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Abstract 

Convective heat transfer in eccentric horizontal annuli  situated between two cylinders with isothermal wall 

conditions are studied numerically using two-dimensional finite-difference and  finite-volumes models. The annular 

space is filled by a Newtonian and incompressible fluid. The effects of various parameters such as the radius ratio of 

the annulus, the eccentricity of the annulus, the Grashof number are investigated at the Prandtl number of 0.701. By 

using the approximation of Boussinesq and the vorticity-stream function formulation, the flow is modeled by the 

differential equations with the derivative partial:  the equations of continuity and the momentum are expressed in a 

frame of reference known as "bicylindrical", to facilitate the writing of the boundary conditions and to transform the 

curvilinear field into a rectangular one. 
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1. introduction 

The flow and heat transfer in enclosed space have been studied extensively in recent years becauseof 

their importance in engineering. 

Nobari et al [1] studied numerically the fluid flow and heat transfer in curved eccentric annuli. A 

second order finite difference method based on the Projection algorithm is implemented to solve the 

governing equations including the full Navier–Stokes, the continuity, and the energy equations in a 

toroidal coordinate system. It is also shown that in contrast to straight eccentric annuli, heat transfer rates 

can be augmented in the eccentric curved annuli comparing with the straight concentric annuli at the 

large dean numbers. Shklyar et al [2] analyzed the convergence rate of a methodology for solving 

incompressible flow in general curvilinear co-ordinates. Overset grids (double-staggered grids type) 

type), each defined by the same boundaries as the physical domain are used for discretization. Kuehn and 

Goldstein [3] studied the effects of vertical eccentricity on heat transfer and obtained Mach-Zehnder 

interferograms for the thermal field in the annulus between vertically eccentric cylinders. 

 
 



The numerical study of the convective heat transfer between two horizontal eccentric cylinders, 

Nomenclature 

 

a defined constant in the eccentric coordinates (m) 

C1 radius ratio 

C2  eccentricity of the annular space formed by eccentric cylinders 

cp Specific heat at constant pressure(j.kg-1.k-1) 

g  Gravitational acceleration (m.s-2) 

Gr Modified Grashof number defined by: q 
υ λ

D β g
  Gr

2

4
h

m   

h  Dimensional metric coefficient (m) 

H  Dimensionless metric coefficient 

Nu  Local Nusselt number 

Nu   Average Nusselt number 

Pr  Prandtl number defined by     
    

 
 

q  Heat flux density (W.m-2) 

r1, r2  Inner and outer radius respectively (m) 

SФ  Source term 

T  Fluid’s temperature (K) 

T1  Hot wall temperature (K) 

T2  Cold wall temperature (K) 

ΔT  Temperature deference ΔT=T1-T2 (K) 

Vη,Vθ  Velocity components η et θ (m.s-1) 

V  Velocity vector (m.s-1)  

Greek letters 

α  Angle of inclination (°) 

β  Thermal expansion coefficient (K-1) 

Гϕ  Diffusion Coefficient 

λ  Thermal conductivity (W.m-1.K-1) 

υ  Kinematic viscosity (m2. s-1) 

ρ  Fluid density (kg. m-3) 

η ,θ,z  bicylindrical coordinates 

Ψ  Stream function (m2. s-1) 
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ω  Vorticity (s-1) 

ϕ  General function 

Π  Stress tensor 

 

Chakrabarti et al. [4] obtained similar experimental results for the vertical eccentric configuration of 

cylinders. However, their study was for an annulus with a hot outer cylinder. In numerical work, most of 

the existing works on eccentric cylindrical annuli were also mainly done in terms of vorticity-stream 

function formulations [5, 6]. This requires an additional integral condition for the pressure to be single 

valued in a solution domain with unconnected enclosed boundaries [7]. Shu and Yeo [8] applied the 

global method of polynomial based differential quadrature (PDQ) and Fourier expansion-based 

differential quadrature (FDQ) to simulate the natural convection in an annulus between two arbitrarily 

eccentric cylinders. Their approach combined the high efficiency and accuracy of the differential 

quadrature (DQ) method with simple implementation of pressure single value condition.  

2. Problem formulation and basic equations 

 Let's consider an annular space, filled with an incompressible Newtonian fluid, situated between two 

eccentric cylinders. Figure 1 represents a cross-section of the system.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 1 a cross-section of the system 
 

we impose on the inner cylinder a constant density  and outer cylinder is isotherm which is held at 

temperature T2. The physical properties of the fluid are constant, except the density   whose variations 

are at the origin of the natural convection.  Viscous dissipation is neglected, just as the radiation 

(emissive properties of the two walls being neglected). We admit that the problem is bidimensionnal, 

permanent and laminar. 

  
 Continuity equation: 

0divV 


  (1)  

 Momentum equation: 
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 Heat equation 
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The equations (1), (2) and (3) becomes : 
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The introduction of vorticity  defined by: 
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We pass directly to the writing dimensionless equations, by posing the following dimensionless 

quantities: 

 

  Dh = a ,   
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The equations (5), (6), (7) and (8) becomes : 
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 The boundary conditions are the following ones: 

 

 inner cylinder wall Condition (η=ηi=constant): 
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 Outer cylinder wall Condition (η=ηe=constant): 
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 The temperatures distribution obtained local Nusselt number value relation: 
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 The average Nusselt number is: 
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3.   Numerical Formulation  

To solve the equations (11) and (12) with the associated boundary conditions, we consider a 

numerical solution by the method of finite volumes, exposed by Patankar [9]. For the equation (13), we 

consider a numerical solution by the method of the centered differences, exposed by Nogotov [10]. 

 

 

 

 

    

          

Fig. 2 physical and computational domain 

 

4.  Discretization equation transfer of a variable  

  

The general differential equation is: 
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We illustrate sources and diffusion coefficients in table 1 

 
   Table 1 

    Sources and diffusion coefficients 
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The discretization equation is obtained by integrating the conservation equation over the control 

volume shown in figure 3, after some manipulations we have the final discretization equation: 

 

b  φ a  φ a  φ a  φ a  φ a WWEESSNNPP                    (17) 

 

 The equation coefficients are well defined in Patankar [6]. The power law scheme is used to 

discretize the convective terms in the governing equations. 

 

5. Results and discussion 

 

 We consider three annular spaces formed by eccentric cylinders with three values of inclination angle 

(=0°, 45° and 90°) and relative eccentricity (C2=0.4). 

 

6. Grid study 

 

 In this study several grids were used arbitrarily, to see their effect on the results. Table 2 shows us the 

variation of average Nusselt number and the maximum of the stream function value according to the 

number of nodes for each grid. We choose the grid (101x111). 

 
Table2 
Variation of average Nusselt number and the maximum of the stream function value according to the number of nodes 

 

 

          Gr=104 

ψmax             Er 

 % 

     Gr=5.104 

ψmax             Er 

 

               Gr=105 

  ψmax             Er 

 

      Gr=106 

ψmax               Er 

 
21x31 1.32               - 5.23          -           8.86           - 34.99        - 

31x41 1.34              1.49 5.28        0.94       9.04        1.99 34.41      1.65 

41x41 1.34              0.00  5.29        0.19       8.93        1.21 33.99      1.65  

51x61 1.33              0.75 5.26        0.57       8.81        1.34 33.58      1.17  

61x71 1.31              1.50 5.20        1.14       8.72        1.02 33.29      0.83  

71x81 1.29              1.52 5.15        0.96       8.64        0.91 33.06      0.67  

81x91 1.28           0.77 5.09        1.16       8.56        0.92 32.85      0.63  

91x101 1.27           0.78 5.04        0.98       8.46        1.16 32.64      0.63  

101x111 1.25           1.57 4.98        1.19       8.37        1.06 32.45      0.58  

111x121 1.24            0.80 4.93        1.00       8.30        0.83 32.29      0.49  

      

 

7. Numerical code validation 
  

Kuehn et al. (1976) developed a numerical study on natural convection in the annulus between two 

concentric cylinders and horizontal with a radius ratio was taken equal to 2.6, they calculated a local 

equivalent thermal conductivity, defined as the report of a temperature gradient in a convective heat 

exchange on a temperature gradient in an exchange conduction: 
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They calculated an average value of the conductivity. 

We applied our computer code to this case and we compared the average value of our results with 

theirs, we notice that they are in concord. Table 3 illustrates this comparison well. 

 Table3 

 Comparaison of the average thermical conductivity of Kuehn with our results 

Numerical 

study 
Pr 

Ra 

0.7 
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0.7 

103 

0.7 

6 x 103 

0.7 

104 

 

 Kuehn     1.00 

 

1.00                        
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1.08 

 

1.06 

1.4 

 

  1.73 2.01 

Inner 

wall our calculs 

E (%) 

 

   1.73 

   0.3 

 

2.06 

2.8 

 
Kuehn  1.00 

1.08 

         

1.06 

1.7                              

1.73              2.01   

Outer 

wall 
our calculs 

E (%) 

1.00 

0 

1.73       

0.05 

         2.07 

         3.5 

  

       

 

8. The thermal condition: isotherm inner cylinder 

 

 Influence of the inclination angle  

 Isotherms and stream lines  

 Figures 4 and 5 represent the isotherms and the streamlines for different values of the inclination 

angle when the relative eccentricity C2=0.4 and Grm=107. 

 These figures show that the structure of the flow is bicellular. The flow turns in the trigonometrically 

direction in the left side and in the opposite direction in the right one.     

 When the inclination angle is equal to 0°, the isothermal lines take the form of a mushroom. The 

temperature distribution is decreasing in the hot wall towards the cold wall. The direction of the 

deformation of the isotherms is consistent with the direction of rotation of the streamlines. In laminar 

flow, we can say that under the action of the movement of particles flying from the hot wall at the 

symmetry axis, the isothermal lines are away from the wall there. The values of the Stream function 

increase which means that convection increases.  

 For =45°, the region of the constriction of the annular space moves down wardly against by the 

expansion region moves upward. Figure 4 show that for large values of modified Grashof number, the 

fluid motion is more important in the area of enlargement. 

For =90°, the isotherms of figure 5 are almost parallel to the walls. Nevertheless there is a movement of 

the fluid: the particles, which warm up on the hot wall, tend to rise along this one, then to go down again 

along the cold wall. Thus the flow is organized in two principal cells which turn very slowly in opposite 

directions. 
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Fig. 3 Isotherms and streamlines for C2=0.4, α=0° and Grm=107 

 

 

 

 

 

 

 

 
 

Fig. 4 Isotherms and streamlines for C2=0.4, α=45° and Grm=107 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 Isotherms and streamlines for C2=0.4, α=90° and Grm=107 

 

9. Conclusion 

  

 We have established a mathematical which based on the assumption of Boussinesq and the two-

dimensionality of the flow. We have developed a program of numerical calculation, based on the finite 

volume method, which determines the thermal and dynamic fields in the fluid and the dimensionless 

numbers of local and average Nusselt numbers on the active walls of the enclosure , depending on the 

quantities characterizing the state of the system. The influence of the inclination of the system, on the 

flow was particularly examined. 

  The results of numerical simulations have shown that  the transfers are better when our system has 

elements of symmetry. 
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