ETUDE DE L'INHIBITION DE LA CORROSION DU CUIVRE PAR QUELQUES MOLECULES A BASE D'AMINE DANS UN MILIEU ACIDE.

Rim LAGGOUN¹, Ahmed HAMDI^{1, 2}, Mahmoud FERHAT^{1, 3}

¹Département des Sciences de la Matière - Université de Laghouat, rimlaggoune@gmail.com ²ah.hamdi@mail.lagh-univ.dz ³m.ferhat@mail.lagh-univ.dz

RÉSUMÉ

L'objectif de ce travail est de tester l'efficacité inhibitrice de quatre molécules à base d'amine : EDTA, la thiourée, l'urée, NaSCN, sur la corrosion du cuivre dans le milieu acide chlorhydrique. Nous avons utilisés les techniques électrochimiques stationnaires et transitoires pour la détermination des grandeurs électrochimiques. La caractérisation de la substance inhibitrice au niveau de l'interface Métal/électrolyte a été réalisée à l'aide des spectres FTIR et la microscopie optique. Différentes concentrations en HCl ont été étudiés pour déterminer la concentration à laquelle la vitesse de corrosion est maximale ; ainsi pour une concentration de 0.5M nous avons une forte corrosion du cuivre caractérisée par la valeur la plus élevée du courant de corrosion ($6.12 \,\mu\text{A/cm}^2$). L'étude de l'inhibition révèle que le thiocyanate de sodium offre la meilleure efficacité inhibitrice dans ce milieu; la spectroscopie infrarouge affirme que l'EDTA et la thiourée sont adsorbés sur la surface du cuivre.

Mots Clés : Corrosion, Inhibition, Cuivre, Molécules à base d'amine.

Symboles : Rs résistance de l'electrolyte Ohm.cm² [inhib] concentation de l'inhibiteur M W impédance de Warburg E_{corr} potentiel de corrosion mV/ECS CEE circuit électrique équivalent icorr densité de courant de corrosion µA/ECS Lettres grecques : IE éfficacité de l'inhibition % β_a , β_c pentes des droites de Tafel mV/dec n facteur d'homogénéité **Indices / Exposants :** Q élement constante de phase CPE μ F/cm² EDTA éthylène diamine tétra-acétique NaSC thiocyanate de sodium R_p résistance de polarisation K Ω .cm² E₂ potentiel de deuxième oxydation de Cu mV/ECS

NOMENCLATURE

1. INTRODUCTION

Le cuivre est un métal largement utilisé, plus particulièrement dans les industries de électroniques [1] et mécaniques [2] à cause de ses propriétés remarquables [3]. L'acide chlorhydrique est utilisé dans des nombreux secteurs industrielles [4], son agressivité altère les propriétés du cuivre [5].

L'utilisation d'inhibiteurs organiques présente la première ligne de défense contre la corrosion du cuivre en milieu acide [6, 7]. Les mécanismes d'inhibition des molécules organiques de la corrosion des métaux sont souvent associés à la structure moléculaire. Ainsi, il a été démontré que les composés organiques contenant des

hétéroatomes à forte densité électronique telsque l'azote, soufre et l'oxygène) [8] ou ceux contenant des liaisons multiples qui sont considérés comme des centres d'adsorption sont des inhibiteurs de corrosion efficaces pour le cuivre et ses alliages [9-11]

2. METHODE EXPERIMENTALE

Les solutions d'acide chlorhydrique ont été préparées par dilution de HCl concentré 32% dans l'eau distillée. Les inhibiteurs suivants : la thiourée, l'urée, l'éthylène diamine tétra-acétique et le thiocyanate de sodium sont des produits commerciales, L'électrode de travail a été préparée à partir d'une tige de cuivre de haute pureté utilisé comme conducteur d'électricité dans les transformateurs de haute tension (HT) de la société algérienne de gaz et électricité (SONELGAZ), l'électrode de cuivre est caractérisé par une surface active de 0.5 cm².

Le dispositif électrochimique est un montage classique de trois électrodes reliées à un Potentiostat –Galvanostat de type Tacussel (PGP 201) pour l'étude potentiocinétique, et un PGZ 402 pour le tracé des spectres d'impédances électrochimiques. L'acquisition des données s'effectue via le logiciel Volta Master 4, la modélisation des spectres EIS est réalisée à l'aide du logiciel ZView (V3.2).

Le spectromètre de type FT/IR-4200 (Fourier Transform Infrared Spectrometer), et un microscope optique ont été utilisés pour la caractérisation des produits de corrosion.

2.1 Mesure de la polarisation

Les mesures de polarisation potentiodynamique ont été effectuées dans un intervalle de -400 mV à 100 mV par rapport à l'ECS, après 30 min d'immersion au potentiel à circuit ouvert, la vitesse de balayage est de 30 mV/min. Tous les essais sont réalisés à la température ambiante.

2.2 Mesure des spectres SIE

Les spectres de l'impédance électrochimique (SIE) sont obtenus au potentiel de corrosion après 4 h d'immersion à courant nul, dans une gamme de fréquence de 100 KHz à 10 mHz, avec une perturbation sinusoïdale du potentiel de 10 mV.

3. RESULTATS

3.1 Effet de la concentration du milieu électrolytique :

Les courbes de polarisation de la Figure.1 représentent l'effet de la concentration de HCl :

FIGURE 1. Courbes de polarisation du cuivre immergé dans différentes concentrations de HCl à température ambiante.

ICEMAEP2016, October 30-31, 2016, Constantine, Algeria. M.KADJA, A.ZAATRI, Z.NEMOUCHI, R.BESSAIH, S.BENISSAAD and K. TALBI (Eds.).

[HCI]	E_{corr}	i_{corr}	R_p	β_a	β_{c}
(171)	$(\Pi V/ECS)$	(µA/cm)	(K12. CIII)	(mv/uec)	(mv/uec)
0.2	-244.1	3.29	5.33	59.3	-150.5
0.4	-252.1	3.36	3.92	46.8	-111.5
0.5	-269.8	6.12	3.15	62.2	-167.8
0.6	-290.2	3.92	4.15	58.2	-139.1
0.8	-301.1	3.92	3.66	55.8	-140.0
1	-303.3	4.20	3.33	50.1	-142.4

TABLEAU 1. Les paramètres électrochimiques relatifs à la corrosion du cuivre immergé dans différentes concentrations de HCl à température ambiante.

3.2 Etude de l'inhibition:

La Figure.2 représente les courbes potentiodynamiques pour chaque inhibiteur à différentes concentrations. Le tableau.2 résume les grandeurs électrochimiques calculées aux concentrations optimums.

FIGURE 2. Courbes de polarisation du cuivre dans 0.5 M de HCl contenant différentes concentrations de : a) L'EDTA, b) La thiourée, c) L'urée, d) NaSCN, à température ambiante.

Inhibiteur	[Inhib] (M)	E _{corr} (mV/ECS)	i _{corr} (μA/cm²)	R_p (K Ω . cm ²)	β _a (mV/dec)	β _c (mV/dec)
EDTA	1.4×10^{-3}	-288.0	2.80	5.97	57.6	-133.6
Thiourée	2×10^{-4}	-302.2	2.86	3.40	48.9	-88.7
Urée	6×10^{-4}	-278.4	3.7	4.51	57.9	-141.4
NaSCN	1.8×10^{-3}	-310.2	1.65	2.93	24.7	-38.5

TABLEAU 2. Les paramètres électrochimiques et efficacités maximales de chaque inhibiteur.

3.3 Caractérisation des produits de corrosion

3.3.1 Microscope optique

Les échantillons sont immergés dans 100 ml d'acide chlorhydrique 0.5 M pendant 19 jours à température ambiante, chaque solution contient l'un des inhibiteurs suivants : l'EDTA, de thiourée, d'urée aux concentrations optimums.

		Mesure à	L'EDTA	Thiourée	Urée
	Inhibiteur	blanc (1)	(2)	(3)	(4)
_	Plaques de Cu après l'immersion (X16)	× 16	* × 16	× 16	× 16
	Plaques de Cu après l'immersion (X80 et X100)	× 80	₹ 5 ×100	× 100	×80

TABLEAU 3. Micrographies à différents grossissements obtenus après 19 jours d'immersion en absence et en présence d'inhibiteur: EDTA, Thiourée, Urée.

3.3.2 Spectres d'IR de la Thiourée et l'EDTA

Une étude comparative par la spectroscopie infrarouge entre deux inhibiteurs : le thiourée, l'EDTA et ses couches formées sur la plaque de cuivre (figure 6.et 7):

FIGURE 6. Spectre IR de Thiourée et l'EDTA.

3.4 Spectroscopie d'impédance électrochimique3.4.1 diagrammes expérimentaux

FIGURE 7. Diagrammes de Nyquist obtenus à différentes concentration de : a) EDTA, b) thiourée, c) urée, d) NaSCN.

3.4.2 Circuit électrique équivalent

L'analyse des diagrammes d'impédances expérimentaux sont modélisés par un circuit électrique équivalent qui traduit le comportement de l'interface cuivre / électrolyte.

FIGURE 8. Circuit électrique équivalent (CEE) et la courbe expérimentale modélisé du système Cu/électrolyte.

Tous les paramètres cinétiques calculés à partir du circuit électrique équivalent sont regroupés dans le tableau 4.

		R _S	Q_1			Q_2				
	[inhbi]	$(0 \text{hm.} \text{cm}^2)$	(µF		Rp	(µF		R _P '		IE
	(M))	$/cm^2$)	n ₁	$(0hm. cm^2)$	$/cm^2$)	n ₂	$(0hm. cm^2)$	W	$(R_p)\%$
	1.8		1.071	0.60		2.903	0.96			
EDTA	$\times 10^{-3}$	1.087	$\times 10^{-3}$	1	463.78	$\times 10^{-2}$	5	503.46	85.114	48.39
			1.184			6.656				
Thiourée	10^{-3}	5.0	$\times 10^{-4}$	0.8	1704.4	$\times 10^{-4}$	0.74	183.85	90.387	85.95
	1.8		1.244	0.63		2.427	0.90			
Urée	$\times 10^{-3}$	1.269	$\times 10^{-3}$	2	344.46	$\times 10^{-2}$	0	403.15	97.045	30.50
	1.8		1.829	0.60		6.182	0.72			
NaSCN	$\times 10^{-3}$	1.552	$\times 10^{-5}$	0	46441	$\times 10^{-4}$	6	69564	93.146	99.48

TABLEAU 4. Paramètres électrochimiques obtenus à partir du CEE de la Figure 8

4. CONCLUSIONS

Dans le travail présent les résultats obtenus montrent que:

- 1) L'étude électrochimique du milieu montre que la concentration 0.5 M d'HCl est la concentration la plus agressive pour le cuivre.
- 2) Tous les inhibiteurs testés ont un effet mixte à prédominance cathodique, ils forment des films poreux au niveau de la surface de notre métal; Sauf le NaSCN à 10^{-3} M et 1.8×10^{-3} M forme une barrière très bloquante (inhibiteur passivant).

REFERENCES

- [1] M. Scendo, Corrosion inhibition of copper by potassium ethyl xanthate in acidic chloride solutions, *Journal of Corrosion Science*, 47, 2778–2791, Nov. 2005.
- [2] W. Qafsaoui, C. Blanc, N. Pe, W. Qafsaoui, C. Blanc, N. Pébère, H. Takenouti, A. Srhiri, and G. Mankowski, Quantitati v e characterization of protecti v e films grown on copper in the presence of different triazole deri v ati v e inhibitors, *Journal of Electrochimica Acta*, 47, 4339–4346, 2002.
- [3] P. Wang, D. Zhang, R. Qiu, Y. Wan, and J. Wu, Green approach to fabrication of a super-hydrophobic film on copper and the consequent corrosion resistance, *Journal of Corrosion Science*, 80, 366–373, Mar. 2014.
- [4] D.-Q. Zhang, Q.-R. Cai, X.-M. He, L.-X. Gao, and G. S. Kim, The corrosion inhibition of copper in hydrochloric acid solutions by a tripeptide compound, *Journal of Corrosion Science*, 51, 2349–2354, Oct. 2009.
- [5] M. a. Amin and K. F. Khaled, Copper corrosion inhibition in O2-saturated H2SO4 solutions, *Journal of Corrosion Science*, 52, 1194–1204, Apr. 2010.
- [6] M. M. Antonijević, S. M. Milić, and M. B. Petrović, Films formed on copper surface in chloride media in the presence of azoles, *Journal of Corrosion Science*, 51, 1228–1237, Jun. 2009.
- [7] S. Deng, X. Li, and X. Xie, Hydroxymethyl urea and 1,3-bis(hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution, *Journal of Corrosion Science*, 80, 276–289, Mar. 2014.
- [8] A. Dafali, B. Hammouti, R. Mokhlisse, and S. Kertit, Substituted uracils as corrosion inhibitors for copper in 3% NaCl solution, *Journal of Corrosion Science*, 45, 1619–1630, Aug. 2003.
- [9] R. Bostan, S. Varvara, L. Găină, and L. M. Mureșan, Evaluation of some phenothiazine derivatives as corrosion inhibitors for bronze in weakly acidic solution, *Journal of Corrosion Science*, 63, 275–286, Oct. 2012.
- [10] B. Donnelly, T. C. Downie, R. Grzeskowiak, H. R. Hamburg, and D. Short, The effect of electronic delocalization in organic groups R in substituted thiocarbamoyl R{single bond}CS{single bond}NH2 and related compounds on inhibition efficiency, *Journal of Corrosion Science*, 18, 109–116, 1978.
- [11] B. Gómez, N. Likhanova, M. A. Dominguez Aguilar, O. Olivares, J. M. Hallen, and J. M. Martínez-Magadán, Theoretical Study of a New Group of Corrosion Inhibitors, *The Journal of Physical Chemistry A*, 109, 8950–8957, 2005.