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Introduction

. Cosmology is the study of the cosmos. From early on, humans were always fascinated

by the stars. They noticed constellations that looked like animals and people, so they

weaved stories and myths to rationalize what they had seen. This fascination with the

stars grew stronger with the passage of time. With each discovery and theory that

explains a cosmological phenomenon, more questions are raised.

On one hand, after science was developed, when Isaac Newton presented the now

eminently renowned inverse-square gravitational force law, which united the earthly

physics of falling apples with the cosmic movement of planets and stars, it was very

successful in both explaining and anticipating a variety of phenomena, but on the other

hand, Newtonian gravity couldn�t explain many other events. In 1907, the prediction of

gravitational red-shift was made possible due to Einstein�s introducing the equivalence

between gravitation and inertia, in 1915, the General Relativity theory was presented

in the di¤erential geometry language, based on two key elements: pseudo-Riemannian

geometry (Lorentzian geometry) and speci�c �eld equations for the Ricci tensor. De-

pending on these two elements. It succeeded in explaining a famous observation that

Newtonian gravity could not, such as the experimental result of Mercury�s orbit and

the gravitational de�ection of light passing near the Sun, as measured in 1919 during a

solar eclipse by Arthur Eddington [1].
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Introduction

Actually, physicists describe the universe using two major theories: general relativity

and quantum mechanics, which are considered two pillars of modern physics. General

relativity describes the gravitational force and the structure of the large-scale universe,

whereas quantum mechanics studies phenomena on small scales.

After about a century, the �eld equations of general relativity are still our best

description of how space-time behaves on a macroscopic scale. However, this success

hasn�t stopped people from proposing alternatives. Even in the early days after Gen-

eral Relativity emerged, Einstein himself attempted to alter the framework of General

Relativity by introducing the "Cosmological Constant". We are not claiming that Gen-

eral Relativity is wrong, but these suggestions on how to extend it and incorporate

it into a larger, more uni�ed theory (and one of the most important goals of modern

physics is to obtain a uni�ed theory) can solve some theoretical and current observa-

tional problems. These early changes were sparked mostly by scienti�c curiosity, such

as Weyl�s theory of scale independence, Eddington�s connection theory, and Kaluza and

Klein�s theory of higher dimensions. During this period, Dirac suggested an explanation

of the Large-Number Coincidence (LNC) problem by suggesting that the Newtonian

gravitation constant can change over time [2],the possibility of changing Newton�s con-

stant was discussed again in the 1960s by Brans and Dicke. Modifying gravity, on

the other hand, inspired Andrei Sakharov, who proposed in 1967 a hypothesis that

Einstein�Hilbert action is linked to a change in the action of quantum �uctuations, and

he regarded gravitation and the discussion of quantum electrodynamics as analogous

[3],[4].

The period from 1960 to 1980 was a Golden Age in experimental gravity. The �rst

successful lunar ranging tests were carried out in 1962, when Massachusetts Institute of

Technology�s Louis Smullin and Giorgio Fiocco observed laser pulses re�ected from the

moon�s surface. In 1974 Russell Alan Hulse and Joseph Hooton Taylor Jr recognized

the source as a pulsar after detecting pulsed radio radiation, and this ended with the

2
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Hulse�Taylor binary pulsar�s orbital period decreasing at a pace consistent with the

general relativistic prediction of gravitational-wave energy loss, all these results based

on alternative general relativity models such us The parameterized post-Newtonian

formalism, or PPN formalism [5], [6].

In addition, the existence of dark matter could be explained by modi�ed gravity. It

could also be used to characterize the universe�s change from deceleration to accelera-

tion, as well as coincidence problem and high-energy physics problems. This work has

recently continued to attract many physicists, motivating us to investigate a variety of

models with various modi�cations.

Our work is divided into two parts. Part one is the Standard Model of Cosmology,

where the �rst chapter contains a reminder of Einstein�s ordinary four-dimensional

theory of gravitation. This perspective allows us to better understand by presenting as

a beginning some concepts that could be considered predictions of general relativity, and

by introducing the Einstein �eld equations and their solutions. In the following chapter,

we will be interested in extra dimensions to explain the phase of acceleration in the late

universe without the concept of dark matter. In the �rst case, we start with the ordinary

The Friedmann�Lemaître�Robertson�Walker FRW metric plus 1 extra dimension. By

assuming that the universe is a perfect �uid and is de�ned by dimensionless numbers

w (for four dimensions) and  (for the �fth dimension), in order to discuss the e¤ect

of extra dimension. On the other hand, we discuss it with viscosity �uid where p =

p + h(t)HR , it has been discussed numerous times that the possibility of viscosity

might in�uence the expansion history of the universe. In the same chapter, we will

also discuss another model, Kantowski-Sachs space-time in �ve dimensions, because it

represents the most famous anisotropic model. Finally, we take a look at the simplest

class of modi�ed gravity theories, the F(R) modi�ed. We will discuss all these models

using dynamical study. In the second part, in order to extend our work on alternative

models of general relativity, we will be concerned with introducing quantum information

3
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in curved space-time and this part is organized as follows: Chapter three contains

the de�nition of quantum entanglement by giving a basic mathematical overview of

quantum entanglement, which covers the fundamentals of entanglement classi�cation

and quanti�cation. Similarly, in Chapter 4 we review the essentials of entanglement and

inertial observers. In this chapter, we will use de Sitter�Schwarzschild space-time to see

the e¤ect of a gravitational �eld near a massive black hole on the spin entanglement in

the case of triplet and singlet states presented by a system of two particles described by

wave packets moving in a gravitational �eld (GF). For a more in-depth discussion, we

will elaborate on a general formalism for quantum spin entanglement in curved space-

time. This formulation allows us to study di¤erent models in curved space-time. The

Kerr and the non-commutative Reissner-Nordström models will be considered. The

concurrence behavior as well as the spin entanglement of a system of two spin-1/2

particles will be discussed. This model allows us to do a detailed study of this purely

quantum phenomenon in di¤erent frames of space and geometry, or both at the same

time. Then, in Chapter 5 we will draw our conclusion.

4
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The Standard Model of Cosmology

5



Chapter 1

General Relativity

1.1 Physics Before General Relativity

Isaac Newton�s universal law of gravitation represents a quantum leap in human un-

derstanding of the forces that de�ne the universe. Newton published this law in the

late 17th century. He asserted that all objects attract one another and that this force

of gravity is responsible for holding the planets in their orbits around the sun. He

had discovered the force that holds the universe together. This force of gravity acting

between two objects is directly proportional to the mass of the objects and inversely

proportional to the square of the distance that separates their centers

�!
F = G

M1M2

r2
�!
U r (1.1)

Newton knew that the force that caused the apple�s acceleration (gravity) must be

dependent upon the mass of the apple. And since the force acting to cause the apple�s

downward acceleration also causes the earth�s upward acceleration, consider Newton�s

famous equation

�!
F = m

!
a (1.2)

6



Chapter 1 : General Relativity

where G = 6:67259 � 10�11m3Kg�1s�2 ,the gravitational constant
�!
F gravitational

force,
�!
U r =

�!r
r
where �!r is the vector radius of

����!
M1M2 (Distance between the two

bodies), and M1, M2 masses of the two bodies considered.

Newtonian physics based on the concept of force and action at a distance, Table

(1.1) shows a comparison between Newton�s ideas and Maxwell

Newton (1686) Maxwell (1904)

Absolute space,

without relation to external things,

remains similar and immobile

There isn�t absolute space

Absolute,true and mathematical time,

of itself,and from its own nature

�ows equably without regard to anything external

There is no absolute time

Simultaneity

V =1

There is no simultaneity of

two events that

Produce on di¤erent theaters

C is a limiting speed

Table 1.1: Comparison between Newton�s ideas and Maxwell

1.2 Relativity and absolute space

The special relativity elaborated by Einstein in 1905 was intended to introduce the

principle of relativity: All the laws of physics are identical in all Galilean references,

including the constancy of the speed of light, this principle will be translated math-

ematically by the invariance of the equations under the transformations of Lorentz,

7



Chapter 1 : General Relativity

which allows us to determine the time and space intervals in a transformation from one

reference to another.

Relativity refuses the idea of absolute space, whereby special relativity (1905) refuses

the absolute space of Michelson, and general relativity refuses the absolute space of

Newton. The groundwork for the concept of Absolute Space was laid by Newton in his

book (Mathematical Principles for Natural Philosophy):

�Absolute space, in its own nature, without regard to anything external, remains

always similar and immovable. Relative space is some movable dimension or measure

of the absolute spaces; which our senses determine by its position to bodies: and which

is vulgarly taken for immovable space .�

The emergence of general relativity is the result of the failure of all endeavors that

attempted to reform Newton�s theory of gravity and Einstein�s philosophical desire to

delete absolute space.

1.3 Equivalence Principle

Albert Einstein was thinking about gravity and the fact that weight disappears during

the acceleration of free-fall. When your weight disappears, you do not feel the pull

of gravity on your body. You have become weightless. Einstein�s suspicion was that

gravity had become something else. He believed it had become acceleration. Gravity

and acceleration were equivalent, according to eq. (1.2) , where �!a represents the

particle�s acceleration, it follows from the law of dynamics that

mI
�!a = mg

�!g (1.3)

8



Chapter 1 : General Relativity

where �!g is the gravitational �eld and mI ;mg are the inertial and gravitational masses,

respectively, the equality of the last two implies that

mI

mg

=

�!g�!a
 = 1 (1.4)

Later on, Einstein was so con�dent of his idea that he declared that an observer in

a windowless room would be unable to determine whether his weight was being created

by the pull of gravity or the force of acceleration. An observer watching a light beam

in a dark motionless room that is not a¤ected by a gravitational �eld would see the

beam move in a straight line across the room; however, if the room began to accelerate,

the observer would feel a force similar to gravity and perceive the light beam bending.

If gravity and acceleration are equivalent, then an observer in a gravitational �eld sees

the light beam curve, meaning that light that is without mass can be de�ected by a

gravitational �eld. Einstein called this idea the equivalence principle. Einstein called

this idea the "equivalence principle," proving this principle by observing the universe

when the light from a distant star passes close to the sun, but the problem is that they

can�t see any stars during the daytime. They are lost in the glare of the sun. British

astronomer Arthur Eddington (as we mentioned in the introduction) proposed doing

this experiment during a total solar eclipse, where the sun is blocked by the moon and

the stars become visible.

1.4 Space-Time Metrics

1.4.1 Flat Space

We de�ne the space-time coordinates of 2 events

x� = (x0;�!x ) and y� = (y0;�!y ) (1.5)

9



Chapter 1 : General Relativity

The exponent 0 designates the coordinate of time and x�; y� are quadri-vectors ( this

will not be possible in General Relativity where coordinates are not vectors). We de�ne

the scalar product of these two quadri-vectors by

x:y = x0y0 ��!x�!y = x0y0 � xiyi (1.6)

in space-time, the separation or interval S, de�nes the distance between two events

�S2 = c2�t2 ��x2 ��y2 ��z2 (1.7)

where t is the coordinate time, or real time. xyz are the space coordinates. We can

de�ne two regions related to our own position according to Minkowski space-time, one

time-like and one space-like, where these two regions are separated by the light-cone,

de�ned by the incoming and outgoing light rays. A separation between two events in

space-time is time-like if inside the cone and space-like if outside. At the intersection,

the separation is light-like since this is the trajectory of a photon. Matter cannot travel

along space-like trajectories. Light and massless particles travel along the light-cone.

The trajectory of a particle in space-time is called a world-line. The trajectory of a

particle in free fall in space-time is called a geodesic. Remember that the value of this

parameter is independent of the observer and invariant under coordinate transforma-

tions. From Minkowski

��� = diagonal(1;�1;�1;�1) (1.8)

we can rewrite eq. (1.6)

x:y = ���x
�y� = x�y

� where x� = ���x
� (1.9)

for an in�nitesimal vector dx�, eq. (1.7) becomes

10



Chapter 1 : General Relativity

dS2 = (dx0)2 � d�!x 2 = dt2 � d�!x 2 = ���dx
�dx� (1.10)

1.4.2 Curved Space-Time

If we have a free fall and we carry out its coordinate transformation from an inertial

system to an arbitrary coordinate system it can be shown that the time derivative

of the velocity along a world line contains a term, the a¢ ne connection, that acts

as an acceleration if the metric is not �at. Einstein gravity can thus be regarded a

property of curved space-time. The tensor that describes the curvature of space-time

is the Riemann-Christo¤el (or simply the Riemann) tensor R���, corresponding to the

Gaussian curvature.

A- Manifold

A manifold is one of the most fundamental concepts in mathematics and physics. A

manifold is a space which is locally similar to Euclidean space in that it can be covered

by coordinate patches ( A �coordinate patch�on a manifold M is an open subset U �

M together with a map � : U ! Rn that is a homeomorphism between U and its image

�(U). We can also say that a manifold is a topological space where every point can be

contained in some coordinate patch), and we say that a real Cr n-dimensional manifold

M is a set M together with a Cr Atlas fU�; '�g,i.e. a collection of charts (U�; '�) ,

where the U� are subsets of M (in topology, one describes a manifold using an atlas.

Atlas Set of all cards ) and the '� are one-one maps of the corresponding U� to open

sets in Rn [8]

B- Di¤erentiable Manifold

In all of the following we will assume that the applications are in�nitely derivable in

their domains of de�nitions.
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C- Curves Coordinates

Any point of a manifold can be delimited by coordinated curves, which play the role

of the axes in Euclidean geometry.
��!
dM =

���!
MM 0 is a manifold tangent vector at M (a

tangent vector is an in�nitesimal displacement at a speci�c point on a manifold) The

set of tangent vectors at a point P forms a vector space called the tangent space at P

Figure 1-1: Curves Coordinates

���!
MM 0 = dx1�!e 1 + dx2�!e 2 (1.11)

In general we have:

��!
dM = dx��!e �(M) (1.12)

where
��!
dM is a basic vector

12
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D- Metric Tensor

In the mathematical �eld of di¤erential geometry, a metric tensor is a type of function

that takes as input a pair of tangent vectors V and U at a point on a surface or the

distance between two points. These are additional concepts, and a new entity is needed

to de�ne them. This entity is called the metric or the metric tensor. A general space

endowed with a metric is called a Riemannian space. Let us begin with the simple case

R2 by considering two vectors, V and U ,their Cartesian components can be written as

follows

V = (vx; vy) = (v
1; v2);U = (ux; uy) = (u

1; u2) (1.13)

as is well known

V:V = v2x + v2y (1.14)

this is a scalar quantity. Similarly U:U and V:U are scalars. To accomplish this, we

introduce a new geometric object, the length of which is known as the �scalar product�

of two vectors. We write, in some coordinate system:

V:V = gikv
ivk = g11v

1v1 + (g12 + g21)v
1v2 + g22v

2v2

where in this coordinate system gik are the metric tensor components. In addition,

the metric tensor is used to express the distance ds between the points (x1; x2) and

(x1 + dx1; x2 + dx2)

ds2 = d
�!
M2 = dx�dx��!e ��!e � = g��dx

�dx� (1.15)
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1.4.3 Tensor

Mathematically, space-time is represented by a four-dimensional di¤erentiable mani-

fold M [7], this point will be characterized by its coordinates M(x0; x1; x2; x3);we have

transformation equations, which specify one coordinate system in terms of the other

x�
0
= ��(x0; x1; x2; x3) (1.16)

where �� have continuous partial derivatives and single valued [8], by deriving the eq.

(1.16)

dx�
0
=

3X
�=0

@��

@x�
dx� (1.17)

dx�
0
(x) =

@x�
0
(x)

@x�
dx� = a�

0

� dx
� (1.18)

and as dM is invariant, we can write

��!
dM = dx��!e �(M) = dx�

0�!e �0(M) (1.19)

One can also deduce the transformations of the unit vectors

dx��!e �(M) = dx�
0�!e �0(M) (1.20)

= a�
0

� dx
��!e �0(M)

inverse of the matrix a�
0
�

a��0 =
@x�(x)

@x�0
(1.21)

which allows us to write

14
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a��0a
�0

� = ��
0

�0 where ��
0

�0 = ��� =

8<: 1 if � = �

0 if � 6= �
(1.22)

��
0

�0 is the Kronecker symbol, we also have

g�0�0 = �!e �0�!e �0 (1.23)

= a��0a
�
�0g��

1.4.4 A Some Basic Rules of Tensor Calculus

We are now de�ning covariant and contravariant vectors or tensors as being represented

with lower and upper indices, respectively, in an orthogonal system of coordinates with

perpendicular axes, according to the previous equation

A�0 =
@x�

@x�0
A� ; B�0 =

@x�
0

@x�
B� (1.24)

a rank tensor (k; l)

T
�01:::::�

0
k

�01:::::�
0
l
=
@x�

0
1

@x�1
:::
@x�

0
k

@x�k
@x�1

@x�
0
1
:::
@x�l

@x�
0
l

T �1:::::�k�1:::::�l
(1.25)

we can show that the sum T of two tensors T1 and T2 de�ned by

T �1:::::�k�1:::::�l
= (T1)

�1:::::�k
�1:::::�l

+ (T2)
�1:::::�k
�1:::::�l

(1.26)

and

(�T )�1:::::�k�1:::::�l
= �T �1:::::�k�1:::::�l

(1.27)

In the other hand
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g = det g�� = jGj (1.28)

the transformation of a matrix is given by

G0 = aGa+ (1.29)

where a+ = (aT )�: In the same way we can write

g�0�0 = a��0g��a
�
�0 (1.30)

so we have

jG0j = a2 jGj (1.31)

g0 = a2g (1.32)

where

a = det a��0 = det
@x�

@x�0
(Jacobian) (1.33)

We de�ne the antisymmetric tensor

"���� =
1
p
g
�����

����� is totally antisymmetric, where �0123 = 1; in Minkowski space

G =

0BBBBBB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCCCCCA ; g = �1 (1.34)
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in spherical coordinates we have

G =

0BBBBBB@
1 0 0 0

0 �1 0 0

0 0 �r2 0

0 0 0 �r2 sin2 �

1CCCCCCA ; g = �r
4 sin2 � (1.35)

the event in spherical coordinates is given by

ds2 = dt2 � dr2 � r2d�2 � r2 sin2 �d'2 (1.36)

Covariant Derivative of Tensor

Consider a scalar �eld '(x), a contravariant vector A�, and a covariant vector A�. Let

us see how the quantities @'
@x�

; @A
�

@x�
and @A�

@x�
are transformed under a general coordinate

transformation x� ! x�
0
; and we get

d'(x) =
X
�

@'

@x�
dx� = @�'dx

� (1.37)

and

@'

@x�
! @'

@x�0
=
@x�

@x�0
@'

@x�
(1.38)

which shows that @'
@x�

is a covariant vector, and we know that

A�(x)! A�
0
(x) = a�

0

� A
�(x) (1.39)

@�A
�0(x) = a�

0

� @�A
� + @�a

�0

� A
� (1.40)

In the other hand we have:
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�!
A (x) = A�(x)�!e � (1.41)

this quantity is invariant (because it is independent of the system)

d
�!
A (x) = DA�(x)�!e �(x) (1.42)

= dA�(x)�!e �(x) + A�(x)d�!e �(x)

where DA�(x) covariant derivative. We put:

d�!e �(x) = ����(x)dx��!e �(x) (1.43)

the connection ����(x) is de�ned in terms of the metric tensor g�� : From eq. (1.42) we

obtain

D�A
�(x) = @�A

�(x) + A�(x)����(x) (1.44)

similarly, we can �nd the product covariant derivative:

D� (A�B�) = (D�A�)B� + A� (D�B�) (1.45)

= @�A�B� � ����A�B� + A�@�B� � A��
�
��B� (1.46)

this allows us to write for two covariants tensors:

D� (T��) = @�T�� � ����T�� � �
�
��T�� (1.47)

then we can do this generalization
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D�

�
T ���

�
= @�T

��
� + ����T

��
� + ����T

��
� � ����T ��� (1.48)

and for mertic tensor:

D� (g��) = @�g�� � ����g�� � �
�
��g�� = 0 (1.49)

where (see annex):

���� = �
�
�� (1.50)

���� = g�����;� = g��
1

2
[@�g�� + @�g�� � @�g�� ] (1.51)

This formula is one of the most important in this subject. It is known by di¤erent

names, like the Christo¤el connection, the Levi-Civita connection, and sometimes the

Riemannian connection. The associated connection coe¢ cients are sometimes called

Christo¤el symbols and are written as

8<: �

��

9=; :

1.5 Principle of General Relativity

1.5.1 Postulate

All physical laws are the same in all curvilinear coordinate systems (their laws are in

the form of tensor equations). In the absence of gravitational �elds, its laws are reduced

to those of special relativity.

1.5.2 Generalized Law of Inertia
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In special relativity we have

dU�

ds
= 0 (1.52)

as we know that

ds2 = g��dx
�dx� = c2dt2 � d�!r 2 (1.53)

and

dU�

ds
= 0, d

�!
U

ds
= 0 ,

GR

DU�

ds
= 0 (1.54)

this is called the Law of generalized inertia. And the eq. (1.54) can be written as

follows

DU�

ds
= 0! dx�

D�U
�

ds
=
dx�

ds
D�U

� = U �D�U
� (1.55)

Assuming that ds2 > 0; we have

DU�

ds
= 0! U �D�U

� = 0

! U �@�U
� + U ����� (x)U

�

) dU�

ds
= ����� (x)U�U � (1.56)

This is the equation of geodesic motion, it is the shortest path between two given

points in a curved space, and that can be represented by the following expression

d2x�

ds
+ ���� (x)

dx�

ds

dx�

ds
= 0 (1.57)
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1.5.3 Limitations

Consider the case of a weak static �eld (such as, to a good approximation, that of the

Sun) and a particle moving slowly in it (v << c). With x0 = ct; x1 = x; x2 = y; x3 = z,

an inertial frame is one in which the metric tensor is

g�� = ��� = diag(�1; 1; 1; 1) (1.58)

so that ds2 = �c2dt2 + dx2 + dy2 + dz2. A weak �eld is one for which

g�� = ��� + h�� (1.59)

by assuming that

jh�� j << 1 (1.60)

each element of g�� is close to its inertial value. Non-relativistic motion, on the other

hand, implies that

� � t;
dx0

d�
� c;

dxi

d�
� vi << c (1.61)

so the geodesic equation becomes

d2xi

dt2
= �c2�i00 (1.62)

then the right hand side represents the "gravitational force", which gives the particle

its acceleration. Where

U0 = 1p
1��2

= 1

U i = vip
1��2

' vi
(1.63)

21



Chapter 1 : General Relativity

ai =
dvi

dt
' ��i00U0U0 � 2�i0jU0U j � �ijkU jUk (1.64)

=
1

2
�ij@jh00

In the end we can write

d�!v
dt

=
c2

2

�!rh00 (1.65)

this is to be compared with Newton�s equation

d�!v
dt

= g = ��!r� (1.66)

where � is the gravitational potential. Comparison of eq. (1.65) and eq. (1.66) gives

h00 = �
2�

c2
(1.67)

and we have g00 = �00+ h00 = �1+ h00 = �(1+ 2�
c2
):We have found one component of

the metric tensor g�� ; Actually, this is all we can �nd by comparing Einstein�s theory

with Newton�s. At a distance r from a gravitating body of massM , we have � = �MG
r
;

is the Newtonian potential so

g00 = �(1� 2
GM

rc2
) (1.68)

we have a potential of the following form:

gij = �ij

�
1� 2GM

r

�
(1.69)

Example: Table (1.2) shows the value of 2
GM

R
on the di¤erent surfaces.
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2
GM

R
on the surface of

10�39 proton

10�9 Earth

10�6 Sun

10�4 white dwarf

1 Black hole

Table 1.2: The 2
GM

R
value of the various objects

1.5.4 Curvature Tensor

Riemann Tensor

R����: Riemann tensor, de�ned by (see Annex)

R���� =
�
@��

�
�� � @��

�
�� + �

�
���

�
�� � ��������

�
(1.70)

eq. (1.70) is a mixed tensor, calculated in terms of the metric thanks to Christo¤el

symbol �; R���� is called Riemann curvature tensor or Riemann�Christo¤el tensor, all

information on the curvature of a manifold is contained in this tensor. Here are some

algebraic properties:

1- R���� = �R����
2- R���� +R���� +R���� = 0

3- R���� = �R���� (R���� = g��R
�
���)

4- R���� = R����

Of these 4 properties, it remains
n2(n2�1)

12
! 16(16�1)

12
= 20
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Ricci Tensor

R�� = R���� = g��R���� (1.71)

it is a symmetric tensor, which gives n(n+1)
2

components. On the other hand, we have

the Bianchi identity

D�R
�
��� +D�R

�
��� +D�R

�
��� = 0 (1.72)

and (see Annex)

D�

�
R�� �

1

2
R���

�
= 0 (1.73)

The Bianchi identities are interesting in their own right, but they are introduced

here only because of their usefulness in the context of Einstein�s equations for the grav-

itational �eld. They are identities involving the covariant derivatives of the Riemann

S�� =
�
R�� � 1

2
Rg��

�
D�S

�
� = 0

S�� : Einstein tensor (1.74)

Einstein Equations :

a) Energy�Momentum Tensor

In the case of a continuous distribution of the matter and without pressure

T �� = � (x)U�U � (1.75)

where � is mass density, T �� Tension tensor is a symmetric tensor, and all these

properties are for the perfect �uid. Case of a perfect �uid with pressure T �� =

(�+ p)U�U � � pg�� ; and for non-relativistic case
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U i = 0; U0 = 1!
T 00 = �+ p� p = �

T 0i = T i0 = 0

T ij = p�ij because � pgij = +p�ijij

b- Equations:

S�� is a symmetric tensor in function of 2sd derivatives of g�� , and it is satis�ed

S�� = �T�� (1.76)

we can write

S�� = aR�� + bRg�� + cg�� (1.77)

and according to continuity condition )

S�� =

�
R�� �

1

2
Rg�� + �g��

�
(1.78)

so the �rst Einstein equation is

R�� �
1

2
Rg�� + �g�� = �T�� (1.79)
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Extra-Dimensions

2.1 Introduction

In the early twentieth century, the mathematician and physicist Theodor Kaluza and

the theoretical physicist Oskar Klein advanced the �rst idea about the space�time could

have more than four dimensions. By publishing a paper [9], Kaluza extended Einstein�s

theory of general relativity from four to �ve dimensions, which is still the most well-

known description of gravitation. Klein supposed in 1926 that an extra fourth spatial

dimension is wrapped up into a circle with a very small radius, the extra-dimension

bends around on itself, where it can be proven that 5D space�time can be divided

into Einstein�s four-dimensional gravitational theory and Maxwell�s electromagnetism

theory. As a result, a Kaluza�Klein theory (KK theory) is a scienti�c model that

attempts to unify electromagnetism with Einstein�s gravity.

There has been a growing believe that extra-dimensions may potentially play a

key role in resolving a number of other pressing phenomenological issues, such as, the

cosmological constant�s smallness [10], hierarchy problems [11], accelerated expansion

of the universe.

Observational cosmology indicates that our universe is experiencing a large scale
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accelerated expansion. This was �rst observed from the high redshift supernova Ia

[18, 20], [22], and later con�rmed by cross-checks with cosmic microwave background

radiation [12], [21]. The expansion rate was explained in the cosmological standard

model by the addition of dark energy, which has a negative pressure. However, the

nature of dark energy as well as dark matter is yet unknown as long as the solution is

not yet obtained in the context of Standard General Relativity. This leads to suggesting

many di¤erent models, such as quintessence [23], [26]. Bianchi type-I cosmological

models with time dependent deceleration parameter [24] , Kantowski-Sachs model with

viscous �uid in presence of cosmological term � [25] and F(R) model [27], Recently, a

new model has been proposed that uni�es dark energy and dark matter into a single

phenomenon, a �uid that possesses "negative mass" [91], and other works [28, 31].

Motivated by the works discussed above, in this chapter, we will focus on the pos-

sibility that extra-dimensions could provide a solution to the universe�s accelerated

expansion without mentioning the concept of dark energy. where we will discuss three

models in �ve dimensions. The Friedmann Robertson-Walker model with perfect �uid

and non-perfect �uid, Kantowski-Sachs space-time and F (R) gravity, by using dynam-

ical study.

2.2 Friedmann-Robertson-WalkerModel in Five Di-

mensions

2.2.1 Introduction

Robertson-Walker (RW) metric describes a homogeneous (all places look the same),

isotropic (all directions look the same), expanding or contracting (observations of dis-

tant galaxies and quasars have shown the universe to be approximately homogeneous

and isotropic on spatial scales larger than a few hundred million light years). Because
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of homogeneity and isotropy, the curvature of space-time must be the same everywhere

and in every direction, allowing the metric to be given in the form

ds2 = �c2dt+R2(t)(
dr2

1� kr2
+ r2d�2 + r2 sin2 �d'2) (2.1)

where R(t) is scale factor, k is a constant that represents the space�s curvature.

For �at non-empty space k = 0. In this case, space is �at but expanding or

contracting. The RW metric can be reduced to a form that is similar to the Minkowski

metric. In this universe, parallel lines stay parallel, and a triangle is still 180. It

holds the Pythagorean theorem (see the �gure) as the 3D spatial hypersurface still has

euclidean geometry, but the 4D space-time is still curved, so there is gravity (matter

and radiation) as 4D space is curved, but 3D space is �at. To the best of our knowledge,

this is the universe we live in now. From WMAP ( Wilkinson Microwave Anisotropy

Probe ) K = 0 to approximately 0:4% (https://map.gsfc.nasa.gov).

For closed space k = 1. In this case, space has a positive curvature. In this

universe, traveling on a straight line would eventually travel back to points visited

before.

For open space k = �1: In this case, space has a negative curvature. In this

universe, a triangle would be less than 180 degrees.

Figure 2-1: Shape of the Universe
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2.2.2 RW Metric in 5 Dimensions

We choose the metric in �ve dimensions that takes this form

ds2 = dt2 �R2(t)[
dr2

1� kr2
+ r2(d�2 + sin2 �d�2)]� A2(t)dy2 (2.2)

where A(t) is a scale factor of the extra-dimension, y is the �fth coordinate.

2.2.3 General Form of Einstein Equations in 5 Dimensions

The Einstein �eld equations in �ve dimensions of the form:

GBA = kTBA (2.3)

where A and B are indices which run over all space-time dimensions, in this chapter,

we set the higher dimensional coupling constant equal to one (k = 1). The higher

dimensional stress-energy tensor will be transformed into

TBA = diag[�(t);�p(t);�p(t);�p(t);�p5(t)] (2.4)

where p5(t) is the pressure in the extra dimension. This stress-energy describes a

homogenous, isotropic perfect �uid in �ve dimensions.

2.2.4 Friedmann-Robertson-Walker (FRW) Equations

By adopting the metric above and the perfect �uid stress-energy tensor, the 5D FRW

�eld equations are of the form

� = 3

�
R
2

R2
+ 3

k

R2
+ 3

�
R

�
A

RA
(2.5)
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p = �[2
��
R

R
+

�
R
2

R2
+

k

R2
+

��
A

A
+ 2

�
R

�
A

RA
] (2.6)

p5 = �3(
��
R

R
+

k

R2
+

�
R
2

R2
) (2.7)

and the 5D conservation equation

0 =
�
�+ 3

�
R

R
(�+ p) +

�
A

A
(�+ p5) (2.8)

where a dot denotes a time derivative, you can easily show that the conservation equa-

tion is in fact satis�ed when eqs. (2.6) and (2.7) are employed. We have three unique

equations and �ve unknowns. This is analogous to Standard 4D, FRW cosmology,

where one usually adopts an equation state relating to the pressure to proceed. Here,

we adopt two equations of state of the form

p = w� (2.9)

p5 = � (2.10)

where w and  can in general be time-dependent but, in this case, are constants. We

consider a �at space-time k = 0, with a constant speed of expansion in the extra

dimension
��
A = 0. Then, we have the following equation

p = �[2
��
R

R
+

�
R
2

R2
+

��
A

A
+ 2

�
R

�
A

RA
] (2.11)

By using the eqs. (2.9) and (2.11) we �nd the following Ricatti non-linear equation

�
H +

3

2
(1 + w)H2 + (

2 + 3w

2
)H

�
A

A
= 0 (2.12)
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if
��
A = 0, A = c1t+ c0; then

�
H +

3

2
(1 + w)H2 + (

2 + 3w

2
)(

c1
c1t+ c0

)H = 0 (2.13)

where c1 and c0 are the integration constants, and H =
�
R
R
is the Hubble parameter.

The solution of the form (the solution of Bernoulli)

H(t) =
(2 + 3w)H0

�(t� t0)3H0(1 + w) + (2 + 3w)

we assumed that c0 = 0 and c1 = 1: For the current universe, the Hubble constant is

H0. When we put H0t0 = � = 1; t
t0
= bt and bH = H

H0
, we get

bH =
2 + 3w

�3(bt� 1)(1 + w) + (2 + 3w) (2.14)

The variation of bH as a function of bt is shown in Fig (2-2) for w = 0; w = 1
3
.

Figure 2-2: Variation as a Ĥ in function of bt
� Notice that the expansion rate increase with time but when w = 0; the cosmological

�uid is dominated by matter stays less than the case of w = 1
3
, where the cosmological
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�uid is dominated by radiation. And for w = �1, Ĥ = 1) H = H0, the expansion

rate stays constant which is explained by dark energy. On the other hand we have

dH

dt
= �H2(1 + q) (2.15)

where q the deceleration parameter q =
dH
dt
+H2

�H2 ;notice that H > 0; and dH
dt
> 0; then

q < 0; we can say that the universe is in accelerated expansion. Table (2.1) shows the

behavior of H and q with varying w

w w > �2
3

�5+3bt
3bt+6 < w < �2

3

H + �

q � +

The nature of movement accelerated expansion decelerated contraction

Table 2.1: H and q behavior , with varying w

2.2.5 Dynamical Study

Dynamical systems theory is an area of mathematics used to describe the behavior of

complex dynamical systems. We call a dynamic system any system that develops with

time or whose development depends on time. We will write the Friedmann equations

in terms of the Hubble parameters HR and HA; according to eqs. (2.5), (2.6) and (2.7),

with the relations p = w�, p5 = �; we �nd:

�
HA = (

2 + 1

3
� w)��H2

A � 3HAHR (2.16)

and
�
HR = �(1 + )

�

3
�H2

R +HAHR (2.17)
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according the conservation equation

�
� = �[(3HR(1 + w) +HA(1 + )]� (2.18)

the quantities HR and HA are the Hubble parameters of the 4D universe and 1D extra-

dimensional space, respectively. If we take as dynamical variables �; HR and HA;the

analysis leads to the following cases:

1) if  = �1 and w = �1; one has the following critical points:

for � = 0; HR = 0; HA = 0, which corresponds to a �at and static space for both

4D and 1D extra-dimensional space.

for HR = 0; HA = 1:101; such that � = 3
H2
A

2
= 1:819; it corresponds to static space

for the 4D universe and an accelerated 1D extra-dimensional space. The matrix of

stability is

M1 �

0@ 1:101 0

�3:304 �2:202

1A (2.19)

Fig (2-9) displays the phase portrait (see annex) for critical point {(HR; HA) = (0; 1:101)}

, we have a "saddle node point" (By using Mathematica program):

� HR = 0:545; HA = 0:545; such that � = 6H2
A = 1:787; it corresponds to a �at space
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Figure 2-3: Phase portrait for (HR; HA)

and an accelerated for 4D universe and 1D extra dimensional space and we have the

matrix of stability is:

M2 �

0@ �0:545 0:545

�1:637 �2:729

1A (2.20)

Fig (2-4) displays the phase portrait for critical point {(HR; HA) = (0:545; 0:545)}

which is "stable nodal sink".

Figure 2-4: Phase portrait for (HR; HA)

� HR = 0; HA = �0:63; such that � = 3
2
H2
A = 0:5954; it corresponds to static space

for 4D universe and an contracted 1D extra dimensional space and we have the matrix

of stability is:

M3 �

0@ �0:63 0

1:89 1:26

1A
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FIG (2-5) displays the phase portrait for critical point {(HR; HA) = (0;�0:63)} which

is "saddle node point ".

Figure 2-5: Phase portrait for (HR; HA)

� HR = �0:317; HA = �0:317; such that � = 6H2
A = 0:606; it corresponds to a

contracted space both 4D and 1D universe and we have the matrix of stability is:

M4 �

0@ 0:317 �0:317

0:953 1:589

1A
FIG (2-6) displays the phase portrait for critical point {(HR; HA) = (�0:317;�0:317)}

which is "unstable nodal source ".
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Figure 2-6: Phase portrait for (HR; HA)

2.2.6 Friedmann Equation with Shear Viscosity

Introduction

Based upon experience in �uid mechanisms, scientists expected that the viscosity

concept would be important in cosmology. In the early universe, viscosity may arise

due to various processes such as the decoupling of neutrinos during the radiation re-

action [32, 33]. And viscosity mechanisms in cosmology can explain the anomalously

high entropy of the present universe [15, 16].

The �rst suggestion in viscosity theory was made by Eckart [13] and it was developed

by [14], where they studied the e¤ect of energy dissipation, occurring during the mo-

tion of a �uid, on that motion itself. From these results, S. Floerchinger, N.Tetradis,

A.Wiedemann [17] proposed a paper showing the shear and bulk viscosity could account

for the acceleration of the cosmological expansion.

In this part, we tried to see the e¤ect of shear viscosity on acceleration expansion

with the FRW model in �ve dimensions.

FRW Equations

We consider p = p+ h(t)HR , equations of Friedmann become

� = 3

�
R2

R2
+ 3

k

R2
+

�
R

�
A

RA
(2.21)

p = �[2
��
R

R
+

�
R
2

R2
+

k

R2
+

��
A

A
+ 2

�
R

�
A

RA
]� h(t)HR (2.22)
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p5 = �3(
��
R

R
+

k

R2
+

�
R
2

R2
) (2.23)

we consider a space-time �at (k = 0) and h(t) = �HR with a constant speed of

expansion in extra dimension (
��
A = 0), and we �nd the following Ricatti non-linear

equation using the equations p = w�; p5 = � and eq. (2.22)

�
H +

3

2
(�+ w)H2 + (

2 + 3w

2
)H

�
A

A
= 0 (2.24)

if
��
A = 0, A = ct+ c0; then

�
H +

3

2
(�+ w)H2 + (

2 + 3w

2
)(

c1
c1t+ c0

)H = 0 (2.25)

where c1and c0 are the integration constants and H =
�
R
R
is the Hubble parameter. The

form of the equation is (solution of Bernoulli)

H(t) =
(2 + 3w)H0

�(t� t0)3H0(�+ w) + (2 + 3w)
(2.26)

where H0 denotes the Hubble constant for the current universe. If H0t0 = � = 1; t
t0
= bt;

Ĥ = H
H0
, then

Ĥ =
2 + 3w

�3(bt� 1)(1 + �
2
+ w) + (2 + 3w)

(2.27)

we attempt to obtain � in the function of w; t . From eq. (2.26), we �nd

� =
(
^
t � 1)3(1 + w)� (2 + 3w)

�3
2
(
^
t� 1)

(2.28)

then we obtain the following equation
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Ĥ =
2 + 3w

�9(bt� 1)(1 + w) + 2(2 + 3w)
(2.29)

Fig (2-7) shows the variation of Ĥ as a function of bt, notice that when w = 0; the

cosmological �uid is dominated by matter, notice that the expansion rate increase with

time but it stays less than the case of w = 1
3
, where the cosmological �uid is dominated

by radiation. We see the same behavior as in the previous graph but it stays less (see

�g (2-2))

Figure 2-7: Variation of Ĥ as a function of bt
In the case where w = �1, Ĥ = 1

2
) 2Ĥ = H0, the expansion rate stays constant

which is explained by dark energy. From eq. (2.15); notice that H > 0; and dH
dt
> 0;

notice that H > 0 and dH
dt
> 0, then q < 0; we can say that the universe is experiencing

accelerated expansion.
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2.2.7 Dynamical Study

The same way leads us to �nd these dynamical equations (by considering h(t) = �HR)

�
HA = (

2 + 1

3
� w)��H2

A � 3HAHR � �HR (2.30)
�
HR = �(1 + )�

3
�H2

R +HAHR (2.31)

�
� = �[(3HR(1 + w) +HA(1 + )]�� 3�H2

R (2.32)

Finally, we obtain these critical points.

HR = �0:52
�

2 + 2 � 3w;HA = 0:5
�(2 + )

2 + 2 � 3w; � = �
1:5�23

(2 + 2 � 3w)2 (2.33)

and

HR = 0; HA = 0; � = 0 (2.34)

for this point, we have a static space in both 4D and 1D extra-dimensional space.

Discussion In the case eq. (2.33), where critical points are de�ned if

2 + 2 � 3w 6= 0 (2.35)

the region(w < 0) gives us value negative of pressure (dark energy). For accelerated

expansion in 4 dimensions, for the �rst point, it must8<: � < 0

2 + 2 � 3w > 0
(2.36)
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for positive values of density it must  < 0; by using the eq. (2.35), we obtain Fig

(2-8) which displays the allowed values of w and :

Figure 2-8: w as a function of 

For  = �1; � = �1; For de�ned eigenvalues, it must be w > �1, we obtain this

phase portrait (Nodal Sink) see Fig (2-9).
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Figure 2-9: Phase portrait

2.3 Dynamical Study of Extra-Dimensional Kantowski-

Sachs Space-Time

Introduction

The Kantowski�Sachs (KS) space-time model is the most widely used anisotropic model,

and it was proposed by Ronald Kantowski and Rainer Kurt Sachs [34]. The KS model

provided a solution to the Einstein �eld equations for dust space-times, and after ad-

vances in particle physics applied to the early universe, the KS model returned to

scienti�c interest. A set of articles developed for the new KS models has appeared [35],

[37], where anisotropic �uid developed by Gergely (1999), exotic �uid in (2002), and

on the other hand, the study of Mendez and Henriquez [36] that treats an in�ationary

era for the KS model. K.Adhav et al [38], they found an exact solution of the Einstein

�eld equations for dark energy in the KS metric with anisotropic �uid. V. B. Raut

et al [39] investigated the KS cosmological model in the F(R) theory of gravity with

an anisotropic �uid. Driven by these works, we will discuss the KS space-time with

cosmological constant in 5 dimensions, where the KS metric takes the following form

ds2 = dt2 � A2(t)dr2 �B2(t)(d�2 + sin2 �d'2)� C2(t)dy2 (2.37)

Friedmann equation
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1

B2
+

�
B
2

B2
+ 2

�
C

�
B

CB
+ 2

�
B

�
A

BA
+

�
C

�
A

CA
+ � = � (2.38)

1

B2
+

�
B
2

B2
+ 2

�
C

�
B

CB
+ 2

��
B

B
+

��
C

C
+ � = �p

�
B

�
A

BA
+

�
C

�
A

CA
+

�
C

�
B

CB
+

��
B

B
+

��
C

C
+

��
A

A
+ � = �p

1

B2
+

�
B
2

B2
+ 2

�
B

�
A

BA
+ 2

��
B

B
+

��
A

A
+ � = �p5

where � is cosmological constant.

2.3.1 Dynamical Study

Direct simpli�cations give the following autonomous non-linear di¤erential equations

�
� = �[(HA + 2HB)(�+ p) +HC(�+ p5)] (2.39)

�
HA = �H2

A +
1

3
�� 1

3
p5 � 2HBHA �HCHA �

2

3
�

�
HB = �H2

B �
2

3
�� 1

3
p5 +

1

3
HCHB +

1

3
HBHA +HCHA +

1

3
�

�
HC = �H2

C +
1

3
�� p+

2

3
p5 � 2HCHB �HCHA +

2

3
�

where HA =
�
A
A
; HB =

�
B
B
; HC =

�
C
C
: For  = �1, we �nd these critical points

f� = �; HA = 0; HB = 0; HC = �0:57735
p
�� 3�wg (2.40)

f� = �; HA = 0; HB = 0; HC = 0:57735
p
�� 3�wg (2.41)
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f� =
9�

7 + 6w
; HA = �

1:0328
p
�� 3�wp

7 + 6w
; (2.42)

HB =
0:516398

p
�� 3�wp

7 + 6w
; HC = �

1:29099
p
��(�1 + 3w)p
7 + 6w

g

f� =
9�

7 + 6w
; HA =

1:0328
p
�� 3�wp

7 + 6w
; (2.43)

HB = �0:516398
p
��(�1 + 3w)p
7 + 6w

; HC =
1:29099

p
�� 3�wp

7 + 6w
g

Discussion

For critical points de�ne it must be � > 0 and

1- For �rst point (2.40) , It corresponds to a static universe in 4D and an accelerated

contraction in 5D (extra dimension).

2- For third (2.42) and fourth (2.43) points: �7
6
< w � 1

3
; the values between

�7
6
< w < 0; it is negligible because it gives us negative pressure, so we take 0 � w � 1

3

- If 0 � w < 1
3

For third point (2.42); it corresponds to a decelerated contraction in 4D and in 5D

(extra dimension).

For fourth point (2.43); it corresponds to a 4D and 5D (extra dimension) accelerated

expansion.

- If w = 1
3
; for all the critical points, we have a static universe in 4D and 5D (extra

dimension).

For fourth point (2.43), we takew = 1
3
;� = 1;the Fig (2-10) displays the (HA; HB; Hc)

phase portrait.
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Figure 2-10: Phase portrait for (HA; HB; Hc)

For the point (2.43), Fig (2-11) displays the (HA; HB; Hc) phase portrait for w =

0;� = 1:

Figure 2-11: Phase portrait for (HA; HB; Hc)
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2.4 F(R) Gravity

Introduction

Despite the fact that General Relativity (GR) has passed all observational tests so far,

there have been observational suggestions that GR may need to be modi�ed. As we

pointed out before, this led to the three famous models:

1- A cosmological constant �

2- Dark energy

3- Modi�ed gravity

In fact, a cosmological constant is propelling the cosmic acceleration and will even-

tually dominate the universe. However, the biggest problem with the cosmological

constant is answering the question, why is it so small? Why is it not zero? If we accept

that the cosmological constant is nonzero, how does its low value explain the current

acceleration of the universe? As a result, most cosmologists reject this explanation and

believe that a di¤erent explanation for cosmic acceleration must be found.

The second proposal postulates the existence of a dark energy �uid with negative

pressure. Many dark energy models have been studied, none of which is totally convin-

cing or can be demonstrated to be the correct one (sometimes cosmological constant

plays the role of dark energy).

A third possibility was to dispense entirely with the mysterious dark energy and

modify gravity. This third possibility was motivated by the question of what would

happen if the fundamental action were di¤erent. This approach was the correct one in

explaining the precession of Mercury�s perihelion, not due to an unseen mass but to

Einstein�s modi�cation of Newtonian gravity.

One approach in this direction is to employ what is known as modi�ed gravity, so-

called F (R). This is the simplest class of modi�ed gravity theories. The �rst papers on

this appeared in 1969-1970 [40]. Typically, two approaches are used to investigate F(R)
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theory: the metric and the Palatini approach [41]. We will not here discuss modi�ed

gravities related to the Palatini formulation. We focus on the F(R) theory of gravity

using a metric approach.

Einstein gravity is modi�ed by replacing the Ricci curvature scalar R by an arbitrary

curvature function f(R), where R is the curvature scalar. A natural modi�cation is

to add terms to the action that are proportional to Rn, if n > 0; these terms lead to

modi�cations of the standard cosmology at early times that lead to de Sitter behavior

(Starobinskii in�ation [42]). For n < 0; such corrections become important in the late

universe. In this case, it may be possible to avoid invoking a cosmological constant to

explain cosmic acceleration. This explanation naturally leads to the uni�cation of earlier

and later cosmological epochs as the manifestation of di¤erent roles of gravitational

terms relevant at small and large curvature, as occurs in the model with negative and

positive powers of curvature[43] .

These models have raised much recent interest, so a large number of papers are

proposed [44, 54]. The cosmological impact of F(R) models on acceleration will be

discussed in this study. We begin by introducing a class of models with �ve dimensions

without a cosmological constant. We start with action in F (R) gravity:

S =

Z
d4x
p
�g[f(R)

2k2
] (2.44)

the equations of motion are

�1
2
f(R)g�� +R��f

0(R)�r�r�f
0(R) + g���f 0(R) = k2T�� (2.45)

where T�� is the energy-momentum tensor. In this case, we chose

f(R) = f0R
n (2.46)

f0 and n are constant. his model has been used before, by Abdalla et al [55] and others.
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The case of Einstein�s gravity corresponds to f0 = 1; n = 1: The Einstein �eld equations

for the metric are given by

f0nR
n�1(3

�
HR�

�
HA�3H2

R�H2
A)+

1

2
f0R

n+(3HR+HA)f0n(n�1)
�
RRn�1 = k2� (2.47)

f0nR
n�1�1 �

1

2
f0R

n � �2f0n(n� 1)
�
RRn�1 (2.48)

�f0n(n� 1)(n� 2)
�
R
2

Rn�3 � nf0(n� 1)
��
RRn�2

= k2p

f0nR
n�1�3 �

1

2
f0R

n � �4f0n(n� 1)
�
RRn�1 (2.49)

�f0n(n� 1)(n� 2)
�
R
2

Rn�3 � nf0(n� 1)
��
RRn�2

= k2p5

where

�1 = (3H2
R +HR +HRHA)

�2 = (3HR +HA)

�3 = (H2
A +HA + 3HRHA)

�4 = (3HR +HA)

we take these dynamical variables (HR; HA; x =
�
R
R
; R) in order to obtain these dynam-
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ical equations

�
HR = �

3

2
H2
R +

1

2
HRHA +

(n� 2)
4nf0

(w�  � 1)R+ 1

8n
R+

3

4
(HA +HR)(n� 1)x (2.50)

�
HA = �H2

A +
3

2
H2
R �

3

2
HRHA�

(n� 2)
4nf0

(3w� 3 + 1)R+ 1

8n
R+

3

4
(HA +HR)(n� 1)x

(2.51)

�
x = �(n� 1)x2 + 3

2(n� 1)H
2
R +

3

2(n� 1)HRHA (2.52)

+
(n� 2)

4nf0(n� 1)
(�3w �  � 1)R� 3

8n
R +

1

4
(9HR �HA)x

�
R = � 3

n
(1 + w)RHR �

(1 + )

n
RHA (2.53)

where p = w�; p5 = �; we found these critical points

fHA = 3HR; x = �
2HR

�1 + n;R = 0g (2.54)

fHA = HR; x =
0:666HR

�1 + n ;R = 0g (2.55)

and
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fHA = �3(1 + w)HR

1 + 
; (2.56)

x =
0:5HR(G+Q)

(1 + )(2� 3 + 2)(�2 +  � 3w) ;

R = �3H
2
Rf0n(4 +  + 3w)

(1 + )2(�2 + n) g

where

G = �4 � 42 + 2n + 2n2 + 4f0n2

Q = f0n
2 � 12w + 6nw + 3f0n2w � 12w2 + 6nw2

2.4.1 Discussion

critical points must be de�ned

1) for points (2.54) and (2.55)) n 6= 1: IfHA > 0) HR > 0;8w; which corresponds

to an accelerated expansion of both the 4D universe and 1D extra-dimensional space.

If HA < 0 ) HR < 0;8w; which is a decelerated contraction of both the 4D universe

and the 1D extra-dimensional space.

2) For third point (2.56))  6= �1; n 6= 1; �2+�3w 6= 0; 2�3n+n2 6= 0) n 6= 1

and n 6= 2; if  < �1 and w > 0, we have an accelerated expansion in the 4D universe

and a decelerated contraction in the 1D extra dimension. The Fig (2-12) displays the

allowed values of w and :
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Figure 2-12: The variation of w as a function of 

If  > �1 ) we have an accelerated expansion for 4D and an extra-dimension

(when  > 0). The Fig (2-13) displays the allowed values of w and :

Figure 2-13: The variation of w as a function of 
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Fig (2-14) displays the fHR; HAg For  = 1; w = 1;f0 = 1; n = 3; we �nd critical

points fHR = 1; HA = �3g;Finally we obtain the saddle point

Figure 2-14: Phase portrait
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Part II

Gravitational E¤ect on the Spin

Entanglement
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Introduction

In 1935, a famous article was prepared by Einstein, Podolsky, and Rosen (EPR)[56]. It

was designed to show that the quantum theory is incomplete. In quantum mechanics,

the quantum state of a system should be understood as a catalogue of what an observer

has done to the system and what has been observed. When Einstein, Podolsky, and

Rosen considered a system of two particles in the state j�i = 1p
2
(j01i + j10i), if the

�rst subsystem is in a state of j0i or j1i with probability 1
2
, then the measurement

made on the �rst particle has an impact on the second particle. The same results are

obtained for the second particle. If these two particles traveled away from each other

millions of light years, by measuring the �rst particle, if it obtained the state of j0i

then the second one should take the state of j1i. This looks like the state knowledge

of the second particle came to the observer of the �rst particle faster than the speed of

light. Einstein rejected this view and proposed a series of arguments to show that the

quantum state is simply an incomplete characterization of a quantum system and that

the universe is described by a more fundamental theory (Hidden Variables Theory).

For thirty years, the study of entanglement was ignored until the Irish physicist

John Stewart Bell came along, the �rst one who looked at entanglement in simpler

systems when he put the correlations between two-valued dynamical quantities, such
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as polarization or spin, of two separated systems in an entangled state. Bell designed

a thought experiment showing that the quantum description of physical reality is not

complete [57], Bell introduced a concept that satisfy the assumptions of local realism,

and then showed that for certain quantum states they are violated. This inequality is

now known as Bell�s inequality. In this way, the EPR paradox has become the basis

for de�ning the term entanglement of states, which is a type of correlation between

particles that have no classical formalism.

Many physicists have used this quantum property in their work on quantum in-

formation [58, 59] Entanglement plays a vital role in quantum information and forms

the basis of applications such as quantum cryptography [60, 61], teleportation [62], and

quantum computation [63]. The good thing about quantum information is that it�s

been backed by experiments [64, 70].

Entanglement has also given us a new understanding of many physical phenomena,

such as superconductivity [71], quantum phase transitions [72]. Recently, since relativ-

ity is an indispensable component of any complete theoretical model, it is convenient to

study entanglement from a relativistic point of view, so the concept of quantum entan-

glement was applied to relativistic e¤ects, which led to the emergence of many works,

such as [73, 78],with a particular interest in describing how entanglement is perceived by

di¤erent observers in relative motion, for both inertial [73, 80] and non-inertial observers

[81, 82]. And several groups have focused their investigations on quantum information

behavior in the proximity of black hole [83, 86], in addition, the entanglement in an

expanding cosmos was also investigated [87, 88].

Aim of the work

The aim of this work is to study the spin entanglement of a system of two particles

moving in a curved space-time due to a massive body. We also try to study the entan-

glement in di¤erent black hole metrics.
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3.1 De�nition of Entanglement

Entanglement is a unique form of correlation that exists only in quantum systems that

can be decomposed into two or more subsystems, and an entanglement measure is a

functional state quantifying the amount of entanglement across two subsystems. The

quantum state of each particle cannot be described independently of the state of the

others, even when the particles are separated by a large distance. Instead, a quantum

state must be described for the system as a whole.

3.1.1 Pure and Mixed States

Now we can introduce a broader class of states represented by the density operator, the

so-called mixed states, and pure states.

A- Pure States:

Let�s begin with the pure states. If all the objects are in the same state, the ensemble

is represented by a pure state. Consider an ensemble of given objects in the state jsi.

For an observable F , we have

F j'ni = fn j'ni (3.1)

with respect to the eigenstates of the operator F

jsi =
X
n

Cn j'ni (3.2)

where

Cn = h'n jsi (3.3)

the probability of obtaining fn as a result of the measure of F on the system in its state

jsi is
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P (fn) = jCnj2 (3.4)

by introducing the operator pn of the nth eigenvector Pn = j'ni h'nj ; we can write:

P (fn) = hpnis (3.5)

the expectation value of F on the pure state jsi is then given:

hF is = hsjF jsi

= hsj
X
n

Cnfn j'ni

=
X
n

C�n h'nj
X
n

Cnfn j'ni

=
X
n

jCnj2 fn

=
X
n

hs j'ni h'n jsi fn

=
X
n

h'n jsi hs j'ni fn

=
X
n

h'n jsi hsjF j'ni

thus, de�ning the operator

� = jsi hsj (3.6)

so it can be written

hF is =
X
n

h'nj �F j'ni (3.7)

The operator eq. (3.6) represents the density operator of a pure ensemble, which
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allows the study of quantum systems uniformly. The density operator, then, provides a

uniform procedure for calculating expectation values and the probabilities of individual

returns for both pure and mixed state systems. The expression (3.7) shows that the

expectation value for F can be obtained by computing the trace of �F matrix

hF is = Tr(�F ) = Tr(F�) (3.8)

using the eq. (3.8), we can �nd P (fn) in the same way

P (fn) = hpnis = Tr(�pn) (3.9)

B- Mixed States:

Now let us de�ne a more general type of states, a mixed ensemble is a set of pure

ensembles, represented by their pure states
��s(i)� ; the average value of an observable F

over a mixed state is

hF i =
X
i

pi hF ii (3.10)

where hF ii =


s(i)
��F ��s(i)�, and pi are nonzero and satisfy the relations

0 � pi � 1 and
X
i

pi = 1 (3.11)

pi is probability for states
��s(i)� : The probability that a measure of F over a mixed

state provides eigenvalue fn is

P (fn) =
X
i

piP
(i)(fn) (3.12)

where P (i)(fn) =
���C(i)n ���2 = ��h'n ��s(i)���2, and ��s(i)� =X

n

C
(i)
n j'ni ; We will now de�ne

the density operator of a mixed state by making explicit the expectation value of F in
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the state
��s(i)�

hF ii =


s(i)
��F ��s(i)� =X

n

fn
��h'n ��s(i)���2 =X

n

fn h'n
��s(i)� 
s(i) j'ni (3.13)

which substituted in hF i

hF i =
X
i

pi
X
n

fn h'n
��s(i)� 
s(i) j'ni (3.14)

=
X
n

h'nj
X
i

pi
��s(i)� 
s(i)��F j'ni

permits us to de�ne the density operator of a mixed state as follows

� =
X
i

pi
��s(i)� 
s(i)�� (3.15)

and permits us to achieve the analogous expression of eq. (3.8) in the mixed state case

hF i =
X
n

h'nj �F j'ni = Tr(�F ) = Tr(F�) (3.16)

One can see in expression the (3.16) all information about the mixture is factorized and

contained in �:We point out that, as for the density operator of a pure state, the density

operator of a mixed state is de�ned in a unique way, since arbitrary phase factors would

vanish if factorized out of the projectors
��s(i)� 
s(i)��.

Properties of the density operator:

Each property is satis�ed both by density operators of pure and mixed states.

1- � is Hermetain: �� = �

2- Normalization: Tr(�) = 1
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Tr(�) =
X
k

h�kj
X
i

pi
��s(i)� 
s(i)�� �ki (3.17)

=
X
i

pi
X
k

��
s(i)�� �ki��
=

X
i

pi

3- A density operator is positive

4- We also note that an operator is positive if and only if all of its eigenvalues are

greater than or equal to zero, which implies that the eigenvalues of any density operator

must satisfy this property. In addition, because the trace of a density matrix is one

and the trace is just the sum of the eigenvalues, we have that if �j is an eigenvalue of

a density matrix, then 0 � �j � 1.

3.1.2 Density matrices

The density matrix or density operator is an alternate representation of the state of

a quantum system. It can encode all the information about a quantum mechanical

system, where describing a quantum system with the density matrix is equivalent to

using the wave-function. Suppose we have an arbitrary orthonormal basis fj�kig ; the

generic matrix element is given by

�kl = h�kj � j�li =
X
i

pi h�kj s(i)
� 

s(i)
�� �li (3.18)

where

��s(i)� =X
k

C
(i)
k j�ki and C(i)k = h�kj s(i)

�
(3.19)

�nally, we �nd
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�kl =
X
i

piC
(i)
k C

(i)�
l (3.20)

the diagonal elements are �kk =
X

i
pi

���C(i)k ���2, �kk is the global probability of �nding
generic elements of the mixture is in the state j�ki ; notice that

X
k
�kk = 1 due to

property 2 of density operators.

3.1.3 Reduced density matrix

Now, if FA is an observable on subsystem A, then the operator corresponding to it in

the total Hilbert space is FA 
IB, where IB is the identity on HB. If j ABi is the state

of the entire system, then the expectation value of XA is given by

hFAi = h ABjFA 
 IB j ABi (3.21)

=
X
i

X
j

h ABjFA 
 IB(jiAi jjBi)(hiAj hjBj) j ABi

=
X
i

hiAj (
X
j

hjB j ABi h AB jjBi)FA jiAi

now, we de�ne

�A =
X
j

hjB j ABi h AB jjBi (3.22)

= TrB(j ABi h ABj)

and

hFAi = TrA(�AFA) (3.23)
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The operator �A is known as the reduced density operator for subsystem A, and

it can be used to evaluate the expectation value of any observable that pertains only

to subsystem A. The reduced density operator works only on the subspace containing

subset A and satis�es all the properties already listed for a generic density operator.

3.2 Entanglement Measures

To better understand the structure of entangled states, it is useful to introduce the

entanglement measure. Where Bell inequalities [92], and entanglement witnesses [93,

94, 95] are early approaches to realize the entanglement characterization. At present,

there is no unique measure of entanglement, but all of them should clearly satisfy the

following properties:

- Must be maximum for maximally entangled states ( Bell states ).

- Must be zero for separable states.

- Must be non-zero for all non-separable states.

In 1996, Bennett et al. proposed an entanglement measurement method named

"entanglement of formation" (EOF) [96, 97], for a general quantum system consisting

of two parts, here named A and B, an arbitrary pure state can be written as [98]

j ABi =
X
i

ci
�� Ai �
 �� Bi � (3.24)

where {
�� Ai � ; �� Bi �}are sets of orthonormal states for A and B, the values of ci precisely

show the features of the state j ABi : The EOF for the state in eq. (3.24) is de�ned as

E( AB) = S(TrB j ABi h ABj) = S(TrA j ABi h ABj) = �
X
i

c2i log2 c
2
i (3.25)

where S is the von Neumann entropy. On the other hand, the de�nition of EOF can
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be extended to a mixed state:

Ef (�) =
X
j

pjE( AB) (3.26)

it was proven that there is a general formula of Ef (�) [97, 99, 100], which is based

on an exactly calculable quantity, that is concurrence C. For a pure state j ABi in a

two-qubit system, C(j ABi) is de�ned as

C(�) =
���h AB ���e ABE��� (3.27)

where
���e ABE = (�y 
 �y) j �ABi ; �y is the Pauli operator

0@ 0 �i

i 0

1A and j �ABi is the

complex conjugate of j ABi for a two-qubit system, the relation between the concurrence

and EOF can be written as:

E(�) = "(C(�)) (3.28)

where

"(C) = �1 +
p
1� C2

2
log2

1 +
p
1� C2

2
� 1�

p
1� C2

2
log2

1�
p
1� C2

2
(3.29)

On the other hand, according to [100], there is an explicit formula for concurrence as

C(�) = maxf0;
p
�1 �

p
�2 �

p
�3 �

p
�4) (3.30)

�i(i = 0; 1; 2; 3; 4) is the non-negative eigenvalue of the Hermitian matrixR2 =
p
�e�p�;wheree� = (�y 
 �y)�

�(�y 
 �y); �
� is the complex conjugate of �
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Entanglement and Inertial

Observers

4.1 Massive Particles with Spin

4.1.1 Particle State

The particle states for massive particles are de�ned by their spin and momentum, which

is given by

j�!p ; �i (4.1)

for massless particles, the states are given by j�!p ; �i where � indicates the helicity states

of the particle (� = �1 for photons, � = �1
2
for massless fermions). Under a Lorentz

transformation (LT) � the single particle state for a massive particle transforms under

the unitary transformation U(�) as

U(�) j�!p ; �i =
X
�
0

D�0�(W (�;
�!p ))

�����!p ; �0E (4.2)
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for more detail see the Annex.

4.1.2 Single-Two Particle States Entanglement

A general one-particle state is written as

j i =
X
�

Z
d�(p)f�(p) jp; �i (4.3)

where d�(p) = 1
(2�)3

d3p
2Ep

is the Lorentz-invariant measure introduced to normalize the

basic states, such that

X
�

Z
d�(p) hp; � jp; �i = 1 (4.4)

X
�

Z
d�(p) jf�(p)j2 = 1

Peres, Scudo, and Terno [73] did the �rst study of entanglement in a relativistic

frame in the context of single particle states. When they considered a state with a

Gaussian distribution f�(p), they discovered that two observers connected by a Lorentz

boost will disagree on the entropy of the reduced spin state, resulting in di¤erent en-

tanglement between spin and momentum. The two-particle Hilbert space is given by

H12 = H1 
H2; where the states

jp1; �1; p2; �2i = jp1; �1i 
 jp2; �2i (4.5)

normalized as

X
�1�2

Z
d�(p1; p2) hp1; �1; p2; �2j p1; �1; ; p2; �2i = 1 (4.6)

a general state is given by
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j i =
X
�1�2

Z
d�(p1; p2)f�1�2(p1; p2) jp1; �1; p2; �2i (4.7)

also normalized as

X
�1�2

Z
d�(p1; p2) jf�1�2(p1; p2)j

2 = 1 (4.8)

4.2 Entanglement in Curved Space-Time

4.2.1 Mathematical Formalism

In a curved space-time, the spin of the particle is not well de�ned. Thus, one has to

de�ne it locally. For this, one introduces a local inertial frame at each point by using a

Vierbein (or tetrad) e�a de�ned by

g��e
�
ae
�
b = �ab (4.9)

where g�� is the metric of the curved �ab is Minkowski space-time. P
� is the four energy-

momentum tensor of the particle, the corresponding spin quantum state is denoted by

jP; �i where �(="; #): If this particle moves to another point in space-time, its state in

the local frame becomes [103, 104].

X
�
0

D�0�(W (�; P ))
����P; �0E (4.10)

where � is the Lorentz transformation matrix and (W (�; P )) is the Wigner rotation

operator corresponding to �; D�0� denotes the two-dimensional representation of the

Wigner rotation operator.

Now, let us consider a system consisting of two spin 1
2
non-interacting particles,

where the center (centroid) of this system is described by a wave packet in the local
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frame where the initial state is written as

��	(i)� = P
�1�2

RR
d3p1d

3p2 �1�2(p1; p2) jP1; �1;P2; �2i (4.11)

where P1 and P2 are the four-momentum of particles 1 and 2 respectively,  �1�2(p1; p2)

are wave functions determining momentum and spin distribution. It can be used to

express momentum entanglement, spin entanglement, and even entanglement between

spins and momenta. The normalization condition

P
�1�2

RR
d3p1d

3p2
�� �1�2(p1; p2)��2 = 1 (4.12)

On the other hand, the change in the local inertial frame is given by

�ea�(x) = u�(x)d�r�e
a
�(x) = �u�(x)wavbeb�(x)d� = �ab (x)e

b
�(x)d� (4.13)

where

wavb = �e
�
b (x)rve

a
�(x) = ea�(x)rve

�
b (x) (4.14)

and

�ab (x) = �u�(x)wavb (4.15)

where wavb is the spin connection elements, �ab (x) is its change along the direction of

u�(x) (the 4-vector velocity of the centroid); 5� is the covariant derivative. The change

�q� in the momentum has the form

�q�(x) = u�(x)d�r�q
�(x) = ma�(x)d� (4.16)

where m is the rest mass of the particle and

a�(x) = u�(x)5� u
�(x) (4.17)
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a�(x) is the 4-vector acceleration produced by the classical force as measured in the

local frame. Thus, we can rewrite the eq. (4.16) as

�q�(x) = � 1

mc2
[a�(x)q�(x)� q�(x)a�(x)]q

�(x)d� (4.18)

where

q�(x)q�(x) = �m2c2; q�(x)a�(x) = 0 (4.19)

we obtain

�qa(x) = �ba(x)q
b(x)d� (4.20)

where

�ba(x) = �
1

mc2
[aa(x)qb(x)� qa(x)ab(x)] + �ab (x) (4.21)

the �rst term exists even in special relativity, and the second term is due to the space-

time curvature, so it exists only in general relativity. When the particle moves, the

momentum in the local inertial frame transforms under the local Lorentz transforma-

tion. It can be written as

�ab (x) = �ab + �ab (x)d� (4.22)

where � is proper time. There is a unitary operator denoted by U(�ab (x)) ( see annex),

that corresponds to the local LT �ab (x), we can apply U(�(x)) on the state jpa; �i ; we

�nd

U(�(x)) jpa; �i =
X
�0

D
(s)

�
0
�
(W (�(x); p))

����pa; �0E (4.23)
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The in�nitesimal Wigner rotation is represented as

W a
b (�(x); p) = �ab + wabd� (4.24)

where w00(x) = w0i (x) = wi0(x) = 0; and

wik(x) = �ik(x) +
�i0(x)pk(x)� �k0(x)p

i(x)

p0(x) +mc
(4.25)

where i and j run over the three spatial inertial frame labels (1, 2, 3). When the

centroid moves along a path x�(�) from x�i (�) = x�(� i) to x
�
f (�) = x�(� f ), we can

obtain a global Lorentz transformation �(xf ; xi) [101]

�(xf ; xi) = T exp(

Z xf

xi

�(x(�))d�) (4.26)

�(x) is a matrix whose elements are given by eq. (4.21) and T is the time-ordering

operator, the Wigner rotation operator can be expressed as

W (�(xf ; xi); P ) = T exp(

Z xf

xi

w(x(�))d�) (4.27)

Suppose that in the local inertial frame at the initial point x�i , the wave packet that

is given by eq. (4.11), with corresponding reduced density matrix. Then, in the local

inertial frame at the �nal point x�f , the wave packet will be

��	(f)� =
P

�1�2�01�
0
2

R
d3p1d

3p2

s
(�1P1)0(�2P2)0

P 01P
0
2

 �1�2(p1; p2) (4.28)

D�01�1
(W (�1; P1)D�02�2

(W (�2; P2) j�1P1; �01; �2P2; �02i
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4.2.2 Generalization of the Model

Now, in order to measure entanglement between 2 particles in a gravitational �eld, let

us consider the following space-time where the metric ds2 has the form

ds2 = F (r)dt2 +G(r)dr2 +H(r; �)d�2 + I(r; �)d'2 (4.29)

F (r); G(r); H(r; �); I(r; �) are arbitrary functions that have a linear relation with

the coordinates (r)or(r; �), let us make a diagonal choice of the tetrad

et0 =
1p
F (r)

; er1 =
1p
G(r)

; e�2 =
1p

H(r; �)
; e'3 =

1p
I(r; �)

(4.30)

By using the metric (4.29), the non-vanishing Christo¤el connection elements are

�ttt =
1

2F

�
F �rrr =

1

2G
G0 ���� =

1

2H
@�H (4.31)

�rtt = � 1

2g
F 0 �'�' =

1

2I
@�I �trr = �

1

2F

�
G

��'' = � 1

2H
@�I �r'' = �

1

2G
I 0 �r�� = �

1

2G
hH 0

�t'' = � 1

2F

�
I ��r� =

1

2H
H 0 �trt =

1

2F
F 0 �'r' =

1

2I
I 0

where
�
X = @X

@t
and X 0 = @X

@r
: For a circular motion and constant angular velocity d'

dt

on the equatorial plane where � = �
2
are given by

w0t1 =
1

2

F 0p
GF

w0'3 =

�
I

2
p
IF

w1�2 = �
1

2
p
GH

H 0 (4.32)

w1'3 = �1
2

I 0p
GI

w2'3 = �
1

2
p
HI

@�I

Furthermore the non-vanishing components �ab (x); u
� and �ab
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�01 = �utw0t1 �03 = �u'w0'1 �12 = �u�w1�2 (4.33)

�13 = �u'w1'3 �23 = �u'w2'3

ut =
cp
F

u' =
1p
I
r
d'

dt
(4.34)

where  = 1q
1� v2

c2

is the Lorentz factor.

�01 =
1

mc2
[p0a1] + �01 �13 = �

1

mc2
[a1p3] + �13 (4.35)

�23 = �23 �02 = �02

where �ab = �ba: �nally

�ab : �
0
0 = �

0
i = �

i
0 = 0 (4.36)

and

�ik = �ik +
�i0pk � �k0p

i

p0 +mc2
(4.37)

�13 = �13 +
�10p3

p0 +mc2
�12 = �

2
3 = 0 �32 = �32 +

�30p2 � �20p
3

p0 +mc2
(4.38)

where wik(x) = �
i
k; and � = �

1
3� so � can be rewritten as

� = � �

2G
f(AD2 +B(D2 � 1)� I 0

r
G

HI
) +

D

C
p(AD2 +B(D2 � 1) + A

p
G)g (4.39)
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where A = F 0

F
; B = I0

H
; D =

p
1 + q2; C = 1 +

p
1 + p2; � = 2�

mc
.

4.2.3 Spin Entanglement in de Sitter�Schwarzschild Space-

Time

In this part, we discuss the e¤ect of the gravitational �eld of a massive body (black hole)

on the spin entanglement of a two-particle system in Schwarchild- de Sitter space-time

and the role of the cosmological constant and its in�uence on the entanglement of the

singlet and triplet states.

The �rst solution to Einstein�s equations is Karl Schwarzschild�s solution, the Schwar-

zschild solution is the metric that corresponds to the gravitational �eld created by the

distribution of static matter and spherical symmetry, that describes the exterior re-

gion of the spherically symmetric distribution of matter or energy such as planet, star,

or non-rotating black hole with zero electric charge and angular momentum. The

Schwarzschild metric is replaced in the presence of the cosmological constant by the de

Sitter�Schwarzschild or Anti-de Sitter�Schwarzschild metric, according to the sign. Let

us take the case of a positive cosmological constant and determine the corresponding de

Sitter�Schwarzschild line element. Consider a system of two particles (bipartite state)

moving in the gravitational �eld of the Schwarzschild-de Sitter space-time where the

metric is given by

ds2 = �c2(f(r)� �r
2

3
)dt2 + (f(r)� �r

2

3
)�1dr2 + r2(d�2 + sin2 �d�2) (4.40)

where f(r) = 1 � rs
r
and rs = 2GM is the Schwarzschild radius and r > rs . In the

presently used relativistic units (c = G = 1), in the limiting case � = 0 the metric

reduces to the Schwarzschild metric. Let us introduce a local inertial frame by choosing

the tetrad
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et0 =
1q

f(r)� �r2

3

; er1 =

r
f(r)� �r

2

3
; e�2 =

1

r
; e�3 =

1

r sin �
(4.41)

For a circular motion and constant angular velocity d�
dt
on the equatorial plane where

� = �
2
, the four-velocity of the centroid is given by

ut(x) =
cosh �q
f(r)� �r2

3

and u�(x) =
sinh �

r
(4.42)

and � is the rapidity in the local inertial frame de�ned by tanh � = v
c
and v is the

velocity. Notice that the condition

(1� rs
r
� �r

2

3
) > 0 (4.43)

we denote by

z =
r

rs
; w = �r2s ;� =

c�

rs
(4.44)

we �nd after some calculations

� = q
p
q2 + 1

"p
q2 + 1� qpp

p2 + 1 + 1

#
�

z
1
2

(z � 1� z3w
3
)
1
2

(z � 3) (4.45)

where � = w13�

The singlet entangled state

The wave packet in the momentum representation for a system of two spin 1=2 non-

interacting particles observed in a local frame (4.11) in the singlet state  �1�2(p1; p2) is

given by
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 �1�2(p1; p2) =
1p
2
(��1"��2# � ��1#��2")f(p1)f(p2) (4.46)

where f(p) is a Gaussian distribution about the momentum q of the centroid

jf(p)j2 = (2�)� 3
2 (�m)�3 exp(�1

2
(
p� q

�m
)2) (4.47)

The reduced matrix density for the initial state has the form

%i =
1

2

0BBBBBB@
0 0 0 0

0 +1 �1 0

0 �1 +1 0

0 0 0 0

1CCCCCCA (4.48)

for the �nal state, the reduced matrix density elements are

%f
�
0
1�

0
2�1�2

=
1

2

RR
dp1dp2 jf(p1)j2 jf(p2)j2 [D�

0
1"
(�1)D�

0
2#
(�2)D�1"(�1)D�2#(�2)(4.49)

�D�
0
1#
(�1)D�

0
2"
(�2)D�1"(�1)D�2#(�2)

�D�
0
1"
(�1)D�

0
2#
(�2)D�1#(�1)D�2"(�2)

+D�
0
1#
(�1)D�

0
2"
(�2)D�1#(�1)D�2"(�2)]

Then, straightforward calculations show that the wooters concurrence takes the follow-

ing form

C(%f ) = max(0;
p
�1 �

p
�2 �

p
�3 �

p
�4) (4.50)

= hcos�i2 + hsin�i2 (4.51)

where hXi =
R
dp jf(p)j2X . and

73



Chapter 4 : Entanglement and Inertial Observers

hcos�i =
R
dp jf(p)j2 cos� (4.52)

Eq. (4.50) has to be solved numerically. Fig (4-1) shows the wootters concurrence

C(%f ) as a function of z for �xed values of q, � and w

Figure 4-1: C(%f ) as a function of z for �xed q, � and w

Notice that as z (equivalently the distance r ) increases i.e. going far away from the

horizon of the black hole, the entanglement increases and becomes more robust. This

is due to the fact that the gravitational �eld decreases.

Fig (4-2) displays the variation of the concurrence C(%f ) as a function of the centroid

momentum q for �xed values of z , � and w . Notice the damping periodic oscillatory

behavior due to the sine and cosine functions in the Wigner matrix. Furthermore, as q
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increases, the maximum of the oscillations decreases due to the fact that as the velocity

increases the spin decoherence phenomenon increases.

Figure 4-2: Variation of C(%f ) as a function of q for �xed z , � and w

Fig (4-3) shows the variation of the concurrence C(%f ) as a function of w for �xed

values of z, � and q. Notice that if the cosmological constant � increases, we will

approach more the cosmological horizon where the cosmological curvature becomes

stronger and therefore the entanglement decreases. According to the Hawking-Unruh

e¤ect, an accelerating particle will radiate and loose information and entanglement

decreases.
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Figure 4-3: C(%f ) as a function of w for �xed values of z; q and �

The triplet entangled state

In the triplet state  �1�2(p1; p2) takes the form::

 �1�2(p1; p2) =
1p
2
(��1"��2# + ��1#��2")f(p1)f(p2) (4.53)

In this case, one can show that after straightforward but tedious calculations, the

Wootters concurrence has the following expression:

C(%f ) =

q
hcos 2�i2 + hsin 2�i2 (4.54)

Figs (4-4), (4-5) and (4-6) are the same as �gs (4-2), (4-1) and (4-3) respectively
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but with a triplet entangled state.

Figure 4-4: The same as �g 4-2 but in triplet entangled state.

Notice the concurrence in the quantum entangled singlet state is more robust than

in the triplet case. that the same with [85]. Moreover, the e¤ect of the cosmological

constant is very remarkable even in extended regions around the black hole.
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Figure 4-5: Same as �g 4-1 in triplet entangled state

Figure 4-6: Same as �g 4-3 in triplet entangled state
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Conclusion

In this part, which falls within the framework of quantum information in a curved

static space-time, theWootters concurrence behavior of two spin�1=2 entangled particles

moving in curved space-time, is studied in the context of the de Sitter�Schwarzschild

metric. We have found that the spin entanglement in the singlet quantum state is more

important than in the triplet case. Furthermore, the cosmological constant plays an

important role in the region around the black hole.

4.2.4 Spin Entanglement in Kerr Space-Time

We consider the Kerr metric. In Boyer-Lindquist coordinates, it has the following

expression [89]

ds2 =
�

�2
dbt2 � �2

�
dr2 � �2d�2 � sin

2 �

�2
db'2 (4.55)

where

� = r2 + a2 cos2 � (4.56)

a =
J

Mc

� = r2 � rsr + a2 +Q2

rs =
2GM

c2

and

dbt2 = (dt� a sin2 �d�)2, db'2 = ((r2 + a2)d�� adt)2 (4.57)

here M , J and Q are the mass, angular momentum and charge of the black hole. G; c

are the Newton gravitational constant (where in nature units G = c = 1), velocity of
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light. In what follows, we deal with a non-charged black hole where Q = 0. In this

case. Then tetrad are

e0t =

s
�

�2
; e1r =

r
�2

�
; e2� =

p
�2; e3' =

r
1

�2
(4.58)

Finally, we �nd

� = �

r
r2

�
[
(rs � 2r)
2r2

]q
p
(q2 + 1)[

p
(q2 + 1)� qpp

(p2 + 1) + 1
] (4.59)

we put r
rs
= z; a

rs
= �; �

rs
= �

� = �

r
z2

z2 � z + �
[
(1� 2z)
2z2

]q
p
(q2 + 1)[

p
(q2 + 1)� qpp

(p2 + 1) + 1
] (4.60)

Fig (4-7) displays the variation of the concurrence as a function of the dimensionless

parameter � 2 [0:1] and �xed � � 1; z � 1:5 and q � 0:1. The concurrence is an

increasing function, this is due to the fact that the gravitational potential g00 decreases

as J (or �) increases and thus information (or concurrence) increases until a saturated

bound of the maximal entanglement (C(%f ) � 1).
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Figure 4-7: Variation of the concurrence as a function of � with �xed � � 1; z � 1:5
and q � 0:1

Fig (4-8) shows the concurrence variation as a function of q for �xed values of � = 2;

z = 1:5 and � at smaller value of q(q ! 0), the entangled is max and if q % the center

of the wave packet travels more on the circular trajectory and therefore one has more

decoherence (less entanglement ) and consequently the concurrence decreases for ex-

ample if q = 1, C(%f ) � 0:7and if q = 1:6, C(%f ) � 0:4, the oscillator periodic behavior

can be explained (as it was pointed out in [90]) by the fact that when q increases, the

exponential in the integral that present in the expression of the concurrence approaches

unity, so the cosine and sine terms behavior dominates. It is worth to mention that

this behavior (minima and maxima) changes if the other parameters such as � and z

change.
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Figure 4-8: The concurrence as a function of q for �xed � = 2; z = 1:5.

Fig (4-8) shows that if � decreases to 0:3 the number and shape of picks change

and they become more pronounced, similar behavior is shown in Fig (4-9) if z changes.
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Figure 4-9: The concurrence as a function of qfor �xed � = 1;� = 1.

Fig (4-10) and Fig (4-11) display the variation of the concurrence as a function of z

(or circular motion radius) for �xed values of q; �; � = 1; notice that for smaller values

of r(r ! 0 near black hole singularity ) where the gravitational �eld is in�nite, the

entanglement is minimal (C(%f ) � 0 ). If we go far from the singularity (z increases)

the gravitational �eld decreases and therefore the information increases and thus the

concurrence (C(%f ) � 1 ). The shape and number of picks and minima depend strongly

on the values of the parameters q and �. Fig (4-10), Fig (4-11) and Fig (4-12) show

the behavior of the concurrence with variation of z.
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Figure 4-10: The concurrence as a function of z for �xed � = 1; q = 0:1.
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Figure 4-11: The concurrence as a function of z for �xed � = 1;� = 1.

Figure 4-12: The concurrence as a function of z for �xed � = 1;� = 0:1.

Conclusion

Throughout this study, we have studied the singlet state of spin entanglement of

two particle systems quanti�ed by Wootters concurrence. We have considered the Kerr

space-time. In fact, we have studied the variation of the Wootters concurrence (WC)

as a function of the various parameters such as q center of mass momentum of the

wave packet and � (black hole rotation parameter), z (distance from the black hole).

It turns out that the behavior of the WC depends strongly on those parameters (see

Figures (4-7), (4-8), (4-9), (4-10), (4-11) and (4-12)), the e¤ect of black hole rotation on

quantum entanglement is studied, It can be seen that as the amount of � increases, so
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does the C(%f ). If we have enough information, we may also be able to determine the

e¤ect of disk-accretion on quantum entanglement because the area of the event horizon

changes as the black hole�s angular momentum increases. On the other hand, when we

studied WC as a function of q; we found periodic behavior. This can be explained by

the fact that the centroid of the wave packet travels more along its circular trajectory

in the gravitational �eld and this leads to more decoherence. The origin of this periodic

behavior is the sine and cosine functions in the Wigner rotation, and this con�rms

previous results about the direct e¤ect of Wigner rotation on quantum entanglement.

4.2.5 Spin Entanglement in Reissner-NordströmNon-Commutative

Space-Time

we consider the Reissner-Nordström metric for a charged non-rotating black hole in a

commutative space-time. It is given by [108]

ds2 = �(1� 2M
r
+
Q2

r2
)dt2 + (1� 2M

r
+
Q2

r2
)�1dr2 + r2(d�2 + sin2 �d'2) (4.61)

withM and Q are mass and charge respectively, Following ref [109], the Seiberg Witten

vierbein bea� in a non-commutative gauge gravity is given by
bea� = ea�(x)� ie�v�ea�v�(x) + e�v�e���ea�v��� (x) +O(e�3) (4.62)

where

ea�v� =
1

4
[wacv @�e

d
� + (@�w

ac
� +Rac��)e

d
v]�cd (4.63)
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ea�v��� =
1

32
[2fR�v; R��gabec� � wab� (D�R

cd
�� + @�R

cd
��)e

m
v �dm (4.64)

�fw� ; (D�R�� + @�R��)gcdec� � @�fw� ; (@�w� +R��)gabec�

�wab� @� (wcd� @�em� + (@�wcd� +Rcd��)e
m
� )�dm + 2@vw

ab
� @�@�e

c
�

�2@�(@�wab� +Rcd��)@ve
c
� � fw� ; (@�w� +R��)gab@�ec�

�(@�wab� +Rad��)(w
cd
� @�e

m
� + (@�w

cd
� +Rcd��)e

m
v �dm)]�bc

where e�v� is non-commutativity anti-symmetric matrix elements de�ned as
[ex�; exv] = ie��� (4.65)

and ex� are the non-commutative space-time coordinates operators. Here wab� (resp.D�)

is the commutative spin connection (resp. covariante derivative) and Rad�� = ea�e
b
�R

��
�� ,

where R���� is the Riemann tensor. The commutative space-time vierbein and Minkowski

metric are denoted by ea� and ��b respectively. The non-commutative metric is given by

bg�� = 1

2
(bea� � beav + beav � bea�) (4.66)

where "�" is the Moyal star product [110], Straightforward calculations using the Maple

13 and setting z = r
rs
, y = Q2

r2s
and � = e�2

r2s
, with choosing the only non-vanishing

components of the NC parameter e�01 = e�01 = e�, one has
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F = bg00 = �(1� z + y)� (2z � 9y � 11
4
z2 + 15zy � 14y2)z2b�2 (4.67)

G = bg11 = 1

(1� z + y)
+
(�z + 3

4
z2 + 3y � 3yz + 2y2)z2b�2
(1� z + y)2

H = bg22 = (1 + (1� 17
2
z + 17

2
z2 + 27y � 75

2
zy + 30y2)z2b�2

4(1� z + y)
)
r2s
z2

I = bg33 = (1 + (�2z + 8y + z2 � 8zy + 8y)z2b�2
4(1� z + y)

)
r2s
z2

By using the eq. (4.39), (3.29) and (4.67), we can study the behavior of quantum

entanglement.

Figure 4-13: E(%) as a function of � for �xed z = 1:5; y = 0; � = 1; q = 0:01.

FIG (4-13) displays the variation of the entanglement E(%) as a function of the NC

parameter e�2, for a non-charged (Q = 0) black hole and �xed z = 1:5; y = 0; � = 1;

q = 0:01. Notice that if e�2 increases, E(%) decreases. Thus, e� plays an important role in
the value changing of entanglement. In fact, as it was pointed out in ref [109], the NC

parameter e� can be considered as a magnetic �eld contributing to the matter density �
and therefore a¤ecting the curvature of the space-time through its contribution to GF.
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Consequently if e�2 increases, the GF increases and the information decreases. Including
the contribution of NC of space-time, it generates additional terms proportional to e�2
. In fact the gravitational potential bg00 will be of the form

bg00 = bA+ bBQ2 + e�2( bDQ4 + bCQ2 + bF ) (4.68)

where

bA = �1 + 1
z
; bB = � 1

zr2s
; bD =

7

z6r6s
(4.69)

bC = (9z � 15) 1

4z5r4s
; bF = (�2z + 11

4
)
1

4z4r4s

The behavior of the entanglementE(%) depends strongly on the sign of ( bDQ4+ bCQ2+ bF ).
Considering bA and bB negative:

1) If Q >> 1, the term bDQ4 dominates. Since bD > 0, and if e�2 increases the GF
decreases leading to an increase in E(%) (as is the case in FIG (4-14).

Figure 4-14: E(%) as a function of � for �xed z = 4; y = 0:6; � = 1; q = 0:01.

2) If Q << 1; then bF dominates and its sign will determine the behavior of E(%)
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as a function of e�2 . If bF > 0 GF increases and E(%) decreases then we return to the

case in FIG (4-13).

FIG (4-15) represents the variation of E(%) as a function of z for �xed y = 0; � = 0;

� = 1; q = 0:01; (the case of commutative Schwarzschild space-time). Notice that we

will reproduce the same behavior as in ref [85].

Figure 4-15: The variation of .E(%) as a function of z for �xed � = 0, � = 1, y = 0,
q = 0:01

FIG (4-16) shows the variation of E(%) as a function of z for �xed Q 6= 0; e� = 0, (the
case of commutative Reissner-Nordstrom space-time). Notice that the same behavior

as in ref [111] is obtained.
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Figure 4-16: The variation of E(%) as a function of z for �xed y = 0:1; � = 0, � = 1,
q = 0:01.

FIG (4-17) shows the variation of E(%) as a function of z and �xed � = 0:01; y = 0;

� = 1; q = 0:01, this case is the Schwarchild black hole in non-commutative space-time.

Figure 4-17: E(%) as a function of z and �xed 0:01; y = 0; � = 1; q = 0:01:

FIG (4-18)
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Figure 4-18: The variation of E(%) as a function of z for �xed � = 0:1; y = 2; � = 1;
q = 0:01:

FIG (4-18) represents the variation of E(%) as a function of z for �xed � = 0:1;

y = 2; � = 1; q = 0:01; it is the case of Reissner Nordstrom Black Hole in non-

commutative space-time. Notice that far from the oscillatory behavior region, when z

(or r ) increases, the GF bg00 decreases until reaching a saturation value (� 1) where

E(%) is maximal, notice that for smaller values of r ( ! 0 near black hole singularity

) where the gravitational �eld is in�nite, the entanglement is minimal, if we go far

from the singularity (z increases) the gravitational �eld decreases and therefore the

information increases and thus the entanglement. The oscillatory behavior disappears

when we enter the stability region where E(%) � 0:67. The number of picks and minima

depends strongly on the values of the various parameters �; y; � and q. Concerning the

non-commutavity e¤ect on the E(%), it is clear from eq. (4.68) that for smaller values

of z, as e� increases the gravitational �eld bg00 becomes more important (increases) and
therefore E(%) decreases. For larger values of z, the e¤ect is almost negligible since the

terms in order of 1
z4
; 1
z5
; 1
z6
decrease faster than the commutative terms in order of 1

z
.

Notice also that y increases, the GF increases (the term e�2 ( bDQ4) dominates at larger
value of Q ). Thus, the NC e¤ect on the E(%) becomes more important for charged
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black hole than the neutral ones (if the charge Q increases E(%) decreases).

Table (4.1) summarizes the e¤ect of the black hole charge on the E(%). It is worth

mentioning that in order to keep the perturbative expansion with respect to e�2 reliable,
one must have ��e�2A1�� < jA0j (4.70)

where A0 = bA+ bBQ2 and A1 = ( bDQ4 + bCQ2 + bF ), this implies new constraints on the
space parameters z; y.

z E(%)(y = 0) E(%)(y = 10)

2 0:64694 0:6072

4 0:664 0:6567

5 0:6644 0:6626

6 0:6646 0:6641

Table 4.1: Summarizes the e¤ect of the black hole charge on the E(%)

4.2.6 Comparison between singlet and triplet state of entan-

glement

To gain a thorough understanding, we compare the entanglement behavior in the triplet

and singlet states, by using concurrence
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Figure 4-19: The variation of C(%f ) as a function of w for �xed � = 0, y = 0; � = 1;
q = 0:01.

FIG (4-19) show how the concurrence varies as a function of z for �xed values of

q; y; � and � in singlet and triplet state, respectively. We found the same behavior

with FIG (4-18), where for smaller values of r(r ! 0 near the black hole horizon),

the gravitational �eld is in�nite, the entanglement is minimal (C(%f ) � 0). If we go

far away from the singularity, (z increases) the gravitational �eld decreases, so the

information increases until a saturated bound of the maximal entanglement (C(%f ) �

1). By monitoring both of the curves, we notice that in singlet state when z is at the

value of 1:23, C(%f ) takes the value of 0:7789. While in triplet state it gives z = 1:23;

C(%f ) = 0:5962:
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Figure 4-20: The variation of C(%f ) as a function of � for �xed z = 1:5, y = 0; � = 1;
q = 0:01.

FIG (4-20) displays the variation of the concurrence as a function of � by �xing

� = 1; z = 1:5 and q = 0:01, for both state singlet and triplet, the concurrence

is a decreasing function. This is due to the fact that the gravitational potential g00

increases, as we mentioned in FIG (4-14). Take note of this for singlet state when

z = 0:1; C(%f ) = 0:9069, and triplet state when z = 0:1; C(%f ) = 0:8547.

As it is displayed in FIGs (4-19) and (4-20), we can say that the information (en-

tanglement) for the �rst is greater or equal to the second, and that the singlet state

is more resistant to changes induced by motion than the triplet state, this is due to

the fact that for the single state, there is a minimum number of parameters and as

mentioned before, gravity decreases the information (the e¤ect of gravity on the single

state is less than that of the triplet state).
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General Conclusion

We have seen in this thesis some cosmological models. The �rst chapter provided a brief

overview of General Relativity in space-time. In the second chapter, we were interested

in explaining the phase of accelerated expansion in the late universe without the dark

energy concept, by introducing the exra-dimension into some cosmological models. At

�rst, we started with the Friedmann-Robertson-Walker Model in �ve dimensions. We

adopted two equations of state, p = w� and p5 = �; for perfect �uid in both 4D

and 5D. We noticed that we can have an accelerated expansion in four dimensions

by considering the constant speed in extra-dimension for the case of w = 0; 1
3
: We

extended the study by using Dynamical Study with this model. Unfortunately, the

results obtained from this model were not consistent with the fact that the universe

is expanding at an accelerating rate. For that, we considered this model with non-

perfect �uid, because incorporating viscosity concepts into the cosmic �uid from a

hydrodynamic standpoint, it would appear the most natural. Where we took p the

pressure in 4D, where p = p + h(t)HR, to �nd the Hubble parameter expression in 4D

by considering the extra-dimension has constant speed. We observed a similar behavior

regarding the perfect �uid case, with a slight change in the rate. The di¤erence is more

obvious in a universe dominated by radiation than in one dominated by matter. That
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can explain why the in�ation model was discussed with shear and bulk viscosity, the

fact that shear viscosity may a¤ect the expansion history of the universe [118], [111].

The Dynamical Study was taken into account in this case. We found that w > 0; but

 < 0; so we can have an accelerated expansion in 4D with positive pressure, but the 5D

shows a negative pressure, which is explained by dark energy. Another model was under

investigation. Interesting results for Kantowski�Sachs space-time with the cosmological

constant have been found. To obtain an accelerated expansion in both 4D and 5D with

positive pressure (w;  > 0), the cosmological constant should be positive, under the

condition w < 1
3
: Finally, there is one more model with extra dimensions, F(R) gravity,

where f(R) = f0R
n, we can have an accelerated expansion in both 4D and 5D, with

positive pressure, as demonstrated in this model. This last one gave interesting results

compared with the other models that have been discussed in part one of this thesis.

In second part, we were interested in understanding the e¤ect of the gravitational

�eld on the quantum spin entanglement. By considering a system composed of two

particles moving in this �eld, the system is described by packets of centroid waves,

and when applying the idea of local inertial frames, both the increasing speed of the

centroid and the shape of the gravitational �eld cause a Wigner rotation that in�uences

the wave packet. In the fourth chapter, we attempted to discuss the entanglement of

this wave packet by determining its expression, by �nding of a general formalism capable

of describing the entanglement in a general metric. The beginning was with de Sitter�

Schwarzschild metric in order to see the cosmological constant e¤ect on the quantum

entanglement. As we saw, it has a small e¤ect, but when the cosmological constant is

increasing, it makes the entanglement decreases. And the e¤ect is more pronounced with

a small positive value of �: As well as considering Kerr space-time, we have studied the

singlet state of spin entanglement by usingWootters�concurrence. We looked at how the

Wootters�concurrence varied. (WC) as a function of several characteristics, such as the

wave packet�s q center of mass momentum, black hole rotation parameter , and distance
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from the black hole. It turns out that the WC�s behavior is heavily in�uenced by those

parameters. The e¤ect of black hole rotation on the quantum entanglement is being

investigated. It can be seen that the concurrence increases as the amount of rotation

increases. For the last model, the non-commutative Reissner-Nordström model, we

studied spin entanglement. Regarding the non-commutative case, the variation of the

quantum entanglement as a function of the NC parameter and the black hole charge y

is discussed. We have noticed that the NC e¤ect becomes more important in a charged

black hole, so the behavior depends on the black hole�s characteristics and not only

on the kind of particles (bosons or fermions) [119]. We found that as NC parameter

increases, it decreases, as if NC parameter is playing the role of gravity. On the other

hand, the NC parameter was considered as having antigravity properties (quintessence,

dark energy, etc.), so the NC parameter can induce two terms with opposing signs and

that was con�rmed in [119], [120].
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Calculation

Application about vector calculation: In curvilinear coordinates:

1- Divergence (covariante): we have

D�A
� = @�A

� + ����A
� (A.1)

) D�A
� = @�A

� + ����A
�

���� = g�����;� =
1

2
g�� [@�g�� + @�g�� � @�g��] (A.2)

=
1

2
g��@�g�� =

1

2
G�1@�G

=
1

2
g�1@�g

=
1

2
g�1dg

and
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D�A
� = @�A

� + ����A
� = @�A

� +
1

2
g�1@�gA

� (A.3)

= @�A
� +

1

2
g�1@�gA

�

= @�A
� + jgj�

1
2 @� jgj

1
2 A�

= jgj�
1
2 @�

h
jgj

1
2 A�

i
So we can write

D�A
� =

1p
jgj
@�

hp
jgjA�

i
(A.4)

Laplacian or d�Alembert operator

�� (x) = D�D
�� (x) (A.5)

�� (x) = 1p
jgj
@�

hp
jgjg��@�A�

i
(A.6)

curl operator

D�A� �D�A� = @�A� � @�A� (A.7)

Demonstration

D�A� �D�A� =
�
@�A� � ����A�

�
�
�
@�A� � ����A�

�
(A.8)

= @�A� � @�A�

Red shift
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An atom on the sun emits radiation of frequency �0 =
1

� 0
we have

ds2 = g��dx
�dx� = g00dt

2 ) � 0 =
p
g00� (A.9)

And we have

�0 =
1

� 0
=

1
p
g00�

=
�

p
g00

(A.10)

) ��

�
=
� � �0
�0

=
�0
p
g00 � �0

�0
(A.11)

= =
p
g00 � 1 = 1� 2

GM

r
� 1 = �2GM

r
= 2 � 10�6

Riemann tensor R����

We know that

D�U
� = @�U

� + ����U
� (A.12)

So:

D� (D�U
�) = @� (D�U

�)� ����D�U
� + ����D�U

� (A.13)
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�
@�U

� + ����U
�
�
� ����

�
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� + ����U
�
�
+ ����

�
@�U

� + ����U
�
�

= @�@�U
� +

�
@��

�
��

�
U� + ����@�U

� � ����@�U � � ��������U� + ����@�U� + ��������U�

D� (D�U
�) = @� (D�U

�)� ����D�U
� + ����D�U

� (A.14)

We search for symmetric terms in � and � we �nd the last result:

101



Appendix �Chapter A : Calculation

[D�; D�]U
� =

�
@��

�
�� � @��

�
�� + �

�
���

�
�� � ��������

�
(A.15)

So we can write

[D�; D�]U
� = R����U

� (A.16)

in the last we �nd

R���� =
�
@��

�
�� � @��

�
�� + �

�
���

�
�� � ��������

�
(A.17)

Bianchi identity:

D�R
�
��� +D�R

�
��� +D�R

�
��� = 0 (A.18)

Demonstration:

1-

[D�; D�]U� = [D�; D�] g��U
� (A.19)

= g�� [D�; D�]U
� = g��R

�
���U

�

= R����U
� = �R����U�

= �R����U�

So

[D�; D�] (A�B
�) = R����A�B

� �R����A�B
� (A.20)

and

[D�; D� ] (D�U
�) = �R����D�U

� +R����D�U
� (A.21)
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2- D� ([D�; D� ]U
�) = D� (R

�
���U

�)

= (D�R
�
���)U

� +R����D�U
�

in the end we get:

[D�; [D�; D� ]]U
� = D�R

�
���U

� +R����D�U
�

+ [D�; [D� ; D�]]U
� = D�R

�
���U

� +R����D�U
�

+ [D� ; [D�; D�]]U
� = D�R

�
���U

� +R����D�U
�

� � � � � � � � � � � � � � � � � � �

0 = [Bianchi] + ( = 0)D�U
�
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phase portrait

Phase portrait is a geometric representation of the trajectories of a dynamical system

in phase space.

B.1 phase portrait of a linear 2-dimensionnal sys-

tems

We assume the following system

8<:
�
x1 = ax1 + bx2
�
x2 = cx1 + dx2

(B.1)

and we try to �nd its phase portrait, we put

p(�) = det(A� �I2) = �2 � (a+ b)�+ (ad� bc) (B.2)

= �2 � �Tr(A) + det(A)

= �2 � �T +D
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where

A =

0@ a b

c d

1A (B.3)

Case 1 � = T 2 � 4D > 0; there is tow solutions

�1;2 =
T+
p
T 2 � 4D
2

(B.4)

the general solution is

x(t) = c1e
�1tV1 + c2e

�2tV2 (B.5)

� if D < 0; (�1 > 0 > �2) : the trajectories are "parabola" which approach to the

�xed point called "saddle point" , (see Fig (B-1 ).

Figure B-1: Generic trajectories for Saddle point

� if D > 0 and T > 0; eigenvalues are positive, the trajectories are " parabola

" which approach to the �xed point called "nodal source", this point is unstable (see

�g.B-2)).
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Figure B-2: Generic trajectories for Nodal Source (� fast escape to 1)

� if D > 0 and T < 0 : eigenvalues are negative the trajectories are " parabola "

which approach to the �xed point called "Nodal Sink" this point is stable (see �g.B-3).

Figure B-3: Generic trajectories for Nodal Sink (� fast aproach to 0)

Case 2: � = T 2�4D < 0; then, � = �+i� , where � = T
2
; � =

q
4D � T 2

2
:We have

� is complex then the eigenvector (V = u + iw) is complex too, the general solution

has the form

x(t) = e�t[c1(u cos �t� w sin �t) + c2(u sin �t+ w cos �t)] (B.6)
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� = 0; Center � > 0; Spiral Source � < 0; Spiral Sink

Figure B-4: Subcases according to �

Note: the pictures are from Math 3331 Di¤erential Equations 9.3 Phase Plane

Portraits, by Jiwen He, Department of Mathematics, University of Houston.
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Relativistic Quantum Mechanics

C.1 Poincaré Group and its representations

We have two equivalent de�nitions , the mathematical de�nition of Poincaré , group

P, that Groups isometries of Minkowski space-time (an isometry is a transformation

that keeps the lengths) , while the physical de�nition is to Group conversions between

inertial frames of reference in Minkowski space-time. The translations group and the

Lorentz group produce the Poincaré group. The full Lorentz group SO(3; 1) (the "1"

indicates the additional, time-like dimension) is de�ned as

$ :=
�
� 2 GL(4;R); �T�� = �

	
(C.1)

where � is the Minkowski metric diag(�+++). Where � are the entries of a 4-matrix

representing a so-called Lorentz transformation. The Lorentz group leaves the norm

x2 of a vector invariant is not enough because on physical grounds we need the line

element ���dx
�dxv = �c2dt2 + dx2 to be invariant. This guarantees that the speed of

light is the same in every inertial frame, and it allows us to add constant translations

to the Lorentz transformation
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x
0
= T (�; a)x = �x+ a (C.2)

where a are representing a translation in space-time. If we have two consecutive Poin-

caré transformations

T (�
0
; a

0
)T (�; a) = T (�

0
�; a

0
+ �

0
a) (C.3)

the inverse element

T�1(�; a) = T (��1;���1a) (C.4)

Consider now the representations U(�; a) of the Poincaré group on some vector space,

and its elements can be written as

U(�; a) = exp(
i

2
"�vM�v) exp(ia�P

�) = 1 +
i

2
"�vM�v + ia�P

� + :::: (C.5)

where the explicit forms of U(�; a) and the generators M�v and P � depend on the rep-

resentation. Since "�v is totally antisymmetric, M�v can also be chosen antisymmetric.

It contains the six generators of the Lorentz group, whereas the momentum operator

P � is the generator of space-time translations. M�v and P � form a Lie algebra whose

commutator relations can be derived from

U(�; a)U(�
0
; a

0
)U�1(�; a) = U(��

0
��1; a+ �a

0 � ��0
��1a) (C.6)

which follows from the composition rules C.3 and C.4. Inserting in�nitesimal trans-

formations C.5 for each U(� = 1 + "; a); with U�1(�; a) = U(� = 1 � ";�a); keeping

only linear terms in all group parameters "; "
0
; a and a

0
; and comparing coe¢ cients of

the terms � ""
0
; a"

0
; "a

0
and aa

0
leads to the identities
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i [M�v;M�v] = �v�M�� � ���M v� � ���M�v + ��vM�� (C.7)

i [P �;M��] = ���P � � ���P �

[P �; P v] = 0

The representation of the Poincaré group on the state vectors of in�nite (because it�s

non-compact) dimensional Hilbert space is unitary (connected Lie group) and can be

written as

��� 0
E
= U(�; a) j i (C.8)

The Poincaré algebra P has two Casimir element, vectors commuting with the gener-

ators of the algebra.

Particle states

The one-particle state should be de�ned as fjm; s; p0;p;�ig ; we can simplify nota-

tion due to the invariance of the Casimir operators and set

��m; s; p0;p;�� = jp; �i (C.9)

such that the basis states are labelled by their four-momentum and the Z-component

of the spin (later simply called spin). This correspond to a basis of plane waves and,

thus, transform under translations as

U(I; a) jp; �i = exp(�ipa) jp; �i (C.10)

Using the transformation property of the four-momentum operator U�1(�)P �U(�) =

���P
� we can write
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P �U(�) jp; �i = U(�)U�1(�)P �U(�) jp; �i (C.11)

= U(�)���P
� jp; �i

= ���p
�U(�) jp; �i

Notice that general Lorentz transformation takes the momentum p� ! ���p
� and

U(�) jp; �i must be a linear combination of all the states with momentum �p

U(�) jp; �i =
X
�0

D�0�(�; p)
����p; �0E (C.12)

Since U(�) is a representation it respect the group multiplication imposing conditions

on the values of D�0�.Those conditions are satis�ed when we restrict D�0�(�; p) to

D�0�(W; p) whereW are Lorentz transformations that leave invariant a chosen standard

momentum k�: As a consequence of the above equation, under a Lorentz transformation

U(�), the momentum label p goes to �p, and the spin transform under the represent-

ation D�0� of the little group W (In general if you have a group G which acts on a

space X, and an element x in X, the little group of x is the subgroup of G that leaves

x invariant) . We Consider the Lorentz transformation that takes k� to p� = L�v (p)k
�

such that

jp; �i = U(L(p)) jk; �i (C.13)

where L(p) is a standard boost taking the standard rest frame 4-momentum k �

(m; 0; 0; 0) to an arbitrary 4-momentum p, is an arbitrary LT taking p ! �:p � �p:

We apply a Lorentz transformation � on state jp; �i

111



Appendix �Chapter C : Relativistic Quantum Mechanics

U(�) jp; �i = U(�)U(L(p)) jk; �i (C.14)

= U(I)U(�)U(L(p)) jk; �i

= U(L(�p))U(L�1(�p))U(�)U(L(p)) jk; �i

= U(L(�p))U(L�1(�p)�L(p)) jk; �i

= U(L(�p))U(W (�; p)) jk; �i

where U(W (�; p)) = U(L�1(�p)�L(p)) leaves the standard momentum k invariant,

and L�1(�p) is an inverse standard boost taking the �nal 4-momentum p back to the

particle�s rest frame. W (�; p) is rotation corresponding the Lorentz transformation �

and momentum p, and it is an element of the little group (called also the stability

group) of the standard four-momentum k�, this rotation do not change the standard

four-momentum: W �
v k

v = k� . On the other hand U(L(�p)) take k to p without

touching the spin, then

U(�) jp; �i = U(W (�; p)) j�p; �i (C.15)

=
X
�0

D�0�(W (�; p))
����p; �0E

Where D�
0
�(W (�; p)) is a spin-s representation of the rotation W (�; p): For massive

particles where the standard momentum is k�(m; 0; 0; 0) in its rest frame, and

Ds
�0�
(W ) =

D
s; �

0
��� exp(i�s:n) js; �i (C.16)

So, if we are dealing with massive spin �1
2
particles

D�0�(W ) = I cos
�

2
+ i(b�:bn) sin �

2
(C.17)
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by using the relation

(�:a)(�:b) = (a:b) + i�(a:b) (C.18)

where � is the Wigner angle and � are the Pauli matrices. This rotation is a consequence

of the non-closeness of the boost generator algebra, two boost is equivalent to a boost

and a rotation. That rotation is closely related to Thomas precession and is called the

Wigner rotation, for more detail see [112, 113, 114, 115, 116].

Wigner rotation

Wigner is a transformation which leaves k� invariant, and D(W (�; p)) represents its

action on the state. The explicit form of L(p) is dependent on the class of the four-

momenta. For massive particles, p�p� = �m2, and a convenient choice for the standard

vector is k�(m; 0; 0; 0). It is then obvious that the set of Wigner transformations leaving

k� unchanged is just the rotation group SO(3). Furthermore, L(p) can then be taken

as the pure Lorentz boost [103]

L00(p) = cosh� (C.19)

L0i (p) = Li0(p) = bpi sinh�
Lji (p) = �ji + (cosh�� 1)bpjbpi

with tanh� = jpjp
jpj2+m2

. In this parametrization, L(p) = exp(�i�bp:k) where ki = M0i

is the boost generator [103].
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Abstract. In Schwarzschild-de Sitter space-time, the effect of a gravitational field near a 
massive body black hole on the spin entanglement has been studied for two-qubits in the case 
of triplet and singlet states of a two particles system in a circular geodesic motion. It is found 
that the effect of the cosmological constant on the robustness of the Wooters concurrence is 
more important in the triplet state than in the singlet one even in the extended region around 
the black hole 

1.  Introduction  
Quantum entanglement is a physical phenomenon observed in quantum mechanics and it plays an 
important role in the field of quantum information processing such as quantum teleportation [1] and 
cryptography [2] ; meanwhile, it is at the heart of philosophical discussions on the interpretation of 
quantum mechanics. The first idea appeared with a famous article prepared by Einstein, Podolsky and 
Rosen (EPR) [3] generally referred to EPR paradox. This phenomenon occurs when pairs or a set of 
particles interact in a such way that the quantum state of each particle cannot be described 
independently of the others even when the particles are separated by a very large distance. 
Measurements of some physical properties such as position, momentum, spin etc.., performed on 
entangled particles are found to be correlated. 
        Recently, there are a number of articles that treat the effect of gravitational field on the quantum 
information by introducing the idea of local inertial frames namely the work of Terashima and Ueda 
who studied the spin rotation caused by the space time curvature for spin  1/2  particles moving in a 
gravitational field [4] and the gravitational spin entropy production for particles with arbitrary spin [5]. 
Many other issues on the problem were widely discussed in the literature [5,6,7]. On the other hand, 
cosmology is currently confronted with two unknown components: dark matter and energy. Dark 
matter is introduced to obtain the gravitational field needed to describe observations like the galactic 
rotation curves, gravitational lensing or the structure of the cosmic microwave background while dark 
energy is needed to explain the observed accelerated expansion of the universe. The repulsive force 
necessary to obtain an accelerated expansion of the universe can be provided by the inclusion of a 
vacuum energy. This corresponds to the well-known modification of the Einstein equations consisting 
of the addition of a cosmological term � ���. The Schwarzschild-de Sitter space-time describes the 
static gravitational field of a spherically symmetric mass in a universe with a cosmological constant �. 
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In fact, de Sitter space with a positive cosmological constant is spherically symmetric and has a 
cosmological horizon surrounding any observer. The Schwarzschild solution is a spherically 
symmetric solution of the Einstein equations with zero cosmological constant and it describes a black 
hole event horizon. Then, Schwarzschild-de Sitter space-time is a combination of the two [8]. 
      In this paper we discuss the effect of the gravitational field of a massive body (black hole) on the 
spin entanglement of a two particles system in a circular geodesic motion in a Schwarchild-de Sitter 
space-time and the role of the cosmological constant and its influence on the entanglement of the 
singlet and triplet states.In section2, we present the mathematical formalism. In section3,  we deduce 
the form of the corresponding Wigner rotational matrix. In section4, we calculate and discuss the 
Wooters concurrence  to quantify the spin entanglement of a mixed state bipartite singlet and triplet 
states and finally in section5, we draw our conclusions.   
 

2.  Mathematical formulation 
 On a curved space-time, the spin of the particle is not well defined. Thus, one has to define it locally. 
For this, one introduces a local inertial frame at each point by using a Vierbein (or tetrad)  ��

�  
defined by: 
                                                                       �����

���
� � ���                                                             (1) 

 
where ���  (resp. ��� ) is the metric of the curved (resp. Minkowski)  space-time. If �� is the four 
energy-momentum tensor of the particle, the corresponding spin quantum state is denoted by |���, ��  
where  ���↑, ↓�. If this particle moves to another point of the space-time, its state in the local frame 
becomes [9,10] 
 
                                                                    ∑ ��′����, ��������, � ′��′                                                         (2) 
 
where �� is the Lorentz transformation matrix and  ��′� a 2x2 Wigner rotation matrix elements 
corresponding to a momentum dependent change of the spin state of a relativistic particle with a 
change of the referential frame[11,12,13]. 
          Now, let us consider a system consisting of two spin 1/2 non interacting particles (separable 
state) where the center (centroid) of this system is described by a wave packet in the local frame where 
the initial state is written as: 
 
                                       ������� ∑ � ���������� �����

���, ���|���, ��; ��, ����                                      (3) 
 

 
where: 
                                                    ∑ � ���������� ������

���, �����
� 1                                                (4) 

 
with p1 and  p2  are the four-momenta of the two particles. When the system reaches a final point, the 
wave packet ������ in the local inertial frame becomes: 
 
������ �

∑ � �������������������

������������′��′ �����
���, ��� � ���

′��
��, ������

′��
��, ���|�����, ��

′; ���, ��
′�      (5) 

 
On the other hand. the change in the local inertial frame is given by: 
 
                  ���

���� � �����������
���� � ���������

���
������ � ��

������
������                   (6) 
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where 
 
                                                  ���

� � ���
��������

���� � ��
��������

����                                 (7) 
and 
                                                                            ��

���� � ���������
�                                             (8) 

 
where ���

� is the spin connection elements and  ��
����  denotes the change in the local inertial frame 

along  �����. The change ��� in the momentum has the form: 
 
                                                  ������ � �������������� � ��������                                          (9) 
 
where � is the rest mass of the particle and  
                                                                    ����� � ������������                                                  (10) 
 
 is the acceleration due to an external force  and ��  is the covariant derivative. Thus, we can rewrite 
eq.(9) as: 
 
                                                   ������ � � �

��� ����������� � ������������������                  (11) 
 
with � the velocity of light and 
                                                     ���������� � �����;     ���������� � 0                                  (12) 

 
We deduce that in the local frame: 
 
                                                                 ������ � ��

�����������                                                  (13) 
 
where 
  
                                               ��

���� � � �
��� ����������� � ����������� � ��

����                    (14)  

3.  Wigner rotational matrix in the Schwarzschild-de Sitter space-time 
Consider a system of two particles (bipartite state)  moving in the gravitational field of the 
Schwarzschild-de Sitter space-time where the metric is given by: 
 

         ��� � ��� ����� � Λ��

�
� ��� � ����� � Λ��

�
�

��
��� � ������ � ����� ����          (15) 

 
Here ���� � 1 � ���

�
�  and �� � 2�� is the Schwarzschild radius and � � ��  . Let us introduce a local 

inertial frame by choosing the tetrad: 
 

                   ��
� � �

����������

�

 ,     ��
� �  ����� � ���

�
 , ��

� � �
�

 , ��
� � �

�����
                       (16) 

 
Now, for a particle in a circular motion on the equatorial plane where � � �

�
 , the four-velocity of the 

centroid is given by: 
 
                                              ����� � �����

���������

�

   ���    ����� � ������
�

                               (17) 
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Where �  is the rapidity in the local inertial frame defined by ����� � �
�
   and  �  denotes the velocity. 

Notice that the condition 
 

                                                      �1 � ��
�

� Λ��

�
� � 0                                                      (18) 

 
Implies Λ��

� � �
�
  .In what follows, we denote by: 

 
 � � �

��
 ;      � � ���

� ;       � � ��
��

                                    (19) 
In this case, �  takes the form: 
 

                                � � ���� � 1 ���� � 1 � ��
�������

� � �
�

��

��������
� �

�
��

�� � 3�                 (20) 

 
and the two dimensional representation of the Wigner rotation matrix ���� reads: 
 

                                                           ���� � ������ � �
��� �

�
���� �

�

��� �
�

��� �
�

�                            (21) 

 

4.   Measure of entanglement 
The most widely used measures to quantify the entanglement for a mixed state is the so called 
Wooters concurrence defined as[14,15,16,17]: 
 
                                                       ���� � max �0, ���, ����, ����, �����                                 (22) 

 
Where � is the density matrix of the state and ���  ‘s are the eigenvalues of  ���   with 
 
                                                            �� � ��� ⊗ ����∗��� ⊗ ���                                                    (23) 
and �� is the Pauli matrix 

4.1.  The singlet entangled state 
the wave packet in the momentum representation for a system of two spin 1/2 non-interacting particles 
observed in a local frame and located at an initial point can be written as: 
 
                                             ������� ∑ � � ���������� �����

���, ���|���, ��; ��, ����                           (24) 
 
where 
                                                  ∑ � � ���������� ������

���, �����
� 1                                             (25) 

 
In the singlet state,  �����

���, ���  is given by 
 
                                            �����

���, ��� � �
√�

����↑���↓ � ���↓���↑�����������                            (26) 
 

and the reduced matrix density for the initial state has the form[11,12]: 
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                                                             �� � �
�

�
0 0
0 �1

0 0
�1 0

0 �1
0 0

�1 0
0 0

   �                                                   (27)   

 
For the final state, the reduced matrix density elements are: 
 

�
��

′ ��
′ ����

� �
1
2

� ��� ���|�����|�|�����|�����
′ ↑�Θ�����

′ ↓�Θ�����↑�Θ�����↓�Θ�� 

- ���
′ ↓�Θ�����

′ ↑�Θ�����↑�Θ�����↓�Θ�� 
����

′ ↑�Θ�����
′ ↓�Θ�����↓�Θ�����↑�Θ�� 

 +���
′ ↓�Θ�����

′ ↑�Θ�����↓�Θ�����↑�Θ���                                                                                       
(28) 

Then, straightforward calculations show that the wooters concurrence takes the following form: 
 
                                                    ����� � 〈���Θ〉��〈���Θ〉�                                                             (29) 
 
where 〈�〉 � � ��|����|�� .  We note that the expectation values values in eq.(29) have to be solved 
numerically using a Gaussian distribution. Fig.1 shows the wooters concurrence �����  as a function 
of � for fixed values of �, Σ and � 
 

 
Figure 1. �����  as a function of � for fixed �, Σ and � 

 
Notice that as z (equivalently the distance  r )  increases i.e.going far away from the horizon of the 
black hole, the entanglement increases and becomes more robust. This is due to the fact that the 
gravitational field decreases. Fig.2, displays the variation of the concurrence ����� as a function of 
the centroid momentum  � for fixed values of � , Σ and � . Notice the damping periodic oscillatory 
behavior due to the sine and cosine functions in the Wigner matrix. Furthermore, as q increases, the 
maximum of the oscillations decreases due to the fact that as the velocity increases the spin 
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Figure 2. variation of  ����� as a function of   � for fixed � , Σ and � 

 
decoherence phenomenon increases. Fig.3, shows the variation of the concurrence �����  as a 
function of w  for fixed values of z, Σ and q. Notice that if the cosmological constant Λ  increases, we 
will approach more the cosmological horizon where the cosmological curvature becomes stronger and 

 
Figure 3. �����  as a function of w  for fixed values of z, Σ, q. 

 
Figure 4. 3D plot of  Wooters concurrence as a function of  z and q for fixed  Σ and w 

 
therefore the entanglement decreases. According to the Hawking-Unruh effect, an accelerating particle 
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will radiate and loose information and entanglement decreases. Fig.4 displays a 3D plot representing 
the Wooters concurrence as a function of  z and q for fixed  Σ and w. Fig.5 displays a 3D plot 
representing the Wooters concurrence as a function  of z and w for fixed values of  Σ and q 
 

 
Figure 5. 3D plot of Wooters concurrence as a function  of z and w for fixed  Σ and q 

 

4.2.  The triplet entangled state 
In the triplet state, �����

���, ��� takes the form: 
 
                                                 �����

���, ��� � �
√�

����↑���↓ � ���↓���↑�����������                       (30) 
 
In this case, one can show that after straightforward but tedious calculations, the Wooters concurrence 
has the following expression: 
 
                                                      ����� � �〈���2Θ〉��〈���2Θ〉�                                                   (31) 
 
Fig.6, fig.7 and fig.8  are the same as fig.2, fig.1 and fig.3 respectively but with a triplet entangled 
state. 

 
Figure 6.  same as fig.2 but with a triplet entangled state. 

 
Notice that contrary to ref. [8], the concurrence in the quantum entangled triplet state is more robust 
than in the singlet case. Moreover, the effect of the cosmological constant is very remarkable even in 
extended regions around the black hole 
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Figure 7. same as fig.1 but with a triplet entangled state 

 

 
Figure 8. same as fig.3 but with a triplet entangled state 

5.  Conclusion  
In this work, which falls within the framework of quantum information in a curved static space-time, 
Wooters concurrence behavior of two spin 1/2 entangled particles moving in a circular motion is 
studied in the congtext of the Schwarzschild-de Sitter metric. We have found that the spin 
entanglement in the triplet quantum state is more important than in the singlet case. Furthermore, the 
cosmological constant plays an important role in the neighborhood region around the black hole (more 
study is under investigation). 
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Abstract: The elaboration of a general formalism on quantum spin entanglement in curved space–time is presented by a

system of two particles described by wave packets moving in a gravitational field (GF). This formulation allows us to study

different models in curved space–time. In this work, the non-commutative Reissner–Nordström model is considered. The

spin entanglement of a system of two spin 1/2 particles is discussed. With particularity that contains multiple and various

physical parameters, allowing for a detailed study of this purely quantum phenomenon in different frames of space and

geometry or both at the same time.

Keywords: Non-commutative space; Quantum information; Curved space; Spin Entanglement

1. Introduction

During the last decade, great interest has been devoted to

quantum entanglement and information theory [1–5]. The

spin quantum entanglement of a bipartite system plays an

important role in most physical systems, such as condensed

matter. Recently, the effect of relativistic motion on the

entanglement correlation of quantum spin states has been

the focus of many physicists, where the spin entanglement

of massive particles can change under Lorentz transfor-

mations. The entangled momentum of rotation in a flat

space–time is discussed by Peres, Scudo and Terno [6], in

the same year Gingrich and Adami [7] showed that the

entanglement between the spins is affected by the Wigner

rotation. This latter in special relativity is known as the

product of two Lorentz boost in different directions. Fur-

thermore, this study is extended to a curved space–time

[8–13], where Terashima and Ueda [8, 9] studied the EPR

(Einstein–Podolsky–Rosen) correlation and Bell’s

inequality in the Schwarzschild space–time. By consider-

ing accelerated particles in the gravitational field (GF),

they showed that the acceleration and the gravity deterio-

rate the perfect anti-correlation of a pair of EPR spins in

the same direction. On the other hand, in [9] they showed

when the spin entropy of a spin-1/2 particle moving in the

gravitational field can be generated. Considering that if the

spin state of the particle is pure at one point in space–time,

it becomes mixed at another point. Because the local

inertial frames of reference at different points are different

in general. Moreover, they showed that the spin entropy of

particles in a circular motion is quickly incremented close

to the event horizon of the Schwarzschild black hole. Also,

the spin entanglement can be more powerful against

changes brought about by motion in the singlet state than in

the triplet state [10].

The very early quantum space–time model based on

non-commutative (NC) algebra was suggested by Snyder in

1949 [14] to ameliorate short-distance singularities in

quantum field theory. This idea was the motivation behind

studying non-commutative space with cosmological mod-

els [15–17], where NC Seiberg Witten space–time has

played an important role in studying many phenomena in

particle physics and cosmology [18–24], where some

authors [25, 26] have suggested some non-commutative

models in classical cosmology to explain the accelerated

expansion of our universe, and NC opened the door for a

new explanation of dark matter and dark energy as well as

the cosmic microwave background (C.M.B) and its aniso-

tropies [27–32].

Emerging of the entanglement entropy concept and its

application to black hole entropy issues [33, 34], another

exciting area has attracted many physicists: the relationship

between the structure of space–time and entanglement.

Where it was considered, the non-commutativity can
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induce entanglement [35–37]. Abhishek Muhuri and others

[38] showed that even in non-commutative space, the

entanglement is generated only if the harmonic oscillator is

anisotropic.

The model we present here is one that tries to under-

stand quantum entanglement behavior, which can be a

better alternative to experiment or to verify the effects of

the NC space on quantum entanglement, as was done in

studies [39, 40] the effects of the passing gravitational

wave on the quantum states of a system of N spin-1/2

particles have been investigated by Ye Yeo et al.

Based on previous work, this article discusses the effect

of the gravitational field (near or far from the black hole)

on the quantum spin entanglement (QSE) of a bipartite

system. The system is described by packets of centroid

waves as a momentum representation [11]. Using the idea

of local inertial frames, both the increasing speed of the

centroid and the shape of the gravitational field cause a

Wigner rotation that influences the wave packet. As a result

of this fact, we try to extend our study to a metric or to

different metrics in general. In order to be able to study the

effects of both the GF shape and various parameters of the

black hole, either in a commutative framework of geometry

or even non-commutative. In Sect. 2, we present a general

mathematical formalism. In Sect. 3, the non-commutative

Reissner–Nordström space–time is considered. In Sect. 4,

we compare the behavior of entanglement in singlet and

triplet state, and in Sect. 5, we draw our conclusion by

focusing on the SE of the centroid packet and how it is

affected by various parameters like the acceleration of the

centroid, the distance from a massive body, and the NC of

space.

2. Mathematical formalism

In order to study the spin of a particle in curved space–

time, one has to use an inertial local frame at each point.

This can be done at the tangent at a point of curved space–

time using the vierbein (or tetrad) ela (l (resp.) is a curved

(resp. flat) index) defined by:

glve
l
ae

v
b ¼ gab ð1Þ

Where glv and gabðgab ¼ diag �1; 1; 1; 1ð Þ) are the curved

and Minkowski space–time metric, respectively. Let us

introduce one fermionic particle P; rj i with a 4-momentum

Pl and spin r ¼"; #ð Þ at some point of the space–time. If we

move from one point to another, this state becomes (in a

local frame) [10, 11]:
X

r0
Dr0r WðK;PÞð Þ Kj P;r0i ð2Þ

Where K is the Lorentz transformation matrix and W K;Pð Þ
is the Wigner rotation operator corresponding to K Dr0r

denotes the two-dimensional representation of the Wigner

rotation operator [41].

Let us consider a system of two non-interacting spin 1/2

particles, where its center of mass system can be described

by an initial wave packet wi
�� i given in a local frame by

[11] [9]:

wi
�� i ¼

X

r1r2

Z
d3p1d

3p2wr1r2
p1; p2ð Þ P1; r1;P2; r2j i ð3Þ

With the normalization condition:

X
r1r2

Z
d3p1d

3p2 wr1r2
p1; p2ð Þ

�� ��2¼ 1 ð4Þ

Here, P1 and P2 are 4-momentum of the particles 1 and

2, respectively. wr1r2
p1; p2ð Þ are wave functions

determining momentum and spin distribution, It can be

used to express momentum entanglement, spin

entanglement, and even entanglement between spins and

momenta. Now, it is easy to show that when the system

reaches another point of the inertial local frame, the wave

packet becomes wf
�� i like this:

wf
�� i ¼ U K1 xf ; xi

� �� �
� U K2 xf ; xi

� �� �
wi
�� i

¼
X

r1r2r01r
0
2

Z
d3p1d

3p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1P1ð Þ0 K2P2ð Þ0

P0
1P

0
2

s

wr1r2
p1; p2ð Þ

�Dr0
1
r1

WðK1;P1Þð ÞDr0
2
r2

W K2;P2ð Þð Þ K1j P1; r
0
1
; K2j P2r

0
2i

ð5Þ

Where U K1 xf ; xi
� �� �

is a unitary operator, xf ; xi are the

centroid location at a final and initial point, respectively.

The Wigner rotation operator can have the following

formula [9]

WðK1;P1Þ ¼ Texp

Zxf

xi

w x sð Þð Þds

2
4

3
5 ð6Þ

T here is the time-ordering operator,s proper time and w

is a matrix whose elements are given by

wi
k ¼ kik þ

ki0pk � kk0p
i

p0 þ mc2
ð7Þ

Where i; k = 1; 2; 3ð Þ, with m being the mass of the

particle. Where the infinitesimal Lorentz transformation

matrix elements kab xð Þ have the form:

kab xð Þ ¼ � 1

mc2
aa xð Þqb xð Þ � qa xð Þab xð Þ½ � þ vab xð Þ ð8Þ

With:
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vab xð Þ ¼ �ul xð Þxa
lb ð9Þ

And:

xa
lb ¼ �evb xð Þrle

a
v xð Þ ð10Þ

Here, xa
lb is a spin connection, where vab xð Þ represents

its change along the direction of the 4-vector velocity of

the centroid, ul xð Þ is the four-velocity of the centroid, rl

stands for the covariant derivative and aa xð Þ the 4-vector

acceleration produced by a classical force as measured in

the local frame which is given by

aa xð Þ ¼ eal xð Þ uv xð Þrvu
l xð Þð Þ ð11Þ

To mention where q comes from, let us consider a

system of two non-interacting spin 1/2 particles (wave

packet) whose center of mass is described by an equatorial

plane with h ¼ p=2. The motion has a radius with constant

speed v. After obtaining a central force motion, the

components of the centroid 4-momentum in the local

inertial frame are given by [12]

q0 ¼ cmc q1 ¼ q2 ¼ 0 q3 ¼ cmv ð12Þ

Where c ¼ 1ffiffiffiffiffiffiffi
1�v2

c2

p is the Lorentz factor.

Now, in order to measure entanglement between 2

particles in a gravitational field, let us consider the fol-

lowing space–time where the metric ds2 has the form

ds2 ¼ F rð Þdt2 þ G rð Þdr2 þ H r; hð Þdh2 þ I r; hð Þdu2 ð13Þ

F rð Þ;G rð Þ;H r; hð Þ; I r; hð Þ are arbitrary functions that

have a linear relation with the coordinates rð Þ or r; hð Þ, let

us make a diagonal choice of the tetrad

et0 ¼ 1ffiffiffiffiffiffiffiffiffi
F rð Þ

p ; er1 ¼ 1ffiffiffiffiffiffiffiffiffiffi
G rð Þ

p ; eh2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H r; hð Þ

p ; eu3 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
I r; hð Þ

p

ð14Þ

Thus, the non-vanishing spin connection elements are

x0
t1 ¼ 1

2

Fffiffiffiffiffiffiffi
GF

p ;x0
u3 ¼

_I

2
ffiffiffiffiffi
IF

p ;x1
h2 ¼ � 1

2
ffiffiffiffiffiffiffi
GH

p H0;x1
u3

¼ � 1

2

I0ffiffiffiffiffiffi
GI

p ;x2
u3 ¼ � 1

2

1ffiffiffiffiffiffi
HI

p ohI

ð15Þ

Where _I ¼ oI
ot and I0 ¼ oI

or ;H
0 ¼ oH

or oh ¼ o
oh. Furthermore,

the non-vanishing components uv; vab xð Þ and kba , for a

circular motion and constant angular velocity du
dt on the

equatorial plane where h ¼ p=2 are given by

ut xð Þ ¼ ccffiffiffiffi
F

p uu xð Þ ¼ 1ffiffi
I

p cr
du
dt

ð16Þ

v0
1 xð Þ ¼ �ut xð Þx0

t1; v
0
3 ¼ �uux0

u1; v
1
2 xð Þ ¼ �uhx1

h2;

v1
3 xð Þ ¼ �uu xð Þx1

u3; v
2
3 xð Þ ¼ �uux2

u3

ð17Þ

And

k0
1 ¼ 1

mc2
p0a1

� �
þ v0

1; k
1
3 ¼ � 1

mc2
a1p3

� �
þ v1

3; k
2
3 ¼ v2

3; k
0
2

¼ v0
2

ð18Þ

It is important to mention that the two non-vanishing

components of the 4-vector velocity ut and uu can be

rewritten as

ut xð Þ ¼ coshnffiffiffiffi
F

p and uu xð Þ ¼ csinhnffiffiffiffiffiffiffiffiffiffiffiffiffi
I r; hð Þ

p ð19Þ

Where n is the rapidity in the local inertial frame such that
v
c ¼ tanhn .

To quantify the spin entanglement of the two particles

system, we use the Wootters concurrence [42–44] for the

mixed state P1; ";j P2; # defined by

C qð Þ ¼ max 0;
ffiffiffiffiffi
k1

p
; �

ffiffiffiffiffi
k2

p
; �

ffiffiffiffiffi
k3

p
;�

ffiffiffiffiffi
k4

p� �
ð20Þ

Where
ffiffiffiffi
ki

p
are the square roots of the eigenvalues of the

matrix q~q with: ~q ¼ ry � ry
� �

q� ry � ry
� �

, ry here is the

Pauli matrix, and q is the state density matrix: q ¼ wj ihwj,
where w take this following expression [11]

wr1r2
p1; p2ð Þ ¼ eif p1ð Þf p2ð Þ ð21Þ

Where ei is one of the Bell states; this choice allows us to

assume a maximum spin entanglement, f pð Þ is a

normalized function which is defined by

f pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
d p1ð Þ

p ffiffiffiffiffiffiffiffiffiffiffi
d p2ð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

1
2bmc

p exp �ðp3 � q3Þ2

2b2m2c2

 !
ð22Þ

Where b is width. To get more simplification of calcula-

tions, let p1 ¼ 0, p2 ¼ 0, b ¼ 1.

If ki are positive real numbers, the entanglement can be

quantified by the spin entanglement E qð Þ defined as [11]

E qð Þ ¼ h
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � C2 qfð Þ

p

2

 !
ð23Þ

Where:

h xð Þ ¼ �xlog2x� 1 � xð Þlog2 1 � xð Þ ð24Þ

Equation (20) can be shown to have the following

expression [10], in the case of spin singlet state in curved

space–time

Spin quantum entanglement in non-commutative curved space–time



C qf
� �

¼ hcosH2i þ hsinH2i ð25Þ

In the case of the spin triplet state in curved space–time

C qf
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcos2Hi2 þ hsin2Hi

q 2

ð26Þ

With

hcos xi ¼
Z

dp f pð Þj j2cosx ð27Þ

H here is a shorthand notation for sH1
3 (H1

3 is the only

non-vanishing component of Hi
k where wi

k xð Þ ¼ Hi
k, s is

propre time). The two-dimensional representation of the

Wigner rotation matrix D Hð Þ is

D Hð Þ ¼ e�iJ2H ¼ cos H
2

�sin H
2

sin H
2

cos H
2

� 	
ð28Þ

Where J2 is the 2-component of the angular momentum

operator. By using (7), (8) and (25), H can be rewritten as

H ¼ H1
3s ¼ � a

2G
AD2 þ B D2 � 1

� �
� I0

ffiffiffiffiffiffi
G

HI

r !(

þD

C
p AD2 þ B D2 � 1

� �
þ A

ffiffiffiffi
G

p� �


ð29Þ

Where:A ¼ F0

F ; B ¼ I0

H ; D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ q2

p
; C ¼ 1 þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ p2
p

; a ¼ s
rs
:.

3. Spin entanglement in Reissner–Nordström non-

commutative space–time

We consider the Reissner–Nordström metric for a charged

non-rotating black hole in commutative space–time. It is

given by [45]

ds2 ¼ �c2 1 � 2M

r
þ Q2

r2

� 	
dt2 þ 1 � 2M

r
þ Q2

r2

� 	�1

dr2

þ r2 dh2 þ sin2hdu2
� �

ð30Þ

M and Q are mass and charge, respectively, and t is the

time coordinate, r is the radial coordinate, h;uð Þ are the

spherical angles, the Schwarzschild radius of the body

given by rs ¼ 2M; where rs does not represent a

singularity, but in this case it is only a parameter. And

the new singularities are

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � Q2

p

There is an external event horizon at rþ: The internal

Cauchy horizon is the other horizon r�.

The extremal case is defined as the limiting case where

Q ¼ M and rþ ¼ r�.

Following ref [46], the Seiberg Witten vierbein êal in a

non-commutative gauge gravity is given by

êal ¼ eal xð Þ � i~gvqealvq xð Þ þ ~gvq~gksealvqks xð Þ þ O ~g3
� �

ð31Þ

Where

ealvq ¼ 1

4
xac

v oqe
d
l þ oaqx

ac
l þ Rac

ql

� �
edv

� �
gcd ð32Þ

And

ealvqks ¼
1

32
2 Rsv;Rlq
� �ab

eck � xab
k DqR

cd
sl þ oqR

cd
sl

� �
emv gdm



� xv; DqRsl þ oqRsl

� �� �cd
eck � os xv; oqxl þ Rql

� �� �ab
eck

� xab
k os xcd

v oqe
m
l þ oqx

cd
l þ Rcd

ql

� �
eml

� �
gdm þ 2ovx

ab
k oqose

c
l

� 2oq osx
ab
l þ Rcd

sl

� �
ove

c
k � xv; oqxk þ Rqk

� �� �ab
ose

c
l

� osx
ab
l þ Rab

sl

� �
xcd

v oqe
m
k

�
þ oqx

cd
k þ Rcd

qk

� �
emv gdm

i
gbc

ð33Þ

Where ~gvq is non-commutativity anti-symmetric matrix

elements defined as

~xl; ~xv½ � ¼ i~glv ð34Þ

And ~xl are the non-commutative space–time coordinates

operators. Here, xab
k (resp.Dq) is the commutative spin

connection (resp. covariant derivative) and Rad
lv ¼ eaae

b
bR

ab
lv ,

where Rab
lv is the Riemann tensor. The commutative space–

time vierbein and the Minkowski metric are denoted by eal
and glb, respectively. The non-commutative metric is

defined by

ĝlv ¼
1

2
êal � êav þ êav � êal
� �

ð35Þ

Where ‘‘ * ’’ is the Moyal star product [47],

straightforward calculations using Maple 13 and setting

z ¼ r
rs

, y ¼ Q2

r2
s
; k ¼ ~g2

r2
s

(in the case h ¼ p=2, with choosing

the only non-vanishing components of the NC parameter

~g01 ¼ �~g10 ¼ ~g) one has

F ¼ � 1 � 1

z
þ y

z2

� 	
�

2z3 � 9yz2 � 11
4
z2 þ 15zy� 14y2

� �
k

4z2

G ¼ 1

1 � 1
z þ

y
z2

� �þ
�z3 þ 3

4
z2 þ 3yz2 � 3yzþ 2y2

� �
k

4z2 z2 � zþ yð Þ2

H ¼ ðz2 þ
z4 � 17

2
z3 þ 17

2
z2 þ 27yz2 � 75

2
zyþ 30y2

� �
k

16z2 z2 � zþ yð Þ

I ¼ ðz2 þ �2z3 þ 8yz2 þ z2 � 8zyþ 8y2ð Þk
16 z2 � zþ yð Þ

ð36Þ

We have two singularities z� ¼ 1
2
�

ffiffiffiffiffiffiffiffiffiffi
1
4
þ y

q
:
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Figure 1 displays the variation of the entanglement E .ð Þ
as a function of the NC parameter ~g2, for a non-charged

Q ¼ 0ð Þ black hole and fixed z ¼ 1:5; y ¼ 0; a ¼ 1;

q ¼ 0:01. Notice that if ~g2 increases, E .ð Þ decreases. Thus,

~g2 plays an important role in the value changing of

entanglement. In fact, as it was pointed out in ref [46], the

NC parameter ~g can be considered as a magnetic field

contributing to the matter density q and therefore affecting

the curvature of the space–time through its contribution to

GF. Consequently if ~g2 increases, the GF increases and the

information decreases. Including the contribution of NC of

space–time, it generates additional terms proportional to

~g2. In fact, the gravitational potential ĝ00 will be of the

form

ĝ00 ¼ Âþ B̂Q2 þ ~g2 D̂Q4 þ ĈQ2 þ F̂
� �

ð37Þ

Where

Â ¼ �1 þ 1

z
; B̂ ¼ � 1

zr2
s

; D̂ ¼ 7

z6r6
s

; Ĉ

¼ 9z� 15ð Þ 1

4z5r4
s

; F̂ ¼ �2zþ 11

4

� 	
1

4z4r4
s

ð38Þ

The behavior of the entanglement E .ð Þ depends strongly

on the sign of D̂Q4 þ ĈQ2 þ F̂
� �

. Considering Â and B̂

negative:

(1) If Q � 1, the term D̂Q4 dominates. Since D̂[ 0, and

if ~g2 increases the GF decreases leading to an increase

in E .ð Þ(as is the case in Fig. 2).

(2) If Q 	 1, then F̂ dominates and its sign will

determine the behavior of E .ð Þ as a function of ~g2. If

F̂[ 0 GF increases and E .ð Þ decreases then we

return to the case in Fig. 1.

Figure 3 represents the variation of E .ð Þ as a function of

z for fixed Q ¼ 0; ~g ¼ 0; a ¼ 1; q ¼ 0:01; (the case of

commutative Schwarzschild space–time). Notice that we

will reproduce the same behavior as in ref [10].

Figure 4 shows the variation of E .ð Þ as a function of z

for fixed Q 6¼ 0; ~g ¼ 0 (the case of commutative Reissner–

Nordstrom space–time). Notice that the same behavior as

in ref [11] is obtained.

Figure 5 shows the variation of E .ð Þ as a function of z

and fixed k ¼ 0:01; y ¼ 0; a ¼ 1; q ¼ 0:01; this case is the

Schwarzschild black hole in non-commutative space–time.

Figure 6 represents the variation of E .ð Þ as a function of

z for fixed k ¼ 0:1; y ¼ 2; a ¼ 1; q ¼ 0:01 it is the case of

Reissner–Nordstrom Black Hole in non-commutative

space–time. Notice that far from the oscillatory behavior

region, when z (or r) increases, the GF ĝ00 decreases until

reaching a saturation value (
 1) where E .ð Þ is maximal.

Notice that for smaller values of r(! 0 near black hole

singularity) where the gravitational field is infinite, the

entanglement is minimal. If we go far from the singularity

(z increases), the gravitational field decreases and therefore

the information increases and thus the entanglement. The

oscillatory behavior disappears when we enter the stability

region where E .ð Þ
 0:67. The number of picks and min-

ima depends strongly on the values of the various param-

eters k; y; a and q. Concerning the non-commutativity

effect on the E .ð Þ, it is clear from Eq. (37) that for smaller

values of z, as ~g increases the gravitational field ĝ00

becomes more important (increases) and therefore E .ð Þ
decreases. For larger values of z, the effect is almost neg-

ligible since the terms in order of 1
z4 ;

1
z5 ;

1
z6 decrease faster

than the commutative terms in order of 1
z. Notice also that y

increases, the GF increases (the term ~g2 D̂Q4
� �

dominates

at larger value of Q). Thus, the NC effect on the E .ð Þ
becomes more important for charged black hole than

neutral ones (if the charge Q increases, E .ð Þ decreases).

Table 1 summarizes the effect of the black hole charge

on the E .ð Þ. It is worth mentioning that in order to keep the

perturbative expansion with respect to ~g2 reliable, one must

have

~g2A1

�� ��\ A0j j ð39Þ

Where A0 ¼ Âþ B̂Q2 and A1 ¼ D̂Q4 þ ĈQ2 þ F̂
� �

, this

implies new constraints on the space parameters z; y.

4. Comparison between singlet and triplet state

of entanglement

To gain a thorough understanding, we compare the

entanglement behavior in the triplet and singlet states, by

using concurrence.

Figure 7 shows how the concurrence varies as a function

of z for fixed values of q; y; a and k in singlet and triplet

state, respectively. We found the same behavior with

Fig. 6, where for smaller values of rðr ! 0 near the black

hole horizon), the gravitational field is infinite, the entan-

glement is minimal (C qf
� �


 0). If we go far away from the

singularity, (z increases) the gravitational field decreases,

so the information increases until a saturated bound of the

maximal entanglement (C qf
� �


 1). By monitoring both of

the curves, we notice that in singlet state when z is at the

value of 1:23; C qf
� �

takes the value of 0:7789. While in

triplet state it gives z ¼ 1:23;C qf
� �

¼ 0:5962.

Figure 8 displays the variation of the concurrence as a

function of k by fixing a ¼ 1; z ¼ 1:5 and q ¼ 0:01 for both

state singlet and triplet, the concurrence is a decreasing

function. This is due to the fact that the gravitational

potential g00 increases, as we mentioned in Fig. 2. Take

Spin quantum entanglement in non-commutative curved space–time



note of this for singlet state when z ¼ 0:1;C qf
� �

¼ 0:9069;

and triplet state when z ¼ 0:1;C qf
� �

¼ 0:8547.

As it is displayed in Figs. 7 and 8, we can say that the

information (entanglement) for the first is greater or equal

to the second, and that the singlet state is more resistant to

changes induced by motion than the triplet state, this is due

to the fact that for the single state, there is a minimum

number of parameters and as mentioned before, gravity

decreases the information (the effect of gravity on the

single state is less than that of the triplet state).

5. Conclusions

Throughout this paper, we have studied the spin entan-

glement of two particles system quantified by entanglement

E .ð Þ. Regarding the non-commutative case (as shown in

Figs. 1, 2, 3, 4, 5 and 6), the variation of the quantum

entanglement as a function of z, the NC parameter k and

Fig. 1 E .ð Þ as a function of k for fixed

z ¼ 1:5; y ¼ 0; a ¼ 1; q ¼ 0:01

Fig. 2 E .ð Þ as a function of k for fixed

z ¼ 4; y ¼ 0:6; a ¼ 1; q ¼ 0:01

Fig. 3 The variation of E .ð Þ as a function of z for fixed

k ¼ 0; a ¼ 1; y ¼ 0; q ¼ 0:01

Fig. 4 The variation of E .ð Þ as a function of z for fixed

y ¼ 0:1; k ¼ 0; y ¼ 0; a ¼ 1; q ¼ 0:01

Fig. 5 E .ð Þ as a function of z and fixed

k ¼ 0:01; y ¼ 0; a ¼ 1; q ¼ 0:01

A Mohadi et al.



the black hole charge y is discussed. We have noticed that

the NC effect on E .ð Þ becomes more important in a

charged black hole, so the behavior of E .ð Þ depends on the

black hole’s characteristics and not only on the kind of

particles (bosons or fermions) [48]. We found as NC

parameter increases, E .ð Þ decreases, as if NC parameter is

playing the role of gravity. On the other hand, as we

mentioned in the introduction, NC parameter was consid-

ered as having antigravity properties (quintessence, dark

energy, etc.), so NC parameter can induce two terms with

opposing signs and that was confirmed in [48, 49]
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Abstract 

In this thesis, we studied two different phenomena. In the first part, 

the accelerated expansion of the universe without introducing the 

concept of dark energy was examined. We studied it in the FRW 

metric with perfect and non-perfect fluid, as well as the Kantowski-

Sachs Space-Time and F (R) Gravity models. We confirmed that 

geometry has an impact on the accelerated expansion of the universe. 

In the second part, the effect of gravitational force on entanglement is 

explored, where the elaboration of a general formalism for quantum 

spin entanglement in curved space-time is presented. This formulation 

permits the study of different models in curved space-time. The 

Schwarzschild-de Sitter Space-Time was investigated as well by 

inspecting the role of the cosmological constant and its influence on 

entanglement. The Kerr and the Reissner-Nordström models are also 

considered, where the effect of the non-commutativity of space as 

well as black hole rotation on entanglement are discussed by using 

concurrence and the spin entanglement of a system of two spin-1/2 

particles. With particularity, it contains multiple and various physical 

parameters, allowing for a detailed study of this purely quantum 

phenomenon in different frames of space and geometry or both at the 

same time.  

Key words:  FRW model, Kantowski model, extra dimension, Non 

commutative space, Quantum information, Curved space-time, Spin 

Entanglement. 

                                                                       

 

 

 

 



 

Resumé 

Dans cette thèse, nous avons étudié deux phénomènes différents. Dans 

la première partie, l'expansion accélérée de l'univers sans introduire le 

concept d'énergie noire a été examinée.  Nous l'avons étudié dans la 

métrique FRW avec un fluide parfait et non parfait, l'espace-temps de 

Kantowski-Sachs et la gravité F (R). on a  confirmé que la géométrie a 

un impact sur l'expansion accélérée de l'univers. Dans la deuxième 

partie, l'effet de la force gravitationnelle sur l'intrication est exploré, 

où l'élaboration d'un formalisme général pour l'intrication de spin 

quantique dans l'espace-temps courbe est présentée. Cette formulation 

permet l'étude de différents modèles dans un espace-temps courbe. De 

plus, l'espace-temps de Schwarzschild-de Sitter a été étudié en 

examinant le rôle de la constante cosmologique et son influence sur 

l'intrication. Les modèles de Kerr et de Reissner-Nordström sont 

également considérés, où l'effet de la non-commutativité de l'espace 

ainsi que la rotation du trou noir sur l'intrication sont discutés en 

utilisant la concurrence et l'intrication de spin d'un système de deux 

particules de spin-1/2. Avec la particularité, il contient des paramètres 

physiques multiples et variés, permettant une étude détaillée de ce 

phénomène purement quantique dans différents cadres d'espace et de 

géométrie ou les deux à la fois. 

Mot clé : Modèle FRW, Modèle de Kantowski, dimension 

supplémentaire, Espace non commutatif, Information quantique, 

Espace-temps courbé, Intrication de spin. 

 

 

 

 



 

 

 ملخص

حَذد اىنىُ  حٌ فحص ،اهشحٍِ ٍخخيفخٍِ. فً اىجزء الأوهفً هزٓ الأطشوحت دسسْا ظ

ٍغ   FRW سسْا اىخىسغ اىَخساسع فً ٍخشٌت د اىَخساسع دوُ إدخاه ٍفهىً اىطاقت اىَظيَت.

 F (R) و ىيزٍناُ, Kantowski-Sachsبالإضافت إىى َّارج  , سائو ٍثاىً و غٍش ٍثاىً

حٌ جاربٍت, أمذّا أُ اىهْذست ىها حأثٍش ػيى اىخىسغ اىَخساسع ىينىُ. فً اىجزء اىثاًّ , ىي

حأثٍش قىة اىجاربٍت ػيى اىخشابل حٍث ٌخٌ حقذٌٌ صٍغت ػاٍت ىخشابل اىيف اىنًَ فً  فحص

اىزٍناُ اىَْحًْ. حسَح هزٓ اىصٍغت بذساست َّارج ٍخخيفت فً اىزٍناُ اىَْحًْ. حٌ اىخحقٍق 

ٍِ خلاه فحص دوس اىثابج اىنىًّ  ىيزٍناُ  Schwarzschild-de Sitter َّىرجفً 

حٍث  Reissner-Nordström,  و  Kerrوحأثٍشٓ ػيى اىخشابل. ٌخٌ أٌضًا اىْظش فً َّارج  

 Concurrenceحَج ٍْاقشت سيىك   .حأثٍش ػذً حبادىٍت اىفضاء ػيى اىخشابل بحث    حٌ

اىَْىرج . بخصىصٍت أمثش ، 1/2-سبٍِ ىهَا ٍِ جسٍَحشابل اىسبٍِ ىْظاً ٍنىُ ٍِ ومزىل 

ٌحخىي ػيى ٍؼيَاث فٍزٌائٍت ٍخؼذدة وٍخْىػت ، ٍَا ٌسَح بذساست ٍفصيت ىهزٓ اىظاهشة 

 .اىنَىٍٍت اىبحخت فً إطاساث ٍخخيفت ٍِ اىفضاء واىهْذست أو ميٍهَا فً ّفس اىىقج

الإضافٍت, اىفضاء غٍش , الأبؼاد Kantowski, َّىرج  FRWَّىرج   كلمات مفتاحية:

 اىَْحًْ, حشابل اىسبٍِ. زٍناُدىً, اىَؼيىٍاث اىنىاّخٍت, اىاىخبا
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