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Abstract: In this work, we treat the thermal development problem, for a pseudoplastic fluid in a 

single pipe. A fully developed flow is supposed at the pipe inlet, with an imposed temperature at the 

surface in the case of a heating and cooling. In addition, the effect of viscous dissipation is 

considered. Finite difference method with an implicit scheme is used to solve the energy equation. 

     The main objective of the work is to provide results, enabling to well understand the effect of 

viscous dissipation associated with that of rheological behavior. For this, different values of the 

Brinkman (Br) number characterizing the heat generation by viscous friction, and the rheological 

index (n) have been taken for in heating situation as well as cooling. It has been found that the fluid 

shear-thinning (n↓) significantly reduces the dissipative effect, by reducing the friction between the 

fluid layers. 
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Nomenclature: 

r : Radial coordinate (m),                                                                  z : Axial coordinate (m), 

T: Temperature (°C),                                                                        u: Axial Velocity (m.s
-1

), 

m: Fluid consistency (Pa.s
n
),                                                            n: Rheological index, 

R: Dimensionless radial coordinate,                                                 Z: Dimensionless axial 

coordinate, 

θ: Dimensionless temperature,                                                         Br: Brinkman number, 

Pe: Peclet number, 

Subscript: 

m: Mean (bulk for temperature),                                                     W: Wall, 

e: Inlet,                                                                                             fd: Fully developed 
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1. Introduction: 

     In a viscous fluid flow, there is always a friction between the fluid layers (shear). In some 

cases, this friction is considerable and provides a generation of significant heat within the flow. This 

heat generation is considered an internal heat source, which changes the temperature distribution in 

the medium and thus, the coefficient of heat transfer (Nu). The effect of viscous dissipation is 

usually represented by the Brinkman number (Br), which also depends on the heating conditions. 
 

     Today, viscous dissipation is very exploited in industry. One can cite as an indication plastic 

polymers extrusion. Originally powder; they are introduced into the extruder, equipped with a screw 

(one or more). By turning, a highly significant shear is applied to the polymer (particles of powder) 

which begins to collapse under the effect of heat generated by viscous dissipation. Slowly along the 

extruder, the temperature increases in the polymer and reaches that of its fusion. Thereafter the 

molten polymer passes to the molding phase. 
 

     From the above, the Graetz problem taking into account the viscous dissipation interest many 

authors. Among them, R. M. Cotta et al [1] studied the Graetz problem in a simple cylindrical pipe 

and between two parallel plates, for an imposed heat flux. The fluid was considered non-

Newtonian, modeled by the power-law. The main study objective is to determine the Nusselt 

number. Three values of the rheological index were taken (n=1/3, n=1.0, n=3.0). A comparison 

with the asymptotic solution of Bird et al [2] shows a good agreement. For a cylindrical pipe, A. 

Barletta [3] studied the problem for three heating types: A decreasing flux until zero value for an 

infinite length, a decreasing flux until a positive value, and then an increasing to infinity flux when 

length tends to infinite. The author found that the value of the Nusselt tends to zero for the first 

case. It depends on the value of n and the reference Brinkman number (Br∞) for the second case. 

And depends on n and a new dimensionless number β to the third case. H. Ragueb et al [4] have 

studied the above problem but in an elliptical section with imposed temperature. Numerical solution 

based on DADI scheme (Dynamic Alternating Direction Implicit) is followed. The Nusselt number 

is represented for different values of Br and β (ellipse radii ratio=a/b). They showed that the value 

of fully developed Nu does not depend in Br, but it increases with β. O. Aydin [5] analyzed for a 

developed dynamic regime in a cylindrical pipe and a Newtonian fluid, the effect of viscous 

dissipation on the temperature profile, and this for two heating conditions: A constant flux (CHF) 

and a constant temperature (CWT). The radial distribution of temperature and Nusselt number were 

obtained for different values of Br. An attractive analytical development made by the author for the 

case of an imposed flux leading to the following expression of the temperature profile: 

 

2 4 2 4( ) (1 4 3 3) ( ) / 3    R R R Br R R  

     For the second condition, a work similar to that done in [6; Chapter 4] is followed. In a 

subsequent study, the author [7] expands his work by considering the cooling case (Br<0.0). 

Different graphical presentations of the radial and axial temperature distribution for different values 

of Br are carried out. Nusselt values are also presented for both heating cases and for different 

values of Br. T. Basu et al [8] have investigated analytically the Graetz problem of a Newtonian 

fluid flowing in a circular pipe. The wall is subjected to a uniform temperature or a uniform flux. 

They presented simple analytical formulas for calculating the Nusselt number according to Br. The 

results are also presented for both heating conditions. Having noticed a singularity (Leap from -∞ to 

+∞) in the local Nusselt evolution when the case of cooling is considered (Br <0.0). E. Magyari et 

al [9] studied the problem by taking a non-uniform temperature profile at the entrance. Some 

manipulations of the energy equation in order to have an analytical expression profile are done. The 

authors considered both heating and cooling cases. They showed that for Z=0.00234, Nu coincides 

with Nu∞. Graphical results Nu(Z), for the case of uniform and non-uniform inlet temperature are 
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given, indicating that the singularity disappears in the range -6/5 ≤ Br≤ 0.0. For two different 

geometries (cylindrical pipe and two parallel planes), P. M. Coelho et al [10] analyzed the Graetz 

problem in the presence of viscous dissipation for a viscoelastic fluid using the separation of 

variables method. Imposed temperature or flux are supposed as conditions at the walls. The authors 

show the Nu evolution versus Z change for different values of Br and We. A remarkable 

improvement of the Nu (better heat exchange) with increasing Webber number (We) considered for 

all Br is observed. This improvement is accompanied by a reduction of the thermal length which 

reduces the size of the heat exchanger. 
 

     The literature analysis, reveals that the effect of rheological index (n) of the pseudoplastic 

fluid was not properly disclosed. In addition, the majority of reviewed works interested in Nusselt 

established or in its evolution. It is noted that for a better understanding of the effect of viscous 

dissipation in this case of fluids, it is appreciated to consult some works where it is neglected. A 

good bibliographical summary done in [11] ensures this. 
 

     In this work, we discuss the effect of viscous dissipation and rheological index of the mixture 

temperature and Nusselt. An imposed temperature is supposed as thermal condition. Both heating 

and cooling cases are studied. 

 

2. Problem formulation: 

The geometry considered is a simple cylindrical pipe (Figure.1). The equations are written in the 

cylindrical coordinate system. 

 

 

 

 

 

 

 

2.1. Assumptions: 

- Fully developed flow at the inlet; 

- Axial diffusion neglected; 

- Pseudoplastic fluid described with Ostwald-de Waele law  (n≤1.0) [2]; 

- Constants physical proprieties ( ; ; ; pk m C ). 

 

2.2. Velocity Profile: 

The dynamic flow is assumed developed at the entrance of the pipe. Its expression is given in 

equation (1). 
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                                                              (1) 

The detailed demonstration can be found in [11, 12]. 
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Fig.1 : Pipe geometry 
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In figure (2), we have presented the effect of the rheological index n on the dimensionless axial 

velocity profile. This effect results in an increasing velocity magnitude in the pipe axis as n 

increases and therefore a decreasing parietal velocity gradient. For small n (strongly shear-thinning 

fluids: n<0.5), the shape becomes flat with a hardly identified maximum, where an even larger 

central area is observed as n is small. The interpretation of this effect is the increase of the parietal 

velocity gradient with decreasing n. This is due to the decrease of the fluid apparent viscosity 

( 1. n

a m   ) near the wall. The flow thus moves more freely, and a greater uniformity in the 

distribution of the velocity is obtained (flattened shape). It should be noted that for n≈0.0, the shape 

of the velocity profile is almost flat with constant amplitude along r, this is a reminder to the case of 

gas characterized by very low viscosities, the speed is characterized by a mean value (flow/Section). 

 

 

 

 

 

 

 

 

2.3. Energy equation: 

     The dimensionless velocity profile expression is injected into the energy equation below, in 

which the last term on the right describes the viscous dissipation: 

 

1
p rz

T T u
C u k r

z r r r r
 

    
  

    
                                                        (2)  

 

Where: , pk and C  are thermal conductivity, density and specific heat respectively. 

We replace u and 
rz by their expressions, we obtain: 
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     (3) 

This equation governs the radial and axial temperature changes. 

 

To facilitate the numerical solution of the energy equation, the following dimensionless 

parameters are introduced:  

( )
; ; ; w
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Used in equation (3), we get the following dimensionless equation: 
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             (4)   
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Fig. 2: Effect of n on the velocity profile. 
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The last dimensionless number appears after nondimensionalization, is the source term due to 

viscous dissipation. This heating phenomenon by viscous friction will be more pronounced when 

the Br value is high and vice versa. 

 

Boundary conditions: 

 

0.5

0 1.0

0 0

0.5 0.0

R

Z

R R

R









  

    

  

                                                             (5) 

 

3. Numerical Resolution: 

The finite difference method is chosen to discretize the terms following R and Z directions. 

Simple implicit scheme is then followed for the rearrangement of discretized terms to make the use 

of the Thomas algorithm possible. A regular grid in R direction is selected while a gradually 

growing mesh following Z is adopted. For our case, and after the convergence study (Figure (3)) we 

took ∆R=10
-3

 (501 Nodes), whereas following Z, we took ΔZ0=10
-7

 with an amplification factor of 

1.005 until a maximum ΔZ equal to 10
-3

. 

 

 

3.1. Code validation: 

In order to make the present work valuable, two validations were made. The first on the evolution 

of the Nusselt number along the pipe by neglecting the effect of viscous dissipation with Pe=1.0. 

Our results compared to the case of a Newtonian fluid with those of R.M. Cotta and al [1] for two 

heating types (Table.1). a very good agreement between the two works is observed. 
 

A second validation is done for the value of Nu established for different values of n. Our results 

for specified n were compared with those of H. Ragueb et al [4] for the case of temperature 

imposed, and those of A. Barletta [3] for an imposed flux case. Our results show a good accuracy 

with literature (Table.2). 
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Table 1: Evolution of Nu along Z. n=1.0; Br=0 

 

 

 

Table 2: Values of established Nu for different n 

 

4. Results and discussion: 

View of the many parameters involved in the problem (Br, n, heating condition), the results 

will be presented for the case of heating then for the case of cooling. 

Generally, the generation of heat due to viscous dissipation is characterized by a gradual 

increase of the temperature within the fluid. This growing increase with increasing Br, manages 

to bring the fluid temperature to levels sometimes exceeding the temperature of the wall. This 

means that fluid starts from an axial position to heat the wall. Details on this point with many 

results are given in [6, Chap 3]. The referral to this reference is the fact that its presentation 

requires many figures which the paper space limitation prevents. 

     An important element in the heat transfer problems is the bulk temperature. In addition it 

goes directly into the calculation of the Nusselt, it serves as an evaluation gauge the overall 

evolution of the fluid temperature. This of the fact that is a weighted average (by the velocity 

distribution), which gives an idea about the thermization process (or cooling). 

     In the present work, the dimensionless bulk temperature is calculated from equation (6): 

 

1/2

0

8m U R dR                                                                         (6) 

We note that a trapezoidal integration rule is used to calculate the integral. 
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Fig. 4: Evolution of θm along the 

pipe for different n and Br. Heating 

case 
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     In the following, we will present the axial evolution of the bulk temperature, from the inlet 

to the fully developed stage. Two values of n are chosen (n=0.1 and n=1.0), for five values of Br. 

This is done to the case of a heating and the cooling. We note that for the case of cooling, Br is 

taken negative simply (see his expression). In addition, the Peclet number is taken equal 100.0, 

to neglect the axial conduction. 

 

4.1. Evolution of the bulk temperature: 

a. Heating at the wall: 

The case of heating at the wall is shown in Figure (4). The dotted line is for θW = 0.0. It is clear 

that the dimensionless temperature becomes increasingly negative when Br increases, 

indicating a strong heating in particular in the central area due to the generation of heat by 

viscous friction. The rheological index also affect this evolution, where high heat is observed for 

n=1.0 compared to n=0.1. This is explained by the fact that the decrease of n results in a 

decrease in the viscosity and therefore the viscous friction directly related. 

From the two subfigures (n=0.1 and n=1.0), we can see approximately, the axial position from 

which the heat transfer changes direction. This position becomes closer to the inlet when Br 

and/or n increase. 
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case 
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Cooling at the wall: 

Contrary to the previous case, the bulk temperature in this case increases with the increase of 

Br. The values of the bulk temperature for n=1.0 are larger than those corresponding to n=0.1 

(Fig.5). 

A new phenomenon is observed for Br= -5.0 and Br = -10.0 for n=1.0. The bulk temperature 

changes slope from the entrance, where very high values are recorded reaching 8.0, while for 

other cases it remains below 1.0. This in our opinion is explained by the fact that the great value 

of Br associated with high n, leads to strong heating by viscous friction. This friction intensively 

grows the dimensionless temperature even before the cooling process begins (ie. just at the 

entrance). 

This phenomenon is not observed for n=0.1, the fact that the shear-thinning reduces the 

friction between the fluid layers. It is clear that there is a value of n from which we begin to see 

this phenomenon. 

 

4.2. Evolution of the Nusselt number: 

     Nusselt number, which characterizes the intensity of the convective exchange, is another 

important parameter. The effects of the rheological index n and the Brinkman number Br are 

presented in figure (6) for heating case, and in figure (7) for the cooling one. 
 

We note that we are limited to n=0.1 and n=1.0, for lack of space, other values are plotted in 

[6, Chap 3]. 

 

a. Heating of the wall: 

In this part the Nusselt evolution was presented for n=0.1 and n=1.0 and five Br values (Figure 

6). The black line is for the case Br=0.0 (negligible viscous dissipation), where the habitual 

curves are found and the value of Nu in the establishment is mentioned. But when Br is not zero, 

we see an evolution that seems strange for the two sub-figures. Indicating that the rheological 

index n and Br, do not affect the evolution shape but affect the Nu value. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.6: Evolution of Nu along the pipe for different n and Br. 
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The Nusselt decreases gradually from the inlet. But it continues to decrease to very low 

negative values, and then at an axial position, it abruptly rises where a jump is recorded. Finally, 

it goes down to its establishment value. 

    The explanation for this change is as follows: at the entrance, the fluid temperature and that 

of bulk are very close to the inlet temperature (θe). This will give a negative term in the 

numerator close to 1.0 and a negative term close to 1.0 multiplied by ∆R in the denominator 

(
0.5

1


   
R

m

Nu R


).This will give a great positive Nu. Away from the inlet, the fluid may be hot, 

and under the effect of the viscous dissipation its temperature exceeds that of the wall, negative 

values are obtained, recalling that θm is always lower than that of the wall. After some distance, 

θm becomes equal to that of the wall (=0.0), and the jump in the value of Nu is observed, its value 

becomes positive and a decrease until the establishment was observed thereafter. By increasing, 

Br moves the point of singularity to the inlet since it intensifies the heat generation by viscous 

dissipation, which accelerates the phenomena described above. The rheological engenders the 

opposite effect. 

The analysis of the sub-figures shows that Nusselt curves met at the same value at the 

establishment, regardless of the value of Br. This is explained by the fact that its calculation is 

conditioned by θW fixed along the whole pipe length. 

 

b. Cooling of the wall:  

The case of cooling is now considered. The Nusselt numbers evolutions are plotted in Figure 

(7) for the same values of n considered in the previous case, and five negative Br. It is clearly 

seen that Nu curves for n=0.1 have minimums, followed by lift until establishment. This is valid 

for all Br supposed. It is explained by the fact that 1N   (close to wall) decreases faster than m

near the entrance. This process continues until reaching the Nu minimum. With the generation of 

heat by viscous dissipation m also rapidly decreases and a lift in Nu shape is obtained. 

     The rheological index n has a remarkable effect on the evolution of Nu, as its increase 

favors the viscous dissipation effect as detailed above. This can be observed for the curves of 

Br=-0.5 and Br=-1.0, where a similar behavior to that observed for n=0.1 is obtained. Contrary 

for the other Br and in particular for the strong n, Nusselt does not exhibit a minimum. This is 

the cause of the strong disturbance of thermal field by viscous heat generation, which grow 

rapidly the bulk temperature and hence the Nusselt closer to the entrance. 

The same phenomenon at the establishment stage is reproduced for the case of cooling, where 

the curves at different Br are joined at the same value. 

 

 

 

 

 

 

 

 

 

 
Fig. 7: Evolution of Nu along the pipe for different n and Br. Cooling 

case 
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5. Conclusions: 

The results obtained from this Numerical work show that: 

• The viscous dissipation increases with Br, and increasingly high temperatures are recorded; 

• The decrease in rheological index n reduces the effect of viscous dissipation due to the 

reduction of friction between the fluid layers; 

• A singularity in the Nusselt evolution is observed in the case of heating. This singularity 

becomes closer to the entrance when Br and/or n increase. 

In the case of cooling, the Nusselt number increases near the entrance with the increase of 

Br. Its evolution is characterized with a slope down followed with a lift when viscous 

dissipation becomes intense. This result is also affected by Br an n values; 

• For the two cases supposed, the fully developed Nu value is independent to the change of Br. 

But it is greater of that for Br=0.0.  
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