256 (21), 212 (78), 168 (80), 144 (71), 57 (100); HRMS (ESI-TOF) Calcd for C13H11N2O [M+-C5H9O2] 211.0871, found 211.0875.

(S)-5-(7-Ethyl-1*H*-indol-3-yl)-3-methylenepyrrolidin-2-one (19c)

Aspect: Solide blanc

Point de fusion: 103-104 oC

 $[\alpha]^{20}$ D –10.2(*c* 0.85, CH₂Cl₂)

RF 0.21 (hexane/AcOEt 1:2)

IR (neat) v⁻ 31803220, 2923, 1681, 1446, 1265, 1110 cm⁻¹

¹**H** NMR(400 MHz, CDCl₃) δ = 8.23 (s, 1H), 7.42-7.39 (m, 1H), 7.12-7.08 (m, 2H), 7.07 (s, 1H), 6.39 (s, 1H), 6.11 (s,1H), 5.41 (t, *J* = 2.3 Hz, 1H), 5.07 (dd, *J* = 8.1, 4.6 Hz, 1H), 3.37-3.29 (m, 1H), 3.00-2.94 (m, 1H), 162.85 (q, *J* = 7.5 Hz, 2H), 1.36 (t, *J* = 7.5 Hz, 3H)

¹³C NMR(100 MHz, CDCl₃)δ= 170.2 (C), 139.1(C), 135.6 (C), 128.7 (CH), 126.9 (C), 124.5 (C), 121.0 (CH), 120.8 (CH), 120.1 (CH), 117.7 (C),116.4 (CH2), 48.3 (CH), 35.1 (CH₂), 23.8 (CH₂), 13.6 (CH₃).

LRMS *m/z*240 (M+, 100%), 211(25), 171 (27); HRMS (ESI-TOF) Calcd for C₁₅H₁₆N₂O [M+] 240.1263, found 240.1254.

(S)-5-(4-Bromo-1*H*-indol-3-yl)-3-methylenepyrrolidin-2-one (19d)

Aspect: Solide blanc

mp 143-144°C

 $[\alpha]^{20}$ D +71.3(*c* 0.38, CH2Cl2)

RF 0.15 (hexane/AcOEt 1:2)

IR (neat) v⁻ 3409, 3178, 1697, 1419, 1338, 1276, 1184 cm⁻¹

¹**H NMR(400 MHz, CDCl₃)** δ = 8.65 (s, 1H), 7.34-7.26 (m, 2H), 7.16 (s, 1H), 7.04 (t, *J* = 8.0 Hz, 1H), 6.68 (s, 1H), 6.05(s, 1H), 5.69 (dd, *J* = 8.1, 3.4 Hz, 1H), 5.38 (s, 1H), 3.46 (dd, *J* = 8.1, 17.2 Hz, 1H), 2.86 (dd, *J*=17.2, 3.4 Hz, 1H).

¹³C NMR(100 MHz, CDCl₃)δ170.8 (C), 138.3 (C), 124.4 (CH), 124.3 (C), 123.6 (C), 123.5 (CH), 121.9 (CH), 119.8 (C), 117.1 (CH2), 113.4 (C), 111.0 (CH), 48.0 (CH), 37.2(CH₂).

LRMS m/2292 (M+, 100%), 290 (92), 249 (19), 236 (3), 143 (40), 116 (16); HRMS (ESI-TOF) Calcd for C₁₃H₁₁N₂O [M+-Br] 211.0871, found 211.0867.

(S)-5-(1H-Indol-2-yl)-3-methylenepyrrolidin-2-one (20)

Aspect: Solide blanc

Point de fusion: 73-74°C

 $[\alpha]^{20}$ D –12.3(*c* 0.63, CH₂Cl₂)

RF 0.14 (hexane/AcOEt 1:1)

IR (neat) v⁻ 34093247, 2923, 1697, 1307, 786 cm⁻¹

¹H NMR(400 MHz, CDCl₃) $\delta = \delta = 9.58$ (s, 1H), 7.55-7.52 (m, 1H), 7.34-7.31 (m, 1H), 7.18-7.05 (m, 2H), 6.35 (s, 1H), 5.98 (s, 1H), 5.30 (s, 1H), 4.88 (dd, J = 8.3, 4.7 Hz, 1H), 3.20 (dd, J = 17.3, 8.3 Hz, 1H), 2.85-2.78 (m, 1H).

¹³C NMR(100 MHz, CDCl₃) δ = 170.8 (C), 138.2 (C), 136.6 (C), 127.7 (C), 122.0 (CH), 120.3 (C),120.2 (CH), 119.7 (CH), 116.9 (CH2), 111.0 (CH), 100.1 (CH), 49.3 (CH), 34.7 (CH2)LRMS *m*/212 (M+, 100%), 168 (26), 144 (17); HRMS (ESITOF) Calcd for C₁₃H₁₂N₂O [M⁺] 212.0950, found 212.0942.

REFERENCES BIBLIOGRAPHIQUES

- [1]. Sundberg, R.; J, Ed. Indoles. 1996.
- [2]. Bayer, A.; Emmerling, A. Ber. 1869, 2, 679-682.
- [3]. Bayer, A. Ber. 1884, 17, 960-963.
- [4]. Fischer, E. Ann. 1886, 236, 116.

[5]. Bacher, G.; Beckers, T.; Emig, P.; Klenner, T.; Kutscher, B.; Nickel, B.

Pure and AppliedChemistry, 2001, 73, 1459.

[6]. Fischer, E.; Jourdan, F., Ueber die Hydrazine der Brenztraubensäure. *Ber. Dtsch. Chem. Ges.* 1883, *16* (2), 2241-2245.

[7]. Murakami, Y.; Yokoyama, Y.; Miura, T.; Hirasawa, H.; Kamimura, Y.; Izaki, M., pToluenesulfonic acid and cation-exchange resin in aprotic solvent: valuable catalysts for Fischer indolization. *Heterocycles* **1984**, *22* (5), 1211-1216.

[8]. Inman, M.; Moody, C. J., Indole synthesis – something old, something new. *Chem. Sci.* 2013, *4* (1), 29-41.

[9]. Wagaw, S.; Yang, B. H.; Buchwald, S. L., A Palladium-Catalyzed Strategy for the Preparation of Indoles: A Novel Entry into the Fischer Indole Synthesis. *J. Am. Chem. Soc.* **1998**, *120* (26), 6621-6622

[10]. Bischler, A.; Fireman, P., Zur Kenntniss einiger α - β - Diphenylindole. *Ber. Dtsch. Chem. Ges.* **1893**, *26* (2), 1336-1349

[11]. Tokunaga, M.; Ota, M.; Haga, M.-a.; Wakatsuki, Y., A practical one-pot synthesis of 2,3-disubstituted indoles from unactivated anilines. *Tetrahedron Lett.* **2001**, *42* (23), 3865-3868..

[12]. Kumar, M. P.; Liu, R.-S., Zn(OTf)2-Catalyzed Cyclization of Proparyl Alcohols with Anilines, Phenols, and Amides for Synthesis of Indoles, Benzofurans, and Oxazoles through Different Annulation Mechanisms. *J. Org. Chem.* **2006**, *71* (13), 4951-4955.

[13]. Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R., The reaction of vinyl grignard reagents with 2-substituted nitroarenes: A new approach to the synthesis of 7-substituted indoles. *Tetrahedron Lett.* **1989**, *30* (16), 2129-2132

[14]. Reissert, A. Ber. 1909, 41, 3921.

[15]. Madelung, W., Indole substituted in the α -position. *DE262327*, 1912.

[16]. Madelung, W., A new indigo synthesis. Justus Liebigs Ann. Chem. 1914, 405, 58-95.

[17]. Bischler, P.; Fierman. Ber. 1893, 26, 1336

- [18]. Padwa, A.; Dimitroff, M.; Waterson, G. A.; Wu, T. J. Org. Chem. 1998, 63, 3986.
- [10]. Milcent, R.; Chau, F. EDP Sciences. 2003, 8.
- [20]. Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Chemical reviews. 2004, 104, 2777.
- [21]. Bordwell; F.G.; Drucker, G.E.; Fried, H.E. J.Org.Chem. 1981,46, 632.
- [22]. Joule, J.A.; Smith, G.; Mills, K. HeterocyclicChem. 1995, 8, 301-320.
- [23]. Balci, K .; Akyuz, S. J. Mol. Struct . 2007, 834, 525.
- [24]. Bocchi, V.; Palla, G. Tetrahedron . 1984, 40, 3251.
- [25]. Brown, K.; R.Katritzky, A. Tetrahedron.Lett. 1964, 14, 803.

[26]. Katritzky, A. R.; Kim, A. S.; Fedoseyenko, D.; Widyan, K.; Siskin, M.; Franciso, M. *Tetrahedron*. 2009, 65, 1111.

[27]. Chen, M.; Huang, Z.T.; Zheng, Q.Y. Chem. Commun. 2012, 48, 11686.

[28]. Shi, Y.L.; Zhang, D.; Lin, R.; Zhang, C.; Li, X.; Jiao, X. *Tetrahedron.Letters*. 2014, 55,2243.

[29]. Saulnier, M. G.; Gribble, G.W. J. Org. Chem. 1983, 48, 2690.

[**30**]. Reinecke, M. G.; Sebastian, J. F.; Johnson Jr, H. W.; Pyun, C. J. *Org. Chem.* **1971**, *36*, 3091-3095 .

[31]. Saulnier, M. G.; Gribble, G. W. J. Org. Chem. 1982, 47, 757-761.

[32]. Blicke, F. F. Org. Reactions. 1941, 1, 303.

[33]. Kühn, H.; Stein, O. Chem. Ber. 1937, 70, 567.

[34]. Heydari, A.; Tavakol, H.; Aslanzadeh, S.; Azarnia, J.; Ahmadi, N. A. *Synthesis*. 2005, 622..

[35]. Carter, C.; Flechter, S.; Nelson, A. Tetrahedron: Asymmetry .2003, 14, 1995.

[36]. Shigemitsu, T.; Rikimaru, K.; Endo, A.; Shimamoto, K.; Kan, T.; Fukuyama, T. *Synthesis* .2004, 909.

[37]. Ke, B.; Qin, Y.; He, Q.; Huang, Z.; Wang, F. Tetrahedron Lett. 2005, 46, 1751.

[38]. Heydari, A.; Tavakol, H.; Aslanzadeh, S.; Azarnia, J.; Ahmadi, N. A. *Synthesis*. 2005, 627

[39]. Banerji, A.; Mukhopadhyay, A. K. Indian J. Chem. 1982, 21B, 239.

[40]. Banerji, A.; Mukhopadhyay, A. K. Indian J. Chem. 1982, 21B, 239

[41]. (a) Chalaye-Mauger, H.; Denis, J.N.; Averbuch-Pouchot, M..T.; Vallée, Y. *Tetrahedron* .2000, *56*, 791. (b) Denis, J.N.; Mauger, H.; Vallée, Y. *Tetrahedron Lett.* 1997, *38*, 8515.

[42]. Brückner, R., Mécanismes Réactionnels En Chimie Organique: méthodes synthétiques, stéréochimie etréactions modernes, De Boeck Supérieur, 1999. b) P. Depovere, Chimie organique, De Boeck Supérieur.2005.

[43]. Kamenecka, T. M.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1998, 37, 21.

[44]. Beaucage, S. L.; Iyer, R. P. *Tetrahedron*. 1992, 48, 2223.
[45]. Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. *Org. Biomol.Chem*. 2006, 4,

[46]. Joseph, M. H. In Organic Chemistry. 2ème Ed. Thomson Brooks/Cole. 2006. 1012.

[47]. Engels, J. W .; Uhlmann, E. Angew. Chem. Int. Ed. Engl. 1989, 28, 716.

- [48]. Aiello, A.; Fattorusso, E.; Giordano, A.; Menna, M.; Navarrete, C.; Munoz, E. *Bioorg. Med. Chem.*2007, *15*, 2920.
- [49]. Ahmed, M. Z.; Andrew, S. Org. Biomol. Chem., 2011, 9, 8030.
- [50]. Stork, G.; Takahashi, T.; J. Am. Chem. Soc., 1977, 99, 1275.
- [50]. Ihara, M.; Suzuki, M.; Fukumoto, K.; Kametani, T.; Kabuto, C. J. Am. Chem. Soc., 1988, 110,1963.
- [51]. Kamenecka, T. M.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1998, 37, 21
- [52]. Marcune, B. F.; Karady, S.; Dolling, U.H.; Novak, T. J. J. Org. Chem., 1999, 64, 2446.
- [53]. Mander, L. N.; Thomson, R. J. J. Org. Chem. 2005, 70, 1654.
- [54]. Yadav, J. S.; Ganganna, B.; Bhunia, D. C.; Srihari, B. P. *Tetrahedron Lett.* 2009, *50*, 4318.

[55]. Jae, H. H.; Young, E. K.; Jeong-Hun, S.; Do, H. R. Tetrahedron. 2010, 66, 1673.

[56]. Khatib, S.; Nerya, O.; Musa, R.; Shmuel, M.; Tamir, S.; Vaya, J. *Bioorg. Med. Chem.*, 2005, 13,

433.

2337.

[57]. Ibrahim-Ouali, M.; Bouleghlem, H.; Aouf, N-E. Tetrahedron Lett., 2012, 53, 1859

[58]. Akiyama, T.; Shima, H.; Ozaki, S. Tetrahedron Lett. 1991, 32, 5593.

- [59]. Corey, E. J.; Bock, M. G. Tetrahedron Lett. 1975, 16, 3269.
- [60]. Chowdhury, P. K.; Sharma, R. P.; Baruah, J. N. Tetrahedron Lett., 1983, 24, 4485.
- [61]. Kocienski, P. J., Protecting Groups; Thieme: Stuttgart, 3eme Ed, 2005
- [62]. Patel, S. K.; Murat, K.; Py, S.; Vallee, Y. Org. Lett., 2003, 5, 4081.

[63]. Murali, C.; Shashidhar, M. S.; Gopinathb, C, S. Tetrahedron. 2007, 63, 4149.

[64]. Horita, K.; Yoshioka, T.; Yanaka, T.; Oikawa, Y. Yonemitsu, O. *Tetrahedron*. 1986, 42, 3021.

[65]. Wutz, (*a*) P. G., M *p*-Methoxybenzyl Chloride, *In Encyclopedia of Reagents for Organic Synthesis*, Ed. L. A. Paquette, John Wiley and Sons, New York, 1995, 5, 3326. (*b*) Nwoye, E. O.; Dudley, G. B. *Chem. Commun.*, 2007, 1436.

[66]. Rai, A. N.; Basu, A. Tetrahedron Lett. 2003, 44, 2267.

[67]. Tucker, J. W.; Narayanam, J. M. R.; Shah, P. S.; Stephenson, C. R. J. Chem.

*Commun.***2011**, *47*,5040.

[68]. Klebe, J. F., *In Advances in Organic Chemistry: Methods and Results*, Vol. 8, E. C. Taylor, Ed., Wiley- Inter-science, New York, 1972, pp. 97–178; A. E. Pierce, *Silylation of Organic Compounds*, Pierce Chemical Company, Rockford, IL, 1968.
[69]. (a). Watahiki, T.; Matsuzaki, M.; Oriyama T. *Green Chem.*, 2003, *5*, 82 (b). Ito, H.; Takagi, K.; Miyahara, T.; Sawamura, M. *Org. Lett.*, 2005, *7*, 3001

[70]. Bandgar, B.P.; Chavare, S.N.; Pandit, S.S. J. Chin. Chem. Soc. 2005, 52, 125.
[71]. Bruyenes, C.A.; Jurriens, T.K. J. Org. Chem. 1982, 47, 3966.

[72].Yadegari, M.; Moghadamb, M.; Tangestaninejad, S.; Mirkhani, V.; Baltork, M. *Polyhedron.* 2012,73, 332.

[73]. Rai,A. N.; Basu, A. *Tetrahedron Lett.* 2003, 44, 2267.
[74]. Habibi, M. H.; Tangestaninejad, S.; Mohammadpoor, B. I.; Mirkhani, V.; Yadollahi, B.TetrahedronLett. 2001, 42, 6771

[75]. Rai, A. N.; Basu, A. Tetrahedron Lett. 2003, 44, 2267.

(*a*). Yang, Y.; Martinab, C. E.; Seeberger, P. H. *Chem. Sci.*, **2012**, *3*, 896 (*b*). Miyaoka, H.; Abe, Y.; Sekiya, N.; Mitome, H.; Kawashima, E *Chem. Commun.*, **2012**, *48*, 901

[76]. Loh, T.P.; Feng, L.C. Tetrahedron Lett. 2001, 42, 6001

[77]. Li, J., Ph.D. Thèse, *Total Synthesis of Myxoviresc A and Approaches toward the Synthesis of theA/B Ring System of Zoanthamine*. IndianaUniversity: Bloomington, Indiana, **1996**.

[78]. (a) Shaikh, A. A. G.; Sivaram, S. Chem. Rev. 1996, 96, 951-976; (b) Parrish, J. P.;

Salvatore, R.N.; Jung, K. W. Tetrahedron 2000, 56, 8207.

[79]. Singh, S. J. ; Jayaram, R. V. Tetrahedron Lett., 2008, 49, 4249.

[80]. Meyers, A. I. ;Tomioka, K. ; Roland, D. M. ; Comins, D. *Tetrahedron Lett.* 1978, 19, 1375.

[81]. Meyers, A. I. ;Tomioka, K. ; Roland, D. M. ; Comins, D. *Tetrahedron Lett.* 1978, 19, 1375.

[82]. Jie, J. J.; Limberakis, C.; Pflum, D. A. *Modern organic synthesis in the laboratory,* Pfizer GlobalResearch & Development. OXFORD university press. 2006 p. 177

[83]. Turgut, Y.; Hosgören, H. Tetrahedron: Asymmetry 2003, 14, 3815.

[84]. Suzuki, T.; Honda,Y.; Izawa, K.; Williams, R. M. J. Org. Chem., 2005, 70, 7317.
[85]. Bailey, P.D.; Beard, M.A.; Dang, H.P.T.; Phillips, T.R.; Price, R.A.; Whittaker, J.A. *TetrahedronLett.*, 2008, 49, 2150.
[86]. (a) Supuran, C. T.; Casini, A.; Scozzafava, A. Med. Res. Rev., 2003, 5, 535; (b) Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. T. Curr. Med. Chem., 2003, 10, 925.

[87]. Nishida, H.; Hamada, T.; Yonemitsu, O. J. Org. Chem., 1988, 53, 3386.
[88]. Andersen, K. K.; Jones, D. N. Comprehensive Organic Chemistry. 1979, 3.

[90]. Tamaddon, F.; Nasiri, A.; Farokhi, S. Catalysis Communications .2011, 12.

[91]. Montalbetti, C. A. G. N.; Falque, V. Tetrahedron .2005, 61, 10827

[92]. Narender, N.; Srinivasu, P.; Kulkarni, S. J.; Raghavan, K. V. *Green Chem.* 2000, *2*, 104.

[93]. (*a*) Tsushima, T.; Kawada, K.; Ishihara, S.; Uchida, N.; Shiratori, O.; Higaki, J.; Hirata, M.*Tetrahedron*. 1988, 44, 5375. (*b*) Cox, R. J.; Sherwin, W. A.; Lam, L. K. P.; Vederas, J. C. *J. Am.Chem. Soc.* 1996, *118*, 7449.

[95].Satori, G.; Ballin, R.; Bigi, F.; Bosica, G.; Maggi, R.; Righi, P. Chem. Rev. 2004,104, 199.

[96]. Heydari, A.; Shiroodi, R. K.; Hamadi, H.; Esfandyari, M.; Pourayoubi, M. *Tetrahedron Lett.*, 2007,96, 5865.

[97].Srinivasan, N.; Yurek-George, A.; Ganasan, A. Molecular Diversity .2005, 9, 291.

[98]. Bailey, P. D. *An Introduction to Peptide Chemistry*; Wiley: Chichester, 1990; pp 114. [99].Fieser, L. F.; Fieser, M. In *Reagents in Organic Synthesis*; John Wiley & Sons: New York, 1967; Vol. 1, p 109.

[100]. Chinni M. K.; Narasimhulu, M.; Srikanth. R.T.; Suryakiran, N.; Venkateswarlu, Y. *TetrahedronLett.*, 2007, *48*, *55*.

[101]. Bergmann, M.; Zervas, L.; Ross, W. F. *Journal of Biological Chemistry* .1935, 111, 245.

[102]. Hattori, K.; Sajiki, H.; Hirota, K. Tetrahedron .2000, 56, 8433.

[103]. (*a*)Angle, S. R.; Arnaiz, D. O. *Tetrahedron Lett.*, 1989, *30*, *515*. (*b*) Blomberg, D.; Hedenstrom, M.J. *Org. Chem.*, 2004, *69*, 3500.

[104]. Chen, G.H.; Pan, P.; Chen, Y.; Meng, X-B.; Li,Z-J. Tetrahedron., 2009, 65, 5922.

[105]. (a) Carpino, L.A.; Han, G.Y. J. Org. Chem., 1972, 37, 3404. (b) Koole, L.H.; Moody, H.M.; Broeders, N.; Quaedflieg, P.; Kui-jpers, W.H.A.; Vangenderen, M.H.P.; Coenen, A.; Vanderwal, S.;Buck, H.M.; J. Org. Chem., 1989, 54, 1657.
[106]. Tchertchian, S.; Hartley, O.; Botti, P. J. Org. Chem. 2004, 69, 9208.

[107]. Gawande, M. B.; Branco, P. S. Green Chem. 2011, 13, 3355.

[108].Kidd, D. A.; King, F. E. *Nature London*. 1948, *162*, 776.
[109].Sheheen, J. C.; Guizec, F. S. *J. Org. Chem.*, 1973, *38*, 3034-3040.
[110].Kelly, R. C.; SChletter, I.; Weirenga, W. *J. Am. Chem. Soc.* 1979, *101*, 1054-1056.

[111]. Webber, J. A.; Van Heyningen, E. M.; Vasilief. R. T. J. Am. Chem. Soc, 1969, 91, 5694.

[112]. Collins, P. M.; Munasinghe, V. R. N. J. Chem. Soc, Perkin. Trans. 1983, 1, 921.
[113]. Woo, H. G.; Choi, H. T., Indium Properties, Technological Applications and Health Issues; Nova Science Publishers:New York, 2013. (b) Perchyonok, V. T. Radical Reactions in Aqueous Media; Royal Society of Chemistry: Cambridge, 2010.

[114]. Dudev, T.; Lim, C. Chem. Rev. 2003, 103, 773.

[115]. Grignard, V. Compt. Rend. Acad. Sci. 1900, 130, 1322.

[116].a) Willis, M. C. J. Chem. Soc. Perkin Trans. I. 1999, 1765; b) Lo, T.L. Symmetry: A Basis for Synthesis Design, WileyInterscience, New York, 1995, chap. 1.3; c) Magnuson, S. R. Tetrahedron, 1995, 51, 2167.

[117]. Cintas, Activated metals in organic synthesis, 1993.

[118]. Curran, D. P.; Poter, N. A.; Giese, B. *Stereochemistry of Radical Reactions*: concepts, guidelines, and syntheticapplication; VCH, Weinheim; 1995. 23-101.

[119]. (a) Zechmeister, L.; Rom, P. Chem. Ber. 1926, 59B, 567. (b) Zechmeister, L.; Truka, J. Chem. Ber. 1926, 63B, 2883.

[120].(a) Shinkai, S.; Nakaji, T.; Ogawa, T.; Shigematsu, K.; Manabe, O.J. Am. Chem. Soc.
1981, 103, 111. (b) Shine, H. J.; Chamness, J. T. J. Org. Chem. 1963, 28, 1232. (c) Newbold,
B. T. J. Chem. Soc. 1961, 4260. (d) Blackadder, D. A.; Hinshelwood. C. J. Chem. Soc. 1957,
2898.(e) Radell, J.; Spialter, L.; Hollander, J. J. Org. Chem. 1956, 21, 1051. (f) Badger,
[121]. Lewis, G. E. J. Chem. Soc. 1953, 2147. (g) Meisenheimer, J.; Witte, K. Chem. Ber.
1903, 36, 4153.

[122].Cullen, E.; L'Ecuyer, P. Can. J. Chem. 1961, 39, 862.

[123].Sandler, S. R.; Karo, W. Organic Functional Group Preparation ;2nd ed. Academic Press, *New York*, 1986, *11*,422.

[124]. Tabei, K.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1967, 40, 1538.

[125].McKillop, A.; Raphael, R. A.; Taylor, E. C. J. Org. Chem. 1970,35, 1670.Maiti, S. N.; Spevak, P.; Reddy, A. V. N.; Synth. Commun. 1988, 18, 1201.

[126]. Khurana, J. M.; Gogia, A.; Bankhwal, R. K. Synth. Commun. 1997, 27, 1801.
[127].Sugden, J. K. Chem. Ind. 1969, 260.

[128]. Hutchins, R. O.; Suchismita; Zipkin, R. E.; Taffer, I. M. Synth. Commun. 1989, 19, 1519.

[129]. (a) Bryce-Smith, D.; Wakefield, B.; Blues, E. T. *Proc. Chem. Soc.* 1963, 219.
(b)Bryce-Smith, D.; Wakefield, B. J. *Org.Synth.* 1967, 47, 103. (c) Cahiez, G.; Bernard, D.; Normant, J. F. *J. Organomet. Chem.*1976, *113*, 107. (d) Orsini, F. ;Pelizzoni, F. ; Forte, M. *Gazz. Chim. Ital.* 1986, *116*.

[130]. (a) Bartsch, H.; Erker, T. *Tetrahedron Lett.* 1992, *33*, 199. (b) Balicki, R. *Synthesis*, 1991, 155.

[131].Hutchins, R. O.; Suchismita; Zipkin, R. E.; Taffer, I. M.; Sivakumar, R.; Monaghan, A.; Elisseou, E. M. *Tetrahedron Lett*.1989, *30*, 55.

[132]. (a) Joshua, C. P.; Ramadas, P. K. *Synthesis*, 1974, 873. (b) Yoshida, T.; Nishiyachi, M.; Nakashima, N.; Murase, M.; Kotani, E. *Chem. Pharm. Bull.* 2002, *50*, 872. (c) Murase, M.; Wadanabe, K.; Yoshida, T.; Tobinaga, S. *Chemiphar. Bull*.2000, *48*, 81.

[133]. (a) Rhomberg, A.; Tavs, P. *Monatsh. Chem.* 1967, *98*, 105. (b) Teichmann, H.;
Jatkowski, M.; Hilgetag, G.*Angew.Chem.* 1967, *79*, 379. (c) Nesterov, L. V.; Mutalapova, R.
I. *Tetrahedron Lett.* 1968, *9*, 51.

[134]. Sondengam, B. L.; G. Charles, T.M. Tetrahedron Lett. 1980, 21, 1069.

[135]. Solladit, G.; Stone, G.B.; Andrks, J. M.; Urbano, A. *Tetrahedron Lett.* 1993, *34*, 2835.

[136]. Rosnati, V. Tetrahedron Lett. 1992, 33, 4791.

[137]. Cope, A.C.; Barthel, J.W.; Smith, R.D. Org. Synth. 1963, 4, 218.

[138]. Elphimoff-Felkin, I.; Sarda, P. Org. Synth. 1988, 6, 769.

[139]. I. Elphimoff- Felkin, P. T.; Sarda, Org. Synth. 1977, 33, 511.

[140].Mann, J. B.; Meek, T. L.; Allen, L. C. J. Am. Chem. Soc. 2000, 122, 2780. [141].Reformatsky, S.; Ber, Dtsch. Chem. Ges. 1887, 20, 1210–1211.

[142].Le Gall, E.; Decompte, A.; Martens, T.; Troupel, M.Synthesis, 2010, 249.

[143]. Mond, L.; Langer, C.; Chem. J. Soc Trans. 1891, 59, 1090–1093.

[144]. Berthelot M. Compt Rend. 1891, 112, 1343-1346.

[145]. Reihlen, H.; Gruhl, A.; Heßling, G. v.; Pfrengle, O. Justus Liebigs Annalen der Chemie. 1930, 482, 161–182.

[146]. Hieber, W.; Leutert, F. Naturwissenschaften. 1931, 19, 360-361.

[147].G. Wilkinson, G.; Rosenblum, M.; Whiting, M.C.; Woodward, R.B.; Am, J. *Chem Soc.* 1952, *74*,2125–2126.

[148]. Kharasch, M. S.; Fields, E. K.; Am, J. Chem Soc. 1941, 63, 2316–2320.

[149]. Tamura, M J.; Kochi, K.; Am, J. Chem Soc. 1971, 93, 1487–1489.

[150]. Gülak, S.; Jacobi von Wangelin, A., Angewandte Chemie International Edition 2012, *51*, 1357–1361.

[151]. Ren, Q.; Shen, X. Acta Physico-Chimica Sinica .2015, 31, 852–858.

[152]. Zhurkin, F. E .; Wodrich, M. D.; Hu, X. Organometallics. 2017, 36, 499-501

[153]. J Michael, J. P. Nat. Prod. Rep. 2005, 22, 603.

[154]. Wink, M.; Meissner, C.; Witte, L. Phytochemistry. 1995, 38, 139.

[155]. Golebiewski, W. M.; Spenser, I. D.; Can. J. Chem. 1988, 66, 1734.

[156]. Bunsupa, S.; Yamazaki, M.; Saito, K. Front. Plant Sci. 2012, 3, 239.

[157]. Wink, M. Planta Med. 1987, 53, 509.

[158]. Omeje, E. O.; Osadebe, P. O.; Nworu, C. S.; Nwodo, J. N.; Obonga, W. O.;

Kawamura, A.; Esimone, C.O.; Proksch, P. Pharm. Biol. 2011, 49, 1271.

[159]. Senges, J.; Ehe, L. Naunyn Schmiedebergs Arch. Pharmacol. 1973, 280, 265.

[160]. (a) Hoppe, D.; Hense, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 2282; (b) Chuzel,

O.; Riant, O. Top. Organomet. Chem. 2005, 15, 59.

[161]. Zhang, X.; Cui, Z.; Wang, D.; Zhou, H.Y. J. Asian Nat. Prod. Res. 2003, 5, 171.

[162]. Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1997, 119, 9913.

[163]. Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman , J. A. J. Org. Chem. 1999, 64, 1278.

[164]. Higashibayashi ,S.; Tohmiya, H.; Mori, T.; Hashimoto, K.; Nakata ,M. *Sy,nlett* 2004, 457.

[165]. Huang , Z.; Zhang, M.; Wang, Y.; Qin ,Y. Synlett 2005, 1334.
[166]. Jiang ,Z.Y.; Chan, W. H.; Lee, A. W. M. J. Org. Chem. 2005, 70, 1081

[168]. Wink, M.; Meissner, C.; Witte, L. *Phytochemistry*, 1995, *38*, 139.
[169]. W. M. Golebiewski, W. M.; Spenser, I. D. *Can. J. Chem.*, 1988, *66*, 1734.
[170]. Albrecht, R.; Kresze, G.; Mlakar, B. *Chem. Ber.* 1964, *97*, 32.
[171]. Clerici, A.; Pastori, N.; Porta, O. *Tetrahedron* 1998, *54*, 15679.

[172]. Chen, Z.; Li, J.; Yuan, C. Synthesis 2009, 3930.

[173]. Gandhi, D.; Kalal, P; Agarwal, S. *Chem Biol Interface*. 2017,7,79–101.
[174]. Zachariah, S M.; Ramkumar ,M.; George, N.; Ashif, M .S.; *Int J Pharm Sci Rev Res*. 2015,30,211–218.

[175]. Muñoz, M. G.; Foubelo, F.; Yus, M. J. Org. Chem. 2016, 81, 10214.
[176]. Reddy, L. R.; Waman, Y.; Nayak, K.; Baharooni, K.; Kotturi, S. Org Lett. 2019,21,3481–3484.

[177]. Lima ,L. M.; da Silva, B. N.; Barbosa , M.; Barreiro E J. *Eur J Med Chem.* 2020,208,112829.

[178]. Su, L.; Xu, M.H. Synthesis. 2016,48,2595–2602.

[179]. Dema, H. K.; Foubelo, F.; Yus, M. Helv Chim Acta. 2012,95,1790-1798.

[180]. Muñoz, M. G .; Foubelo, F.; Yus, M. J. Org. Chem. 2016, 81, 10214

Publication

ملخص

مشتقات الإندول لها خصائص بيولوجية وصيدلانية مثيرة للاهتمام. أثارت أهمية هذه المنتجات العضوية اهتمامًا كبيرًا بالتركيب والتقييم البيولوجي لهذه المشتقات.

بدافع من النشاط البيولوجي المثبت لهذه المشتقات المركبة ، فإن الهدف من العمل الحالي هو توليف وحماية الإندولات وكذلك تطوير طرق جديدة لنزع الحماية من الإندولات المحمية المختلفة باستخدام المغنيسيوم والزنك والحديد وتطوير طريقة جديدة لتركيب الدورات الحيوية.

تتكون هذه المخطوطة من جزأين رئيسيين: الجزء الأول مقسم إلى ثلاثة فصول ، في أول فصلين لقد قدمنا نظرة عامة واسعة على أهم طرق التحضير ، حماية وحرمان مشتقات الإندول ، وكذلك دورها في هذا المجال علاجي.

في الفصل الثالث من نفس العمل قمنا بإزاحة مجموعة السيليل، حيث تم استخدام المغنزيوم ، الزنك والحديد للوصول إلى المادة الأولية والتي هي الأندول بمردود جيد.

فيما يخص الفصل الرابع من هذا العمل، قمنا بإنشاء مركبات حلقية باستعمال المركب الضوئي -N-tert Butanesulfinylimines.

الكلمات المفتاحية: أندول ، إيمين غير متناظر، الحماية.

Résumé

Les dérivés des indoles présentent des propriétés biologiques et pharmaceutiques intéressantes. L'importance de ces produits organiques a éveillé un grand intérêt pour la synthèseet l'évaluation biologique de ces dérivés.

Motivés par l'activité biologique avérée de ces dérivés de composés, l'objectif du présenttravail est la synthèse et la protéction des indoles ainsi que le développement des nouvelles méthodes de la déprotection des différents indoles protégés par le silyle le en utilisant magnésium, zinc et le fer et le développement d'une nouvelle méthode de synthèse Biheterocycles .

Ce manuscrit comprend deux parties principales:

La première partie est subdivisée en trois chapitres, dans les deux premiers chapitres nous avons donné un large aperçu sur les méthodes lesplus significatives de préparation, protection et déprotection des dérivés d'indole, ainsi que leurs rôles dans le domaine thérapeutique. Nous avons présenté également, un rappel bibliographique sur la réactivité des indoles.

Dans le troisième chapitre, nous avons rapporté l'utilisation avec succès des nouveaux catalyseurs dans la déprotéction du groupement silyle. Il s'agit de , magnésium, zinc et le fer qui ont étéemployé avec des quantités catalytiques pour accéder aux dérivés des indoles correspondantsavec des rendements généralement très bons.

De même, nous avons décrit dans la deuxième partie de ce travail, une nouvelle méthode de synthèse synthese des Biheterocycles Containing Indole and 5,6-Dihydropyridin-2(1H)-one or α -Methylene- β -butyrolactam. Avec utilisation la *N-tert*-Butanesulfinylimines comme reactife importante.

Mots clés : indoles, déprotection, N-tert-Butanesulfinylimi

Abstract

This manuscript describes the reductive removal of silyl groups from N-protected indoles, using indium, magnesium, zinc and fer processes and new method for synthesis an N-tert-Butanesulfinylimines. In the main part: Chapters 1 and 2 we have reported the development of two efficient processes one for transforming a wide variety of indoles into the corresponding derivatives indoles in high yield, using a simple and soft protocol, and other to protect indoles which is our starting materials. Chapter 3 shows the deprotection of the silyl (triphenylsilyl) groups,

In the second main part: we have described anew method for the synthesis of Biheterocycles Containing Indole and 5,6-Dihydropyridin-2(1H)-one or α -Methylene- β -butyrolactam. Using N-tert-Butanesulfinylimines as an important reactant.

Key words: indoles, deprotection, N-tert-Butanesulfinylimines.